Convergenza debole

Convergenza debole in $L^p(\Omega)$ ed in spazi di Banach

Siano $p \in (1, +\infty)$ ed $\Omega \subset \mathbb{R}^d$ un insieme misurabile secondo Lebesgue. Diciamo che una successione $f_n \in L^p(\Omega)$ converge debolmente a $f \in L^p(\Omega)$ (e scriviamo $f_n \rightharpoonup f$ in $L^p(\Omega)$), se:

$$\int_{\Omega} f_n(x)g(x) dx \to \int_{\Omega} f(x)g(x) dx \quad \text{per ogni} \quad g \in L^q(\Omega),$$

dove, come al solito,

$$q := \frac{p}{p-1}.$$

Più in generale, dato uno spazio di Banach \mathcal{B} , diciamo che una successione $u_n \in \mathcal{B}$ converge debolmente a $u \in \mathcal{B}$ (e scriviamo $u_n \rightharpoonup u$), se

$$T(u_n) \to T(u)$$
 per ogni $T \in \mathcal{B}'$,

dove \mathcal{B}' è lo spazio duale di \mathcal{B} .

Inoltre, diremo che una successione $u_n \in \mathcal{B}$ converge fortemente a $u \in \mathcal{B}$ (e scriviamo $u_n \to u$), se

$$\lim_{n \to +\infty} ||u_n - u||_{\mathcal{B}} = 0.$$

Unicità del limite debole in $L^p(\Omega)$

Osserviamo che se una successione $u_n \in L^p(\Omega)$ converge debolmente, allora il limite debole è univocamente determinato. Infatti, supponiamo che esistono due funzioni $u, v \in L^p(\Omega)$ tali che:

$$u_n \rightharpoonup u$$
 e $u_n \rightharpoonup v$.

Allora, per ogni funzione $\varphi \in L^q(\omega)$, abbiamo che

$$\int_{\Omega} u\varphi \, dx = \lim_{n \to \infty} \int_{\Omega} u_n \varphi \, dx = \int_{\Omega} v\varphi \, dx,$$

e quindi

$$\int_{\Omega} (u - v)\varphi \, dx = 0.$$

Scegliendo $\varphi = (u - v)|u - v|^{p-2}$, otteniamo che

$$\int_{\Omega} |u - v|^p \, dx = 0,$$

e quindi u = v.

Unicità del limite debole in uno spazio di Banach

Anche in uno spazio di Banach è vero che il limite debole è univocamente determinato. Infatti, se $u_n \in \mathcal{B}$ è una successione tale che converge debolmente in \mathcal{B} a due elementi $u, v \in \mathcal{B}$:

$$u_n \rightharpoonup u$$
 e $u_n \rightharpoonup v$,

allora, per ogni funzionale lineare continuo $T: \mathcal{B} \to \mathbb{R}$ si ha che

$$T(u) = \lim_{n \to \infty} T(u_n) = T(v),$$

e quindi

$$T(u-v)$$
.

Ora, per il teorema di Hahn-Banach, abbiamo che se $u - v \neq 0$, allora esiste un funzionale lineare continuo $T: \mathcal{B} \to \mathbb{R}$ tale che T(u - v) = 1. Di conseguienza, si ha che necessariamente u = v.

Due osservazioni importanti

Proposizione 1 (Convergenza forte \Rightarrow convergenza debole). Se u_n è una successione in uno spazio di Banach \mathcal{B} che converge fortemente a $u \in \mathcal{B}$, allora u_n converge debolmente a u.

Proposizione 2. Sia u_n una successione limitata in uno spazio di Banach \mathcal{B} . Sia \mathcal{C}' un sottoinsieme denso di \mathcal{B}' . Allora, sono equivalenti:

- (1) $u_n \rightharpoonup u$ debolmente in \mathcal{B} ;
- (2) $T(u_n) \to T(u)$ per ogni $T \in \mathcal{C}$.

Esercizi ed esempi

Esercizio 3. Siano $p \in (1, +\infty)$ ed $f \in L^p(\mathbb{R}^d)$. Sia x_n una successione di punti in \mathbb{R}^d . Per ogni $n \geq 1$, definiamo:

$$f_n(x) := f(x - x_n).$$

- (a) Se $|x_n| \to 0$, allora f_n converge ad f fortemente in $L^p(\mathbb{R}^d)$.
- (b) Se $|x_n| \to +\infty$, allora f_n converge a 0 debolmente in $L^p(\mathbb{R}^d)$.

Esercizio 4. In $L^2([0,1])$, consideriamo la successione

$$u_n(x) := \begin{cases} 1 & se & \frac{2k}{2n} \le x < \frac{2k+1}{2n} & per \ un \ qualche \quad 0 \le k \le n-1 \\ 0 & se & \frac{2k+1}{2n} \le x < \frac{2k+2}{2n} & per \ un \ qualche \quad 0 \le k \le n-1. \end{cases}$$

Dimostrare che u_n converge debolmente alla funzione costante 1/2.

Esercizio 5. In $L^2([0,\pi])$, consideriamo la successione

$$u_n(x) := \sin(nx)$$

Dimostrare che u_n converge debolmente alla funzione costante 0.

Esercizio 6. Sia \mathcal{H} uno spazio di Hilbert separabile. Sia ϕ_n un sistema ortonormale completo di \mathcal{H} . Mostrare che $\phi_n \rightharpoonup 0$ in \mathcal{H} .

Esercizio 7. Siano $p \in (1, +\infty)$ ed $f \in L^p(\mathbb{R}^d)$ e sia $R_n \to +\infty$. Per ogni $n \ge 1$, definiamo

$$f_n(x) := \frac{1}{R_{\sim}^{d/p}} f(x/R_n).$$

Dimostrare che $f_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$.

COMPATTEZZA DEBOLE DELLE SUCCESSIONI LIMITATE.

Teorema 8. Sia \mathcal{B} uno spazio di Banach separabile (ossia \mathcal{B} contiene un insieme denso numerabile \mathcal{C}). Sia T_n una successione limitata in \mathcal{B}' :

$$||T_n||_{\mathcal{B}'} \le L$$
 per $ogni$ $n \ge 1$.

Allora, possiamo trovare una sottosuccessione T_{n_k} ed un operatore lineare continuo $T \in \mathcal{B}'$ tali che

$$T_n(x) \to T(x)$$
 per ogni $x \in \mathcal{B}$.

Dimostrazione. Sia

$$\mathcal{C} := \Big\{ x_j : j \in \mathbb{N} \Big\}.$$

Siccome C è numerabile, possiamo supporre (a meno di estrarre una sottosuccessione) che $T_n(x_j)$ converge (per $n \to +\infty$). Definiamo

$$T(x_j) := \lim_{n \to +\infty} T_n(x_j).$$

Ora, sia $x \in \mathcal{B}$ un qualsiasi elemento di \mathcal{B} . Dimostreremo che $T_n(x)$ è di Cauchy. Infatti, per ogni $x_j \in \mathcal{C}$ abbiamo che

$$|T_n(x) - T_m(x)| \le |T_n(x) - T_n(x_j)| + |T_n(x_j) - T_m(x_j)| + |T_m(x) - T_m(x_j)|$$

$$\le 2L|x - x_j| + |T_n(x_j) - T_m(x_j)|.$$

Quindi, siccome \mathcal{C} è denso, anche la successione $T_n(x)$ è di Cauchy. Quindi, possiamo definire

$$T(x) := \lim_{n \to +\infty} T_n(x).$$

Per costruzione, la mappa

$$T: \mathcal{B} \to \mathbb{R}$$

è lineare. Inoltre, siccome

$$|T(x)| = \lim_{n \to +\infty} |T_n(x)| \le L|x|,$$

abbiamo che T è anche limitata.

Corollario 9. In uno spazio di Hilbert separabile, ogni successione limitata ammette una sottosuccessione debolmente convergente.

Corollario 10. Siano $p \in (1, +\infty)$ ed Ω un insieme misurabile in \mathbb{R}^d . Allora, ogni successione limitata $f_n \in L^p(\Omega)$ ammette una sottosuccessione debolmente convergente in $L^p(\Omega)$.

Semicontinuità della norma $L^p(\Omega)$

Teorema 11. Siano $p \in (1, +\infty)$ ed $\Omega \subset \mathbb{R}^d$. Sia $f_n \in L^p(\Omega)$ una successione che converge debolmente ad una certa funzione $f \in L^p(\Omega)$. Allora

$$||f||_{L^p(\Omega)} \leq \liminf_{n \to +\infty} ||f_n||_{L^p(\Omega)}.$$

Dimostrazione. Osserviamo che

$$||f||_{L^p(\Omega)} = \sup \Big\{ \int_{\Omega} f(x)v(x) \, dx : v \in L^q(\Omega), ||v||_{L^q(\Omega)} = 1 \Big\}.$$

Inoltre, prendendo

$$g := \frac{1}{\|f\|_{L^p(\mathbb{R}^d)}^{p-1}} f|f|^{p-2},$$

abbiamo che

$$||f||_{L^p(\Omega)} = \int_{\Omega} f(x)g(x) dx$$
 e $||g||_{L^q(\Omega)} = 1$.

Quindi

$$||f||_{L^p(\Omega)} = \int_{\Omega} f(x)g(x) dx = \lim_{n \to \infty} \int_{\Omega} f_n(x)g(x) dx \le \liminf_{n \to +\infty} ||f_n||_{L^p(\mathbb{R}^d)}.$$

Osserviamo anche che vale il teorema seguente:

Teorema 12. Siano $p \in (1, +\infty)$ ed $\Omega \subset \mathbb{R}^d$. Sia $f_n \in L^p(\Omega)$ una successione che converge debolmente. Allora, la successione $||f_n||_{L^p(\Omega)}$ è limitata.

TEOREMA DI RADON-RIESZ

Teorema 13 (Dimostrazione nel caso $p \geq 2$.). Siano $p \in (1, +\infty)$ ed $\Omega \subset \mathbb{R}^d$. Siano $f_n \in L^p(\Omega)$ una successione ed $f \in L^p(\Omega)$ una funzione. Allora, sono equivalenti:

- (1) $f_n \rightharpoonup f \ e \ ||f_n||_{L^p(\Omega)} \rightarrow ||f||_{L^p(\Omega)};$
- (2) $f_n \to f$ fortemente in $L^p(\Omega)$.

Dimostrazione. Dimostriamo che (1) implica (2) nel caso p = 2. Infatti,

$$||f_n - f||_{L^2(\Omega)}^2 = \int_{\Omega} f_n^2 dx - \int_{\Omega} f_n^2 dx + 2 \int_{\Omega} (f - f_n) f \to 0.$$

Supponiamo ora che $p \geq 2$. Per la disuguaglianza di Clarkson,

$$\left\| \frac{f_n - f}{2} \right\|_{L^p(\Omega)}^p \le \frac{1}{2} \left\| f_n \right\|_{L^p(\Omega)}^p + \frac{1}{2} \left\| f \right\|_{L^p(\Omega)}^p - \left\| \frac{f_n + f}{2} \right\|_{L^p(\Omega)}^p$$

Siccome $\frac{1}{2}(f_n+f) \rightharpoonup f$, abbiamo che

$$||f||_{L^p(\Omega)}^p \le \liminf_{n \to +\infty} \left\| \frac{f_n + f}{2} \right\|_{L^p(\Omega)}^p,$$

e quindi

$$\limsup_{n \to +\infty} \left\| \frac{f_n - f}{2} \right\|_{L^p(\Omega)}^p \le \limsup_{n \to +\infty} \left(\frac{1}{2} \|f_n\|_{L^p(\Omega)}^p + \frac{1}{2} \|f\|_{L^p(\Omega)}^p - \left\| \frac{f_n + f}{2} \right\|_{L^p(\Omega)}^p \right) \\
\le \|f\|_{L^p(\Omega)}^p - \liminf_{n \to +\infty} \left\| \frac{f_n + f}{2} \right\|_{L^p(\Omega)}^p \\
\le \|f\|_{L^p(\Omega)}^p - \|f\|_{L^p(\Omega)}^p = 0.$$

Convergenza debole e convergenza forte

Proposizione 14. Sia Ω un sottoinsieme misurabile in \mathbb{R}^d . Siano $p \in (1, +\infty)$ e $q := \frac{p}{p-1}$. Sia f_n una successione in $L^p(\Omega)$ che converge fortemente a $f \in L^p(\Omega)$. Sia g_n una successione in $L^q(\Omega)$ che converge debolmente a $g \in L^q(\Omega)$. Allora

$$\int_{\Omega} f(x)g(x) dx = \lim_{n \to +\infty} \int_{\Omega} f_n(x)g_n(x) dx.$$

Dimostrazione. La tesi segue dall'identità

$$\int_{\Omega} \left(f_n(x)g_n(x) - f(x)g(x) \right) dx = \int_{\Omega} \left(f_n(x) - f(x) \right) g_n(x) dx + \int_{\Omega} \left(g_n(x) - g(x) \right) f(x) dx.$$