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The weak topology on a Banach space

A general construction

Let X be a set and let F be a collection of functions

f : F → R.

We consider all the subsets
A ⊂ X

of the form

A =
N⋂
i=1

f−1i (ωi),

where:

• N ∈ N;

• fi ∈ F , i = 1, . . . , N , is a collection of maps;

• ωi ⊂ R, i = 1, . . . , N , is a collection of open sets.

For simplicity, if A ⊂W is as above, we will say that

A ∈ N (X,F).

Proposition 1. Let now σ(X,F) be the collection of all sets A of the form

A =
⋃
i∈I

Ai,

where:

• I is a finite or infinite set of indices;

• for each i ∈ I, Ai ∈ N (X,F).

Then, σ(X,F) is a topology on X.

Remark 2. Every map f ∈ F is continuous with respect to σ(X,F). Moreover, if τ is a topology on
X for which all the maps f ∈ F are continuous, then τ contains σ(X,F). That is,

σ(X,F) is the coarsest topology
(said also weakest topology, most economical topology, least fine topology)

on X that makes all the maps f ∈ F continuous.

Proposition 3. Let xn be a sequence in X and let x ∈ X. Then, the following are equivalent:

(1) xn → x in the topology of σ(X,F);

(2) f(xn)→ f(x), for every f ∈ F .

Exercise 4. Let Z be a topological space and let φ : Z → X. Prove that the following are equivalent:

(1) φ is continuous with respect to the topology σ(X,F);

(2) f(ϕ) : Z → R is continuous for every f ∈ F .
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The weak topology on a Banach space B

Let B be a Banach space and let B′ be its dual.

Definition 5 (Weak topology). The weak topology on B is the topology σ(B,B′), which is:

the weakest topology on B that makes all the maps in B′ continuous.

Remark 6 (Strong topology). The strong topology on B is the topology induced by the norm ‖ · ‖B.

Remark 7 (Weak topology and weak convergence). Let xn be a sequence in B and let x ∈ B. Then,
the following are equivalent:

(1) xn → x in the topology of σ(B,B′);

(2) T (xn)→ T (x), for every T ∈ B′.

We will say that xn converges to x weakly in B and we will write xn ⇀ x.

Proposition 8 (The weak topology is Hausdorff). Let B be a Banach space and let σ(B,B′) be the weak
topology on B. Then, for every couple of distinct points x, y ∈ B, there are open sets V,W ∈ σ(B,B′)
such that:

x ∈ V , y ∈W , V ∩W = ∅.

Proof. The claim follows from the Hahn-Banach’s theorems. We consider three cases.
Case 1. Suppose that one between x and y is zero, say x = 0 and y 6= 0. By Hahn-Banach, there is
T ∈ B′ such that:

T (0) = 1 and T (y) = 1 > 0.

Then,

x = 0 ∈
{
T <

1

2

}
and y ∈

{
T >

1

2

}
.

Case 2. Suppose that x 6= 0 and y = tx for some t > 1. By Hahn-Banach, there is T ∈ B′ such that:

T (x) = 1 and T (y) = t > 0.

Then,

x ∈
{
T <

1 + t

2

}
and y ∈

{
T >

1 + t

2

}
.

Case 3. Suppose that y /∈
{
tx : t ∈ R

}
. By Hahn-Banach, there is T ∈ B′ such that:

T (x) = 0 and T (y) = 1.

Then,

x ∈
{
T <

1

2

}
and x ∈

{
T >

1

2

}
.

Proposition 9 (Boundedness and semicontinuity of the norm). Let xn be a sequence in B and let
x ∈ B. If xn ⇀ x, then the sequence of norms ‖xn‖B is bounded and

‖x‖B ≤ lim inf
n→+∞

‖xn‖B.
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Proof. The sequence of norms is bounded thanks to Banach-Steinhaus. In order to prove the lower-
semicontinuity of the norms, we consider an operator

T ∈ B′ , T (x) = ‖x‖B , ‖T‖B′ = 1,

which exists thanks to Hahn-Banach. Now, take a subsequence xnk
such that

lim inf
k→+∞

‖xnk
‖B = lim inf

n→+∞
‖xn‖B,

and compute

‖x‖B = T (x) = lim
n→+∞

T (xnk
) ≤ lim

k→+∞
‖T‖B′‖xnk

‖B = lim inf
n→+∞

‖xn‖B.

Proposition 10. Let xn be a sequence in B and let x ∈ B. Let Tn be a sequence in B′ and let T ∈ B′.
If

xn ⇀ x and Tn → T,

then
T (x) = lim

n→+∞
Tn(xn).

Proof. We write

|Tn(xn)− T (x)| = |Tn(xn)− T (xn)|+ |T (xn)− T (x)|
≤ ‖Tn − T‖B′‖xn‖B + |T (xn)− T (x)|.

By the strong convergence of Tn to T , we have ‖Tn−T‖B′ → 0, while the weak convergence of xn gives
that ‖xn‖B is bounded. Thus,

‖Tn − T‖B′‖xn‖B → 0.

On the other hand, the weak convergence of xn gives

|T (xn)− T (x)| → 0,

which concludes the proof.

Comparison of the weak and the strong topologies on B

Proposition 11. Suppose that B is a finite dimensional Banach space, that is, B = RN .
Then, the weak and the strong topologies on B are equivalent.

Proposition 12. Suppose that B is an infinite dimensional Banach space.
Let S1 be the unit sphere

S1 =
{
x ∈ B : ‖x‖B = 1

}
.

Then, the closure of S1 with respect to the weak topology σ(B,B′) is the closed unit ball

B1 =
{
x ∈ B : ‖x‖B ≤ 1

}
.

Proof. Let x0 ∈ B1. It is sufficient to prove that any neighborhood V ∈ N (B,B′) defined as

V =

N⋂
i=1

T−1i ((−εi + Ti(x0), Ti(x0) + εi)),

contains a point on the sphere. Notice that since B is finite dimensional the map

L : B → RN , L(x) = (T1(x), . . . , TN (x)),
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cannot be injective. Then, there is y ∈ B, y 6= 0, such that

T1(y) = · · · = TN (y) = 0.

But then, there is t ∈ R such that

‖x0 + ty‖ = 1 and x0 + ty ∈ V.

Corollary 13. Suppose that B is an infinite dimensional Banach space.
Then, the unit ball

B1 =
{
x ∈ B : ‖x‖B < 1

}
,

is not an open set with respect to the weak topology σ(B,B′). In particular, the weak and the strong
topologies on B are not the same.

Proof. It is sufficient to notice that the set
{
x ∈ B : ‖x‖B ≥ 1

}
is closed with respect to the strong

topology, but its closure with respect to σ(B,B′) is th whole space B.

The weak topology on B is not induced by a metric

Lemma 14. Let V be a vector space and let

Ti : V → R , i = 1, . . . , N,

be linear maps. Suppose that T : V → R is a linear map with satisfying the following property:

if v ∈ V is such that Ti(v) = 0 for every i = 1, . . . , N , then T (v) = 0.

Then, T is a linear combination of Ti.

Proof. Consider the linear map

L : V → RN+1 , L(v) =
(
T (v), T1(v), . . . , TN (v)

)
.

Then, L(V ) is a linear subspace of RN+1 and e1 = (1, 0, . . . , 0) /∈ L(V ). Then, there is a linear functional

ξ : RN+1 → R , ξ(x) = λx1 +
N∑
j=1

λjx1+j .

such that
ξ(e1) = 1 and ξ ≡ 0 on L(V ).

Since ξ(T (v)) ≡ 0 we have

0 = λT (v) +
N∑
j=1

λjTj(v).

On the other hand, by construction we have λ 6= 0, so

T (v) = − 1

λ

N∑
j=1

λjTj(v) for every v ∈ V.
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Lemma 15. Let B be a Banach space. If B′ is finite dimensional, then also B is finite dimensional.

Proof. Suppose that Tk, k = 1, . . . , N is a basis of B′. Consider the map

L : B → RN , L(v) =
(
T1(v), . . . , TN (v)

)
.

First we notice that by the Hahn-Banach’s theorem the kernel of L contains only the origin. Then L is
injective.

Lemma 16. Let B be a Banach space. Suppose that there is a countable family of vectors vn that spans
B. Then, B is finite dimensional.

Proof. Follows from the Baire’s lemma.

Theorem 17. Let B be an infinite dimensional Banach space. Then, the weak topology σ(B,B′) is
NOT induced by a norm or a metric on B.

Proof. Suppose by contradiction that there is a distance δ on B. Let now T ∈ B′. Then, the set

W = {x ∈ B : |T (x)| < 1}

is an open neighborhood of 0. Since T is continuous, there is a metric ball

Bδ
r = {x ∈ V : δ(x, 0) < r}.

Since σ(B,B′) is induced by δ, there is a neighborhood V ∈ N (B,B′) defined as

V =
N⋂
i=1

T−1i ((−εi + Ti(x0), Ti(x0) + εi)).

such that V ⊂ Bδ
r . Suppose now that y ∈ B satisfies

T1(y) = . . . TN (y) = 0.

Then, for all t ∈ R,
T1(ty) = . . . TN (ty) = 0.

Thus ty ∈ V for every t > 0. By construction

ty ∈ {x ∈ B : |T (x)| < 1}

for every t ∈ R. But then T (y) = 0. By the previous lemma, T is of the form:

T = α1T1 + α2T2 + · · ·+ αNTN .

This means that B′ is generated by a countable family of operators Tk, k ∈ N. But then, B′ has to be
finite dimensional. But then also B has to be finite dimensional.

The weak topology on the unit ball of B can be induced by a metric

Proposition 18. Let B be a Banach space with separable dual B′. Then, the weak topology σ(B,B′)
on the unit ball

B1 =
{
x ∈ B : ‖x‖B ≤ 1

}
,

is metrizable.
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Proof. Consider a countable dense subset (Tn)n≥1 of B′ and set

T̃n :=
1

‖Tn‖B′
Tn ∈ B′.

Define

δ(x, y) :=

+∞∑
n=1

1

2n
|T̃n(x− y)|.

Step 1. δ is a metric on B. Indeed, it is immediate to check that since

|T̃n(x− z)| ≤ |T̃n(x− y)|+ |T̃n(y − z)|,

the triangular inequality
δ(x, z) ≤ δ(x, y) + δ(y, z),

holds for all x, y, z ∈ B. Moreover, if δ(x, y) = 0, then

T̃n(x− y) = 0 for all n ≥ 1.

Suppose now that x− y 6= 0. By the Hahn-Banach’s theorem, there is T ∈ B such that

T (x− y) = ‖x− y‖B and ‖T‖B′ = 1.

But, the density of (Tn)n≥1 implies that there is a subsequence (Tnk
)k≥1 such that

Tnk
→ T strongly in B′,

which also implies that
T̃nk
→ T strongly in B′.

Then,
T̃nk

(x− y)→ T (x− y),

and so, for large enough k, T̃nk
(x− y) 6= 0, which is a contradiction.

Step 2. The topology of δ is equivalent to σ(B,B′). Suppose that xn is a sequence in B1

converging weakly to some x ∈ B1. Then:

• |T̃n(xk − x)| ≤ 2 for all n ≥ 1 and all k ≥ 1;

• for all fixed n ≥ 1, |T̃n(xk − x)| → 0 as k → +∞.

As a consequence
lim

k→+∞
δ(xk, x) = 0.

Conversely, suppose that
lim

k→+∞
δ(xk, x) = 0.

Then, for every fixed n ≥ 1 we have

lim
k→+∞

|T̃n(xk − x)| = 0,

so also
lim

k→+∞
|Tn(xk − x)| = 0.

Since the sequence (xk − x) is bounded in B, we have that xk ⇀ x.
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