Limitatezza delle funzioni di Sobolev su un intervallo

Lemma di approssimazione

Lemma 1. Sia I un intervallo aperto in \mathbb{R} e sia $p \in [1, +\infty)$. Se esiste una costante C > 0 tale che

$$||u||_{L^{\infty}(I)} \le C||u||_{W^{1,p}(I)}$$
 per ogni $u \in C^{\infty}(I) \cap W^{1,p}(I)$,

allora

$$||u||_{L^{\infty}(I)} \le C||u||_{W^{1,p}(I)}$$
 per $ogni$ $u \in W^{1,p}(I)$.

Dimostrazione. Prendiamo una qualsiasi funzione $u \in W^{1,p}(I)$. Per il teorema di approssimazione, esiste una successione $u_n \in C^{\infty}(I) \cap W^{1,p}(I)$ tale che $u_n \to u$ in $W^{1,p}(I)$. In particolare, u_n è di Cauchy in $W^{1,p}(I)$. Siccome

$$||u_n - u_m||_{L^{\infty}(I)} \le ||u_n - u_m||_{W^{1,p}(I)},$$

abbiamo che u_n è di Cauchy in $L^{\infty}(I)$ e quindi u_n converge ad una qualche funzione \widetilde{u} in $L^{\infty}(I)$. Siccome, allo stesso tempo, u_n converge a u in $L^p(I)$, otteniamo che necessariamente $u = \widetilde{u}$. Quindi, passando al limite la disuguaglianza

$$||u_n||_{L^{\infty}(I)} \le ||u_n||_{W^{1,p}(I)}$$

otteniamo che

$$||u||_{L^{\infty}(I)} \le ||u||_{W^{1,p}(I)}.$$

Stima $L^{\infty}(I) - W^{1,p}(I)$ per funzioni di Sobolev

Teorema 2. Sia I un intervallo aperto in \mathbb{R} e sia $p \in [1, +\infty]$. Allora, $W^{1,p}(I) \subset L^{\infty}(I)$ ed esiste una costante C > 0 tale che

$$||u||_{L^{\infty}(I)} \le C||u||_{W^{1,p}(I)}$$
 per ogni $u \in W^{1,p}(I)$.

Dimostrazione.

Caso 1. $p = +\infty$. La dimostrazione in questo caso è immediata. Infatti,

$$||u||_{L^{\infty}(I)} \le ||u||_{W^{1,\infty}(I)} = ||u||_{L^{\infty}(I)} + ||u'||_{L^{\infty}(I)}$$
 per ogni $u \in W^{1,\infty}(I)$.

Caso 2. Supponiamo che p = 1 e che I sia illimitato.

Allora per ogni $\varepsilon > 0$ esiste un punto $x_{\varepsilon} \in I$ tale che

$$|u(x_{\varepsilon})| \leq \varepsilon.$$

Quindi, per ogni $x \in I$, abbiamo

$$|u(x)| \le |u(x) - u(x_{\varepsilon})| + |u(x_{\varepsilon})|$$

$$\le \left| \int_{x_{\varepsilon}}^{x} u'(t) dt \right| + \varepsilon \le ||u'||_{L^{1}(I)} + \varepsilon.$$

Siccome ε è arbitrario, otteniamo che in questo caso

$$||u||_{L^{\infty}(I)} \le ||u'||_{L^{1}(I)}.$$

Caso 3. Supponiamo che p=1 e che I sia limitato.

Possiamo trovare un punto x_0 tale che

$$|u(x_0)| \le \frac{1}{|I|} \int_I |u(x)| \, dx.$$

Quindi, per ogni $x \in I$, abbiamo

$$|u(x)| \le |u(x) - u(x_0)| + |u(x_0)|$$

$$\le \left| \int_{x_0}^x u'(t) dt \right| + \frac{1}{|I|} \int_I |u(x)| dx \le ||u'||_{L^1(I)} + \frac{1}{|I|} \int_I |u(x)| dx.$$

Caso 4. Supponiamo che $p \in (1, +\infty)$ e che I sia illimitato.

Sia $u \in C^{\infty}(I) \cap W^{1,p}(I)$. Siccome

$$\int_{I} |u(x)|^{p} dx < +\infty,$$

abbiamo che, per ogni $\varepsilon > 0$, possiamo trovare $x_{\varepsilon} \in I$ tale che

$$|u(x_{\varepsilon})| \leq \varepsilon.$$

Quindi, per ogni $x \in I$,

$$|u(x)|^{p} \leq |u(x)^{p} - u(x_{\varepsilon})^{p}| + |u(x_{\varepsilon})^{p}|$$

$$\leq \left| \int_{x_{\varepsilon}}^{x} u'(t)|u(t)|^{p-1} dt \right| + \varepsilon^{p}$$

$$\leq \int_{I} |u'(t)||u(t)|^{p-1} dt + \varepsilon^{p}$$

$$\leq ||u'||_{L^{p}(I)} ||u||_{L^{p}(I)}^{p-1} + \varepsilon^{p}.$$

Ora, usando la disuguaglianza di Young

$$AB \le \frac{1}{p}A^p + \frac{1}{q}B^q$$

per

$$A := \|u'\|_{L^p(I)}$$
 e $B = \|u\|_{L^p(I)}^{p-1}$,

otteniamo

$$|u(x)|^{p} \leq \frac{1}{p} ||u'||_{L^{p}(I)}^{p} + \frac{p-1}{p} ||u||_{L^{p}(I)}^{p} + \varepsilon^{p}$$

$$\leq ||u||_{W^{1,p}(I)}^{p} + \varepsilon^{p}.$$

Siccome $\varepsilon > 0$ è arbitrario, otteniamo

$$\|u\|_{L^{\infty}(I)} \leq \|u\|_{W^{1,p}(I)} \qquad \text{per ogni} \qquad u \in C^{\infty}(I) \cap W^{1,p}(I).$$

Caso 5. Supponiamo che $p \in (1, +\infty)$ e che I sia limitato.

Sia $u \in C^{\infty}(I) \cap W^{1,p}(I)$. Siccome

$$\int_{I} |u(x)|^{p} dx < +\infty,$$

possiamo trovare $x_0 \in I$ tale che

$$|u(x_0)|^p \le \frac{1}{|I|} \int_I |u(x)|^p dx.$$

Quindi, per ogni $x \in I$,

$$|u(x)|^{p} \leq |u(x)^{p} - u(x_{0})^{p}| + |u(x_{0})^{p}|$$

$$\leq \left| \int_{x_{0}}^{x} u'(t)|u(t)|^{p-1} dt \right| + \frac{1}{|I|} \int_{I} |u(x)|^{p} dx$$

$$\leq \int_{I} |u'(t)||u(t)|^{p-1} dt + \frac{1}{|I|} \int_{I} |u(x)|^{p} dx$$

$$\leq ||u'||_{L^{p}(I)} ||u||_{L^{p}(I)}^{p-1} + \frac{1}{|I|} ||u||_{L^{p}(I)}^{p}.$$

Usando di nuovo la disuguaglianza di Young con

$$A := \|u'\|_{L^p(I)}$$
 e $B = \|u\|_{L^p(I)}^{p-1}$

otteniamo

$$|u(x)|^p \leq \frac{1}{p} \|u'\|_{L^p(I)}^p + \frac{p-1}{p} \|u\|_{L^p(I)}^p + \frac{1}{|I|} \|u\|_{L^p(I)}^p \leq \Big(1 + |I|^{-1}\Big) \|u\|_{W^{1,p}(I)}^p.$$

Quindi,

$$||u||_{L^{\infty}(I)} \le (1+|I|^{-1})||u||_{W^{1,p}(I)}$$
 per ogni $u \in C^{\infty}(I) \cap W^{1,p}(I)$.

La convergenza forte $W^{1,p}(I)$ implica la convergenza uniforme

Teorema 3. Sia I un intervallo aperto in \mathbb{R} e sia $p \in [1, +\infty]$. Se $u_n \in W^{1,p}(I)$ è una successione che converge fortemente in $W^{1,p}$ ad una certa funzione $u \in W^{1,p}(I)$, allora u_n converge a u in $L^{\infty}(I)$.

LE SUCCESSIONI LIMITATE IN $W^{1,p}(I)$ SONO COMPATTE IN C(I)

Teorema 4. Sia I un intervallo aperto e **limitato** in \mathbb{R} e sia $p \in (1, +\infty)$. Ogni successione limitata in $W^{1,p}(I)$ ammette una sottosuccessione che converge uniformemente.

Dimostrazione. Sia u_n una successione limitata in $W^{1,p}(I)$. Siccome

$$||u_n||_{L^{\infty}(I)} \le C||u_n||_{W^{1,p}(I)},$$

abbiamo che u_n è equilimitata su I. Inoltre, per ogni $x, y \in I$, con x < y, abbiamo

$$|u_n(y) - u_n(x)| = \left| \int_x^y u'_n(t) dt \right| \le \int_x^y |u'_n(t)| dt$$

$$\le |y - x|^{\frac{p-1}{p}} \left(\int_x^y |u'_n(t)|^p dt \right)^{1/p} \le |y - x|^{\frac{p-1}{p}} ||u'_n||_{L^p(I)},$$

e quindi u_n è equicontinua.

Corollario 5. Sia I un intervallo aperto e limitato in \mathbb{R} e sia $p \in (1, +\infty)$. Allora, la palla unitaria in $W^{1,p}(I)$

$$\left\{ u \in W^{1,p}(I) : \|u\|_{W^{1,p}} \le 1 \right\},$$

è un sottoinsieme compatto di $L^p(I)$.

Esempio 6. Consideriamo una funzione $\phi \in C_c^{\infty}((-1,1))$ tale che

$$\int_{\mathbb{R}} \phi(t) dt = 1 \qquad e \qquad \phi \ge 0 \quad su \quad \mathbb{R}.$$

Definiamo le funzioni

$$\phi_n(x) := n\phi(nx) \quad per \ ogni \quad x \in \mathbb{R};$$

$$\Phi_n(x) = \int_{-1}^x \phi_n(t) \ dt.$$

Allora, $\Phi_n \in W^{1,1}(I)$ con $\Phi'_n(x) = \phi_n(x)$. Inoltre,

$$\|\phi_n\|_{L^1(-1,1)} = \int_{-1}^1 \phi_n(x) \, dx = \int_{-1}^1 n\phi(nx) \, dx = \int_{-1/n}^{1/n} n\phi(nx) \, dx = \int_{-1}^1 \phi(y) \, dy = 1;$$

$$\|\Phi_n\|_{L^1(-1,1)} \le 2\|\Phi_n\|_{L^\infty(-1,1)} \le 1$$
,

quindi la successione Φ_n è limitata in $W^{1,1}(-1,1)$. Ora, osserviamo che il supporto di ϕ_n è contenuto in (-1/n, 1/n). Quindi:

$$\Phi_n(x) := \begin{cases} 0 & se \quad x \le -1/n, \\ 1 & se \quad x \ge 1/n, \end{cases}$$

il che implica

$$\Phi_n(x) \to \mathbb{1}_{\{0,+\infty\}}(x)$$
 per Lebesgue quasi-ogni $x \in \mathbb{R}$.

Ora, siccome le funzioni Φ_n sono continue su (-1,1), mentre l'indicatrice $\mathbb{1}_{\{0,+\infty\}}$ non lo è, abbiamo che nessuna sottosuccessione di Φ_n può convergere uniformemente a $\mathbb{1}_{\{0,+\infty\}}$.

La convergenza debole $W^{1,p}(I)$ implica la convergenza uniforme

Teorema 7. Sia I un intervallo aperto e **limitato** in \mathbb{R} e sia $p \in (1, +\infty)$. Se $u_n \in W^{1,p}(I)$ è una successione che converge debolmente in $W^{1,p}$ ad una certa funzione $u \in W^{1,p}(I)$, allora u_n converge a u in $L^{\infty}(I)$.

Dimostrazione. Sia u_n una successione in $W^{1,p}(I)$ debolmente convergente a $u \in W^{1,p}(I)$. In particolare, la successione $||u_n||_{W^{1,p}(I)}$ è limitata. Consideriamo una qualsiasi sottosuccessione u_{n_k} di u_n . Per Teorema 4, abbiamo che u_{n_k} ammette una sottosuccessione $u_{n_{k_j}}$ che converge in $L^{\infty}(I)$. Sia $v \in L^{\infty}(I)$ il limite uniforme

$$v := \lim_{j \to +\infty} u_{n_{k_j}}$$

In particolare, per ogni $\varphi \in L^q(I)$, abbiamo

$$\int_{I} \varphi(x)v(x) dx = \lim_{j \to +\infty} \int_{I} \varphi(x)u_{n_{k_{j}}}(x) dx.$$

D'altra parte, siccome il funzionale

$$T: W^{1,p}(I) \to \mathbb{R}$$
, $T(w) := \int_I \varphi(x)w(x) dx$,

è un funzionale lineare limitato su $W^{1,p}(I)$, la convergenza debole $u_n \rightharpoonup u$ implica

$$\int_{I} \varphi(x)u_n(x) dx = T(u_n) \to T(u) = \int_{I} \varphi(x)u(x) dx.$$

In conclusione, abbiamo che

$$\int_{I} \varphi(x)u(x) dx = \int_{I} \varphi(x)v(x) dx$$

e siccome $\varphi \in L^q(I)$ è arbitraria, otteniamo che $u \equiv v$.

Esempio 8. Sia I un intervallo aperto e illimitato in \mathbb{R} e sia $p \in (1, +\infty)$. Esistono successioni limitate in $W^{1,p}(I)$ e che convergono debolmente a zero, ma che non convergono uniformemente a zero.

Comportamento all'inifinito

Teorema 9. Sia I un intervallo aperto e illimitato in \mathbb{R} e sia $p \in [1, +\infty)$. Se $u \in W^{1,p}(I)$, allora

$$\lim_{x \to \infty} u(x) = 0.$$