Elementi di topologia in \mathbb{R}^n

Lo spazio euclideo \mathbb{R}^n

Useremo la notazione seguente :

• \mathbb{R}^n è lo spazio euclideo di dimensione n:

$$\mathbb{R}^n = \Big\{ (x_1, x_2, x_3, \dots, x_n) : x_k \in \mathbb{R} \quad \text{per ogni} \quad k = 1, \dots, n \Big\}.$$

• \mathbb{Q}^n è l'insieme dei punti con coordiante razionali in \mathbb{R}^n

$$\mathbb{Q}^n = \Big\{ (q_1, q_2, q_3, \dots, q_n) : q_k \in \mathbb{Q} \quad \text{per ogni} \quad k = 1, \dots, n \Big\}.$$

• Se x e y sono due punti di \mathbb{R}^n con coordinate

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

allora $x + y \in x - y$ sono i punti con coordinate

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 e $x - y = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n).$

• Se $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, allora definiamo la norma Euclidea |x| come

$$|x| := \left(x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2\right)^{1/2}.$$

• La funzione $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, definita come

$$d(x,y) = |x - y|,$$

è una distanza su \mathbb{R}^n , ovvero valogono le proprietà seguenti:

- (1) Per ogni $x, y \in \mathbb{R}^n$, si ha che $|x y| \ge 0$. Inoltre, |x y| = 0 se e solo se x = y.
- (2) Per ogni $x,y,z\in\mathbb{R}^n,$ vale la disuguaglianza triangolare

$$|x-y| + |y-z| \ge |x-z|.$$

• Per ogni $x \in \mathbb{R}^n$ ed ogni r > 0, indichiamo con $B_r(x)$ la palla centrata in x di raggio r.

$$B_r(x) := \left\{ y \in \mathbb{R}^n : |x - y| < r \right\}.$$

• Diciamo che la successione $(x_k)_{k\in\mathbb{N}}$ converge a $x_\infty\in\mathbb{R}^n$, se

$$\lim_{n \to \infty} |x_n - x_\infty| = 0,$$

ossia se per ogni $\varepsilon>0$ esiste $N\in\mathbb{N}$ tale che

$$|x_k - x_\infty| < \varepsilon$$
 per ogni $k \ge N$.

Proposizione 1. L'insieme \mathbb{Q}^n è denso in \mathbb{R}^n ovvero per ogni $x \in \mathbb{R}^n$ e per ogni $\varepsilon > 0$ esiste un punto con coordinate razionali $q \in \mathbb{Q}^n$ tale che $|x - q| < \varepsilon$.

Proposizione 2. Se $x_k \in \mathbb{R}^n$ è una successione che converge a $x_\infty \in \mathbb{R}^n$, allora

$$\lim_{k \to \infty} |x_k| = |x_\infty|.$$

Le due nozioni di prodotto in \mathbb{R}^n .

Per ogni $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ e per ogni numero reale $t \in \mathbb{R}$, definiamo il prodotto $tx \in \mathbb{R}^n$ del vettore x con il numero reale t come

$$tx = (tx_1, tx_2, \dots, tx_n).$$

Inoltre, per ogni

$$x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$
 e $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$,

definiamo il prodotto scalare tra x e y come

$$x \cdot y := \sum_{k=1}^{n} x_k y_k.$$

Proposizione 3 (Proprietà del prodotto scalare).

(i) per ogni $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ e $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ si ha

$$x \cdot y = y \cdot x;$$

(ii) per ogni $x, y \in \mathbb{R}^n$ e per ogni $t \in \mathbb{R}$ si ha che

$$(tx) \cdot y = x \cdot (ty) = t(x \cdot y);$$

(iii) per ogni $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ e $z = (z_1, \ldots, z_n) \in \mathbb{R}^n$

$$(x+y) \cdot z = x \cdot z + y \cdot z.$$

(iv) per ogni $x \in \mathbb{R}$ si ha

$$x \cdot x = |x|^2.$$

(v) per ogni $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ e $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ si ha

$$|x+y|^2 = |x|^2 + 2x \cdot y + |y|^2$$
.

La disuguaglianza di Cauchy-Schwartz

Teorema 4. Siano

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

due punti di \mathbb{R}^n . Allora vale la disuquaglianza di Cauchy-Schwartz

$$|x||y| \ge |x \cdot y|$$
.

Dimostrazione: È sufficiente considerare il caso $x \neq 0$ e $y \neq 0$. Considerare la funzione

$$f: [0,1] \to \mathbb{R}, \qquad f(t) = |x + ty|^2.$$

Calcolare il minimo della funzione su [0, 1]. Concludere.

Dimostrazione della disuguaglianza triangolare

Teorema 5. Siano

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n),$

due punti di \mathbb{R}^n . Allora vale la disuguaglianza triangolare

$$|x| + |y| \ge |x + y|.$$

Dimostrazione: Sviluppare $|x+y|^2$. Usando la disuguaglianza di Cauchy-Schwartz, mostrare che $|x+y|^2 \le (|x|+|y|)^2$.

Esercizi

Esercizio 6. Siano $f:[0,1] \to \mathbb{R}$ e $g:[0,1] \to \mathbb{R}$ due funzioni Riemann integrabili. Dimostrare che

$$\left| \int_0^1 f(x) \, g(x) \, dx \right| \leq \left(\int_0^1 f^2(x) \, dx \right)^{1/2} \left(\int_0^1 g^2(x) \, dx \right)^{1/2}$$

Esercizio 7. Siano x e y due punti di \mathbb{R}^n e R>r>0 due costanti reali. Mostrare che

se
$$|x-y| < R-r$$
, allora $B_r(y) \subset B_R(x)$.