The weak-* topology on the dual of a Banach space

The weak-* topology on \mathcal{B}'

Let \mathcal{B} be a Banach space and let \mathcal{B}' be its dual.

Definition 1 (Weak-* topology). The weak topology on \mathcal{B}' is the topology $\sigma(\mathcal{B}', \mathcal{B})$, which is:

the weakest topology on \mathcal{B}' that makes all the evaluation maps in $\mathcal{B} \subset \mathcal{B}''$ continuous.

Remark 2 (Strong topology). The strong topology on \mathcal{B}' is the topology induced by the norm $\|\cdot\|_{\mathcal{B}'}$.

Remark 3 (Weak-* topology and weak-* convergence). Let T_n be a sequence in \mathcal{B}' and let $T \in \mathcal{B}'$. Then, the following are equivalent:

- (1) $T_n \to T$ in the topology of $\sigma(\mathcal{B}', \mathcal{B})$;
- (2) $T_n(x) \to T(x)$, for every $x \in \mathcal{B}$.

We will say that T_n converges to T weakly-* in \mathcal{B}' and we will write $T_n \rightharpoonup^* T$.

Proposition 4 (The weak-* topology is Hausdorff). Let \mathcal{B} be a Banach space with dual \mathcal{B}' and let $\sigma(\mathcal{B}',\mathcal{B})$ be the weak-* topology on \mathcal{B}' . Then, for every couple of distinct operators $S,T \in \mathcal{B}'$, there are open sets $V,W \in \sigma(\mathcal{B}',\mathcal{B})$ such that:

$$S \in V$$
, $T \in W$, $V \cap W = \emptyset$.

Proof. Since $S \neq T$ as operators on \mathcal{B} , there is an element $x \in \mathcal{B}$ such that $S(x) \neq T(x)$.

Proposition 5 (Boundedness and semicontinuity of the operator norm). Let T_n be a sequence in \mathcal{B}' and let $T \in \mathcal{B}'$. If $T_n \rightharpoonup^* T$, then the sequence of norms $||T_n||_{\mathcal{B}'}$ is bounded and

$$||T||_{\mathcal{B}'} \leq \liminf_{n \to +\infty} ||T_n||_{\mathcal{B}'}.$$

Proof. The sequence of norms is bounded thanks to Banach-Steinhaus. In order to prove the lower-semicontinuity of the norms, we consider a subsequence T_{n_k} such that

$$\lim_{k \to +\infty} \inf \|T_{n_k}\|_{\mathcal{B}'} = \lim_{n \to +\infty} \inf \|T_n\|_{\mathcal{B}'}.$$

We next fix $x \in \mathcal{B}$, with $||x||_{\mathcal{B}} \leq 1$, and we compute

$$T(x) = \lim_{k \to +\infty} T_{n_k}(x) \le \lim_{k \to +\infty} ||T_{n_k}||_{\mathcal{B}'} ||x||_{\mathcal{B}} = \liminf_{n \to +\infty} ||T_n||_{\mathcal{B}'}.$$

Taking the supremum over all $x \in \mathcal{B}$, with $||x||_{\mathcal{B}} \leq 1$, we get

$$||T||_{\mathcal{B}'} \le \liminf_{n \to +\infty} ||T_n||_{\mathcal{B}'}.$$

Proposition 6. Let x_n be a sequence in \mathcal{B} and let $x \in \mathcal{B}$. Let T_n be a sequence in \mathcal{B}' and let $T \in \mathcal{B}'$. If

$$x_n \to x$$
 and $T_n \rightharpoonup^* T$,

then

$$T(x) = \lim_{n \to +\infty} T_n(x_n).$$

Proof. We write

$$|T_n(x_n) - T(x)| = |T_n(x_n) - T_n(x)| + |T_n(x) - T(x)|$$

$$\leq ||T_n||_{\mathcal{B}'} ||x_n - x||_{\mathcal{B}} + |T_n(x) - T(x)|.$$

By the strong convergence of x_n to x, we have $||x_n - x||_{\mathcal{B}} \to 0$, while the weak convergence of x_n gives that $||T_n||_{\mathcal{B}'}$ is bounded. Thus,

$$||x_n - x||_{\mathcal{B}} ||T_n||_{\mathcal{B}'} \to 0.$$

On the other hand, the weak-* convergence of T_n gives

$$|T_n(x) - T(x)| \to 0,$$

which concludes the proof.

Weak-* compactness of the unit ball in \mathcal{B}'

Theorem 7 (Tychonoff). Let $\{K_i\}_{i\in\mathcal{I}}$, be a family of compact spaces, where \mathcal{I} is any set of indices. Consider the product space $K = \prod_{i\in\mathcal{I}} K_i$ and the family of projection maps

$$\pi_j: K \to K_j , \quad \pi_i\Big((\omega_i)_{i \in \mathcal{I}}\Big) = \omega_j.$$

On the product space K we consider the topology σ , which is the weakest topology that makes all the maps $(\pi_j)_{j\in\mathcal{I}}$ continuous. Then, (K,σ) is compact.

Proof. Let \mathcal{F} be an infinite family of closed sets (in the product topology of K) with the following property:

 (\bigstar) for any finite family $C_1, \ldots, C_n \in \mathcal{F}$ we have $C_1 \cap \cdots \cap C_n \neq \emptyset$.

In order to prove that K is compact, it is sufficient to show that

$$\bigcap_{C \in \mathcal{F}} C \neq \emptyset.$$

Step 1. Consider the collection Γ of all families of sets (closed or not) containing all the sets from \mathcal{F} and satisfying (\bigstar) . For two families \mathcal{F}_1 and \mathcal{F}_2 we say that $\mathcal{F}_1 < \mathcal{F}_2$ if all the elements of \mathcal{F}_1 are elements of \mathcal{F}_2 . We notice that Γ admits maximal families. Indeed, by Zorn's lemma, it is sufficient to prove that every totally ordered subset Σ of Γ admits a maximal element. Indeed, it is sufficient to take

$$\mathcal{F}_* = \bigcup_{\mathcal{F} \in \Sigma} \mathcal{F}.$$

We notice that \mathcal{F}_* still has the property (\bigstar) since any finite family $C_1, \ldots, C_N \in \mathcal{F}_*$ belongs to some element \mathcal{F} of Σ .

Step 2. Let \mathcal{F}_* be a maximal family satisfying (\bigstar) and containing \mathcal{F} . Then, \mathcal{F}_* has the following properties:

- if $C_1, \ldots, C_n \in \mathcal{F}_*$, then $\bigcap_{i=1}^n C_i \in \mathcal{F}_*$;
- if \widetilde{C} is such that $\widetilde{C} \cap C \neq \emptyset$ for all $C \in \mathcal{F}_*$, then $\widetilde{C} \in \mathcal{F}_*$;
- for each $i \in \mathcal{I}$ the following family of subsets of K_i

$$\left\{ \pi_i(C) : C \in \mathcal{F}_* \right\}$$

has the property (\bigstar) . Since K_i is compact, there is a point $\omega_i \in K_i$ such that

$$\omega_i \in \overline{\pi_i(C)}$$
 for all $C \in \mathcal{F}_*$.

Step 3. We will show that $\omega := (\omega_i)_{i \in \mathcal{I}}$ lies in all \overline{C} with $C \in \mathcal{F}_*$. Let $A \subset K$ be any neighborhood of ω of the form

$$A = \bigcap_{j=1}^{N} \pi_j^{-1}(A_j),$$

where $A_j \subset K_j$ are open sets. Now, since

$$\omega_i \in \overline{\pi_i(C)}$$
 for all $C \in \mathcal{F}_*$,

and since $\omega_i \in A_i$ we have that

$$A_i \cap \overline{\pi_i(C)} \neq \emptyset$$
 for all $C \in \mathcal{F}_*$.

since A_i is open we have

$$A_i \cap \pi_i(C) \neq \emptyset$$
 for all $C \in \mathcal{F}_*$.

Then,

$$\pi_i^{-1}(A_i) \cap C \neq \emptyset$$
 for all $C \in \mathcal{F}_*$.

This implies that

$$\pi_i^{-1}(A_i) \in \mathcal{F}_*,$$

and so we also get

$$A \in \mathcal{F}_*$$
.

In particular, this implies that

$$A \cap C \neq \emptyset$$
 for every $C \in \mathcal{F}_*$,

and so

$$A \cap C \neq \emptyset$$
 for every $C \in \mathcal{F}$.

Since A is arbitrary, we get that

$$\omega \in C \neq \emptyset$$
 for every $C \in \mathcal{F}$.

Theorem 8 (Banach-Alaoglu-Bourbaki). Let $\mathcal B$ be a Banach space and let $\mathcal B'$ be its dual. Then, the unit ball

$$B_1' = \Big\{ T \in \mathcal{B}' : \|T\|_{\mathcal{B}'} \le 1 \Big\},$$

is compact in the weak-* topology $\sigma(\mathcal{B}', \mathcal{B})$.

Proof. Consider as family of indices \mathcal{I} all the points of \mathcal{B} . For every $x \in \mathcal{B}$, let K_x be the compact interval

$$K_x = \left[- \|x\|_{\mathcal{B}}, \|x\|_{\mathcal{B}} \right].$$

Consider the product space

$$K = \prod_{x \in \mathcal{B}} K_x,$$

equipped with the product topology σ that makes all the projection maps

$$\pi_x: K \to K_x , \qquad \pi_x(\omega) = \omega_x,$$

continuous. Notice that every map

$$T: \mathcal{B} \to \mathbb{R} , \quad ||T||_{\mathcal{B}'} \le 1$$

corresponds to a point

$$\omega \in K , \quad \omega = \left(T(x) \right)_{x \in \mathcal{B}}.$$

Indeed, it is sufficient to notice that, for any fixed $x, y \in \mathcal{B}$ and $t \in \mathbb{R}$, the sets

$$\left\{ \omega \in K : \pi_{x+y}(\omega) - \pi_x(\omega) - \pi_y(\omega) = 0 \right\}$$
$$\left\{ \omega \in K : \pi_{tx}(\omega) - t\pi_x(\omega) = 0 \right\}$$

are closed in K and that the intersection of all such sets (over all $x, y \in \mathcal{B}$ and all $t \in \mathbb{R}$) give precisely the set of points $\omega \in K$ corresponding to linear maps $T : \mathcal{B} \to \mathbb{R}$ with $||T||_{\mathcal{B}'} \le 1$.

Corollary 9. Let \mathcal{B} be a Banach space and let \mathcal{B}' be its dual. Suppose that \mathcal{B} is reflexive. Then, the unit ball

$$B_1 = \Big\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} \le 1 \Big\},$$

is compact in the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$.

Proof. Follows from the Banach-Alaoglu-Bourbaki's theorem applied to the Banach space \mathcal{B}' and its dual \mathcal{B}'' (which by hypothesis coincides with \mathcal{B}).

Finally, we notice that also the converse is true. In fact, we have the following theorem.

Theorem 10 (Kakutani). Let \mathcal{B} be a Banach space and let \mathcal{B}' be its dual. Suppose that the unit ball

$$B_1 = \Big\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} \le 1 \Big\},$$

is compact in the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$. Then, \mathcal{B} is reflexive.

Proof. See theorem \Box

Metrizability of the weak-* topology on the unit ball of \mathcal{B}'

Proposition 11. Let \mathcal{B} be a separable Banach space and let \mathcal{B}' be its dual. Then, the weak-* topology $\sigma(\mathcal{B}', \mathcal{B})$ on the unit ball

$$\overline{B}_1' = \Big\{ T \in \mathcal{B}' : \|T\|_{\mathcal{B}'} \le 1 \Big\},\,$$

is metrizable.

Consider a countable dense subset $(x_n)_{n\geq 1}$ of \mathcal{B} and set

$$\widetilde{x}_n := \frac{1}{\|x_n\|_{\mathcal{B}}} x_n \in \mathcal{B}.$$

Given $S, T \in \mathcal{B}'$, define

$$\delta(S,T) := \sum_{n=1}^{+\infty} \frac{1}{2^n} |S(\widetilde{x}_n) - T(\widetilde{x}_n)|.$$

Exercise 12. Prove that δ is a metric on \mathcal{B}' .

Exercise 13. In B'_1 , the topology induced by δ is equivalent to $\sigma(\mathcal{B}', \mathcal{B})$.