F r a n c i s c i M a u r o l y c i O p e r a M a t h e m a t i c a |
Introduzione | Help | Pianta | Sommario |
Arithmeticorum libri duo | Liber secundus | 51 |
<- | App. | -> | <- | = | -> |
Propositio 51a 284 Omnis quantitas divisa per quantitatem sibi commensurabilem, exhibet in quotiente quantitatem rationalem. Sint ab quantitates commensurabiles [C:133v] inter se, et dividatur b per ipsam a et proveniat c. Aio, quod c quantitas rationalis est. Nam per diffinitionem divisionis erit sicut a dividens ad positam, sic b divisa ad c provenientem; et permutatim, sicut a ad b sic posita ad c. Sed a per hypothesim commensurabilis est ipsi b ergo per quadragesimam octavam praemissam, et posita commensurabilis ipsi c. Ergo c rationalis; quod est propositum. Hoc idem ex praecedenti ostendi potest.
|
Inizio della pagina |
-> |