An example of a Banach space which is not a dual space

Proposition 1. The space $L^1((0,1))$ is not the dual space of any Banach space.

Proof. Suppose that \mathcal{B} is a Banach space such that its dual \mathcal{B}' is precisely $L^1((0,1))$. Let \overline{B}'_1 be the unit ball in \mathcal{B}' :

$$\overline{B}_1' = \left\{ T \in \mathcal{B}' : \|T\|_{\mathcal{B}'} \le 1 \right\}.$$

Given a set

$$E \subset \overline{B}'_1$$

we will say that E is *extremal* if it has the following property:

(1)
$$\begin{cases} if S, T \in \overline{B}'_1 \text{ and if there is } t \in (0,1) \text{ such that } (1-t)S + tT \in E, \\ \text{then } S \in E \text{ and } T \in E. \end{cases}$$

Consider the family Σ of all sets $E \subset \overline{B}'_1$ such that:

- E is extremal;
- E is closed with respect to the weak-* topology $\sigma(\mathcal{B}', \mathcal{B})$;
- \bullet E is non-empty.

Consider the following order relation on Σ :

$$E_1 < E_2$$
 if $E_2 \subset E_1$.

Step 1. Existence of maximal elements. Let Γ be a totally ordered subset of Σ . Then, the intersection

$$\bigcap_{E\in\Gamma} E.$$

is in Σ . Indeed:

- since the sets $E \in \Gamma$ are closed also their intersection is closed in the weak-* topology;
- suppose that $S, T \in \overline{B}'_1$ and that there is $t \in (0, 1)$ such that

$$(1-t)S+tT\in \bigcap_{E\in \Gamma} E.$$

Since every $E \in \Gamma$ has the property (1), we have that $S, T \in E$ for all $E \in \Gamma$. Then,

$$S, T \in \bigcap_{E \in \Gamma} E.$$

• Finally, we notice that since all the sets $E \in \Gamma$ are non-empty and closed in the weak-* topology, and since \overline{B}'_1 is compact in the weak-* topology, the intersection $\bigcap_{E \in \Gamma} E$ is non-empty.

By the Zorn's lemma, there is a set $\widetilde{E} \in \Sigma$ which is maximal with respect to the order relation <.

Step 2. The set E has only one element. Suppose by contradiction that there are

$$S, T \in \widetilde{E}$$
 such that $S \neq T$.

Then, there is an element

$$x \in \mathcal{B}$$
 such that $S(x) \neq T(x)$.

Consider the set

$$\widetilde{E}' = \Big\{ T \in \widetilde{E} : T(x) = \sup_{\tau \in \widetilde{E}} \tau(x) \Big\}.$$

E' has the following properties:

• \widetilde{E}' is non-empty. Let $T_n \in \widetilde{E}$ be a maximizing sequence:

$$\lim_{n \to +\infty} T_n(x) = \sup_{\tau \in \widetilde{E}} \tau(x).$$

Since $\mathcal{B}' = L^1(0,1)$ is separable, we have that \mathcal{B} is separable, so that the unit ball \overline{B}'_1 is compact with respect to the weak-* convergence. Then, there is a subsequence T_{n_k} and $T_{\infty} \in \widetilde{E}$ such that

$$T_{n_k} \rightharpoonup^* T_{\infty}$$
.

Then,

$$T_{\infty}(x) = \lim_{k \to +\infty} T_{n_k}(x) = \sup_{\tau \in \widetilde{E}} \tau(x).$$

• \widetilde{E}' is closed with respect to the weak-* topology. Indeed, set

$$\lambda := \sup_{\tau \in \widetilde{E}} \tau(x).$$

Then, the set $\{S \in \mathcal{B}' : S(x) = \lambda\}$ is closed with respect to the weak-* topology. Then,

$$\widetilde{E}' = \widetilde{E} \cap \{ S \in \mathcal{B}' : S(x) = \lambda \}$$

is also closed in the weak-* topology.

• \widetilde{E}' is extremal in the sense of (1). Suppose that $T_1, T_2 \in \overline{B}'_1$ and that there exists $t \in (0, 1)$ such that

$$(1-t)T_1+tT_2\in \widetilde{E}'.$$

Since $\widetilde{E}' \subset \widetilde{E}$, the extramality property of \widetilde{E} implies that $T_1, T_2 \in \widetilde{E}$. Then, since

$$\sup_{\tau \in \widetilde{E}} \tau(x) = (1 - t)T_1(x) + tT_2(x) \le (1 - t)\sup_{\tau \in \widetilde{E}} \tau(x) + t\sup_{\tau \in \widetilde{E}} \tau(x) = \sup_{\tau \in \widetilde{E}} \tau(x),$$

so we have the identities

$$T_1(x) = T_2(x) = \sup_{\tau \in \widetilde{E}} \tau(x).$$

Thus, by definition $T_1, T_2 \in \widetilde{E}'$, which proves that \widetilde{E}' is in Σ .

• \widetilde{E}' is a proper subset of \widetilde{E} . Indeed, since $S(x) \neq T(x)$ it is not possible that both S and T are in \widetilde{E}' .

Since by assumption \widetilde{E} is maximal, this is a contradiction. In conclusion \widetilde{E} contains only one element.

Step 3. If a set $\widetilde{E} \subset L^1(0,1)$ has only one element, then it cannot be extremal. Suppose that $f \in L^1(0,1)$ is the only element of \widetilde{E} . We consider two cases:

• If $||f||_{L^1} < 1$, then we can find a function $\phi \in L^1$, $\phi \neq 0$, such that

$$||f + \phi||_{L^1} < 1$$
 and $||f - \phi||_{L^1} < 1$.

Since,

$$f = \frac{1}{2}(f + \phi) + \frac{1}{2}(f - \phi),$$

we get that \widetilde{E} is not extremal.

• If $||f||_{L^1} = 1$, then we can find $a \in (0,1)$ such that

$$\int_0^a |f| = \int_a^1 |f| = \frac{1}{2},$$

and consider the functions

$$f_1 := 2f \inf_{[0,a]}$$
 and $f_2 := 2f \inf_{[a,1]}$.

Then,

$$f = \frac{1}{2}f_1 + \frac{1}{2}f_2$$
, $||f_1||_{L^1} = 1$, $||f_2||_{L^1} = 1$.

This prove that \widetilde{E} is not extremal, which concludes the proof.