Elementi di topologia in \mathbb{R}^n

Lo spazio euclideo \mathbb{R}^n

Useremo la notazione seguente :

• \mathbb{R}^n è lo spazio euclideo di dimensione n:

$$\mathbb{R}^n = \Big\{ (x_1, x_2, x_3, \dots, x_n) : x_k \in \mathbb{R} \quad \text{per ogni} \quad k = 1, \dots, n \Big\}.$$

• \mathbb{Q}^n è l'insieme dei punti con coordiante razionali in \mathbb{R}^n

$$\mathbb{Q}^n = \Big\{ (q_1, q_2, q_3, \dots, q_n) : q_k \in \mathbb{Q} \text{ per ogni } k = 1, \dots, n \Big\}.$$

• Se x e y sono due punti di \mathbb{R}^n con coordinate

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

allora x + y e x - y sono i punti con coordinate

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 e $x - y = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n).$

• Se $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, allora definiamo la norma Euclidea |x| come

$$|x| := \left(x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2\right)^{1/2}.$$

• La funzione $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, definita come

$$d(x, y) = |x - y|,$$

è una distanza su \mathbb{R}^n , ossia valogono le proprietà seguenti:

- (1) Per ogni $x, y \in \mathbb{R}^n$, si ha che $|x y| \ge 0$. Inoltre, |x y| = 0 se e solo se x = y.
- (2) Per ogni $x,y,z\in\mathbb{R}^n,$ vale la disuguaglianza triangolare

$$|x-y| + |y-z| \ge |x-z|.$$

• Per ogni $x \in \mathbb{R}^n$ ed ogni r > 0, indichiamo con $B_r(x)$ la palla centrata in x di raggio r.

$$B_r(x) := \left\{ y \in \mathbb{R}^n : |x - y| < r \right\}.$$

• Diciamo che la successione $(x_k)_{k\in\mathbb{N}}$ converge a $x_\infty\in\mathbb{R}^n$, se

$$\lim_{n \to \infty} |x_n - x_\infty| = 0,$$

ossia se per ogni $\varepsilon>0$ esiste $N\in\mathbb{N}$ tale che

$$|x_k - x_{\infty}| < \varepsilon$$
 per ogni $k \ge N$.

Proposizione 1. L'insieme \mathbb{Q}^n è denso in \mathbb{R}^n ossia per ogni $x \in \mathbb{R}^n$ ed ogni $\varepsilon > 0$ esiste un punto con coordinate razionali $q \in \mathbb{Q}^n$ tale che $|x - q| < \varepsilon$.

Proposizione 2. Se $x_k \in \mathbb{R}^n$ è una successione che converge a $x_\infty \in \mathbb{R}^n$, allora

$$\lim_{k \to \infty} |x_k| = |x_\infty|.$$

Le due nozioni di prodotto in \mathbb{R}^n .

Per ogni $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ e per ogni numero reale $t \in \mathbb{R}$, definiamo il prodotto $tx \in \mathbb{R}^n$ del vettore x con il numero reale t come

$$tx = (tx_1, tx_2, \dots, tx_n).$$

Inoltre, per ogni

$$x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$
 e $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$,

definiamo il prodotto scalare tra x e y come

$$x \cdot y := \sum_{k=1}^{n} x_k y_k.$$

Proposizione 3 (Proprietà del prodotto scalare).

(i) per ogni $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ e $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ si ha

$$x \cdot y = y \cdot x$$

(ii) per ogni $x, y \in \mathbb{R}^n$ e per ogni $t \in \mathbb{R}$ si ha che

$$(tx) \cdot y = x \cdot (ty) = t(x \cdot y);$$

(iii) per ogni $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ e $z = (z_1, \ldots, z_n) \in \mathbb{R}^n$

$$(x+y) \cdot z = x \cdot z + y \cdot z.$$

(iv) per ogni $x \in \mathbb{R}$ si ha

$$x \cdot x = |x|^2.$$

(v) per ogni $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ e $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ si ha

$$|x+y|^2 = |x|^2 + 2x \cdot y + |y|^2$$
.

La disuguaglianza di Cauchy-Schwartz

Teorema 4. Siano

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

due punti di \mathbb{R}^n . Allora vale la disuguaglianza di Cauchy-Schwartz

$$|x||y| \ge |x \cdot y|$$
.

dove $x \cdot y$ è il prodotto scalare tra $x \in y$.

Dimostrazione: È sufficiente considerare il caso $x \neq 0$ e $y \neq 0$. Considerare la funzione

$$f: [0,1] \to \mathbb{R}, \qquad f(t) = |x + ty|^2.$$

Calcolare il minimo della funzione su [0, 1]. Concludere.

Dimostrazione della disuguaglianza triangolare

Teorema 5. Siano

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

due punti di \mathbb{R}^n . Allora vale la disuguaglianza triangolare

$$|x| + |y| \ge |x + y|.$$

Dimostrazione: Sviluppare $|x+y|^2$. Usando la disuguaglianza di Cauchy-Schwartz, mostrare che $|x+y|^2 \le (|x|+|y|)^2$.

Insiemi aperti

Definizione 6 (Insieme aperto). Sia A un sottoinsieme di \mathbb{R}^d . Diciamo che A è aperto se vale la proprietà seguente. Per ogni $x \in A$ esiste un raggio r > 0 tale che $B_r(x) \subset A$. Inoltre, per definizione, l'insieme vuoto \emptyset è un aperto.

Teorema 7 (Unione e intersezione di aperti).

- (i) L'intersezione di due insiemi aperti à un aperto.
- (ii) L'unione di una famiglia di insiemi aperti è un aperto.

Dimostrazione: Segue dalla definizione.

Esempio 8.

- (1) Un intervallo aperto, della forma (a,b), è un aperto di \mathbb{R} .
- (2) Gli intervalli della forma (a,b], [a,b) e [a,b] NON sono insiemi aperti in \mathbb{R} .
- (3) Il quadrato $(0,1) \times (0,1)$ è un aperto di \mathbb{R}^2 . (vedi Proposizione 12)
- (4) L'insieme $[0,1) \times (0,1)$ NON è un aperto di \mathbb{R}^2 .

Dimostrazione: (1), (2) e (3) seguono dalla definizione.

Proposizione 9. Per ogni $x \in \mathbb{R}^d$ e per ogni r > 0, la palla $B_r(x)$ è un insieme aperto di \mathbb{R}^d .

Dimostrazione: Vedi il lemma sotto.

Lemma 10. Siano $x \in \mathbb{R}^d$, r > 0 e $y \in \mathbb{R}^d$ tali che $y \in B_r(x)$. Allora

$$B_{\varepsilon}(y) \subset B_r(x)$$
 per ogni $0 < \varepsilon \le r - |x - y|$.

Soluzione: Usare la disuguaglianza triangolare.

Proposizione 11.

- (i) L'unione di una famiglia qualsiasi di palle aperte $\{B_{r_i}(x_i)\}_{i\in\mathcal{I}}$ è un aperto.
- (ii) Ogni insieme aperto $A \subset \mathbb{R}^d$ è unione di palle aperte.
- (iii) Ogni insieme aperto $A \subset \mathbb{R}^d$ è unione di una famiglia di palle $\left\{B_{r_i}(q_i)\right\}_{i\in\mathcal{I}}$ con raggi razionali $(r_i \in \mathbb{Q}, r_i > 0)$ e centri con coordinate razionali $(q_i \in \mathbb{Q}^n)$.

Dimostrazione: (i) segue da Teorema 7. (ii) segue dalla definizione. Per dimostrare (iii) usare il lemma sopra.

Proposizione 12 (esercizio). Se A_1, A_2, \ldots, A_d sono insiemi aperti di \mathbb{R} , allora l'insieme prodotto $A_1 \times A_2 \times \cdots \times A_d$ è un aperto di \mathbb{R}^d .

Dimostrazione: Prima dimostrare che ogni cubo $(-\varepsilon+x_1,\varepsilon+x_1)\times(-\varepsilon+x_2,\varepsilon+x_2)\times\cdots\times(-\varepsilon+x_d,\varepsilon+x_d)$ contiene una palla di raggio ε . Poi usare questo risultato per concludere.

Proposizione 13 (esercizio). Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua. Dimostrare che l'insieme

$$A = \left\{ (x, y) \in \mathbb{R}^2 : y < f(x) \right\}$$

è un aperto in \mathbb{R}^2 .

Soluzione: Usare la definizione di funzione continua.

Insiemi chiusi

Definizione 14. Diciamo che un insieme $C \subset \mathbb{R}^d$ è chiuso, se il suo complementare $\mathbb{R}^d \setminus C$ è un aperto.

Teorema 15 (Unione e intersezione di chiusi).

- (i) L'unione di due insiemi chiusi à un chiuso.
- (ii) L'intersezione di una qualsiasi famiglia di insiemi chiusi è un chiuso.

Esempio 16.

- (1) \mathbb{R}^d e l'insieme vuoto \emptyset sono entrambi insiemi chiusi. (usare la definizione)
- (2) Gli intervalli della forma [a,b] sono insiemi chiusi in \mathbb{R} . (usare la definizione)
- (3) Il quadrato $[0,1] \times [0,1]$ è un chiuso di \mathbb{R}^2 . (Usare il Corollario 18)
- (4) L'intervallo (a,b) NON è un chiuso di \mathbb{R} . (Usare il teorema 17)
- (5) Ogni punto $x \in \mathbb{R}^d$ è un insieme chiuso di \mathbb{R}^d (l'insieme che ha come unico elemento il punto x si indica con $\{x\}$).

Teorema 17. Sia C un sottoinsieme non-vuoto di \mathbb{R}^d . Allora sono equivalenti:

- (a) C è chiuso (nel senso che il suo complementare $\mathbb{R}^d \setminus C$ è aperto).
- (b) Se $x_n \in C$ è una successione che converge a $x_\infty \in \mathbb{R}^n$, allora $x_\infty \in C$.

Corollario 18. Se C_1, C_2, \ldots, C_d sono insiemi chiusi di \mathbb{R} , allora l'insieme prodotto $C_1 \times C_2 \times \cdots \times C_d$ è un chiuso di \mathbb{R}^d .

Proposizione 19 (esercizio). Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione continua. Allora:

(i) l'insieme

$$C = \left\{ (x, y) \in \mathbb{R}^2 : y \le f(x) \right\}$$

è un chiuso in \mathbb{R}^2 ;

(ii) il grafico di f

$$\Gamma = \left\{ (x, y) \in \mathbb{R}^2 : y = f(x) \right\}$$

è un chiuso in \mathbb{R}^2 .

Proposizione 20 (esercizio). Sia x_n una successione in \mathbb{R}^d che converge a $x_\infty \in \mathbb{R}^d$. Dimostrare che l'insieme

$$C = \{x_{\infty}\} \cup \bigcup_{n \in \mathbb{N}} \{x_n\}$$

è un chiuso di \mathbb{R}^d .

CHIUSURA, PARTE INTERNA E BORDO

Definizione 21. Sia Ω un sottoinsieme di \mathbb{R}^d . Definiamo:

- $\mathring{\Omega}$ (la parte interna di Ω) come il più grande insieme aperto conenuto in Ω , ossia l'unione di tutti gli aperti contenuti in Ω ;
- $\overline{\Omega}$ (la chiusura di Ω) come il più piccolo insieme chiuso che contiene Ω , ossia l'intersezione di tutti i chiusi che contengono Ω ;
- $\partial\Omega$ (il bordo di Ω) come l'insieme

$$\partial\Omega=\overline{\Omega}\setminus\mathring{\Omega}.$$

Teorema 22. Sia Ω un sottoinsieme di \mathbb{R}^d . Allora:

$$\overline{\Omega} = \left\{ x \in \mathbb{R}^d : \text{ esiste una successione di punti } x_n \in C \text{ tale che } \lim_{n \to \infty} x_n = x \right\};$$
$$\mathring{\Omega} = \left\{ x \in \Omega : \text{ esiste un raggio } r > 0 \text{ tale che } B_r(x) \subset \Omega \right\};$$

$$\partial\Omega = \left\{x \in \Omega : \text{ per ogni raggio } r > 0 \text{ si ha che } B_r(x) \cap \Omega \neq \emptyset \text{ e } B_r(x) \cap (\mathbb{R}^d \setminus \Omega) \neq \emptyset \right\}.$$

Esercizio 23 (esercizio). Sia Ω un sottoinsieme di \mathbb{R}^d . Si mostri che $\partial\Omega$ è un insieme chiuso.

Esercizio 24 (esercizio). Sia Ω un sottoinsieme di \mathbb{R}^d . Si mostri che $\partial\Omega = \partial(\mathbb{R}^d \setminus \Omega)$.

Esercizio 25 (fatto a lezione). Sia $B_r(x)$ una palla in \mathbb{R}^d . Dimostrare che:

$$(a) \ \overline{B_r(x)} = \Big\{ y \in \mathbb{R}^d \ : \ |x - y| \le r \Big\};$$

(b)
$$\partial B_r(x) = \left\{ y \in \mathbb{R}^d : |x - y| = r \right\}.$$

Esercizio 26 (esercizio). Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e siano

$$A = \Big\{ (x,y) \in \mathbb{R}^2 \ : \ y < f(x) \Big\}, \qquad C = \Big\{ (x,y) \in \mathbb{R}^2 \ : \ y \le f(x) \Big\}.$$

$$\Gamma = \Big\{ (x,y) \in \mathbb{R}^2 \ : \ y = f(x) \Big\}.$$

Si mostri che:

(i)
$$\Gamma = \partial A = \partial C$$
:

(ii)
$$\overline{A} = C$$
 and $\mathring{C} = A$.

Esercizi sulla chiusura, parte interna e bordo (dalla lezione di 1/4/20)

Esercizio 27. Trovare un insieme $\Omega \subset \mathbb{R}^d$ tale che:

(1)
$$\mathring{\Omega} = \emptyset \ e \ \Omega \neq \emptyset$$
.

(2)
$$\partial \Omega = B_1(0) \ e \ \mathring{\Omega} = \emptyset$$
.

(3)
$$\partial \Omega = \mathbb{R}^d \ e \ \mathring{\Omega} = \emptyset$$
.

(4)
$$\partial \Omega = \emptyset \ e \ \Omega \neq \emptyset$$
.

(5)
$$\overline{\Omega} = \mathbb{R}^d \ e \ \mathring{\Omega} = \emptyset$$
.

Esercizio 28.

- (1) Dire se è vero che $\partial\Omega=\partial\overline{\Omega}$ per ogni $\Omega\subset\mathbb{R}^d$.
- (2) Dire se è vero che $\partial\Omega = \partial\mathring{\Omega}$ per ogni $\Omega \subset \mathbb{R}^d$.

Esercizio 29. Trovare un controesempiuo all'affermazione seguente.

Per ogni coppia di insiemi aperti disgiunti $\Omega_1 \subset \mathbb{R}^d$ e $\Omega_2 \subset \mathbb{R}^d$ vale una delle proprietà seguenti.

(a)
$$\partial \Omega_1 = \partial \Omega_1 \cap \partial \Omega_2$$
 $e \partial \Omega_2 = \partial \Omega_1 \cap \partial \Omega_2$.

(b) esistono due punti x_1 e x_2 tali che $x_1 \in \partial \Omega_1 \setminus \partial \Omega_2$ e $x_2 \in \partial \Omega_2 \setminus \partial \Omega_1$.

Insiemi compatti in \mathbb{R}^d

Definizione 30. Sia K un sottoinsieme di \mathbb{R}^d e sia $\{A_i\}_{i\in\mathcal{I}}$ una famiglia di sottoinsiemi di \mathbb{R}^d . Diciamo che la famiglia $\{A_i\}_{i\in\mathcal{I}}$ è un **ricoprimento** di K se

$$K \subset \bigcup_{i \in \mathcal{I}} A_i$$
.

Diciamo inioltre che $\{A_i\}_{i\in\mathcal{I}}$ è un **ricoprimento aperto** se tutti gli insiemi A_i sono aperti. Diciamo che il ricoprimento è finito se il numero degli insiemi A_i è finito.

Definizione 31. Diciamo che $\{A_j\}_{i\in\mathcal{J}}$ è un sottoricoprimento di $\{A_i\}_{i\in\mathcal{I}}$, se ogni insieme A_j della famiglia $\{A_j:j\in\mathcal{J}\}$ appartiene anche alla famiglia $\{A_i:j\in\mathcal{I}\}$.

Definizione 32. Diciamo che un insieme $K \subset \mathbb{R}^d$ è compatto se ogni suo ricoprimento aperto ammette un sottoricoprimento finito.

Intermezzo. Insiemi numerabili

Definizione 33. Diciamo che un insieme \mathcal{I} è numerabile, se esiste una funzione surgettiva

$$\varphi: \mathbb{N} \to \mathcal{I}.$$

Proposizione 34 (dim. a lezione).

- (1) \mathcal{N} è numerabile;
- (2) ogni sottoinsieme di un insieme numerabile è numerabile;
- (3) \mathcal{Z} è numerabile;
- (4) se \mathcal{I} e \mathcal{J} sono numerabili, allora il prodotto $\mathcal{I} \times \mathcal{J}$ è numerabile;
- (5) \mathbb{Q} è un insieme numerabile;
- (6) \mathbb{Q}^d è un insieme numerabile;
- (7) Sia \mathcal{I} l'insieme di tutte le palle $B_r(x)$ in \mathbb{R}^d con centro $x \in \mathbb{Q}^d$ e raggio $r \in \mathbb{Q}$. Allora \mathcal{I} è numerabile.

Proposizione 35 (dim. a lezione). Sia $\mathcal{K} \subset \mathbb{R}^d$ e sia $\{A_i\}_{i\in\mathcal{I}}$ un ricoprimento di \mathcal{K} con insiemi aperti $A_i \subset \mathbb{R}^d$:

$$\mathcal{K} \subset \bigcup_{i \in \mathcal{I}} A_i.$$

Allora esiste un sottoricoprimento numerabile di K, ossia esiste una successione di aperi A_n tale che

$$\mathcal{K} \subset \bigcup_{n \in \mathbb{N}} A_n$$
 e $A_n \in \{A_i : i \in \mathcal{I}\}$ $per ogni$ $n \in \mathbb{N}$.

Il prossimo teorema è una propreità notevole dei numeri reali.

Teorema 36 (esercizio). L'insieme dei numeri reali \mathbb{R} non è numerabile.

Insiemi compatti in \mathbb{R}^d (continua)

Teorema 37. Sia K un sottoinsieme di \mathbb{R}^d . Allora sono equivalenti le affermazioni seguenti.

- (i) K è compatto;
- (ii) K è chiuso e limitato;
- (iii) ogni successione $x_n \in K$ ammette una sottosuccessione $(x_{n_k})_{k \in \mathbb{N}}$ convergente ad un limite in K.

Topologia indotta e funzioni continue

Definizione 38. Sia X un sottoinsieme di \mathbb{R}^d . Diciamo che l'insieme $A \subset X$ è relativamente aperto in X se esiste un aperto \widetilde{A} in \mathbb{R}^d such that $A = X \cap \widetilde{A}$.

Proposizione 39. Siano X un sottoinsieme di \mathbb{R}^d ed A un sottoinsieme di X. Allora A è relativamente aperto in X, se e solo se per ogni $x \in A$ esiste un raggio r > 0 tale che $B_r(x) \cap X = B_r(x) \cap A$.

Definizione 40. Sia X un sottoinsieme di \mathbb{R}^n e sia $f: X \to \mathbb{R}^m$ una funzione data. Diciamo che f è continua su X, se vale l'implicazione seguente. Se $A \subset \mathbb{R}^m$ è aperto, allora $f^{-1}(A)$ è relativamente aperto in X.

Proposizione 41. Sia X un sottoinsieme di \mathbb{R}^n e sia $f: X \to \mathbb{R}^m$ una funzione data. Allora sono equivalenti:

- (i) f è continua;
- (ii) se $x_n \in X$ è una successione che converge ad un certo $x_\infty \in X$, allora

$$\lim_{n \to \infty} f(x_n) = f(x_\infty).$$

(iii) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $y \in B_{\delta}(x) \cap X$, allora $f(y) \in B_{\varepsilon}(f(x))$.

Proposizione 42. Siano K un sottoinsieme compatto di \mathbb{R}^n e $f: X \to \mathbb{R}^m$ una funzione continua. Allora, l'insieme f(K) è compatto.

Corollario 43. Siano K un sottoinsieme compatto di \mathbb{R}^n e $f: X \to \mathbb{R}$ una funzione continua. Allora, f ammette un massimo ed un minimo su K.

Proposizione 44. La composizione di due funzioni continue è continua.

Proposizione 45. Se $f: X \to \mathbb{R}^m$ è continua e $Y \subset X$, allora $f: Y \to \mathbb{R}^m$ è continua.

Insiemi connessi

Definizione 46. Diciamo che l'insieme $X \subset \mathbb{R}^d$ è connesso se <u>non esistono</u> due aperti A_1 e A_2 in \mathbb{R}^d tali che:

- $A_1 \cap X \neq \emptyset$ $e A_2 \cap X \neq \emptyset$;
- A_1 e A_2 sono disgiunti: $A_1 \cap A_2 \neq \emptyset$;
- $X \subset A_1 \cup A_2$.

Esempio 47.

- L'insieme $\{x\}$ è connesso, per ogni $x \in \mathbb{R}^n$.
- L'insieme $\{x\} \cup \{y\}$ è sconnesso, per ogni $x, y \in \mathbb{R}^n$ tali che $x \neq y$.
- Siano $x, y \in \mathbb{R}^n$ due punti a distanza almeno 3. Allora, l'insieme $\overline{B}_1(x) \cup \overline{B}_1(y)$ è sconnesso.
- Gli intervalli [a,b], [a,b), (a,b) e (a,b] sono connessi in \mathbb{R} (ragionare per assurdo).

Esercizio 48. Sia $X \subset \mathbb{R}$ un insieme. Allora, X è connesso se e solo se X è un intervallo.

Soluzione: Ormai sappiamo che tutti gli intervalli sono insiemmi connessi. Ci rimane da dimostrare che se X è un insieme connesso, allora X è necessariamente un intervallo.

- 1. Mostrare che se $x, y \in X$, x < y, allora l'intervallo $[x, y] \subset X$.
- 2. Come conseguenza dal punto precedente, dimostrare che se inf $X < t < \sup X$, allora $t \in X$.

Definizione 49. Diciamo che un insieme $X \subset \mathbb{R}^d$ è connesso per archi (c.p.a.) se per ogni coppia di punti $x, y \in \mathbb{R}^d$, esiste una funzione (un arco) continua $\gamma : [0, 1] \to \mathbb{R}^d$ tale che

$$\gamma(0) = x, \qquad \gamma(1) = y, \qquad \gamma(t) \in X \quad \textit{per ogni} \quad t \in [0,1].$$

Proposizione 50 (c.p.a. \Rightarrow connesso). Sia $X \subset \mathbb{R}^d$. Dimostrare che se X è connesso per archi, allora è anche connesso.

Proposizione 51. Sia $A \subset \mathbb{R}^d$ un insieme aperto. Dimostrare che A è connesso se e solo se è connesso per archi.

Soluzione: Sia $x_0 \in A$. Consideriamo la famiglia di tutti gli insiemi

- aperti,
- contenuti in A,
- connessi per archi,
- che contengono x_0 .

Dimostrare che l'unione A_1 di tutti questi insiemi è un aperto connesso per archi e contenuto in A. Supponiamo che $A \neq A_1$. Mostrare che per ogni $x \in A \setminus A_1$, esiste $B_r(x) \subset A$ tale che $B_r(x) \cap A_1 = \emptyset$. Sia A_2 l'unione di tutte queste palle aperte. Mostrare che la coppia A_1 , A_2 sconnette A.