Fourier transform and the Sobolev space $H^1(\mathbb{R})$.

The Fourier transform for complex-valued functions in $\mathbb R$

For every function $\varphi \in C_c^{\infty}(\mathbb{R}; \mathbb{C})$, we define its Fourier transform $\widehat{\varphi} : \mathbb{R} \to \mathbb{C}$ as

$$\mathcal{F}(\varphi) = \widehat{\varphi}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} \varphi(x) dx.$$

We recall the following properties of the Fourier transform \mathcal{F} :

Proposition 1. For every $\varphi \in C_c^{\infty}(\mathbb{R}, \mathbb{C})$, we have that

$$\mathcal{F}(\varphi')(\xi) = i\xi\widehat{\varphi}(\xi).$$

Proposition 2. For every $\varphi \in C_c^{\infty}(\mathbb{R}, \mathbb{C})$, we have that

$$\|\widehat{\varphi}\|_{L^2}^2 = \|\varphi\|_{L^2}^2.$$

Proposition 3. The Fourier transform

$$\mathcal{F}: C_c^{\infty}(\mathbb{R}, \mathbb{C}) \to L^2(\mathbb{R}, \mathbb{C}),$$

extends to a bounded linear functional

$$\mathcal{F}: L^2(\mathbb{R}, \mathbb{C}) \to L^2(\mathbb{R}, \mathbb{C}),$$

such that

$$\int_{\mathbb{R}} u(x) \overline{v(x)} \, dx = \int_{\mathbb{R}} \widehat{u}(\xi) \overline{\widehat{v}(\xi)} \, d\xi \quad \text{for all} \quad u, v \in L^2(\mathbb{R}; \mathbb{C}),$$

and, in particular,

$$\|\mathcal{F}(u)\|_{L^2}^2 = \|u\|_{L^2}^2$$
 for all $u \in L^2(\mathbb{R}; \mathbb{C})$.

Moreover, \mathcal{F} is invertible and its inverse is given by

$$\mathcal{F}^{-1}(\psi)(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\xi x} \psi(\xi) \, d\xi.$$

FOURIER TRANSFORM AND (REAL-VALUED) SOBOLEV FUNCTIONS

Theorem 4. Given a function $u \in L^2(\mathbb{R})$, the following are equivalent:

- $(1) \ u \in H^1(\mathbb{R});$
- (2) $|\xi||\widehat{u}|(\xi) \in L_{\xi}^{2}(\mathbb{R}).$

Moreover, for the weak derivative $u' \in L^2(\mathbb{R})$ we have the identity

$$\widehat{u}'(\xi) = i\xi \widehat{u}(\xi).$$

Proof. We first prove that (1) implies (2).

Let $\varphi_n \in C_c^{\infty}(\mathbb{R})$ be a sequence that converges strongly in $H^1(\mathbb{R})$ to u. First, we notice that the strong L^2 convergence of the functions and their derivatives implies that

$$\varphi_n \to u$$
 and $\widehat{\varphi}_n \to \widehat{u}$,
 $\varphi'_n \to u'$ and $\widehat{\varphi'}_n \to \widehat{u'}$,

strongly in L^2 . Moreover, since

$$\|\widehat{\varphi'_n} - \widehat{\varphi'_m}\|_{L^2} = \||\xi| (\widehat{\varphi_n}(\xi) - \widehat{\varphi_m}(\xi))\|_{L^2},$$

we get that the sequence $\xi\widehat{\varphi}_n(\xi)$ is a Cauchy sequence in $L^2(\mathbb{R};\mathbb{C})$. Let $v \in L^2(\mathbb{R};\mathbb{C})$ be the strong L^2 limit of $i\xi\widehat{\varphi}_n(\xi)$. Since the L^2 convergence implies the pointwise convergence along subsequences we obtain the following pointwise limits

$$\widehat{u}(\xi) = \lim_{n \to +\infty} \widehat{\varphi}_n(\xi)$$
 and $v(\xi) = \lim_{n \to +\infty} i\xi \widehat{\varphi}_n(\xi)$.

Thus,

$$v(\xi) = i\xi \widehat{u}(\xi),$$

and so we get

$$i\xi \widehat{u}(\xi) = \lim_{n \to +\infty} i\xi \widehat{\varphi}_n(\xi) = \lim_{n \to +\infty} \widehat{\varphi}'_n(\xi) = \widehat{u}'(\xi).$$

We will next show that (2) implies (1). Thanks to the fact that the Fourier transform is an isometry, we can find a function $v \in L^2(\mathbb{R}; \mathbb{C})$ such that

$$\widehat{v}(\xi) = i\xi \widehat{u}(\xi).$$

We will prove that v is the weak derivative of u. Consider a function $\varphi \in C_c^{\infty}(\mathbb{R})$. Then,

$$\int_{\mathbb{R}} u(x)\varphi'(x) dx = \int_{\mathbb{R}} \widehat{u}(\xi)\overline{\widehat{\varphi'}(\xi)} d\xi$$

$$= \int_{\mathbb{R}} \widehat{u}(\xi)\overline{i\xi}\widehat{\varphi}(\xi) d\xi$$

$$= -\int_{\mathbb{R}} i\xi\widehat{u}(\xi)\overline{\widehat{\varphi}(\xi)} d\xi$$

$$= -\int_{\mathbb{R}} \widehat{v}(\xi)\overline{\widehat{\varphi}(\xi)} d\xi$$

$$= -\int_{\mathbb{R}} v(x)\varphi(x) dx.$$

We now notice that v(x) is a real valued function. Indeed, if we write $v = v_1 + iv_2$ for two real-valued $v_{1,2} \in L^2(\mathbb{R})$ we get that for all real-valued $\varphi \in C_c^{\infty}(\mathbb{R})$, we have:

$$\int_{\mathbb{R}} u(x)\varphi'(x) dx = -\int_{\mathbb{R}} v(x)\varphi(x) dx$$
$$= -\int_{\mathbb{R}} v_1(x)\varphi(x) dx - i \int_{\mathbb{R}} v_2(x)\varphi(x) dx,$$

which implies that

$$\int_{\mathbb{R}} v_2(x)\varphi(x) \, dx = 0.$$

Since, φ is arbitrary, we get that $v_2 = 0$. This concludes the proof.