The weak topology on a Banach space

A GENERAL CONSTRUCTION

Let X be a set and let \mathcal{F} be a collection of functions

$$f: \mathcal{F} \to \mathbb{R}$$
.

We consider all the subsets

$$A \subset X$$

of the form

$$A = \bigcap_{i=1}^{N} f_i^{-1}(\omega_i),$$

where:

- $N \in \mathbb{N}$;
- $f_i \in \mathcal{F}$, i = 1, ..., N, is a collection of maps;
- $\omega_i \subset \mathbb{R}$, i = 1, ..., N, is a collection of open sets.

For simplicity, if $A \subset W$ is as above, we will say that

$$A \in \mathcal{N}(X, \mathcal{F}).$$

Proposition 1. Let now $\sigma(X,\mathcal{F})$ be the collection of all sets A of the form

$$A = \bigcup_{i \in I} A_i,$$

where:

- *I* is a finite or infinite set of indices;
- for each $i \in \mathcal{I}$, $A_i \in \mathcal{N}(X, \mathcal{F})$.

Then, $\sigma(X, \mathcal{F})$ is a topology on X.

Remark 2. Every map $f \in \mathcal{F}$ is continuous with respect to $\sigma(X, \mathcal{F})$. Moreover, if τ is a topology on X for which all the maps $f \in \mathcal{F}$ are continuous, then τ contains $\sigma(X, \mathcal{F})$. That is,

$$\sigma(X,\mathcal{F})$$
 is the coarsest topology (said also weakest topology, most economical topology, least fine topology) on X that makes all the maps $f \in \mathcal{F}$ continuous.

Proposition 3. Let x_n be a sequence in X and let $x \in X$. Then, the following are equivalent:

- (1) $x_n \to x$ in the topology of $\sigma(X, \mathcal{F})$;
- (2) $f(x_n) \to f(x)$, for every $f \in \mathcal{F}$.

Exercise 4. Let Z be a topological space and let $\phi: Z \to X$. Prove that the following are equivalent:

- (1) ϕ is continuous with respect to the topology $\sigma(X, \mathcal{F})$;
- (2) $f(\varphi): Z \to \mathbb{R}$ is continuous for every $f \in \mathcal{F}$.

The weak topology on a Banach space ${\cal B}$

Let \mathcal{B} be a Banach space and let \mathcal{B}' be its dual.

Definition 5 (Weak topology). The weak topology on \mathcal{B} is the topology $\sigma(\mathcal{B}, \mathcal{B}')$, which is:

the weakest topology on \mathcal{B} that makes all the maps in \mathcal{B}' continuous.

Remark 6 (Strong topology). The strong topology on \mathcal{B} is the topology induced by the norm $\|\cdot\|_{\mathcal{B}}$.

Remark 7 (Weak topology and weak convergence). Let x_n be a sequence in \mathcal{B} and let $x \in \mathcal{B}$. Then, the following are equivalent:

- (1) $x_n \to x$ in the topology of $\sigma(\mathcal{B}, \mathcal{B}')$;
- (2) $T(x_n) \to T(x)$, for every $T \in \mathcal{B}'$.

We will say that x_n converges to x weakly in \mathcal{B} and we will write $x_n \rightharpoonup x$.

Proposition 8 (The weak topology is Hausdorff). Let \mathcal{B} be a Banach space and let $\sigma(\mathcal{B}, \mathcal{B}')$ be the weak topology on \mathcal{B} . Then, for every couple of distinct points $x, y \in \mathcal{B}$, there are open sets $V, W \in \sigma(\mathcal{B}, \mathcal{B}')$ such that:

$$x \in V$$
, $y \in W$, $V \cap W = \emptyset$.

Proof. The claim follows from the Hahn-Banach's theorems. We consider three cases.

Case 1. Suppose that one between x and y is zero, say x=0 and $y\neq 0$. By Hahn-Banach, there is $T\in \mathcal{B}'$ such that:

$$T(0) = 1$$
 and $T(y) = 1 > 0$.

Then,

$$x = 0 \in \left\{ T < \frac{1}{2} \right\}$$
 and $y \in \left\{ T > \frac{1}{2} \right\}$.

Case 2. Suppose that $x \neq 0$ and y = tx for some t > 1. By Hahn-Banach, there is $T \in \mathcal{B}'$ such that:

$$T(x) = 1$$
 and $T(y) = t > 0$.

Then.

$$x \in \left\{ T < \frac{1+t}{2} \right\}$$
 and $y \in \left\{ T > \frac{1+t}{2} \right\}$.

Case 3. Suppose that $y \notin \{tx : t \in \mathbb{R}\}$. By Hahn-Banach, there is $T \in \mathcal{B}'$ such that:

$$T(x) = 0$$
 and $T(y) = 1$.

Then,

$$x \in \left\{ T < \frac{1}{2} \right\}$$
 and $x \in \left\{ T > \frac{1}{2} \right\}$.

Proposition 9 (Boundedness and semicontinuity of the norm). Let x_n be a sequence in \mathcal{B} and let $x \in \mathcal{B}$. If $x_n \rightharpoonup x$, then the sequence of norms $||x_n||_{\mathcal{B}}$ is bounded and

$$||x||_{\mathcal{B}} \le \liminf_{n \to +\infty} ||x_n||_{\mathcal{B}}.$$

Proof. The sequence of norms is bounded thanks to Banach-Steinhaus. In order to prove the lower-semicontinuity of the norms, we consider an operator

$$T \in \mathcal{B}'$$
, $T(x) = ||x||_{\mathcal{B}}$, $||T||_{\mathcal{B}'} = 1$,

which exists thanks to Hahn-Banach. Now, take a subsequence x_{n_k} such that

$$\liminf_{k \to +\infty} \|x_{n_k}\|_{\mathcal{B}} = \liminf_{n \to +\infty} \|x_n\|_{\mathcal{B}},$$

and compute

$$||x||_{\mathcal{B}} = T(x) = \lim_{n \to +\infty} T(x_{n_k}) \le \lim_{k \to +\infty} ||T||_{\mathcal{B}'} ||x_{n_k}||_{\mathcal{B}} = \liminf_{n \to +\infty} ||x_n||_{\mathcal{B}}.$$

Proposition 10. Let x_n be a sequence in \mathcal{B} and let $x \in \mathcal{B}$. Let T_n be a sequence in \mathcal{B}' and let $T \in \mathcal{B}'$. If

$$x_n \rightharpoonup x$$
 and $T_n \to T$,

then

$$T(x) = \lim_{n \to +\infty} T_n(x_n).$$

Proof. We write

$$|T_n(x_n) - T(x)| = |T_n(x_n) - T(x_n)| + |T(x_n) - T(x)|$$

$$\leq ||T_n - T||_{\mathcal{B}'} ||x_n||_{\mathcal{B}} + |T(x_n) - T(x)|.$$

By the strong convergence of T_n to T, we have $||T_n - T||_{\mathcal{B}'} \to 0$, while the weak convergence of x_n gives that $||x_n||_{\mathcal{B}}$ is bounded. Thus,

$$||T_n - T||_{\mathcal{B}'}||x_n||_{\mathcal{B}} \to 0.$$

On the other hand, the weak convergence of x_n gives

$$|T(x_n) - T(x)| \to 0,$$

which concludes the proof.

Comparison of the weak and the strong topologies on ${\mathcal B}$

Proposition 11. Suppose that \mathcal{B} is a finite dimensional Banach space, that is, $\mathcal{B} = \mathbb{R}^N$. Then, the weak and the strong topologies on \mathcal{B} are equivalent.

Proposition 12. Suppose that \mathcal{B} is an infinite dimensional Banach space.

Let S_1 be the unit sphere

$$S_1 = \left\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} = 1 \right\}.$$

Then, the closure of S_1 with respect to the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$ is the closed unit ball

$$\overline{B}_1 = \Big\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} \le 1 \Big\}.$$

Proof. Let $x_0 \in B_1$. It is sufficient to prove that any neighborhood $V \in \mathcal{N}(\mathcal{B}, \mathcal{B}')$ defined as

$$V = \bigcap_{i=1}^{N} T_i^{-1}((-\varepsilon_i + T_i(x_0), T_i(x_0) + \varepsilon_i)),$$

contains a point on the sphere. Notice that since \mathcal{B} is finite dimensional the map

$$L: \mathcal{B} \to \mathbb{R}^N$$
, $L(x) = (T_1(x), \dots, T_N(x)),$

cannot be injective. Then, there is $y \in \mathcal{B}$, $y \neq 0$, such that

$$T_1(y) = \dots = T_N(y) = 0.$$

But then, there is $t \in \mathbb{R}$ such that

$$||x_0 + ty|| = 1 \qquad \text{and} \qquad x_0 + ty \in V.$$

Corollary 13. Suppose that \mathcal{B} is an infinite dimensional Banach space.

Then, the unit ball

$$B_1 = \Big\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} < 1 \Big\},$$

is not an open set with respect to the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$. In particular, the weak and the strong topologies on \mathcal{B} are not the same.

Proof. It is sufficient to notice that the set $\{x \in \mathcal{B} : ||x||_{\mathcal{B}} \ge 1\}$ is closed with respect to the strong topology, but its closure with respect to $\sigma(\mathcal{B}, \mathcal{B}')$ is the whole space \mathcal{B} .

The weak topology on $\mathcal B$ is not induced by a metric

Lemma 14. Let V be a vector space and let

$$T_i: V \to \mathbb{R}$$
, $i = 1, \ldots, N$,

be linear maps. Suppose that $T: V \to \mathbb{R}$ is a linear map with satisfying the following property:

if
$$v \in V$$
 is such that $T_i(v) = 0$ for every $i = 1, ..., N$, then $T(v) = 0$.

Then, T is a linear combination of T_i .

Proof. Consider the linear map

$$L: V \to \mathbb{R}^{N+1}$$
, $L(v) = (T(v), T_1(v), \dots, T_N(v))$.

Then, L(V) is a linear subspace of \mathbb{R}^{N+1} and $e_1 = (1, 0, \dots, 0) \notin L(V)$. Then, there is a linear functional

$$\xi: \mathbb{R}^{N+1} \to \mathbb{R}$$
, $\xi(x) = \lambda x_1 + \sum_{j=1}^{N} \lambda_j x_{1+j}$.

such that

$$\xi(e_1) = 1$$
 and $\xi \equiv 0$ on $L(V)$.

Since $\xi(T(v)) \equiv 0$ we have

$$0 = \lambda T(v) + \sum_{j=1}^{N} \lambda_j T_j(v).$$

On the other hand, by construction we have $\lambda \neq 0$, so

$$T(v) = -\frac{1}{\lambda} \sum_{j=1}^{N} \lambda_j T_j(v)$$
 for every $v \in V$.

Lemma 15. Let \mathcal{B} be a Banach space. If \mathcal{B}' is finite dimensional, then also \mathcal{B} is finite dimensional.

Proof. Suppose that T_k , k = 1, ..., N is a basis of \mathcal{B}' . Consider the map

$$L: \mathcal{B} \to \mathbb{R}^N$$
, $L(v) = (T_1(v), \dots, T_N(v)).$

First we notice that by the Hahn-Banach's theorem the kernel of L contains only the origin. Then L is injective.

Lemma 16. Let \mathcal{B} be a Banach space. Suppose that there is a countable family of vectors v_n that spans \mathcal{B} . Then, \mathcal{B} is finite dimensional.

Proof. Follows from the Baire's lemma.

Theorem 17. Let \mathcal{B} be an infinite dimensional Banach space. Then, the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$ is NOT induced by a norm or a metric on \mathcal{B} .

Proof. Suppose by contradiction that there is a distance δ on \mathcal{B} . Let now $T \in \mathcal{B}'$. Then, the set

$$W = \{ x \in \mathcal{B} : |T(x)| < 1 \}$$

is an open neighborhood of 0. Since T is continuous, there is a metric ball

$$B_r^{\delta} = \{ x \in \mathcal{V} : \delta(x,0) < r \}.$$

Since $\sigma(\mathcal{B}, \mathcal{B}')$ is induced by δ , there is a neighborhood $V \in \mathcal{N}(\mathcal{B}, \mathcal{B}')$ defined as

$$V = \bigcap_{i=1}^{N} T_i^{-1}((-\varepsilon_i + T_i(x_0), T_i(x_0) + \varepsilon_i)).$$

such that $V \subset B_r^{\delta}$. Suppose now that $y \in \mathcal{B}$ satisfies

$$T_1(y) = \dots T_N(y) = 0.$$

Then, for all $t \in \mathbb{R}$,

$$T_1(ty) = \dots T_N(ty) = 0.$$

Thus $ty \in V$ for every t > 0. By construction

$$ty \in \{x \in \mathcal{B} : |T(x)| < 1\}$$

for every $t \in \mathbb{R}$. But then T(y) = 0. By the previous lemma, T is of the form:

$$T = \alpha_1 T_1 + \alpha_2 T_2 + \dots + \alpha_N T_N.$$

This means that \mathcal{B}' is generated by a countable family of operators T_k , $k \in \mathbb{N}$. But then, \mathcal{B}' has to be finite dimensional. But then also \mathcal{B} has to be finite dimensional.

The weak topology on the unit ball of ${\mathcal B}$ can be induced by a metric

Proposition 18. Let \mathcal{B} be a Banach space with separable dual \mathcal{B}' . Then, the weak topology $\sigma(\mathcal{B}, \mathcal{B}')$ on the unit ball

$$\overline{B}_1 = \Big\{ x \in \mathcal{B} : \|x\|_{\mathcal{B}} \le 1 \Big\},$$

is metrizable.

Proof. Consider a countable dense subset $(T_n)_{n\geq 1}$ of \mathcal{B}' and set

$$\widetilde{T}_n := \frac{1}{\|T_n\|_{\mathcal{B}'}} T_n \in \mathcal{B}'.$$

Define

$$\delta(x,y) := \sum_{n=1}^{+\infty} \frac{1}{2^n} |\widetilde{T}_n(x-y)|.$$

Step 1. δ is a metric on \mathcal{B} . Indeed, it is immediate to check that since

$$|\widetilde{T}_n(x-z)| \le |\widetilde{T}_n(x-y)| + |\widetilde{T}_n(y-z)|,$$

the triangular inequality

$$\delta(x, z) \le \delta(x, y) + \delta(y, z),$$

holds for all $x, y, z \in \mathcal{B}$. Moreover, if $\delta(x, y) = 0$, then

$$\widetilde{T}_n(x-y) = 0$$
 for all $n \ge 1$.

Suppose now that $x-y\neq 0$. By the Hahn-Banach's theorem, there is $T\in \mathcal{B}$ such that

$$T(x-y) = ||x-y||_{\mathcal{B}}$$
 and $||T||_{\mathcal{B}'} = 1$.

But, the density of $(T_n)_{n\geq 1}$ implies that there is a subsequence $(T_{n_k})_{k\geq 1}$ such that

$$T_{n_k} \to T$$
 strongly in \mathcal{B}' ,

which also implies that

$$\widetilde{T}_{n_k} \to T$$
 strongly in \mathcal{B}' .

Then,

$$\widetilde{T}_{n_k}(x-y) \to T(x-y),$$

and so, for large enough k, $\widetilde{T}_{n_k}(x-y) \neq 0$, which is a contradiction.

Step 2. The topology of δ is equivalent to $\sigma(\mathcal{B}, \mathcal{B}')$. Suppose that x_n is a sequence in \overline{B}_1 converging weakly to some $x \in \overline{B}_1$. Then:

- $|\widetilde{T}_n(x_k x)| \le 2$ for all $n \ge 1$ and all $k \ge 1$;
- for all fixed $n \ge 1$, $|\widetilde{T}_n(x_k x)| \to 0$ as $k \to +\infty$.

As a consequence

$$\lim_{k \to +\infty} \delta(x_k, x) = 0.$$

Conversely, suppose that

$$\lim_{k \to +\infty} \delta(x_k, x) = 0.$$

Then, for every fixed $n \ge 1$ we have

$$\lim_{k \to +\infty} |\widetilde{T}_n(x_k - x)| = 0,$$

so also

$$\lim_{k \to +\infty} |T_n(x_k - x)| = 0.$$

Since the sequence $(x_k - x)$ is bounded in \mathcal{B} , we have that $x_k \rightharpoonup x$.