Distribuzioni e spazi $W^{1,p}$

Sia I un intervallo aperto in \mathbb{R} . Sia

$$T: C_c^{\infty}(I) \to \mathbb{R},$$

un funzionale lineare. La derivata distribuzionale di T è il funzionale

$$T: C_c^{\infty}(I) \to \mathbb{R},$$

definito come

$$T'(\varphi) = -T(\varphi')$$
 per ogni $\varphi \in C_c^{\infty}(I)$.

Esempio 1. Ad ogni funzione $u \in L^1_{loc}(I)$ possiamo associare il funzionale

$$T: C_c^{\infty}(I) \to \mathbb{R} , \qquad T(\varphi) = \int_I u(x)\varphi(x) dx.$$

La derivata distribuzionale di T è il funzionale lineare

$$T': C_c^{\infty}(I) \to \mathbb{R} , \qquad T'(\varphi) = -\int_I u(x)\varphi'(x) dx.$$

Esempio 2. Dato un punto $a \in I$ il funzionale

$$\delta_a: C_c^{\infty}(I) \to \mathbb{R} , \qquad \delta_a(\varphi) = \varphi(a),$$

è un funzionale lineare su $C_c^{\infty}(I)$. La derivata distribuzionale di δ_a è il funzionale lineare

$$\delta_a': C_c^{\infty}(I) \to \mathbb{R} , \qquad \delta_a'(\varphi) = -\varphi'(a).$$

LE DISTRIBUZIONI CON DERIVATA NORMALE NULLA SONO COSTANTI

Proposizione 3. Sia $T: C_c^{\infty}(I) \to \mathbb{R}$ un funzionale lineare. Se la derivata distribuzionale di T è nulla, allora esiste una costante $C \in \mathbb{R}$ tale che

$$T(\varphi) = C \int_{I} \varphi(x) dx \quad per \ ogni \quad \varphi \in C_{c}^{\infty}(I).$$

Dimostrazione. Basta dimostrare la proposizione per intervalli limitati I = (a, b).

Sia $\eta \in C_c^{\infty}(I)$ una funzione tale che $\int_I \eta(x) dx = 1$.

Allora, per ogni $\phi \in C_c^\infty(I),$ la funzione

$$G(x) = \int_{a}^{x} \left(\phi(t) - \left(\int_{I} \phi \right) \eta(t) \right) dt,$$

è in $C_c^{\infty}(I)$. Quindi,

$$0 = -T'(G) = T(G') = T\left(\phi - \left(\int_I \phi\right)\eta\right) = T(\phi) - \left(\int_I \phi\right)T(\eta),$$

che possiamo scrivere come

$$T(\phi) = T(\eta) \int_{I} \phi(x) dx.$$

La conclusione segue prendendo $C = T(\eta)$.

UNA CARATTERIZZAZIONE DI $W^{1,p}$ COME SOTTOSPAZIO DELLO SPAZIO DELLE DISTRIBUZIONI **Proposizione 4.** Siano I un intervallo aperto, $p \in (1, +\infty)$ e $T : C_c^{\infty}(I) \to \mathbb{R}$ un funzionale lineare.

(i) Se esiste una costante C > 0 tale che

$$|T(\varphi)| \le C \|\varphi\|_{L^q(I)}$$
 per ogni $\varphi \in C_c^{\infty}(I)$,

allora esiste un'unica funzione $u \in L^p(I)$ tale che

$$T(\varphi) = \int_{I} u(x)\varphi(x) dx$$
 per ogni $\varphi \in C_{c}^{\infty}(I)$.

(ii) Se esiste una costante C > 0 tale che

$$|T(\varphi)| \le C \|\varphi\|_{L^q(I)}$$
 $e |T'(\varphi)| \le C \|\varphi\|_{L^q(I)}$ $per \ ogni \ \varphi \in C_c^{\infty}(I),$

allora esiste un'unica funzione $u \in W^{1,p}(I)$ tale che

$$T(\varphi) = \int_I u(x)\varphi(x) \, dx \quad e \quad T'(\varphi) = \int_I u'(x)\varphi(x) \, dx \quad per \ ogni \quad \varphi \in C_c^{\infty}(I).$$

Dimostrazione.

Dimostriamo (i). Per il teorema di Hahn-Banach, esiste un funzionale lineare

$$S: L^q(I) \to \mathbb{R}$$

tale che $S \equiv T$ su $C_c^{\infty}(I)$ e

$$|S(\varphi)| \le C \|\varphi\|_{L^q(I)}$$
 per ogni $\varphi \in L^q(I)$.

Esiste quindi una funzione $u \in L^p(I)$ tale che

$$S(\varphi) = \int_{I} u(x)\varphi(x) dx$$
 per ogni $\varphi \in L^{q}(I)$.

In particolare, siccome $S \equiv T$ su $C_c^{\infty}(I)$,

$$T(\varphi) = \int_{I} u(x)\varphi(x) dx$$
 per ogni $\varphi \in C_c^1(I)$.

Dimostriamo (ii). Per il punto (i) sappiamo che esiste una funzione $u \in L^p(I)$ tale che

$$T(\varphi) = \int_I u(x)\varphi(x) dx$$
 per ogni $\varphi \in C_c^1(I)$.

Consideriamo la derivata distribuzionale di T

$$T': C_c^{\infty}(I) \to \mathbb{R}$$
, $T'(\varphi) = -\int_I u(x)\varphi'(x) dx$ per ogni $\varphi \in C_c^{\infty}(I)$.

Siccome

$$|T'(\varphi)| \le C \|\varphi\|_{L^q(I)}$$
 per ogni $\varphi \in C_c^{\infty}(I)$,

per il teorema di Hahn-Banach, esiste un funzionale lineare

$$S: L^q(I) \to \mathbb{R}$$

tale che $S \equiv T'$ su $C_c^1(I)$ e

$$|S(\varphi)| \le C \|\varphi\|_{L^q(I)}$$
 per ogni $\varphi \in L^q(I)$.

Esiste quindi una funzione $v \in L^p(I)$ tale che

$$S(\varphi) = \int_{I} v(x)\varphi(x) dx$$
 per ogni $\varphi \in L^{q}(I)$.

In particolare, siccome $S \equiv T$ su $C_c^{\infty}(I)$,

$$\int_{I} u(x)\varphi'(x) dx = -T'(\varphi) = -S(\varphi) = -\int_{I} v(x)\varphi(x) dx \quad \text{per ogni} \quad \varphi \in C_{c}^{\infty}(I).$$

Quindi, $u \in W^{1,p}(I)$ e u' = v.