EXERCICES

Esercizio 1. Let \mathcal{H} be an Hilbert space. If $x_n \to x$ in \mathcal{H} and $y_n \rightharpoonup y$ in \mathcal{H} , then

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y_n \rangle$$
.

Esercizio 2. Let $\Omega = [0,1]$. Find two sequences in $L^2(\Omega)$ such that:

- $f_n \rightharpoonup f \in L^2(\Omega)$;
- $g_n \rightharpoonup g \in L^2(\Omega)$;
- $\int_{\Omega} f(x)g(x) dx \neq \lim_{n \to +\infty} \int_{\Omega} f_n(x)g_n(x) dx$.

Esercizio 3. Let $\Omega \subset \mathbb{R}^d$ be a measurable set and $p \in (1, +\infty)$. Show that if $u_n \rightharpoonup u$ in $L^p(\Omega)$ and $v \in L^{\infty}(\Omega)$, then $u_n v \rightharpoonup uv$ in $L^p(\Omega)$.

Esercizio 4. Let $p \in (1, +\infty)$ and $f \in L^p(\mathbb{R}^d)$. Consider a sequence $R_n \to +\infty$. For every $n \ge 1$, let

$$f_n(x) := \frac{1}{R_n^{d/p}} f(x/R_n).$$

Show that $f_n \to 0$ in $L^p(\mathbb{R}^d)$.

Esercizio 5. Let $p \in (1, +\infty)$. Show that if $u_n \rightharpoonup u$ in $L^p(\mathbb{R}^d)$ and $\varphi \in C_c^{\infty}(\mathbb{R}^d)$, then $u_n * \varphi \rightharpoonup u * \varphi$ in $L^p(\mathbb{R}^d)$.

Esercizio 6. Let $\Omega \subset \mathbb{R}^d$ be a measurable set and let $p,q,r \in (1,+\infty)$ be such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Show that if $u_n \to u$ strongly in $L^p(\Omega)$ and $v_n \rightharpoonup v$ weakly in $L^q(\Omega)$, then $u_n v_n \rightharpoonup uv$ weakly in $L^r(\mathbb{R}^d)$.

Esercizio 7. Let $\Omega \subset \mathbb{R}^d$ be a measurable set and let $p,q,r \in (1,+\infty)$ be such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Is it true that the weak convergences $u_n \rightharpoonup u$ in $L^p(\Omega)$ and $v_n \rightharpoonup v$ in $L^q(\Omega)$, imply that $u_n v_n \rightharpoonup uv$ weakly in $L^r(\mathbb{R}^d)$?

Esercizio 8. Let $\Omega \subset \mathbb{R}^d$ be a bounded measurable set. Let $u_n \in L^2(\Omega)$ be a sequence of functions such that, for all $n \geq 1$, $0 \leq u_n \leq 1$ on Ω . Show that if u_n converges weakly to 0 in $L^2(\Omega)$, then u_n converges strongly to zero in $L^2(\Omega)$.

Esercizio 9. Let $\Omega \subset \mathbb{R}^d$ be a measurable set and let $p \in (1, +\infty)$. Is it true that for every sequence $u_n \rightharpoonup u$ in $L^p(\Omega)$, there exists a subsequence u_n that converges pointwise almost-everywhere to u?

Esercizio 10. Let $p \in (2, +\infty)$ and $u_n \in L^p(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ be a sequence that converges weakly in $L^p(\mathbb{R}^d)$ to a function $u \in L^p(\mathbb{R}^d)$. Prove that the following are equivalent:

- (1) $u \in L^2(\mathbb{R}^d)$;
- (2) u_n converges weakly in $L^2(\mathbb{R}^d)$ to some function $v \in L^2(\mathbb{R}^d)$;
- (3) $u \in L^2(\mathbb{R}^d)$ and u_n converges weakly in $L^2(\mathbb{R}^d)$ to u;
- (4) u_n is bounded in $L^2(\mathbb{R}^d)$.

Esercizio 11. Let $\Omega \subset \mathbb{R}^d$ be a measurable set and let $p \in [1, +\infty]$. Show that if $u_n \in L^p(\Omega)$ converges weakly to $u \in L^p(\Omega)$ and along the sequence we have $0 \le u_n \le 1$ for all $n \ge 1$, then also $0 \le u \le 1$.

Esercizio 12. Let $u_n \in L^2(0,1)$ be a sequence that converges weakly to $u \in L^2(0,1)$. Is it true that $\sin(u_n)$ converges weakly to $\sin(u)$ in $L^2(0,1)$?

Esercizio 13 (Written exam 2002, P. Acquistapace). Let $f_n \in L^2(0,1)$ and $g_n \in L^\infty(0,1)$ be two sequences such that:

- $f_n \rightharpoonup 0$ in $L^2(0,1)$;
- $g_n \to 0$ pointwise almost-everywhere on [0,1];
- g_n is bounded in $L^{\infty}(0,1)$.

Prove that $f_n g_n \rightharpoonup 0$ in $L^2(0,1)$.

Esercizio 14 (Written exam 2002, P. Acquistapace). Find two sequences $f_n \in L^2(0,1)$ and $g_n \in L^{\infty}(0,1)$ such that:

- $f_n \rightharpoonup 0$ in $L^2(0,1)$;
- $g_n \to 0$ pointwise almost-everywhere on [0,1];

and such that f_ng_n does not converge weakly to 0 in $L^2(0,1)$.

Esercizio 15 (Written exam 2003, P. Acquistapace). Find two sequences $f_n \in L^2(0,1)$ and $g_n \in L^{\infty}(0,1)$ such that:

- $f_n \rightharpoonup 0 \text{ in } L^2(0,1);$
- $g_n \to 0$ pointwise almost-everywhere on [0,1];

and such that f_ng_n does not converge weakly to 0 in $L^2(0,1)$.