On the separability of \mathcal{B} and \mathcal{B}'

Proposition 1. Let \mathcal{B} be a Banach space and let \mathcal{B}' be its dual. If \mathcal{B}' is separable, then also \mathcal{B} is separable.

Proof. Let $(T_n)_{n\geq 1}$ be a dense (with respect to the topology induced by the norm $\|\cdot\|_{\mathcal{B}'}$) subset of \mathcal{B}' . By the definition of $\|T_n\|_{\mathcal{B}'}$, for every T_n , we can find $x_n \in \mathcal{B}$ such that:

$$||x_n||_{\mathcal{B}} = 1$$
 and $\frac{1}{2}||T_n||_{\mathcal{B}'} \le T_n(x_n) \le ||T_n||_{\mathcal{B}'}.$

Consider the countable set

$$V_{\mathbb{Q}} = \Big\{ \sum_{i=1}^{N} x_i q_i : q_i \in \mathbb{Q}, N \ge 1 \Big\},\,$$

and its closure V in \mathcal{B} with respect to the strong topology of \mathcal{B} . Then V is a closed linear subspace of \mathcal{B} . Suppose that $V \neq \mathcal{B}$. Then, by the Hahn-Banach's theorem, there is a functional $T \in \mathcal{B}'$ such that

$$||T||_{\mathcal{B}'} = 1$$
 and $T \equiv 0$ on V .

Since $(T_n)_{n\geq 1}$ is dense we can find a sequence $(T_{n_k})_{k\geq 1}$ such that

$$\lim_{k \to +\infty} ||T_{n_k} - T||_{\mathcal{B}'} = 0.$$

We then have

$$\frac{1}{2} ||T_{n_k}||_{\mathcal{B}'} \le |T_{n_k}(x_{n_k})| = |T_{n_k}(x_{n_k}) - T(x_{n_k})|
\le ||T_{n_k} - T||_{\mathcal{B}'} ||x_{n_k}||_{\mathcal{B}}
\le ||T_{n_k} - T||_{\mathcal{B}'}.$$

On the other hand

$$\lim_{k \to +\infty} ||T_{n_k}||_{\mathcal{B}'} = 1 \quad \text{and} \quad \lim_{k \to +\infty} ||T_{n_k} - T||_{\mathcal{B}'} = 0,$$

which is a contradiction. Thus \mathcal{B} is the closure of $V_{\mathbb{O}}$.

Exercise 2. Find an example of a Banach space \mathcal{B} , which is separable, but its dual \mathcal{B}' is not.