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Fourier transform and the Sobolev space H1(R).

The Fourier transform for complex-valued functions in R

For every function ϕ ∈ C∞c (R;C), we define its Fourier transform ϕ̂ : R→ C as

F(ϕ) = ϕ̂(ξ) =
1√
2π

∫
R
e−iξxϕ(x) dx.

We recall the following properties of the Fourier transform F :

Proposition 1. For every ϕ ∈ C∞c (R,C), we have that

F(ϕ′)(ξ) = iξϕ̂(ξ).

Proposition 2. For every ϕ ∈ C∞c (R,C), we have that

‖ϕ̂‖2L2 = ‖ϕ‖2L2 .

Proposition 3. The Fourier transform

F : C∞c (R,C)→ L2(R,C),

extends to a bounded linear functional

F : L2(R,C)→ L2(R,C),

such that ∫
R
u(x)v(x) dx =

∫
R
û(ξ)v̂(ξ) dξ for all u, v ∈ L2(R;C),

and, in particular,
‖F(u)‖2L2 = ‖u‖2L2 for all u ∈ L2(R;C).

Moreover, F is invertible and its inverse is given by

F−1(ψ)(x) =
1√
2π

∫
R
eiξxψ(ξ) dξ.

Fourier transform and (real-valued) Sobolev functions

Theorem 4. Given a function u ∈ L2(R), the following are equivalent:

(1) u ∈ H1(R);

(2) |ξ||û|(ξ) ∈ L2
ξ(R).

Moreover, for the weak derivative u′ ∈ L2(R) we have the identity

û′(ξ) = iξû(ξ).
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Proof. We first prove that (1) implies (2).
Let ϕn ∈ C∞c (R) be a sequence that converges strongly in H1(R) to u. First, we notice that the strong
L2 convergence of the functions and their derivatives implies that

ϕn → u and ϕ̂n → û ,

ϕ′n → u′ and ϕ̂′n → û′ ,

strongly in L2. Moreover, since

‖ϕ̂′n − ϕ̂′m‖L2 =
∥∥|ξ|(ϕ̂n(ξ)− ϕ̂m(ξ)

)∥∥
L2 ,

we get that the sequence ξϕ̂n(ξ) is a Cauchy sequence in L2(R;C). Let v ∈ L2(R;C) be the strong L2

limit of iξϕ̂n(ξ). Since the L2 convergence implies the pointwise convergence along subsequences we
obtain the following pointwise limits

û(ξ) = lim
n→+∞

ϕ̂n(ξ) and v(ξ) = lim
n→+∞

iξϕ̂n(ξ).

Thus,
v(ξ) = iξû(ξ),

and so we get
iξû(ξ) = lim

n→+∞
iξϕ̂n(ξ) = lim

n→+∞
ϕ̂′n(ξ) = û′(ξ).

We will next show that (2) implies (1). Thanks to the fact that the Fourier transform is an isometry,
we can find a function v ∈ L2(R;C) such that

v̂(ξ) = iξû(ξ).

We will prove that v is the weak derivative of u. Consider a function ϕ ∈ C∞c (R). Then,∫
R
u(x)ϕ′(x) dx =

∫
R
û(ξ)ϕ̂′(ξ) dξ

=

∫
R
û(ξ)iξϕ̂(ξ) dξ

= −
∫
R
iξû(ξ)ϕ̂(ξ) dξ

= −
∫
R
v̂(ξ)ϕ̂(ξ) dξ

= −
∫
R
v(x)ϕ(x) dx.

We now notice that v(x) is a real valued function. Indeed, if we write v = v1 + iv2 for two real-valued
v1,2 ∈ L2(R) we get that for all real-valued ϕ ∈ C∞c (R), we have:∫

R
u(x)ϕ′(x) dx = −

∫
R
v(x)ϕ(x) dx

= −
∫
R
v1(x)ϕ(x) dx− i

∫
R
v2(x)ϕ(x) dx,

which implies that ∫
R
v2(x)ϕ(x) dx = 0.

Since, ϕ is arbitrary, we get that v2 = 0. This concludes the proof.
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