Exercices and examples

Exercice 1. Let I be an open interval in \mathbb{R} and let $p \in (1, +\infty)$.

Let $u_n \in L^p(I)$ be a sequence converging weakly in $L^p(I)$ to a function $u \in L^p(I)$.

- (1) Is it true that $|u_n|$ converges weakly in $L^p(I)$ to |u|?
- (2) Is it true that u_n^+ converges weakly in $L^p(I)$ to u^+ ?
- (3) Is it true that, up to a subsequence, $|u_n|$ converges weakly in $L^p(I)$ to some function $v \in L^p(I)$?
- (4) Is it true that the whole sequence $|u_n|$ converges weakly in $L^p(I)$ to some function $v \in L^p(I)$?
- (5) Fix a function $\varphi \in C_c^{\infty}(I)$ and a sequence of bounded measurable functions

$$v_n:I\to[-1,1],$$

 $converging\ pointwise\ almost-everywhere\ to\ some$

$$v: I \to [-1, 1].$$

Is it true that

$$\int_{I} u_{n} \varphi v_{n} \to \int_{I} u \varphi v ?$$

(6) Suppose that

$$-1 \le u_n \le 1$$
 for all $n \in \mathbb{N}$.

Is it true that u_n^2 converges weakly to u^2 ?

Exercice 2. Let I be an open interval in \mathbb{R} and let $p \in (1, +\infty)$.

Let $u_n \in L^p(I)$ be a sequence converging weakly in $L^p(I)$ to a function $u \in L^p(I)$. Suppose that $u_n \in W^{1,p}(I)$ for every n and that the sequence of norms $||u_n||_{W^{1,p}(I)}$ is bounded.

- (1) Is it true that $u \in W^{1,p}(I)$?
- (2) Is it true that u_n converges weakly in $W^{1,p}(I)$ to u?
- (3) Is it true that $|u_n|$ converges weakly in $W^{1,p}(I)$ to |u|?
- (4) Is it true that u_n^+ converges weakly in $W^{1,p}(I)$ to u^+ ?
- (5) Is it true that u_n^2 converges weakly in $W^{1,p}(I)$ to u^2 ?

Exercice 3. Let I be an open interval in \mathbb{R} and let $p \in (1, +\infty)$.

Let $u_n \in W^{1,p}(I)$ be a sequence converging weakly in $W^{1,p}(I)$ to some $u \in W^{1,p}(I)$.

- (1) Show that if I is bounded, then u_n converges to u uniformly on I.
- (2) Show that if I is unbounded, then $u_n(x)$ converges to u(x) for every $x \in I$.