Exercices

Exercice 1 (Product of Banach spaces). Let \mathcal{B}_1 and \mathcal{B}_2 be two Banach spaces. Prove that the product space $\mathcal{B} = \mathcal{B}_1 \times \mathcal{B}_2$ equipped with the norm

$$||(u,v)||_{\mathcal{B}} = ||u||_{\mathcal{B}_1} + ||v||_{\mathcal{B}_2}$$

is a Banach space. Moreover, if \mathcal{B}_1 and \mathcal{B}_2 are separable, then also \mathcal{B} is separable.

Exercice 2 (Weak topology on a product space). Let \mathcal{B}_1 and \mathcal{B}_2 be two Banach spaces and let $\mathcal{B} = \mathcal{B}_1 \times \mathcal{B}_2$ be the Banach space equipped with the norm

$$||(u,v)||_{\mathcal{B}} = ||u||_{\mathcal{B}_1} + ||v||_{\mathcal{B}_2}.$$

Prove that any functional $T \in \mathcal{B}'$ can be written in the form

$$T(u, v) = T_1(u) + T_2(v),$$

where $T_1 \in \mathcal{B}'_1$ and $T_2 \in \mathcal{B}'_2$.

Exercice 3 (Product of reflexive spaces). Let \mathcal{B}_1 and \mathcal{B}_2 be two reflexive Banach spaces. Is it true that $\mathcal{B} = \mathcal{B}_1 \times \mathcal{B}_2$ is reflexive?

Exercice 4. Given $p, r \in [1, +\infty]$ and an open interval $I \subset \mathbb{R}$, consider the space \mathcal{B} of all functions $u \in L^p(I)$ for which there exists $v \in L^r(I)$ such that

$$\int_{I} u\varphi' = -\int_{I} v\varphi \quad for \ all \quad \varphi \in C_{c}^{1}(I).$$

- 1. Prove that the function v with the above property is unique. We will denote this function by u'.
- 2. Prove that \mathcal{B} is a Banach space with the norm

$$||u||_{L^p(I)} + ||u'||_{L^r}.$$

3. Prove that, when $p, r \in [1, +\infty)$, every functional in the dual space \mathcal{B}' is of the form

$$T(u) = \int_{I} u\varphi + \int_{u}' \psi$$

for some $\varphi \in L^{p'}(I)$ and $\psi \in L^{r'}(I)$.

- 4. Prove that, when $p, r \in (1, +\infty)$, the following are equivalent for a sequence $u_n \in \mathcal{B}$:
 - there is $u \in \mathcal{B}$ such that $u_n \rightharpoonup u$ in \mathcal{B} ;
 - there is $u \in \mathcal{B}$ such that $u_n \rightharpoonup u$ in L^p and $u'_n \rightharpoonup u'$ in L^r ;
 - there are $u \in L^p$ and $v \in L^r$ such that $u_n \rightharpoonup u$ in L^p and $u'_n \rightharpoonup v$ in L^r .
- 5. Prove that, when $p, r \in (1, +\infty)$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence.
- 6. Explore the above question for all possible combination of $p, r \in [1, +\infty]$:
 - Is it true that, when $p \in (1, +\infty)$ and r = 1, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?

- Is it true that, when $p \in (1, +\infty)$ and $r = +\infty$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when p = 1 and $r \in (1, +\infty)$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when $p = +\infty$ and $r \in (1, +\infty)$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when p = 1 and r = 1, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when p = 1 and $r = +\infty$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when $p = +\infty$ and r = 1, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?
- Is it true that, when $p = +\infty$ and $r = +\infty$, any bounded sequence $u_n \in \mathcal{B}$ admits a weakly convergent subsequence?