Estremo superiore

Estremo superiore di un insieme

Definizione 1. Sia A un insieme di numeri reali. Diciamo che A è limitato superiormente, se esiste un numero reale $m \in \mathbb{R}$ tale che

$$a \leq m$$
 per ogni $a \in A$.

Insiemi illimitati superiormente

Se l'insieme $A \subset \mathbb{R}$ non è limitato superiormente, allora per definizione il suo estremo superiore è $+\infty$:

$$\sup A := +\infty$$
.

Osserviamo che per ogni numero naturale n esiste un elemento $a_n \in A$ tale che $a_n \ge n$ (infatti, se un tale elemento non esistesse, A sarebbe limitato superiormente). La successione così ottenuta diverge:

$$\lim_{n \to \infty} a_n \ge \lim_{n \to \infty} n = +\infty.$$

In particolare,

$$\lim_{n \to \infty} a_n = \sup A.$$

Insiemi limitati superiormente

Teorema 2. Se l'insieme $A \subset \mathbb{R}$ è limitato superiormente, allora esiste un unico numero reale $s \in \mathbb{R}$ con le seguenti proprietà:

- (1) $a \leq s \ per \ ogni \ a \in A;$
- (2) esiste una successione $(a_n)_n$ di elementi di A tale che $\lim_{n\to\infty} a_n = s$.

Il numero reale s è detto estremo superiore di A e si indica con

$$s = \sup A$$
.

Se s è un elemento di A, allora diciamo che s è il massimo di A

$$s = \max A$$
.

Costruzione dell'estremo superiore

La dimostrazione del Teorema 2 segue dal seguente assioma dei numeri reali.

Assioma di completezza. Se A e B sono due sottoinsiemi (non vuoti) dei numeri reali con la proprietà seguente:

$$a \leq b$$
 per ogni $a \in A$ ed ogni $b \in B$,

allora esiste un numero reale $c \in \mathbb{R}$ che sta tra $A \in B$, ovvero

$$a \le c \le b$$
 per ogni $a \in A$ ed ogni $b \in B$.

Osservazione 3. L'elemento c potrebbe non essere unico (come, per esempio, nel caso A = [0,1], B = [3,5], dove uno può prendere come c un qualsiasi punto dell'intervallo [1,3]).

Osservazione 4. L'elemento c potrebbe appartenere ad A oppure a B, oppure ad entrambi insiemi. Per esempio, A = [0, 1], B = [1, 2]. In questo caso c = 1.

Dimostrazione del Teorema 2

Sia B l'inseieme di tutti i maggioranti di A, ovvero:

$$B:=\Big\{b\in\mathbb{R}\ :\ b\geq a\ \text{ per ogni }a\in A\Big\}.$$

Osserviamo che, siccome A è limitato superiormente, l'insieme B non è vuoto. Per costruzione abbiamo che

$$a \le b$$
 per ogni $a \in A$ ed ogni $b \in B$.

Quindi, per l'assioma di completezza, esiste $c \in \mathbb{R}$ tale che

$$a \le c \le b$$
 per ogni $a \in A$ ed ogni $b \in B$.

In particolare,

$$a \le c$$
 per ogni $a \in A$,

e quindi (per la definizione di B) c è un maggiorante di A:

$$c \in B$$
.

Inoltre, c è il più piccolo tra i maggioranti di A:

$$c \leq b$$
 per ogni per ogni $b \in B$.

Dimostriamo ora che esiste una successione

$$a_n \in A$$
, $\lim_{n \to \infty} a_n = c$.

Sia $n \in N$ un numero naturale. Siccome

$$c - \frac{1}{n} < c$$

e c è il più piccolo tra i maggioranti di A, abbiamo che

$$c - \frac{1}{n}$$
 non può essere un maggiorante di A.

Esiste quindi un qualche elemento

$$a_n \in A$$
, $c - \frac{1}{n} \le a_n$.

Abbiamo quindi una successione $a_n \in A$ tale che

$$c - \frac{1}{n} \le a_n \le c$$
 per ogni $n \ge 1$.

Per il teorema dei carabinieri:

$$\lim_{n \to \infty} a_n = c.$$

Infine, rimane da dimostrare l'unicità del sup. Supponiamo che s e c sono due numeri reali tali che:

- $a \le s$ per ogni $a \in A$;
- esiste una successione $(a_n)_n$ di elementi di A tale che $\lim_{n\to\infty} a_n = s$.
- $a \le c$ per ogni $a \in A$;
- esiste una successione $(b_n)_n$ di elementi di A tale che $\lim_{n\to\infty} b_n = c$.

Ora, siccome

$$a_n \le c$$
 e $\lim_{n \to \infty} a_n = s$,

passsando al limite, otteniamo che

$$s \leq c$$
.

Viceversa, siccome

$$b_n \le s$$
 e $\lim_{n \to \infty} b_n = c$,

abbiamo che

$$c \leq s$$
.

Quindi s = c.

ESTREMO SUPERIORE DI UN INSIEME DI NUMERI REALI - ENUNCIATO GENERALE

Possiamo riassumere i casi A limitato ed A illimitato superiormente nel modo seguente.

Teorema 5. Dato un insieme $A \subset \mathbb{R}$ esiste uno e uno solo

$$s \in \mathbb{R} \cup \{+\infty\}$$

con le seguenti proprietà:

- (1) $a \leq s \text{ per ogni } a \in A;$
- (2) esiste una successione $(a_n)_n$ di elementi di A tale che $\lim_{n\to\infty} a_n = s$.

Il numero reale s è detto estremo superiore di A e si indica con $s = \sup A$. Se A è limitato superiormente ed s è un elemento di A, allora diciamo che s è il massimo di A.

ESTREMO SUPERIORE DI UNA FUNZIONE

Definizione 6. Siano Ω un sottoinsieme di \mathbb{R}^d ed $F: \Omega \to \mathbb{R}$ una funzione. Consideriamo l'insieme dei valori di F

$$A := \Big\{ F(X) : X \in \Omega \Big\}.$$

A è un insieme di numeri reali, quindi esiste l'estremo superiore

$$s = \sup A = \sup \left\{ F(X) \ : \ X \in \Omega \right\} \,, \qquad s \in \mathbb{R} \cup \{+\infty\}.$$

Diremo che s è l'estremo superiore di F su Ω e scriveremo:

$$s = \sup_{X \in \Omega} F(X)$$
 oppure $s = \sup_{\Omega} F$.

Osservazione 7. Ricordiamo che l'estremo superiore s ha le seguenti proprietà:

- $a \le s \ per \ ogni \ a \in A;$
- esiste una successione $(a_n)_n$ di elementi di A tale che $\lim_{n\to\infty} a_n = s$.

Per la definizione di A, possiamo riscrivere queste condizioni nel modo seguente:

- $\sup_{\Omega} F \geq F(X) \ per \ ogni \ X \in \Omega;$
- esiste una successione $(X_n)_n$ di punti di Ω tale che

$$\lim_{n\to\infty} F(X_n) = \sup_{\Omega} F.$$