Gli spazi $C^k(\Omega)$

DEFINIZIONE

Definizione 1. Sia Ω un insieme aperto di \mathbb{R}^d e sia $F:\Omega\to\mathbb{R}$ una funzione data.

- (i) Diciamo che la funzione F è di classe C^0 su Ω , e scriviamo $F \in C^0(\Omega)$, o semplicemente $F \in C(\Omega)$, se la funzione F è continua su Ω .
- (ii) Diciamo che la funzione F è di classe C^1 su Ω , e scriviamo $F \in C^1(\Omega)$, se:
 - $F \ \hat{e} \ derivabile \ in \ \Omega$:
 - le derivate parziali $\partial_{x_i} F$, i = 1, ..., d, sono funzioni continue su Ω .
- (iii) Diciamo che la funzione F è di classe C^2 su Ω , e scriviamo $F \in C^2(\Omega)$, se:
 - la funzione F è derivabile in Ω ;
 - le sue derivate parziali $\partial_{x_i} F$, i = 1, ..., d, sono a loro volta funzioni derivabili su Ω ;
 - le derivate parziali seconde $\partial_{x_j} (\partial_{x_i} F)$ sono funzioni continue su Ω , per ogni $i = 1, \ldots, d$ e $j = 1, \ldots, d$.

Osservazione 2. Per definizione, se $F \in C^k(\Omega)$, allora le sue derivate parziali $\partial_i F$ sono in $C^{k-1}(\Omega)$.

Due conseguenze del teorema del differenziale

Corollario 3 ($C^1(\Omega) \subset C^0(\Omega)$). Siano Ω un aperto in \mathbb{R}^n ed $F: \Omega \to \mathbb{R}$ una funzione. Se $F: \Omega \to \mathbb{R}$ è di classe $C^1(\Omega)$, ovvero F è derivabile in ogni punto di Ω e le sue derivate parziali

$$\partial_i F: \Omega \to \mathbb{R}$$
 $j = 1, \dots, d$

sono funzioni continue su Ω , allora anche la funzione F è continua su Ω .

Dimostrazione. Applicando il teorema del differenziale, otteniamo che la funzione F è differenziabile in ogni punti $X \in \Omega$. Siccome le funzioni differenziabili in un punto sono anche continue nel tale punto, otteniamo che F è continua su Ω .

Corollario 4 $(C^2(\Omega) \subset C^1(\Omega))$. Siano Ω un aperto in \mathbb{R}^n ed $F: \Omega \to \mathbb{R}$ una funzione. Se $F: \Omega \to \mathbb{R}$ è di classe $C^2(\Omega)$, ovvero F è derivabile in ogni punto di Ω , le sue derivate parziali

$$\partial_i F: \Omega \to \mathbb{R}$$
 $j = 1, \dots, d$

sono funzioni derivabili su Ω e le derivate parziali seconde

$$\partial_i(\partial_i F): \Omega \to \mathbb{R}$$
 $j = 1, \dots, d; \quad i = 1, \dots, d,$

sono funzioni continue su Ω , allora la funzione $F \in C^1(\Omega)$.

Dimostrazione. Segue dal corollario precedente applicato prima alle derivate parziali (prime) di F e poi a F stessa.