1-forme chiuse in aperti semplicemente connessi

Una condizione necessaria e sufficiente

Lemma 1. Sia Ω un aperto connesso di \mathbb{R}^d e sia α una 1-forma di classe C^0 su Ω . Allora, sono equivalenti:

- (1) $\alpha \ \dot{e} \ esatta;$
- (2) Per ogni curva chiusa C^1 a tratti $\gamma:[a,b]\to\mathbb{R}$ si ha che $\int_{\gamma}\alpha=0$;
- (3) Se $\gamma:[a,b]\to\Omega$ e $\sigma:[A,B]\to\Omega$ sono due curve C^1 a tratti tali che:

$$\gamma(a) = \sigma(A)$$
 e $\gamma(b) = \sigma(B)$,

allora $\int_{\gamma} \alpha = \int_{\sigma} \alpha$.

CURVE OMOTOPE

Definizione 2 (Curve omotope con gli stessi estremi). Sia Ω un aperto di \mathbb{R}^n . Siano

$$\gamma:[a,b] \to \Omega$$
 e $\sigma:[a,b] \to \Omega$

due curve continue e tali che

$$\gamma(a) = \sigma(a)$$
 e $\gamma(b) = \sigma(b)$.

Diciamo che γ e σ sono **omotope** se esiste (un intervallo [c,d] e) una funzione continua

$$H:[a,b]\times[c,d]\to\Omega$$

tale che

$$\begin{cases} H(t,c) = \gamma(t) & per \ ogni \quad t \in [a,b] \\ H(t,d) = \sigma(t) & per \ ogni \quad t \in [a,b]. \end{cases}$$

Integrazione di 1-forme su curve omotope

Teorema 3. Siano Ω un aperto di \mathbb{R}^n e

$$\gamma:[a,b]\to\Omega$$
 e $\sigma:[a,b]\to\Omega$

due curve C^1 a tratti con gli stessi estremi:

$$\gamma(a) = \sigma(a)$$
 e $\gamma(b) = \sigma(b)$.

Sia α una 1-forma chiusa su Ω . Se γ e σ sono omotope, allora

$$\int_{\gamma} \alpha = \int_{\sigma} \alpha.$$

 $\mathbf{Dimostrazione}$: Sia H una funzione continua

$$H: [a,b] \times [c,d] \to \Omega$$

tale che

$$\begin{cases} H(t,c) = \gamma(t) & \text{per ogni} \quad t \in [a,b] \\ H(t,d) = \sigma(t) & \text{per ogni} \quad t \in [a,b]. \end{cases}$$

Osserviamo che l'insieme $\mathcal{K} := \{H(t,s) : t \in [a,b], s \in [c,d]\}$ è un compatto contenuto in Ω .

Step 1. Esiste un ricoprimento finito $\left\{B_{r_k}(x_i)\right\}_{k=1}^N$ di $\mathcal K$ tale che:

- $x_k \in \mathcal{K}$ per ogni k;
- $B_{4r_k}(x_k) \subset \Omega$ per ogni k.

Definiamo

$$r = \min_{1 \le k \le N} r_k.$$

Step 2. Esiste un ricoprimento finito $\left\{B_r(y_k)\right\}_{k=1}^M$ di \mathcal{K} tale che:

- $y_k \in \mathcal{K}$ per ogni k;
- $B_{2r}(y_k) \subset \Omega$ per ogni k.

Infatti, per ogni $y \in \mathcal{K}$, y appartiene a una delle palle $B_{r_k}(x_k)$ del ricoprimento del punto precedente. Ma allora $B_{2r_k}(y)$ è un sottoinsieme di $B_{4r_k}(x_k)$ (perché?). Di conseguenza, $B_{2r_k}(y) \subset \Omega$. Siccome $r \leq r_k$, abbiamo che

$$B_{2r}(y) \subset \Omega$$
 per ogni $y \in \mathcal{K}$.

La famiglia $\{B_r(y)\}_{y\in\mathcal{K}}$ è un ricoprimento di \mathcal{K} . Siccome \mathcal{K} è compatto, questo ricoprimento contiene un sottoricoprimento finito, il che conclude la dimostrazione di $Step\ 2$.

Step 3. Fissati due naturali m e n, consideriamo le (equi-)partizioni

$$\mathcal{P}_{[a,b]} = \left\{ a = t_0 < t_1 < t_2 < \dots < t_n = b \right\}$$

$$\mathcal{P}_{[c,d]} = \left\{ c = s_0 < s_1 < s_2 < \dots < s_m = d \right\}$$

dove

$$t_i = a + i \frac{b-a}{n} \quad \text{per ogni} \quad 0 \le i \le n.$$

$$s_j = c + j \frac{d-c}{m} \quad \text{per ogni} \quad 0 \le j \le m.$$

Per ogni $1 \leq i \leq n$ e $1 \leq j \leq m$ definiamo il rettangolo

$$R_{ij} = [t_{i-1}, t_i] \times [s_{j-1}, s_j].$$

Siccome H è uniformemente continua, scegliendo m e n abbastanza grandi abbiamo che

$$|H(t,s) - H(t',s')| < r$$
 per ogni $(t,s) \in R_{ij}, (t',s') \in R_{ij}.$

In particolare, per ogni coppia di indici (i,j) esiste una palla $B_r(y_k)$ del ricoprimento di Step 2 tale che

$$H(s,t) \in B_{2r}(y_k)$$
 per ogni $(s,t) \in R_{ij}$.

Step 4. Per ogni coppia di indici

$$0 \le i \le n-1$$
 e $0 \le j \le m-1$,

consideriamo le curve γ_{ij} e σ_{ij}

• la curva $\gamma_{ij}:[t_i,t_{i+1}]\to\Omega$ parametrizza il segmento che collega i punti

$$H(t_i, s_j)$$
 e $H(t_{i+1}, s_j)$.

 \bullet la curva $\sigma_{ij}:[s_j,s_{j+1}]\to \Omega$ parametrizza il segmento che collega i punti

$$H(t_i, s_i)$$
 e $H(t_i, s_{i+1})$.

Ora, fissati $i \in j$, per Step 3 abbiamo che le curve

$$\gamma_{ij}$$
, σ_{ij} , $\gamma_{i,j+1}$, $\sigma_{i+1,j}$

sono contenute in una delle palle $B_{2r}(y_k) \subset \Omega$. Siccome su $B_{2r}(y_k)$ la forma α è anche esatta, abbiamo che

$$\int_{\gamma_{i,j}} \alpha + \int_{\sigma_{i+1,j}} \alpha = \int_{\sigma_{i,j}} \alpha + \int_{\gamma_{i,j+1}} \alpha$$

Step 5. Ora, per ogni j = 0, ..., m definiamo la curva

$$\gamma_j: [a,b] \to \Omega$$

come il concatenamento

$$\gamma_j = \gamma_{0,j} * \gamma_{1,j} * \gamma_{2,j} * \cdots * \gamma_{n-1,j}.$$

Allora

$$\int_{\gamma_j} \alpha = \sum_{i=0}^{n-1} \int_{\gamma_{ij}} \alpha = \sum_{i=0}^{n-1} \int_{\sigma_{i,j}} \alpha + \sum_{i=0}^{n-1} \int_{\gamma_{i,j+1}} \alpha - \sum_{i=0}^{n-1} \int_{\sigma_{i+1,j}} \alpha = \sum_{i=0}^{n-1} \int_{\gamma_{i,j+1}} \alpha = \int_{\gamma_{j+1}} \alpha.$$

Di conseguenza,

$$\int_{\gamma_0} \alpha = \int_{\gamma_m} \alpha.$$

Ora, per concludere basta osservare che

$$\int_{\gamma_0} \alpha = \int_{\gamma} \alpha \qquad \text{e} \qquad \int_{\gamma_m} \alpha = \int_{\sigma} \alpha.$$

1-forme chiuse su insiemi semplicemente connessi

Definizione 4. Sia $\Omega \subset \mathbb{R}^n$ un insieme aperto. Diciamo che Ω è semplicemente connesso se è connesso e se per ogni coppia di curve continue

$$\gamma:[a,b]\to\Omega \qquad e \qquad \sigma:[a,b]\to\Omega$$

con gli stessi estremi,

$$\gamma(a) = \sigma(a)$$
 e $\gamma(b) = \sigma(b)$,

si ha che γ è omotopa a σ .

Teorema 5. Su un aperto semplicemente connesso, ogni 1-forma chiusa è esatta.

Corollario 6. Sia

$$\Phi:\Omega\to\mathbb{R}^3\ , \qquad \Phi(x,y,z)=\Big(a(x,y,z),\ b(x,y,z),\ c(x,y,z)\Big)$$

un campo vettoriale di classe C^1 su un aperto semplicemente connesseo $\Omega \subset \mathbb{R}^3$. Se il campo Φ è irrotazionale, allora Φ è un campo conservativo, ovvero esiste un potenziale

$$P:\Omega\to\mathbb{R}$$

tale per cui $\nabla P = \Phi$.