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1. Introduction

Classical information theory studies the laws of storage and communication of infor-
mation. As a scientific field it can be collocated at the intersection of probability theory,
statistics, computer science, statistical mechanics, information engineering, and electrical
engineering, although its birth as an independent field is traditionally set in the 1940s with
C. Shannon’s work [Sha48]. Understanding the limitations but also possibilities provided
by the quantum mechanical aspects of nature is the subject of quantum information the-
ory, which has been as an independent research area since the 1990s. The theory naturally
makes use of further mathematical tools, in particular functional analysis, as it is strongly
based on the postulates of quantum mechanics.

Aim of this course is to give a self-contained introduction to the main mathematical
aspects of the theory, focusing on the problem of quantifying how information deterio-
rates when transmitted through a noisy communication channel, taking into account its
quantum mechanical description. This is the content of the quantum coding theorem
(Theorem 7.2), which is a counterpart (actually, an extension) of the classical Shannon’s
fundamental limit established in [Sha48].

We structured the course so that no prior knowledge in classical information theory,
nor in quantum mechanics, should be required. Our target audience consists of mathe-
maticians with a background in probability, analysis or mathematical physics. Most of
the exposition is borrowed from the various excellent monographs available, in particular
[NC02; Hol19; Wil11; BŻ17]. These focus mostly on the elementary setting of quantum
systems represented by finite-dimensional Hilbert spaces, where operators become, after
taking coordinates, just matrices and topological and measure-theoretic considerations
can be avoided (to be precise, [Hol19] is however an excellent reference on Gaussian sys-
tems). To differentiate a bit, we hint at how some concepts can be also given in the
abstract setting of C∗-algebras and briefly mention some infinite-dimensional examples,
such as quantum spin chains but also quantum Gaussian systems. This is not strictly
necessary for understanding the main aspects of quantum information theory, but it may
help stimulating further connections with other areas of non-commutative mathematics.
The exposition of these concepts is mostly taken from [AF01; Naa13; Mey95]. We try
to avoid the formalism of infinite dimensional Hilbert spaces and the use of unbounded
operators, which we believe it would require an entire course to be addressed properly: we
recommend instead the monograph [Mor19] for a detailed description of its mathematical
aspects connected to quantum mechanics.

These notes will follow the exposition given in the course, and each section below should
roughly correspond to a lecture. In Section 2, we describe the core mathematical objects
of quantum mechanics, i.e., states and measurements (or observables), as operator coun-
terparts of probability distributions and random variables. In Section 3, we introduce the
quantum analogues of classical noisy communication channels, which in Shannon’s theory
are modelled by Markov kernels. We devote Section 4 to discuss some operator inequali-
ties which play a fundamental role in the subsequent analysis, in particular when applied
to distance measures between quantum states (Section 5) and quantum (von Neumann)
entropy (Section 6). Finally, in Section 7 we prove the quantum coding theorem.

2. Postulates of Quantum Mechanics

Classical physics (think e.g., to the classical mechanics of point particles) describes a
system and its time-evolution in terms of three fundamental mathematical objects:

(1) A set Ω (called phase space) representing via its elements ω ∈ Ω all the possible
states of the system. For example, a single particle is described by its position
q ∈ R3 and momentum p ∈ R3, so one defines ω = (q, p) ∈ Ω = R3 × R3
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(2) A family of observables, i.e., functions X : Ω → X , defined on Ω taking values in
a set of possible outcomes X , representing quantities of interest, i.e., (at least in
theory) accessible via physical measurements. In the example, position p = p(ω)
and momentum q(ω) are naturally observables.

(3) A family of transformations of Ω into itself – usually implicitly given through
differential equations – that represent the evolution of the system with respect to
time. In the example, the classical equations are Newton’s laws, here formulated
via Hamilton equations.

A similar scheme turns out to be quite useful for modelling purposes, hence it natu-
rally appears in other settings. In elementary probability theory – we avoid throughout
Kolmogorov axioms for the sake of simplicity – analogues of such three components can
be similarly found:

(1) The (finite) set Ω is called sample space, and its elements ω ∈ Ω describe all the
possible outcomes of a random experiment. In the standard example of throwing a
die with 6 faces, one lets Ω = {1, 2, 3, 4, 5, 6}. The main difference with the classical
physics scheme is that the state1 can be any probability distribution ρ : Ω → [0, 1],
such that

∑
ω∈Ω ρ(ω) = 1. Full confidence (almost sure certainty) about a specific

ω̄ translates to a Dirac distribution ρ = δω̄, which can be then identified with ω̄
itself.

(2) Random variables X on Ω, taking values in a set X , play the role of observables.
Usually, one deals first with events V ⊆ Ω, which model logical statements (i.e.,
either true or false) on the outcomes and are naturally associated with indicator
random variables 1V , taking values in {0, 1}.

(3) The theory of stochastic processes provides a way to introduce a family of trans-
formations of Ω into itself, which are usually also of stochastic nature. In order to
accommodate such additional randomness, one usually enlarges the sample space
to the path space over Ω, but in common situations (for example, in the case of
Markov chains) only the description of the marginal probability distributions can
be sufficient for applications.

The two theories fruitful meet in (classical) statistical physics: when the phase space
Ω is too large (e.g. because of large number of particles) so that the state ω ∈ Ω cannot
be known with full certainty, one relaxes the notion of deterministic state by allowing
for probability distributions on Ω. Observables (e.g., pressure, volume, temperature etc.)
then actually coincide with random variables.

Quantum mechanics is a theory (circa 100 years old) supported by a vast experimental
evidence, which provides the most accurate description/prediction of physical phenomena
at very small scales (atoms, molecules, light). The theory enjoys a very different status
from classical ones (such as classical mechanics, but also general relativity theory) because
of its inherently probabilistic features: it only provides the odds that some event will occur.

We introduce the postulates of quantum mechanics following the same three-objects
scheme outlined above. In this section, we only describe the first two ones (states and
observables) leaving the third to the next section, where we address the quantum analogue
of Markov kernels. As stated in the introduction, we also limit ourselves to the elementary
setting of finite dimensional systems – which corresponds to the case of finite sample
space Ω – avoiding all the functional-analytic difficulties – which roughly corresponds to
the application of measure theory in Kolmogorov axiomatization of probability. We end
this section by discussing the abstract approach based on C∗-algebras, which is a quite
elegant formalism and allows also to deal with certain infinite dimensional settings.

1here representing the state of knowledge of an observer if we agree upon a subjective intepretation of
probability theory
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2.1. (Elementary) quantum systems and their states. An elementary quantum sys-
tem is described by a finite-dimensional complex Hilbert space (H, ⟨·|·⟩).

Following a consolidated convention, we let the scalar product be linear in the second
variable and anti-linear in the first variable. The induced norm is written as ∥·∥. We use
throughout Dirac’s (ket) notation |ψ⟩ ∈ H, so that (bra) vectors ⟨φ| ∈ H∗ denote the
linear functionals

⟨φ| : H → C, |ψ⟩ 7→ ⟨φ|ψ⟩.
The (Riesz) correspondence |ψ⟩ 7→ ⟨ψ| provides an anti-linear isomorphism between H
and H∗. The advantage of Dirac’s notation is that families of vectors over an index set I
can be conveniently written simply as (|i⟩)i∈I (if it does not generate ambiguities).

Example 2.1. If H = Cd, then the standard basis can be conveniently written as (|i⟩)di=1.
Since in information theory it is customary to count starting from 0, we may also write
(|k⟩)k=0,...(d−1) and call it the computational basis. The case d = 2 provides an example of
a two-level (i.e., two dimensional) quantum system, also called a single-qubit system, in
analogy with the classical bit sample space {0, 1}.

One is tempted to think of H as the analogue of the sample space Ω, however a more
precise description would be in terms of the complex projective space, i.e., by taking
equivalence classes of elements |ψ⟩ with respect to multiplication with non-null complex
numbers. Still, it is more convenient to keep the linear structure of H and define as state
vector any vector |ψ⟩ ∈ H with unit norm, ⟨ψ|ψ⟩ = ∥ψ∥2 = 1. From a physics perspective,
however, |ψ⟩ will be indistinguishable from any multiple eiθ |ψ⟩ with θ ∈ R (called a phase).
State vectors |ψ⟩ are often called wave functions (or slight improperly pure states).

Notice that, even if H is finite dimensional in such elementary setting, the set of state
vectors is infinite. In fact, given an orthonormal basis (|i⟩)i∈I ⊆ H (with I finite) any
state vector |ψ⟩ can be represented as a linear combination

|ψ⟩ =
∑
i∈I

αi |i⟩

where αi = ⟨i|ψ⟩ ∈ C are often called amplitudes and satisfy∑
i∈I

|αi|2 = 1.

Such a representation is often referred to as a quantum superposition of the state vectors
(|i⟩)i∈I . The quantities |αi|2 = |⟨i|ψ⟩|2 can be interpreted as probabilities (see (2.1))
but one should not (at least not only) think of |ψ⟩ as a classical probability distribution

over the |i⟩’s with probabilities |αi|2. This is because while global phases are irrelevant,
changing a single phase in an amplitude may yield a completely different state vector.

Instead, we define the quantum analogue of probability distributions over the set of
state vectors as certain class of linear operators ρ : H → H, called density operators,
whose extreme points, called pure states, correspond to state vectors.

Precisely, given a state vector |ψ⟩, we associate to it the orthogonal projection operator
P|ψ⟩ : H → H on the subspace spanned by |ψ⟩. Dirac’s notation is quite useful here, since
one can write

P|ψ⟩ = |ψ⟩ ⟨ψ| .
Such operator plays the role of a Dirac δ probability distribution concentrated on |ψ⟩.
Notice that, if two state vectors differ by a phase |φ⟩ = eiθ |ψ⟩, the density operators
coincide. General density operators are then defined as convex combinations of pure
states:

ρ =
∑
i∈I

pi |ψi⟩ ⟨ψi| ,
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where (|ψi⟩)i∈I ⊆ H is any (finite) family of state vectors and (pi)i∈I ⊆ [0, 1],
∑

i∈I pi = 1
is a classical probability distribution over the set I.

We can characterize density operators ρ : H → H as self-adjoint (i.e., Hermitian),
positive operators with unit trace2. The set of density operators is denoted with S(H).
Using the spectral theorem for self-adjoint operators (in finite dimensions), it is a simple
exercise to show that indeed any ρ ∈ S(H) can be written as

ρ =
∑
i∈I

pi |i⟩ ⟨i| ,

with a classical probability distribution (pi)i∈I and an orthonormal basis (|i⟩)i∈I ⊆ H. A
density operator ρ ∈ S(H) is pure (or is a pure state of the system H) if ρ = |ψ⟩ ⟨ψ| for
some state vector |ψ⟩ ∈ H.

Any fixed orthonormal basis (|i⟩)i∈I of H (with |I| = d = dim(H) elements) allows
to represent any operator A : H → H as a matrix (Aij)i,j∈I ∈ Cd×d with complex
entries Aij = ⟨i|Aj⟩. For a density operator ρ ∈ S(H), we thus obtain a density matrix
(ρij)i,j∈I which is hermitian, non-negative and with unit trace. In particular, its diagonal
elements (ρii)i∈I can be used to define a classical probability distribution over I. Thus,
we may think of density matrices as non-commutative extensions of classical probability
distributions over a set I, which in turn can be identified with diagonal matrices. Notice
however that such identification depends on the chosen basis: when H = Cd, this is usually
understood with respect to the standard (computational) basis.

2.2. Measurements and observables. We next introduce the quantum analogue of
functions over a classical phase space, or of random variables on a sample space. Again,
in the elementary setting of a finite dimensional H, we assume that the “set of possible
values” X is finite.

In most expositions, observables A ∈ O(H) on a quantum system H are straight-
forwardly defined as self-adjoint operators A : H → H. The spectrum, i.e. the set of
eigenvalues σ(A) ⊆ R plays the role of the “set of possible values’ of the observable A,
which are those physically measured through a (often ideal) device interacting with the
quantum system. Although these are by far the most commonly encountered, such ob-
servables would correspond only to real-valued random variables. Moreover, it is not clear
at first sight why such operators should be the correct analogue.

Following instead a path similar to that of elementary probability theory, we first de-
scribe the mathematical objects play the role of events, i.e., of logical propositions about
an elementary quantum system H: these are given by the subspaces V < H. The 0-
dimensional subspace {0} corresponds to a false proposition about the system, the whole
V = H corresponds instead to a true one. One-dimensional subspaces spanned by a state
vector |ψ⟩ can be interpreted as the proposition “the quantum system is in the state as-
sociated to |ψ⟩”. To any V < H, we associate its indicator observable 1V : H → H which
is defined as the orthogonal projection operator on V . In particular, it is self-adjoint
1V = 1∗

V and 12
V = 1V , so that its spectrum is σ(1V ) = {0, 1} (except in the trivial

cases V = {0} where 1V = 0 is the null operator, and V = H where 1H is the identity
operator). We thus recover the idea introduced above that the spectrum of an observable
plays the role of the “set of possible values”.

2Let us recall some standard definitions, see Section 3.1 for further notation. We write L(H) for the set
of linear operators A : H → H. The adjoint of an operator A ∈ L(H) is the (unique) operator A∗ ∈ L(H)
such that ⟨Aφ|ψ⟩ = ⟨φ|A∗ψ⟩ for every |φ⟩ , |ψ⟩ ∈ H. A is self-adjoint (or Hermitian) if A = A∗, and we
write A ∈ O(H). An operator A ∈ L(H) is positive, and we write A ≥ 0 or A ∈ O≥(H), if A ∈ O(H)
and ⟨ψ|Aψ⟩ ≥ 0 for every |ψ⟩ ∈ H. If A ≥ 0 is also invertible, we write A > 0 or A ∈ O>(H). We write
A ≥ B or B ≤ A, if A − B ≥ 0 and A, B ∈ O(H). The trace of an operator A ∈ L(H) is defined as
tr[A] =

∑
i∈I ⟨i|Ai⟩, where (|i⟩)i∈I denotes any orthonormal basis of H. The trace is linear and cyclic, i.e.,

tr[AB] = tr[BA], and A ≥ 0 implies tr[A] ≥ 0.
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We should think of the observable 1V as associated to a physical device that, when
applied to the system, yields outcomes 1 if V holds or 0 if V does not hold, with some
probability, according to the state of the system. Precisely, if the state is described by
the density operator ρ ∈ S(H), we postulate that by measuring 1V , the probability of
observing that V holds (i.e., we measure 1) is given by Born’s rule:

Pρ(V ) = P(1V = 1) := tr[1V ρ].

To see that this is indeed a probability, i.e. Pρ(V ) ∈ [0, 1], it is sufficient to argue in the
case that ρ = |ψ⟩ ⟨ψ| is a pure state associated to a state vector |ψ⟩. Then,

P|ψ⟩(V ) = ⟨ψ|1V ψ⟩ = ⟨1V ψ|1V ψ⟩ = ∥1V ψ∥2 ≤ ∥ψ∥2 = 1.

having used that 1V = 1∗
V = 12

V is an orthogonal projection. As a further postulate,
we require that, after having measured 1V and observed that V holds, the state of the
system H is updated from ρ to the density operator given by the so-called collapse of
wave function:

ρV =
1V ρ1V
Pρ(V )

.

This expression should be compared with the rule for conditional probability, i.e.,

P(·|V ) =
P(· and V )

P(V )
.

Remark 2.2. The interpretation of Born’s rule and the collapse of the state is subject
to many debates, even more than the frequentist vs Bayesian dispute in probability and
statistics. The underlying issue is whether probabilities in quantum mechanics represent
states of knowledge of a subject about a system or have a deeper, possibly objective, mean-
ing – something one would hope from a physical theory. A restricted but somehow safer
interpretation is that quantum states and the derived probabilities describe the relative
frequencies in the ideal infinite limit of a repeated sequence of independent experiments in
a prepared situation (so that the measurements are classical i.i.d. sequences). Of course
such a frequentist-like interpretation seems to be very limited and has the same draw-
backs as the interpretation of classical probability as frequency: how can we ensure that
the experiments are independent and identical? but it still may guide the intuition.

If V is the linear subspace generated by a state vector |φ⟩, then 1V = |φ⟩ ⟨φ| ∈ O(H)
is the same projection operator P|φ⟩ as the pure state associated to |φ⟩ from the previous
section. This coincidence is due to our elementary, finite-dimensional, setting: also in
elementary probability over a finite sample space Ω, the indicator function 1{ω̄} apparently
coincides with the Dirac probability distribution δω̄. However, recalling a bit of measure
theory, the former should be thought as a function, while the latter as a measure (hence
belonging to a dual space).

Measuring the indicator observable 1V = |φ⟩ ⟨φ| ∈ O(H) yields therefore outcome 1 if
“the quantum system is in the state associated to |ψ⟩”, with probability

Pρ(V ) = tr[ρ |φ⟩ ⟨φ|] = ⟨φ|ρφ⟩.
If ρ = |ψ⟩ ⟨ψ| ∈ S(H) is the pure state associated to the state vector |ψ⟩, then

P|ψ⟩(V ) = |⟨φ|ψ⟩|2 ∈ [0, 1]. (2.1)

Clearly, such a probability could be any value between 0 and 1, differently from the
analogue result in elementary probability, where in could be instead only in {0, 1} (since
pure states are Dirac δ distributions). Finally, if the outcome of the measurement of 1V
is 1, then the state of the system updates to the pure state |φ⟩ ⟨φ| associated to |φ⟩ (so
even if before measuring and observing 1 it was not precisely |φ⟩, after it is exactly so).

What happens to the system if, after measuring 1V the observed outcome is 0, i.e.
V does not hold? Writing 1V = 1H − 1V ⊥ , where V ⊥ is the orthogonal subspace to
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V , we postulate that this is equivalent to measuring 1V ⊥ and observing that V ⊥ holds
(interpreted as the negation of the proposition associated to V ). This happens with
probability

Pρ(V ⊥) = Pρ(1V = 0) = tr [1V ⊥ρ] = 1− tr [1V ρ] = 1− Pρ(V ),

which is consistent with additivity of elementary probability (and the fact that we should
only observe either 0 or 1). Moreover, by the collapse of the state, the density operator
updates in this case to

ρV ⊥ =
1V ⊥ρ1V ⊥

Pρ(V ⊥)
.

We can also ask the following question: can we describe the state of the system after 1V
has been measured (remember that we think of 1V as a physical device interacting with
the system), but no value has been observed? This is also postulated to be the convex
combination

ρV Pρ(V ) + ρV ⊥Pρ(V ⊥) = 1V ρ1V + 1V ⊥ρ1V ⊥ . (2.2)

Such an expression looks very similar to the right hand side of the law of total probability

P(·) = P(·|V )P(V ) + P(·|V c)P(V c),

but in the quantum setting we cannot conclude (except in special situations) that (2.2)
actually equals ρ. Physically, we interpret this discrepancy with the classical laws by
stating that simply by allowing the observable 1V interact with the system, it generates a
perturbation in its state (a dynamical explanation of this is usually given in terms of the
so-called de-coherence phenomenon).

Another fundamental difference between the classical and quantum settings is that,
due to possible non-commutativity of operators, differences arises when computing the
probability that two “events” V , W hold. Precisely, let V,W < H be subspaces and
consider the associated indicator observables 1V , 1W ∈ O(H). We say that V , W are
compatible3 if the operators commute:

[1V ,1W ] = 0, i.e., 1V 1W = 1W1V (= 1V ∩W ).

If V , W are compatible, measuring first 1V and then 1W yields joint outcomes in {0, 1}2
with the same probability distribution as measuring in the opposite order. Moreover,
according to the valued observed, the state is updated to the same density operator. For
example, the probability of measuring first 1V , then 1W and obtaining that both V andW
hold is, according to the above postulates and the product rule of elementary probability4:

Pρ(first 1V = 1, then 1W = 1) = Pρ(V )PρV (W ) = tr[ρ1V ] ·
tr[1V ρ1V 1W ]

tr[ρ1V ]

= tr[ρ1V IW1V ] = tr[ρ1V ∩W ],

(2.3)

yields that the updated density operator

ρV,W =
1WρV 1W

PρV (1W = 1)
=
1W1V ρ1V 1W

Pρ(V,W )
,

which are in both cases symmetric expressions in V , W . Notice that if V , W are orthog-
onal, i.e., 1V 1W = 0, then they are compatible.

In the incompatible case of non-commuting operators, the probabilities and the updated
states may depend on the order in which the measurements are performed. Consider the
simplest case of one-dimensional V , W , i.e.,

1V = |φ0⟩ ⟨φ0| , 1W = |φ1⟩ ⟨φ1| ,

3Here one should be careful not to confuse with the definition of compatible and incompatible events
in classical probability theory

4i.e., P(A,B) = P(A)P(B|A)
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and let the system be in the pure state corresponding to the state vector |ψ⟩. Then,
measuring first 1V and then 1W yields as observed outcomes that V and W hold with
probability (repeating the computation in (2.3)) given by

P|ψ⟩(first V , then W ) = tr[ρ1V 1W1V ] = |⟨φ1|φ0⟩⟨φ0|ψ⟩|2 .
Measuring first 1W and then 1V instead gives as observed outcomes that both W and V
hold with probability

P|ψ⟩(first W , then V ) = |⟨φ1|φ0⟩⟨φ0|ψ⟩|2 ,
which is different e.g. if ⟨φ0|φ1⟩ ≠ 0, ⟨φ0|ψ⟩ ≠ 0 but ⟨φ1|ψ⟩ = 0.

Let us extend the above description to measurements with values in a general (but
finite) set X . Here it is convenient to recall that a random variable X with values in X
can be identified, in elementary probability theory, with its induced system of alternatives
({X = x})x∈X , that is a family of events, such that exactly one among them is always
satisfied. By considering the associated indicator variables, this amounts to require that

1{X=x}1{X=y} = 0 for every x ̸= y ∈ X , and
∑
x∈X

1{X=x} = 1Ω.

This suggests to define an (elementary) measurement X on a quantum system H as a
collection of closed subspaces X = (Vx)x∈X – or equivalently the corresponding indicator
observables X = (1Vx)x∈X – such that the following two conditions hold:

1Vx1Vy = 0 for every x ̸= y ∈ X , and
∑
x∈X

1Vx = 1H .

Such a family of operators is an elementary instance of a so-called projection-valued mea-
sure (PVM). The first condition yields that all the Vx’s are compatible, hence they can be
measured in any order yielding the outcomes with well-defined probabilities. We refer to
this operation as measuring X. By the above postulates, if the quantum system is in the
state ρ and X is measured, the probability that Vx holds – we simply write X = x in such
a case – is

Pρ(X = x) = Pρ(Vx) = tr(ρ1Vx).

The family (Pρ(X = x))x∈X is a classical probability distribution, which can be thought
as the law of X (if the system is the state ρ). If Vx is observed to hold, then we simply say
that x is observed and the collapse of the state yields that the density operator updates
to

ρVx = ρ|X=x =
1Vxρ1Vx

Pρ(X = x)
.

By the first condition and (2.3), and the second condition and additivity of elementary
probability, we have that, when measuringX, exactly one among the Vx’s must be observed
to hold. Furthermore, if X is measured but the outcome is not observed, the density
operator ρ still updates to the convex combination∑

x∈X
ρ|X=xPρ(X = x),

thus extending (2.2).
We say that two measurements X = (Vx)x∈X , Y = (Wy)y∈Y are compatible if 1Vx1Wx =

1Wx1Vx for every x ∈ X , y ∈ Y. In such a case, measuring X and Y yields observed
values x, y with a probability Pρ(X = x, Y = y) which does not depend on the order of
the measurements, and also a well-defined updated state ρ|X=x,Y=y.

Remark 2.3. Given a measurement X with values in X and subset A ⊆ X , we may
either define Pρ(X ∈ A) as the sum of the probabilities Pρ(X = x) for x ∈ A, or as the
probability that, letting VA be the subspace spanned by the union of the subspaces Vx for
x ∈ X , by measuring 1VA one observes that VA holds, i.e., Pρ(VA). It is straightforward to
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check that these two probabilities coincide, but one should be careful with the application
of Born’s rule: after measuring X and observing that the outcome x belongs to A, one
should update the state ρ to ∑

x∈A ρ|X=xPρ(X = x)

Pρ(VA)
,

while by simply measuring 1VA and observing that VA holds, Born’s rule prescribes to
update the state to

ρVA =
1VAρ1VA
Pρ(VA)

,

which is different (in general).

Let us go back to the case of (elementary) quantum observables, that we can now
define as measurements X with values in X ⊆ R. More precisely, given a measurement
X = (Vx)x∈X with X ⊆ R, we define the associated observable as the self-adjoint operator

AX =
∑
x∈X

x1Vx ∈ O(H),

clearly reminiscent of the representation of a simple random variable X =
∑

x∈X xI{X=x}.
The observable AX has spectrum σ(AX) = X : indeed its spectral decomposition is
straightforwardly read from the representation. Viceversa, the spectral theorem (in fi-
nite dimensions) ensures that any self-adjoint A ∈ O(H) can be represented as

A =
∑

λ∈σ(A)

λ1{A=λ},

where we write {A = λ} for the eigenspace associated to the eigenvalue λ ∈ σ(A). Thus
A naturally corresponds to the measurement XA = (1A=λ)λ∈σ(A). The probabilities

Pρ(A = λ) = tr[ρ1A=λ],

which play the role of the distribution of A (if the system is in the state ρ), allow then
to compute mean, variances and other classical quantities via the usual definitions for
random variables. For example, the mean of A ∈ O(H) is defined by

(A)ρ =
∑

λ∈σ(A)

λPρ(A = λ) = tr[ρA].

More generally, given any function f : σ(A) → R, we define (via so-called functional
calculus)

f(A) =
∑

λ∈σ(A)

f(λ)1{A=λ},

so that

(f(A))ρ =
∑

λ∈σ(A)

f(λ)Pρ(A = λ) = tr[ρf(A)].

In particular, the variance of A is given by

σ2ρ(A) = ((A− (A)ρ1)
2)ρ = (A2)ρ − (A)2ρ =

∑
λ∈σ(A)

(λ− (A)ρ)
2Pρ(A = λ).

Finally, let us remark that, given two observables A, B ∈ O(H), if the associated
measurements are compatible, then clearly they commute, [A,B] = 0. Conversely, it is a
well-known fact that if they commute, then the associated measurements are compatible.
This can be seen by representing them as commuting Hermitian matrices with respect to
a chosen basis, hence they can be simultaneously put into diagonal form by conjugation
with the the same unitary U .
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2.3. C∗-algebras approach. The above definitions of states, measurements and observ-
ables are particularly simple because we are restricted to the elementary case of finite
dimensional quantum systems H. Quite interestingly, the earliest historical formulation
of quantum mechanics (Heisenberg’s matrix mechanics) already dealt with infinite dimen-
sional systems. Essentially (in Schrödinger’s representation and setting for simplicity the
reduce Planck constant ℏ equal to 1) one considers H = L2(R, dx) and the “observables”
describing position Q and momentum P of a particle on the real line given by the operators

(Qψ)(x) = xψ(x), (Pψ)(x) = −i∂xψ(x).

Clearly, these operators are not well defined for every ψ ∈ L2(R, dx). The crucial property
they satisfy is the so-called canonical commutation relation (CCR):

[Q,P ] = QP − PQ = i1H (2.4)

at least when tested on smooth compactly supported functions. One can actually argue
that any pair of operators on a Hilbert space satisfying (2.4) must be unbounded (Exer-
cise 2.11). This motivates the need for a more sophisticated spectral theory ensuring that
they enjoy a similar decomposition as in the finite dimensional case (in order to define the
associated notion of measurement).

A different approach, that we briefly describe here, consists of searching for a family of
bounded operators that still contain all the useful information about the observables P
and Q and, by duality, about the possible states of the quantum system. In the classical
case, this amounts to define probability distributions via Riesz theorem, as certain linear
functionals over continuous functions on a compact topological space. It turns out that the
correct structure of such an abstract family is that of a C∗-algebra A, defined as follows:

i) A is a complex Banach space,
ii) with an additional product operation (a, b) 7→ ab that yields a structure of Banach

algebra, i.e., it is associative and distributive with respect to the addition operation,
there exists an identity element5 1, and the norm satisfies ∥ab∥ ≤ ∥a∥ ∥b∥ for every
a, b ∈ A,

iii) and with an additional anti-linear map ∗ : A → A, a 7→ a∗, that is an involution
(a∗)∗ = a, satisfying (ab)∗ = b∗a∗, for a, b ∈ A and the C∗-identity holds:

∥a∗a∥ = ∥a∥2 . (2.5)

Remark 2.4. If A is a Banach algebra and ∗ is an enjoys all the properties but (2.5), to
conclude that A is a C∗-algebra it is enough to argue that

∥a∗a∥ ≥ ∥a∥2 .

Indeed, the inequality ∥a∥2 ≤ ∥a∗a∥ ≤ ∥a∗∥ ∥a∥ implies then ∥a∥ = ∥a∗∥, hence (2.5).

A ∗-homomorphism between C∗-algebras A, B is a map π : a 7→ π(a) which is well-
behaved with respect to all the operations, i.e. it is a ring homomorphism and π(a∗) =
π(a)∗. Two C∗-algebras as isomorphic if there exists an invertible ∗-homomorphism be-
tween them.

This notion may seem complicated at first, but one easily checks that

(1) The space A = C(K;C) of continuous complex-valued functions on a compact
Hausdorff topological space K is indeed a C∗-algebra (with the natural sum and
product operations, endowed with the uniform norm ∥f∥ = supx∈K |f(x)|, letting
1(x) = 1 for x ∈ K, and f∗(x) = f(x)). In fact, any C∗-algebra A whose product
is commutative, i.e., ab = ba for every a, b ∈ A, is isomorphic to this case (Gelfand
theorem).

5C∗-algebras may be defined without the identity element 1, but for simplicity we restrict to such a
case.
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(2) The space of d× d complex matrices A = Cd×d, endowed with the natural matrix
sum and product operations, the matrix norm

∥A∥2 = sup
v∈Cd\{0}

∥Av∥2

∥v∥2
= sup

v∈Cd\{0}

⟨v|A∗Av⟩
⟨v|v⟩

and A∗ being the conjugate transpose of A, is a C∗-algebra. To see that the C∗-
identity holds, we simply use Cauchy-Schwarz inequality to argue that ∥A∥2 ≤
∥A∗A∥.

(3) Generalizing the above example, the space of linear operators A = L(H) on a
complex finite dimensional Hilbert space H endowed with the operator norm and
the adjoint A 7→ A∗ is also a C∗-algebra. When H is infinite dimensional, one
should restrict A = B(H) to the space of linear bounded operators.

Motivated by the analogy with operator algebras, given a C∗-algebra and a ∈ A, we
say that a is self-adjoint if a = a∗, a is positive if there exists b ∈ A such that a = b∗b,
unitary if aa∗ = a∗a = 1, and define the spectrum σ(a) ⊆ C as the set of λ ∈ C such
that a − λ1 is not invertible (with respect to the product operation in A). Notice that
if a is self-adjoint, then σ(a) ⊆ R. Although it is not immediate to prove, it holds that
self-adjoint elements a ∈ A such that σ(a) ⊆ [0,∞) are exactly the positive elements, i.e.,
one can represent a = b∗b for some b ∈ A.

Back to quantum mechanics, the C∗-algebra approach consists of reversing the order of
the postulates and begin by defining the notion of observables for a quantum system H
as the self-adjoint elements in a C∗-algebra A. The states are then successively defined as
continuous linear functionals

η : A → C
that are positive, i.e. η(a) ≥ 0 for every a = b∗b positive, and such that η(1) = 1. The
case of elementary quantum systems H is recovered by letting, A = L(H) the C∗-algebra
of bounded operators and letting η(A) = tr[Aρ] for a density operator ρ ∈ S(H) (using
duality in finite dimensions, one proves that ρ 7→ η is bijective). In fact, any C∗-algebra
is isomorphic to a sub-algebra of B(H) for some Hilbert space, as shown by the Gelfand-
Naimark-Segal construction (Theorem 3.5).

Back to the CCR framework, i.e., on L2(R, dx), instead of working with unbounded
operators Q and P , one defines the so-called family of Weyl operators (W (r, s))(r,s)∈R2

that are formally given by the imaginary exponentials

W (r, s) = ei(sQ−rP ).

A rigorous definition as bounded operators on H = L2(R, dx) is

W (r, s)ψ(x) = eis(x−r/2)ψ(x− r).

This definition is motivated (non-rigorously) from the validity of (2.4). Clearly, we must
have

W (r, 0)ψ(x) = e−ir(−i∂x)ψ(x) = e−r∂x = ψ(x− r),

and
W (0, s)ψ(x) = eisxψ(x).

Using (2.4) and the Baker-Campbell-Hausdorff formula (truncated an the first commu-
tator, since it is a multiple of the identity, hence all the subsequent terms vanish) we
obtain

W (r, 0)W (0, s) = e−irP eisQ = ei(sQ−rP )+ 1
2
[isQ,−irP ] =W (r, s)eirs/2.

One can check straightforwardly from the definition that

W (r, s)∗ =W (−r,−s)
and

W (r1, s1)W (r2, s2) = e−i(r1s2−r2s1)/2W (r1 + r2, s1 + s2), (2.6)
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which encodes the CCR (2.4). By definition, the Weyl algebra is the C∗-algebra generated
by the Weyl operators (as a closed sub-algebra of B(L2(R, dx))).

The Weyl algebra has a rich structure and its study would require an entire course on
its own. Let us however conclude with the following definition: given a state η on the
Weyl algebra, its characteristic function is defined as

R2 ∋ (r, s) 7→ η(W (r, s)) ∈ C.

In complete analogy with the characteristic function (i.e., Fourier transform) of classical
probability measures on R2, we say that a state η is a quantum (bosonic) Gaussian state
if its characteristic function is an exponential of a quadratic polynomial in the variables
r, s (with complex coefficients).

Finally, let us notice, the CCR can be extended from R to any Rd, by using multi-
plication by coordinates Qj = xj and partial derivations Pj = −i∂xj , for j ∈ {1, . . . , d}.
Similarly, one defines an associated Weyl algebra generated by operators (W (r, s))r,s∈Rd .

2.4. Exercises.

Exercise 2.1 (Hilbert-Schmidt scalar product). Let H be an elementary quantum system
and A,B ∈ L(H). Prove that

(A,B) 7→ tr[A∗B]

defines a scalar product on L(H) (called Hilbert-Schmidt scalar product). By choosing
an orthonormal basis (|i⟩)i∈I , write explicitly its expression in terms of the matrices rep-
resenting A and B.

Exercise 2.2. Let H be an elementary quantum system and A,B ∈ L(H). Discuss the
validity of the following statements.

(1) If A,B ∈ O(H), then tr[AB] ∈ R.
(2) If tr[AB] ∈ R for every B ∈ O(H), then necessarily A ∈ O(H).
(3) If A,B ∈ O≥(H), then tr[AB] ≥ 0.
(4) If A ∈ O(H) and tr[AB] ≥ 0 for every B ∈ O≥(H), then necessarily A ≥ 0.

Exercise 2.3 (A quantum Jensen inequality). On an elementary quantum system H,
consider an observable A ∈ O(H). Let f : σ(A) → R be convex, i.e.

f

 ∑
x∈σ(A)

xpx

 ≤
∑

x∈σ(A)

f(x)px

for every probability distribution (px)x∈σ(A). For every density operator ρ ∈ S(H), prove
the following inequality:

f((A)ρ) ≤ (f(A))ρ.

Exercise 2.4 (Purity of a density operator). Given a density operator ρ ∈ S(H) on an
elementary quantum system H, define its purity as tr[ρ2].

(1) Prove that the purity always belongs to the interval [dim(H)−1, 1] ⊆ (0, 1]. Hint:
for the lower bound, write tr[ρ2] = dim(H)(ρ2)σ, where σ = 1H/dim(H) and use
the previous exercise, or use Cauchy-Schwarz inequality with respect to the Hilbert-
Schmidt scalar product)

(2) Prove that ρ is a pure state if and only if its purity equals 1.

Exercise 2.5 (Pauli operators). On a single-qubit system C2 define the Pauli operators

σx σy, σz, represented in the computational basis |0⟩ =
(

1
0

)
, |1⟩

(
1
0

)
as the matrices

σx =

(
0 1
1 0

)
, σx =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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(1) Show that the Pauli operators are observables and unitary (hence involutions).
Determine their spectra.

(2) Show the commutation relations, for any permutation (j, k, ℓ) of the triple (x, y, z)

[σj , σk] = 2iϵjkℓσℓ,

(where ϵjkℓ denotes the Levi-Civita symbol, i.e., +1 if the permutation is even, −1
if it is odd).

(3) Deduce that tr[σ2j ] = 1 and tr[σjσk] = 0, i.e., they are orthonormal with respect to

the Hilbert-Schmidt scalar product on L(C2). Can you describe the linear space
generated by them?

(4) Prove that {1C2 , σx, σy, σz} ⊆ L(C2) are an orthonormal basis.

Exercise 2.6. In the same setting as the previous exercise, given a vector b = (bx, by, bz) ∈
C3, define the operator

b · σ = bxσx + byσy + bzσz.

Prove that the following properties hold:

(1) b · σ = b′ · σ for b, b′ ∈ C3 if and only if b = b′,
(2) (b · σ)∗ = b̄ · σ, where b̄ = (b̄x, b̄y, b̄z).
(3) one has

(b · σ)∗(b′ · σ) = (b · b′)1C2 + i(b× b′) · σ,
where · denote respectively the scalar and cross products on C3 (use the same
formulas as in R3 but take the conjugate of the components of the first vector).

Exercise 2.7 (Bloch sphere). In the same setting as the two previous exercises, given a
density operator ρ ∈ S(C2),

(1) prove that it can be represented as

ρ =
1

2
(1C2 + b · σ) , (2.7)

for a unique b = b(ρ) ∈ R3 with |b|2 = b2x + b2y + b2z ≤ 1 (often called the Bloch
ball),

(2) compute the purity of ρ (see Exercise 2.4) in terms of b.

(3) show that ρ is a pure state if and only of |b|2 = 1 (i.e., it belongs to the so-called
Bloch sphere).

Exercise 2.8 (Creation and annihilation operators on a two-level system). On the two-
level quantum system C2, consider the following annihilation (or lowering) operator a ∈
L(C2), acting on the computational basis as follows6:

a |0⟩ = 0, a |1⟩ = |0⟩ .

(1) Represent a, as well as its adjoint a∗ (called the creation or raising) as a matrices
in the computational basis.

(2) Prove that a, a∗ satisfy the following canonical anti-commutation relation (CAR):

{a, a∗} = aa∗ + a∗a = 1C2

(3) Represent also the the number operator N = a∗a as a matrix, and show that
σ(N) = {0, 1}. We think of this observable as describing if a quantum particle is
located or not at a certain site (if N = 0, the site is empty, if N = 1 the site is
occupied by a particle).

6it is customary to use lower case letters for this operator.
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(4) Given a state vector |ψ⟩ = α0 |0⟩+ α1 |1⟩ ∈ C2, compute the probabilities

P|ψ⟩(N = 0), P|ψ⟩(N = 1)

in terms of the amplitudes α0, α1. What is the state of the system after measuring
N? and after observing N = 1?

(5) Answer the same questions in the previous point if the state is described by a
density operator ρ ∈ L(C2) represented by b in the Bloch ball (i.e., as in (2.7)).

(6) Give an explicit representation of a, a∗ and N in terms of Pauli operators.

Exercise 2.9 (Creation and annihilation operators on a d-level system). For d ≥ 2,
consider the d-level quantum system Cd and define the following annihilation (or lowering)
operator a ∈ L(Cd), generalizing the case d = 2 from the previous exercise, in terms of

the computational basis (|k⟩)d−1
k=0:

a |0⟩ = 0, a |k⟩ =
√
k |k − 1⟩ for every k = 1, . . . , d− 1.

as well as its adjoint (the creation operator or raising operator) a∗, and the number
operator N = a∗a.

(1) What is the spectrum of N?
(2) Assuming that the system is described by a state ρ ∈ S(Cd) and N is measured,

what are the probabilities Pρ(N = k) (e.g. in terms of the density matrix of ρ with
respect to the computational basis)

(3) After measuring N , one observes N = 0. How is the state updated according to
Born’s rule?

Exercise 2.10 (Commutators act as derivations). On an elementary quantum system H,
consider operators A,B,C ∈ L(H). Show the identity

[A, (BC)] = [A,B]C +B[A,C],

i.e., the operator [A, ·] satisfies a Leibniz-type rule for the product. Deduce by induction
that, for every n ≥ 1,

[A,Bn] =
n−1∑
k=0

Bk[A,B]Bn−1−k.

Exercise 2.11 (CCR cannot be realized by bounded operators). Prove that one cannot
define two operators Q, P ∈ L(H) satisfying (2.4) on a finite dimensional Hilbert space
H – or ever as bounded operators, Q, P ∈ B(H) on a general Hilbert space H. (Hint:
compute [Q,Pn] and consider its operator norm as n→ ∞)

Exercise 2.12 (Pure states on the Weyl algebra). Let A ⊆ L2(R, dx) denote the Weyl
algebra. Show that, for every |ψ⟩ ∈ L2(R, dx), the functional

W (r, s) 7→ |ψ⟩W (r, s)ψ =

∫
R
ψ̄(x)W (r, s)ψ(x)dx

defines a state η = η|ψ⟩. For which (complex valued) |ψ⟩ the state η turns out to be
Gaussian?

Exercise 2.13 (Translations on the Weyl algebra). Given a state η on the Weyl algebra
A ⊆ L2(R, dx), show that, for every given (r, s) ∈ R2, the functional

a ∈ A 7→ η(W (−r,−s)aW (r, s))

also defines a state on A, and write its characteristic function in terms of the characteristic
function of η.
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Exercise 2.14 (A quantum Bochner theorem). Recall that a function f : Rd → C is called
positive semidefinite if, for every finite family (xi)

d
i=1, the matrix (f(xi− xj))

d
i,j=1 ∈ Cd×d

is hermitian and positive semidefinite. A theorem by Bochner proves that any continuous
positive semidefinite function f with f(0) = 1 is the characteristic function of a Borel
probability measure µ on Rd, i.e., one has the representation

f(x) =

∫
Rd

eix·ξdµ(ξ), for every x ∈ Rd.

(1) Show the (easy) implication: the characteristic function of Borel probability mea-
sure µ is indeed a continuous positive semidefinite function f with f(0) = 1.

A quantum analogue of Bochner theorem (see e.g. [Gos21]) describes exactly the char-
acteristic functions of states η on the Weyl algebra. Let us give the following definition.
Given a bilinear form β : Rd × Rd → C, we say that a function f : Rd → C is β-positive
semidefinite if, for every finite family (xi)

d
i=1, the matrix (f(xi − xj)e

β(xj ,xi))di,j=1 ∈ Cd×d
is positive semidefinite.

Define ω : R2 × R2 → C,

ω((r1, s1), (r2, s2)) = (r1, s1)

(
0 1
−1 0

)(
r2
s2

)
= det

(
r1 r2
r1 s1

)
= r1s2 − r2s1 (2.8)

(which actually defines a non-degenerate symplectic form). Then, the quantum analogue of
Bochner theorem states that any continuous i

2ω-positive semidefinite function f : R2 → C
with f(0) = 1 is the characteristic function of a state η on the Weyl algebra:

f(r, s) = η(W (r, s)).

(2) Show the implication: the characteristic function of a state η on the Weyl algebra
is a continuous i

2ω-positive semidefinite7 function f with f(0) = 1. (Hint: use
(2.6))

3. Quantum Channels

In this section we introduce transformations of quantum systems, generalizing the prob-
abilistic notion of Markov kernels and completing the program of describing the three
fundamental objects (states, observables, transformations) in the (elementary) quantum
mechanical setting.

3.1. Tensor products. Let us recall some basic facts an notations for operators, and in
particular tensor products. For simplicity, we only deal with finite dimensional spaces H,
K. Write L(H;K) for the space of linear operators A : H → K. The adjoint operator
A∗ : K → H is defined as usual by requiring that

⟨φ|A∗ψ⟩ = ⟨Aφ|ψ⟩ , for every |ψ⟩ ∈ K, φ ∈ H.

When H = K, we write L(H) = L(H;H) and always endow it with the Hilbert-Schmidt
scalar product

⟨A|B⟩ = tr[A∗B], for |A⟩ , |B⟩ ∈ L(H),

see also Exercise 2.1. An isometry U : H → K is a linear map preserving the norms (or
equivalently the scalar products)

⟨Uφ|Uψ⟩ = ⟨φ|ψ⟩ , for every |φ⟩ , |ψ⟩ ∈ H,

or equivalently, such that U∗U = 1H .
The tensor product H ⊗K between H and K can be abstractly defined as the linear

space generated by formal expressions (elementary tensors) |φ⟩ ⊗ |ψ⟩ quotiented so that
the expressions become bi-linear, i.e.,

(|φ0⟩+ |φ1⟩)⊗ |ψ⟩ = |φ0⟩ ⊗ |ψ⟩+ |φ1⟩ ⊗ |ψ⟩ ,
7also called KLM condition
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|φ⟩ ⊗ (|ψ0⟩+ |ψ1⟩) = |φ⟩ ⊗ |ψ0⟩+ |φ⟩ ⊗ |ψ1⟩ ,
(as well as similar relations for multiplication by scalars). It is common in Dirac’s notation
to abbreviate |φ⟩ ⊗ |ψ⟩ = |φ,ψ⟩. We endow the tensor product H ⊗ K with the scalar
product defined on elementary tensors as

⟨φ0 ⊗ ψ0|φ0 ⊗ ψ0⟩ = ⟨φ0|φ1⟩ ⟨ψ0|ψ1⟩ .
and extended by linearity (on should check that this is indeed a well-defined scalar prod-
uct). The dimension of H ⊗ K is dim(H)dim(K) and an orthonormal basis is given by
(|i, j⟩)i∈I,j∈J = (|i⟩ ⊗ |j⟩)i∈I,j∈J for orthonormal bases (|i⟩)i∈I ⊆ H, (|j⟩)j∈J ⊆ K. Ele-
ments in the tensor product are therefore represented as I × J complex matrices, hence
they can be thought as operators. A more natural correspondence between tensors and
operators is the isomorphism between H ⊗K∗ and L(K;H), given by

|h⟩ ⊗ ⟨k| = |h⟩ ⟨k| ,
and extended by linearity.

Tensor products are used in quantum mechanics to represent composite systems made
by “joining” two quantum systems H, K. States on the composite system H ⊗ K are
represented by density operators ρ ∈ S(H⊗K), while observables are self-adjoint operators
A ∈ O(H ⊗ K). Let us recall therefore some basic facts on general operators M ∈
L(H ⊗K), and in particular the partial trace operation.

The tensor product construction naturally extends to operators as follows: given A ∈
L(H; H̃), B ∈ L(K; K̃), one defines the operator A ⊗ B ∈ L(H ⊗ H; H̃ ⊗ K̃) acting on
elementary tensors as

(A⊗B) |φ⟩ ⊗ |ψ⟩ = |Aφ⟩ ⊗ |Bψ⟩
and then extends the operator by linearity. It is simple to check that (A⊗B)∗ = A∗⊗B∗,
hence it A⊗B ∈ O(H ⊗K) is self-adjoint if both A ∈ O(H) and B ∈ O(K) are both self-
adjoint (but the converse may not hold). The spectrum σ(A⊗B) is given by the pairwise
products of the elements in the spectra of σ(A) and σ(B). In particular A⊗B ∈ O≥(H⊗K)
is positive if both A and B are positive operators.

By choosing suitable bases, one can represent any operator M ∈ L(H ⊗K; H̃ ⊗ K̃) as
a Kronecker product of matrices (or more conveniently, as a block matrix whose entries

are operators in L(H; H̃)). Assume for simplicity that H = H̃, K = K̃. Then, choosing
orthonormal bases (|i⟩)i∈I ⊆ H, (|j⟩)j∈J ⊆ K yields the representation

M =
∑
i,j,k,ℓ

Mij,kℓ |i, j⟩ ⟨k, ℓ| , (3.1)

with Mij,kℓ = ⟨i⊗ j|M(k ⊗ ℓ)⟩. For fixed j and ℓ ∈ J , define the operator acting on H
given by

Mj,ℓ =
∑
i,k

Mij,kℓ |i⟩ ⟨k| ∈ L(H).

Then, M is identified with the block matrix

M = (Mj,ℓ)j,ℓ∈J .

When K = Cd, such block matrix representation is always understood with respect to the
computational basis. For example, M ∈ L(H ⊗ C2) can be represented as

M =

(
M00 M01

M10 M11

)
,

where each Mij ∈ L(H). Notice that M ∈ O(H ⊗ C2) if and only if M00, M11 ∈ O(H)
and M∗

01 =M10. In Section 4, we provide a criterion for positivity (Lemma 4.1).
Over a tensor product space H ⊗K, one defines the partial trace operation over H as

the linear operator
trH : L(H ⊗K) → L(K), M 7→ trH [M ]
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such that, for every A ∈ L(K), one has

tr[A∗trH [M ]] = tr[(1H ⊗A∗)M ].

In other words, trH is the adjoint of the partial tensor product operation A 7→ 1H ⊗ A
with respect to the Hilbert-Schmidt scalar product. Analogously, one defines a partial
trace over K. By representing M as in (3.1), one has the formulas

trH [M ] =
∑
j,ℓ

|j⟩ ⟨ℓ| trH [M ]j,ℓ, trH [M ]j,ℓ =
∑
i

Mij,iℓ,

and
trK [M ] =

∑
i,k

|i⟩ ⟨k| trK [M ]i,k, trK [M ]i,k =
∑
j

Mij,kj .

From these expressions is straightforward to check that, if M ∈ O(H ⊗K) is self-adjoint,
so are trH [M ] and trK [M ], although we are going to give a more abstract argument below.
Similarly, if M = ρ ∈ S(H⊗K), both trH [ρ], trK [ρ] are density operators (respectively on
K and H). These are called reduced density operators, and correspond to the elementary
notion of marginal densities in probability.

It is worth mentioning here the following definitions concerning states on a composite
system H⊗K. We say that ρ ∈ S(H⊗K) is separable if it can be represented as a convex
combination

ρ =
∑
x∈X

pxρx ⊗ σx,

with ρx ∈ S(H), σx ∈ S(K) and (px)x∈X a classical probability distribution over a finite
set X . States ρ ∈ S(H ⊗K) that are not separable are called entangled. Entangled states
enjoy some interesting properties that have no classical analogue and play an important
role in possible advantages of quantum computation and information theory with respect
to their classical counterparts.

3.2. Markov kernels. In elementary probability theory, given finite sets Ω and X , a
Markov kernel (from Ω to X ) is a collection N = (N(ω, ·))ω∈Ω parametrized by ω ∈ Ω,
consisting of probability distributions on X , so that for every ω ∈ Ω,

N(ω, x) ∈ [0, 1] for all x ∈ X , and
∑
x∈X

N(ω, x) = 1. (3.2)

This is often conveniently represented via a stochastic matrix (N(ω, x))ω∈Ω,x∈X . There
are two natural operations associated to a kernel N , corresponding to matrix-vector mul-
tiplication by the associated matrix:

(1) given a function f : X → C, one defines the function Nf : Ω → C as

N(f)(ω) =
∑
x∈X

f(x)N(ω, x),

(2) given a function p : Ω → C, one defines N †p : X → C as

N †(p)(x) =
∑
ω

p(ω)N(ω, x).

Clearly, both operations are linear and the notation N † is motivated by the duality∑
x∈X

f(x)N †(p)(x) =
∑
ω∈Ω

N(f)(ω)p(ω).

We use the † symbol instead of ∗, although one could also use ∗ in a proper sense.
Since N is a Markov kernel, it is easy to prove that both operations N and N † are pos-

itive, i.e. they map non-negative (real-valued) functions to non-negative functions. More-
over, one has

N(1Ω) = 1X
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and, by duality, for every p : Ω → C,∑
x∈X

N †(p)(x) =
∑
ω∈Ω

p(ω).

In particular, N † maps probability distributions on Ω to probability distributions on X .
In the particular case Ω = X , this allows to interpret N as the transition probability of a
Markov chain, hence defining by iterated applications a discrete-time evolution on Ω.

Our aim is to investigate an analogue of the above construction for elementary quantum
systems H (and later briefly present the general C∗-algebra setting). Let us take a bottom-
up approach and discuss some special cases first.

3.3. Non-sharp measurements. A first strategy that we describe is to relax the notion
of measurements, and it is interesting on its own in quantum information theory. The idea
is to replace the functions ω 7→ N(x, ω) with suitable observables Nx.

Given an elementary quantum system H ( which plays the role of the sample space Ω)
and a finite set X (which we can still think of the possible outcomes of a measurement),
we define for every x ∈ X , an observable Nx ∈ O(H) such that 0 ≤ Nx ≤ 1H (so that
σ(Nx) ⊆ [0, 1]) and ∑

x∈X
Nx = 1H .

Such a family is called in general a positive operator valued measure (POVM). In simpler
terms, we are relaxing the sharp indicator observables (i.e., the projection operators)
1Vx associated to a measurement with the operators Nx (a similar construction could be
done also in the classical case and leads to a notion of randomized, non-sharp, random
variable). Using this intepretation, we may still define the probability of observing x, after
the measurement of (Nx)x∈X is performed, as the quantity (Nx)ρ = trρNx. How should
we accordingly transform a density operator ρ? The answer is given by extending (2.2):

ρ 7→
∑
x∈X

√
Nxρ

√
Nx, (3.3)

where
√
Nx is defined via functional calculus (spectral theorem). Notice that in the (sharp)

measurement case, Nx = 1Vx , the square root disappears since 12
Vx

= 1Vx .

3.4. Unitary evolutions. The above construction however does not exhaust all the pos-
sible transformations, in particular we want to define the analogues of a Markov kernel
between two finite dimensional quantum system H and K.

Another special, but relevant, case is the transformation induced by an isometry U :
H → K. Indeed, we can think of using U to “embed” each state vector |ψ⟩ on H into
the state vector U |ψ⟩ on K. The induced transformation at the level of density operators
reads

ρ ∈ S(H) 7→ UρU∗ ∈ S(K).

When H = K, one actually postulates that a unitary evolution of the above kind is the
one naturally occurring for a closed quantum system, i.e., if H is isolated from the rest of
the universe. By contrast, all the other transformations we are going to describe are often
interpreted as evolution of open quantum systems (i.e., when H interacts with a larger
system).

We may define more general transformations of states, by taking convex combinations
over a family of isometries (Ux)x∈X with respect to a probability distribution p over the
set X , and define

ρ 7→
∑
x∈X

pxUxρU
∗
x (3.4)

We need that p is a probability distribution to ensure that the outcome is a densisty
operator. When H = K, the usual interpretation of such a transformation is that the
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system acts by first randomly sampling x ∈ X according to the distribution p, and then
evolves following the unitary Ux.

3.5. Kraus representation. By comparing (3.4) with (3.3), we may see a formal corre-
spondence between

√
Nx between and

√
pxUx. We are thus lead to consider more general

general transformations

Φ : L(H) 7→ L(K),

that admit a representation of the type

Φ(A) =
∑
x∈X

B∗
xABx, (3.5)

where (Bx)x∈X ⊆ L(K;H) is a family of operators, called Kraus (or noise) operators.
Using cyclicity of the trace, it is not difficult to check that the dual operator, Φ† : L(K) →
L(H), abstractly defined as

tr[A∗Φ†(A′)] = tr[(Φ(A))∗A′] for every A ∈ L(H), A′ ∈ L(K),

also enjoys a similar representation, but in terms of the dual family (B∗
x)x∈X ∈ L(H;K):

Φ†(A′) =
∑
x∈X

B∗
xA

′Bx. (3.6)

It is also not difficult to show that any Φ : L(H) → L(K) represented via Kraus
operators as in (3.5) is positive, i.e.,

A ∈ O≥(H) ⇒ Φ(A) ∈ O≥(K),

Moreover, Φ is unital, i.e.,

Φ(1H) = 1K ,

if and only if ∑
x∈X

B∗
xBx = 1H . (3.7)

By duality, Φ is unital if and only if Φ† is trace-preserving (often abbreviated as TP), i.e.,
tr[Φ†(A)] = tr[A].

The following examples may look trivial, but are still worth noticing. Consider the map
Φ : L(C)(= C) → L(H) given by

Φ(λ) = λ1H .

Clearly, it is positive and unital. Moreover, writing

1H =
∑
x∈X

|x⟩ ⟨x| ,

for a given orthonormal basis (|x⟩)x∈X , we see that Φ admits a representation as in (3.5)
through the kraus operators (⟨x|)x∈X ⊆ L(H;C). The dual map Φ† : L(H) → L(C) is
then represented as (3.6), which reads

Φ†(A) =
∑
x∈X

⟨x|Ax⟩ = tr[A],

i.e., it is the trace map, which is obviously positive and trace-preserving.
It is also immediate to check that positive linear combinations of maps represented by

Kraus operators admit a representation in terms of suitable Kraus operators. The same
holds for compositions: if Φ : L(H1) → L(H2) is represented by (Bx)x∈X ⊆ L(H2;H1),
and Ψ : L(H2) → L(H3) is represented by (Cy)y∈Y ⊆ L(H3;H2), the composition Ψ ◦ Φ :
L(H1) → L(H3) is represented via the family (BxCy)x∈X ,y∈Y ⊆ L(H3;H1).

We end this section with a structure result showing that a ∗-homomorphism enjoys a
representation in terms of Kraus operators.
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Lemma 3.1. Let H, K be finite dimensional Hilbert spaces and let

Φ : L(K) → L(H)

be a ∗-homomorphism, i.e., Φ is linear and

Φ(1K) = 1H , Φ(AB) = Φ(A)Φ(B), Φ(A∗) = Φ(A)∗.

Then, there exist suitable Kraus operators (Bx)x∈X ⊆ L(H;K) such that (3.6) hold. One
has in particular |X | = dim(H)/dim(K).

The strategy of the proof is to prove that H is isomorphic to a tensor product K ⊗CX ,
and that (up to such an isometry) Φ(A) = A⊗ 1CX .

Proof. Fix an orthonormal basis (|i⟩)dim(K)−1
i=0 ⊆ K and define, for every i, j, the operators

Eij = Φ(|i⟩ ⟨j|). Using the properties of Φ, we have Eik = EijEjk, E
∗
ik = Eki, for every

i, j, k. In particular Eii is an orthogonal projection operator on a subspace, that we denote
Vi. For every i, choose an isometry Ui : K → K such that Ui |0⟩ = |i⟩, so that we have
the identity

Eij = Φ(Ui |0⟩ ⟨0|U∗
j ) = Φ(Ui)E00Φ(Uj)

∗,

showing in particular that Eii = Φ(Ui)E00Φ(Ui)
∗. Moreover,∑

i

Eii =
∑
i

Φ(|i⟩ ⟨i|) = Φ(
∑
i

|i⟩ ⟨i|) = Φ(1K) = 1H

Therefore, H is decomposed as the orthogonal sum of the subspaces Vi (in particular
dim(Vi) = dim(H)/dim(K)). Fix an orthonormal basis (|x⟩)x∈X ⊆ V0, so that |X | =
dim(H)/dim(K) and

E00 =
∑
x∈X

|x⟩ ⟨x| ,

and define, for every x ∈ X , i = 0, . . . ,dim(K) − 1, the Kraus operator (it is simpler to
think about the adjoint)

B∗
x =

dim(K)−1∑
i=0

Φ(Ui) |x⟩ ⟨i| ∈ L(K;H).

Writing for A ∈ L(K), A =
∑d−1

i,j=0Aij |i⟩ ⟨j|, it is sufficient to check (3.5) with A of the

form |ℓ⟩ ⟨m| for some ℓ,m. We have then

∑
x∈X

B∗
x |ℓ⟩ ⟨m|Bx =

∑
x∈X

dim(K)−1∑
i,j=0

Φ(Ui) |x⟩ ⟨i| |ℓ⟩ ⟨m| |j⟩ ⟨x|Φ(Uj)∗

=
∑
x∈X

Φ(Uℓ) |x⟩ ⟨x|Φ(Um)∗

= Φ(Uℓ)
∑
x∈X

|x⟩ ⟨x|Φ(Um)∗

= Φ(Uℓ)E00Φ(Um)
∗ = Eℓm = Φ(|ℓ⟩ ⟨m| . □

3.6. Complete positivity. We are thus led to the following question: is any linear posi-
tive map Φ : L(H) → L(K) represented by a suitable family of Kraus operators? It turns
out that this is not in general the case (see Exercise 3.3) but, more importantly, one can
single out a simple additional condition which ensures the existence of a representation.

A linear map Φ : L(H) → L(K) is completely positive (CP) if, for every d ∈ N, the map

Φ⊗ 1L(Cd) : L(H ⊗ Cd) → L(K ⊗ Cd) (3.8)
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is positive8. For every M ∈ L(H ⊗ Cd) represented in block operator as

M = (Mij)
d
i,j=1 ⊆ L(H),

we have that

Φ⊗ 1Cd(M) = (Φ(Mij))
d
i,j=1 ⊆ L(K).

Complete positivity means that, if M = (Mij) ≥ 0, then (Φ(Mij))
d
i,j=1. For example,

letting d = 2, this means that(
M00 M01

M10 M11

)
≥ 0 ⇒

(
Φ(M00) Φ(M01)
Φ(M10) Φ(M11)

)
≥ 0.

In the next section we are going to provide a useful criterion (Lemma 4.1) for positivity
of 2× 2 block operators.

Back to the general case, since any M ∈ O≥(H ⊗ Cd) can be represented as M = A∗A

(e.g. letting A =
√
M via spectral calculus), positivity of (3.8) amounts to the fact that

Φ⊗ 1L(Cd)(A
∗A) ∈ L(K ⊗ Cd)

is non-negative. Using a block operator representation for A, we have

A =
d∑

i,j=1

Aij ⊗ |i⟩ ⟨j| , A∗ =
d∑

i,j=1

A∗
ji ⊗ |i⟩ ⟨j| ,

hence

Φ⊗ 1L(Cd)(A
∗A) =

d∑
i,j=1

d−1∑
k=0

Φ(A∗
kiAkj) |i⟩ ⟨j| ≥ 0.

We can of course specialize the condition by restricting initially it to “rank-one” block
operators of the form

A =

d∑
j=1

Aj ⊗ |1⟩ ⟨j| ,

so that it simplifies to
d∑

i,j=1

Φ(A∗
iAj) |i⟩ ⟨j| ≥ 0 (3.9)

i.e.,

d∑
i,j=1

⟨ψi|Φ(A∗
iAj)ψj⟩ ≥ 0 for every (Ai)

d
i=1 ⊆ L(H), (|ψi⟩)di=1 ⊆ K. (3.10)

because the left hand side amounts to the quantity ⟨v|Mv⟩ for v =
∑d

i=1 |ψi⟩ ⊗ |i⟩.
Let us collect the following elementary facts:

(1) any map of the form ΦB(A) = B∗AB with B ∈ L(K;H) (which we already know
to be positive being represented by a single Kraus operator B) is also completely
positive, because

ΦB ⊗ 1L(Cd) = ΦB⊗1Cd
.

(2) linear combinations with positive coefficients of CP maps yield CP maps

(3) the dual of a CP map is also CP, since Φ† ⊗ 1L(Cd) =
(
Φ⊗ 1L(Cd)

)†
,

(4) composition of CP maps is also CP.

8More specifically, for each d ∈ N, a map such that (3.8) is positive is called d-positive. Several results,
in particular in Section 4, will indeed hold for general 2-positive maps
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An a consequence, we have that any map Φ enjoying a representation via Kraus oper-
ators in CP. In particular, since the trace map is CP, also the partial trace map

trH1 = tr⊗ 1L(H2) : L(H1 ⊗H2) → L(H2).

(where we identify H2 with some Cd by choosing coordinates). Also its is dual map is CP,
which is the “partial tensoring” map

A ∈ L(H1) 7→ A⊗ 1H2 ∈ L(H1 ⊗H2).

A completely positive, trace preserving (CPTP) map Φ : L(H) → L(K) is also called a
quantum operation or quantum channel from the system H to K. The following theorem
shows that any quantum channel must have a representation in terms of suitable Kraus
operators.

Theorem 3.2 (Kraus representation of quantum channels). Let H, K be finite dimen-
sional Hilbert spaces. Any quantum channel Φ† from H to K can be represented via a
finite family of Kraus operators (Bx)x∈X ⊆ L(H;K) such that

∑
x∈X B

∗
xBx = 1H :

Φ†(A) =
∑
x∈X

BxAB
∗
x for every A ∈ L(H).

The number of elements of X is at most dim(H)dim(K).

We actually focus on the dual operator Φ : L(K) → L(H), which is CP and unital. The

crucial point is to build an auxiliary system H̃ so that one can represent Φ(A) = U∗π(A)U ,
i.e., a composition of a ∗-homomorphism π and a transformation associated to an isometry
U : K → H̃. This is a special case of the Stinespring dilation theorem. Applying
Lemma 3.1 to π the required representation.

Proof. We define, on the set (L(K)×H)2, the complex valued function

β : ((A0, ψ0), (A1, ψ1)) 7→ ⟨ψ0|Φ(A∗
0A1)ψ1⟩ ,

where ⟨·|·⟩ denotes the scalar product on H. Such β is clearly anti-bilinear in the variables
(ψ0, A0), and bilinear in (ψ1, A1), hence it can be extended to a bilinear form, still denoted
with β, on (L(K)⊗H)2. We claim that the CP assumption yields that β is non-negative.
Indeed, writing any element of L(K)⊗H as a (finite) linear combination

v =

d∑
i=1

Ai ⊗ |i⟩ ,

with (|i⟩)di=1 ⊆ H, (Ai)
d
i=1 ⊆ L(K), using bi-linearity of β, this amounts to prove that

β(v, v) =
d∑

i,j=1

⟨i|Φ(A∗
iAj)j⟩ ≥ 0,

which is exactly (3.10). It is not ensured however that β is non-degenerate, i.e. β(v, v) = 0
implies v = 0. We thus introduce the equivalence relation v ∼ v′ if and only if β(v−v′, v−
v′) = 0, so that, on the quotient

H̃ = K ⊗ L(H)/ ∼,

which is still a complex vector space, we have that β([v], [w]) = β(v, w) is a well-defined
scalar-product (we denote here and below with [v] the equivalence class of v). Next, we
define

U : H → H̃, U |ψ⟩ = [1K ⊗ |ψ⟩],
which is easily seen to be an isometry, using that Φ(1K) = 1H . Moreover, we have

U∗[A⊗ |φ⟩] = Φ(A) |φ⟩ , (3.11)
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because of the identity

β(U |ψ⟩ , [A⊗ |φ⟩]) = β([1K ⊗ |ψ⟩], [A⊗ |φ⟩])
= ⟨ψ|Φ(A)φ⟩ .

Define then

π : L(K) → L(H̃), π(A)[B ⊗ |ψ⟩] = [(AB)⊗ |ψ⟩],
and extended it by linearity. In order to check that this is a good definition, it is sufficient
to argue that, for any family (Bi)

d
i=1 ⊆ L(K) and (|i⟩)di=1 ⊆ H, the following implication

holds:
d∑

i,j=1

Bi ⊗ |i⟩ ∼ 0 ⇒
∑
i,j

(ABi)⊗ |i⟩ ∼ 0.

More explicitly, it reads

d∑
i,j=1

〈
j|Φ(B∗

jBi)i
〉
= 0 ⇒

d∑
i,j=1

〈
j|Φ(B∗

jA
∗ABi)i

〉
= 0.

To prove it, let λ = max {σ(A∗A)} ≥ 0, so that λ1K −A∗A ≥ 0, hence we may represent
A∗A = λ1K − C∗C, hence

d∑
i,j=1

〈
j|Φ(B∗

jA
∗ABi)i

〉
= λ

d∑
i,j=1

〈
j|Φ(B∗

jBi)i
〉
−

d∑
i,j=1

〈
j|Φ(B∗

jC
∗CBi)i

〉
.

By complete monotonicity, we have

d∑
i,j=1

〈
j|Φ(B∗

jC
∗CBi)i

〉
≥ 0,

and by assumption
d∑

i,j=1

〈
j|Φ(B∗

jBi)i
〉
= 0,

hence
d∑

i,j=1

〈
j|Φ(B∗

jA
∗ABi)i

〉
≤ 0,

but it also must be non-negative, by complete monotonicity, hence it equals 0.
It is then immediate to check that, π(A0A1) = π(A0)π(A1) and π(A

∗) = π(A)∗, since

β(π(A∗)[B0 ⊗ |ψ0⟩], [B1 ⊗ |ψ1⟩]) = β([A∗B0 ⊗ |ψ0⟩], [B1 ⊗ |ψ1⟩])
= ⟨ψ0|Φ((A∗B0)

∗B1)ψ1⟩
= ⟨ψ0|Φ(B∗

0(AB1))ψ1⟩ = β([B0 ⊗ |ψ0⟩], [AB1 ⊗ |ψ1⟩]).

Finally, one checks the identity

Φ(A) = U∗π(A)U. (3.12)

Indeed, the right hand side applied to |ψ⟩ ∈ H gives

U∗π(A)U |ψ⟩ = U∗π(A)[1K ⊗ |ψ⟩] = U∗[A⊗ |ψ⟩] = Φ(A) |ψ⟩ ,

where the last identity follows from (3.11).
To obtain the Kraus representation for Φ, notice that it is sufficient to write the Kraus

representation for π : L(K) 7→ L(H̃) using Lemma 3.1 and then compose with U . Since

dim(H̃) ≤ dim(K)2dim(H), we also obtain that |X | ≤ dim(H)dim(K). □
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In fact, the proof of Lemma 3.1 yields that, up to isomorphisms, one can choose H̃ =
K ⊗ CX , and π(A) = A ⊗ 1CX . Moreover, again up to an isometry of H̃, one can
let U |ψ⟩ = |ψ⟩ ⊗ |0⟩, so that by duality one obtains the following formula, also called
sometimes Stinespring representation of the quantum channel:

Φ†(ρ) = trCX [V (ρ⊗ |0⟩ ⟨0|)V ∗],

where V : H ⊗ CX → K ⊗ CX is unitary. Assuming H = K, this has the nice physical
interpretation that Φ† is a composition of a global unitary transformation on the composite
system H ⊗ CX , with a partial trace which “forgets” the auxiliary system and yields the
reduced density operator on H.

3.7. CP maps on C∗-algebras and Stinespring dilation theorem. It is quite natural
to extend the above notions of positivity and complete positivity to operators between C∗-
algebras, A, B. Given a linear Φ : A → B, we say that Φ is positive if Φ(a) is positive
whenever a is positive. For complete positivity, the simplest way is to ask that the analogue
of (3.9) holds: we require that, for every d ≥ 1, (ai)

d
i=1 ⊆ A, (bi)

d
i=1 ⊆ B, the sum

d∑
i,j=1

b∗iΦ(a
∗
i aj)bj (3.13)

defines a positive element in B.
Remark 3.3. If A = L(H), B = L(K), the above notion coincides with CP maps defined
in the previous section. Indeed, given any (|ψi⟩)di=1 ⊆ K, one simply chooses bi ∈ L(K)
such that |ψi⟩ = bi |ψ0⟩ for a fixed |ψ0⟩ ∈ K, hence obtaining (3.10) when testing positivity
(3.13) with |ψ0⟩, i.e., 〈

ψ0|
d∑

i,j=1

b∗iΦ(a
∗
i aj)bjψ0

〉
≥ 0,

and viceversa, given (bi)
d
i=1 and |ψ0⟩, one simply defines |ψi⟩ = bi |ψ0⟩.

We also say that Φ is unital if Φ(1A) = 1B. A simple yet important example of
completely positive maps is provided by states η on A, i.e. continuous linear positive
functionals onA, by letting B = C. Complete positivity is straightforward: given (ai)

d
i=1 ⊆

A and complex numbers (bi)
d
i=1 ⊆ C,

∑
i,j

b∗i η(a
∗
i aj)bj = η

∑
i,j

b∗i a
∗
i ajbj

 = η(s∗s) ≥ 0,

where we let s =
∑

i biai.
One may ask then if CP unital map admit a Kraus-like representation. By repeating

the proof of (3.2) (with some caveats because of possible infinite dimensional spaces!) it
is not difficult to prove the following result.

Theorem 3.4 (Stinespring dilation). Let A be a C∗-algebra, let H be a Hilbert space and
B(H) denote the C∗-algebra of bounded linear operators on H. Given any CP unital map
Φ : A → B(H), there exist

i) a Hilbert space H̃,

ii) an isometry U : H → H̃,

iii) a ∗-homomorphism π : A → B(H̃),

such that, for every a ∈ A,
Φ(a) = U∗π(a)U,

and
{π(a)Uψ : a ∈ A, ψ ∈ H} ⊆ H̃ is dense.

Such a triple (H̃, U, π) is unique up to isomorphisms.
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We omit the details of the proof, but the main technical caveat is that H̃ is defined as
the abstract completion of analogous object in the finite-dimensional case. One also has
to be careful with checking that π is well-defined – one uses the fact that ∥a∥2 1A − a∗a
has non-negative spectrum, hence it is positive, i.e., there exists c ∈ A such that c∗c =
∥a∥2 1A − a∗a.

A relevant consequence of Stinespring’s dilation theorem is the Gelfand-Naimark-Segal
(GNS) construction, which connects the Hilbert space approach to quantum mechanics
with the C∗-algebra one, showing indeed that one can represent any C∗-algebra A together
with a chosen state η in terms of operators on a Hilbert space H and a state vector |ψ⟩.

Theorem 3.5 (GNS). Let A be a C∗-algebra and let η : A → C be a state. Then, there
exists

i) a Hilbert space H,
ii) a unit norm vector |ψ⟩ ∈ H,
iii) and a ∗-homomorphism π : A → B(H)

such that, for every a ∈ A,
η(a) = ⟨ψ|π(a)ψ⟩ ,

and {π(a) |ψ⟩}a∈A ⊆ H is dense. Such a triple is unique up to isomorphisms.

To prove it, apply Theorem 3.4 to Φ(a) = η(a) and set |ψ⟩ = U(1) (also relabel H̃ to
H).

3.8. Quantum Markov semigroups. Given an (elementary) quantum system H and
a quantum channel Φ from H into itself, one can consider the quantum analogue of a
Markov chain evolution by taking a state ρ = ρ0 and letting ρn+1 = Φ(ρn), for n ∈ N.
Notice that, compared with the classical case, we are only describing the evolution of the
marginals densities (in fact there is no satisfactory notion of a joint density in the quantum
case). When Φ(ρ) = UρU∗ is induced by a unitary U , it can be thought as the analogue
of a classical dynamical system.

Almost always in physics, but also quite often in probability, one describes dynamics in
continuous time, in terms of semigroups. The quantum analogue, called quantum Markov
semigroup, is defined as a family (Φt)t≥0 of operators such that

(1) for every t ≥ 0, Φt is a quantum channel from H into itself,
(2) (semigroup law) for every s, t ≥ 0, ΦtΦs = Φs+t,
(3) (strong continuity) for every A ∈ L(H), t 7→ Φt(A) is continuous.

One defines the generator as L(A) = limt→0+(Φ
t(A)−A)/t. If H is finite-dimensional,

then L is a well-defined bounded operator and admits an explicit structure that plays the
role of the Kraus representation (the so-called Lindblad form). However, it is still an open
problem to completely describe unbounded generators of quantum Markov semigroups
(in infinite dimensional systems). A special but fundamental case is given by a theorem
by Stone, which applies to unitary semigroups Φt, i.e., represented (Ut)t≥0 such that
Φt(ρ) = UtρU

∗
t . One can prove (also in infinite dimensions) that L(A) = −i[H,A] for a

suitable self-adjoint densely defined operator.

3.9. Exercises.

Exercise 3.1 (Bell states). The simplest example of entangled states is provided by so-
called Bell states in a two-qubit composite system H = C2 ⊗ C2, defined as follows:∣∣Φ+

〉
= (|0, 0⟩+ |1, 1⟩) /

√
2,

∣∣Φ−〉 = (|0, 0⟩+ |1, 1⟩) /
√
2,∣∣Ψ+

〉
= (|0, 1⟩+ |1, 0⟩) /

√
2,

∣∣Ψ−〉 = (|0, 1⟩ − |1, 0⟩) /
√
2.

(1) Show that the four state vectors provide an orthonormal basis for the system.
(2) Show that each of the four pure states corresponding to the Bell vectors is not

separable, hence entangled.
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Exercise 3.2. Consider the Pauli operators σx, σy on a single-qubit system C2.

(1) Find the matrix representation (with respect to the computational basis in C4 =
C2 ⊗ C2) of the operators

A = σx ⊗ σy, and B = σy ⊗ σx.

(2) Prove that A, B are self-adjoint operators and compute their spectra.
(3) Compute [A,B].
(4) Assume that the system is prepared in the Bell state |Φ+⟩. What is the probability

of observing 1 if we measure A?

Exercise 3.3 (Partial transpose). Given finite-dimensional quantum systems H, K and
an operator A ∈ L(H;K) define its transpose operator as Aτ : L(K∗) → L(H∗) as

τ(A) : ⟨φ| 7→ τ(A)(⟨φ|) := ⟨φ|A,
i.e., τ(A)(⟨φ|) = ⟨φ|A is the linear functional on H given by

⟨φ|A : |ψ⟩ 7→ ⟨φ|Aψ⟩ .
(1) Fix orthonormal bases (|i⟩)i∈I ⊆ K and (|j⟩)j∈J ⊆ H. Write the associated matrix

representation

A = (Aij)i∈I,j∈J = (⟨i|Aj⟩)i∈I,j∈J
and compare it with the matrix representation of Aτ with respect to the bases
(⟨i|)i∈I ⊆ K∗, (⟨j|)j∈J ⊆ H.

(2) Prove that A 7→ τ(A) is linear, and if A ∈ O(H) is an observable, then Aτ ∈
O(H∗), and moreover if A ≥ 0 then τ(A) ≥ 0 (i.e., the map τ is positive).

(3) Show however that already if H = K = C2, then τ is not completely positive (in
particular the partial transpose τ ⊗ 1L(C2) is not a positive map).

Exercise 3.4 (PPT criterion). Let H, K be finite dimensional quantum systems. Denot-
ing by τ : L(H) → L(H∗) the transpose map (defined in the previous exercise), prove that
if ρ ∈ S(H⊗K) is separable, then its partial transpose τ ⊗1L(K) is a density operator (in
particular, it is positive). This motivates the so-called positive partial trace (PPT) suffi-
cient criterion for entanglement: a state ρ ∈ S(H⊗K) is entangled if its partial transpose
τ ⊗ 1L(K)(ρ) is not positive.

Do Bell states satisfy the PPT criterion?

4. Inequalities

In this section we collect some inequalities that play a relevant role in quantum informa-
tion theory. We begin with the so-called uncertainty inequalities, that are perhaps one of
the most popularized aspects of quantum mechanics. The central part of this section deals
will be a family of operator monotonicity inequalities, which could be thought as quantum
analogues of Jensen (or Hölder) inequality. We end the section with the so-called Lieb’s
concavity theorem (although we prove directly its monotonicity formulation), which will
be in particular applied in the study of the properties of quantum entropy.

4.1. Uncertainty inequalities. Recall from Section 2.2 that two compatible measure-
ments can be always performed in any order and yield pairs of observable outcomes with
well-defined joint probabilities. Uncertainty inequalities aim to quantify how this cannot
be done when the measurements are incompatible. Usually, they are stated for pairs of
observables as they amount to a lower bound for the product of the standard deviations
when the quantum system is on a given state.

Given an elementary quantum system H and operators X,Y ∈ L(H), we define their
commutator and anti-commutator as follows

[X,Y ] = XY − Y X {X,Y } = XY + Y X,
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so that the following identity holds:

XY =
1

2
{X,Y }+ 1

2
[X,Y ]. (4.1)

Both the commutator and the anti-commutator are bilinear expressions with respect to
X and Y , and satisfy

[X,Y ]∗ = [Y ∗, X∗] = −[X∗, Y ∗], {X,Y }∗ = {X∗, Y ∗}.
Hence, if X,Y ∈ O(H) are observables, then {X,Y }, i[X,Y ] ∈ O(H).

Given a density operator ρ ∈ S(H), recalling the notation (X)ρ = tr[Xρ], write X̃ =

X − (X)ρ1H , Ỹ = Y − (Y )ρ1H for the “centred” observables and define the covariance
between X and Y as follows:

Covρ(X,Y ) =
1

2
(
{
X̃, Ỹ

}
)ρ.

As with classical random variables, (X,Y ) 7→ Covρ(X,Y ) is bilinear, symmetric and

Covρ(X,X) = σ2ρ(X) = (X̃2)ρ ≥ 0. If we define instead the commutation

Comρ(X,Y ) =
1

2
(i
[
X̃, Ỹ

]
)ρ =

1

2
(i [X,Y ])ρ,

bi-linearity still holds, but it is anti-symmetric:

Comρ(X,Y ) = −Comρ(Y,X).

Moreover, using (4.1), we have the identity

Covρ(X,Y )− iComρ(X,Y ) = tr[X̃Ỹ ρ]. (4.2)

Given a finite family of observables (Xi)i=1,...n ⊆ O(H), we introduce the real valued
quantities

Covρ,ij = Covρ(Xi, Xj), Comρ,ij = Comρ(Xi, Xj),

which we collect into two matrices Covρ,Comρ ∈ Rn×n, called respectively the covariance
matrix (which is symmetric) and the commutation matrix (which is anti-symmetric). We
claim that the following inequalities hold:

Covρ ≥ ±iComρ, (4.3)

(these are actually two inequalities, one for the right hand side with + sign, another with
− sign). To prove it, notice that by (4.2),

Covρ−iComρ = (tr[X̃iX̃jρ])i,j=1,...,n,

which is positive: for every (bi)
d
i=1 ∈ Rd,

n∑
i,j=1

bibjtr[X̃iX̃jρ] = tr

( d∑
i=1

biXi

)2

ρ

 ≥ 0.

Similarly,

Covρ+iComρ = (tr[X̃jX̃iρ])i,j=1,...,n.

is the transposed matrix (hence also positive).
To see how (4.3) is a form of uncertainty inequality, i.e., it provides a lower bound for

the product of standard deviations, we specialize it to the case n = 2, i.e.,(
Covρ(X,X) Covρ(X,Y )
Covρ(X,Y ) Covρ(Y, Y )

)
≥ i

(
0 Comρ(X,Y )
Comρ(X,Y ) 0

)
.

Since Covρ(X,X) = σ2ρ(X), Covρ(Y, Y ) = σ2ρ(Y ), this can be equivalently stated as(
σ2ρ(X) b
b̄ σ2ρ(Y )

)
≥ 0,
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where b = Covρ(X,Y ) − iComρ(X,Y ). By considering the determinant, this yields the
so-called Schrödinger-Robertson uncertainty relation

σ2ρ(X)σ2ρ(Y ) ≥ |b|2 = |Covρ(X,Y )|2 + |Comρ(X,Y )|2 .
Dropping the covariance term in the right hand side and taking the square root yields a
version of Heisenberg uncertainty inequality

σρ(X)σρ(Y ) ≥ |Comρ(X,Y )| .
Dropping instead the commutant term yields a version of the classical bound of the co-
variance in terms of the product of standard deviations

|Covρ(X,Y )| ≤ σρ(X)σρ(Y ).

4.2. Monotonicity inequalities. Recalling that quantum channels are the counterparts
of classical Markov kernels N = (N(ω, x)ω∈Ω,x∈X , it is natural (and useful in applications)
to investigate whether the analogues of common functional inequalities hold true.

For example, since for every ω ∈ Ω, N(ω, ·) is a probability distribution, then for every
function f : X → C, Cauchy-Schwarz inequality easily yields the following inequality
between functions on Ω:

|Nf |2 ≤ N(|f |2),
(recall that we define (Ng)(ω) =

∑
x∈X g(x)N(ω, x)). Therefore, it is natural to ask

whether the following analogue holds, for a CP unital map Φ : L(H) → L(H̃) (dual to a

quantum channel from a quantum system H̃ to H):

Φ(A)∗Φ(A) ≤ Φ(A∗A) (4.4)

where we naturally interpret A∗A = |A|2 for any operator A ∈ L(K). This is indeed
the case, and the inequality is also called Kadison-Schwarz inequality. To prove it, we
use complete positivity and apply Φ ⊗ 1L(C2) to the positive operator acting on H ⊗ C2,
represented by the block operator as

M =

(
A∗A A∗

A 1H

)
. (4.5)

The fact that M is positive should be easily seen from the block representation

M =

(
A∗

1∗
H

)(
A 1H

)
.

However, since we are going to use more general 2× 2 block operators in this section, we
directly give a general criterion for positivity, based on the so-called Schur complement.

Lemma 4.1. Let H be a finite dimensional Hilbert space, X,Y ∈ O(H), K ∈ L(H) and
Y ≥ 0 and invertible. Then, the operator M ∈ O(H ⊗C2) represented by the block matrix

M =

(
X K
K∗ Y

)
is positive if and only if its Schur complement

X −KY −1K∗ ∈ O(H)

is positive.

Proof. M is positive if and only if, for every pair |ψ0⟩, |ψ1⟩ ∈ H, letting |v⟩ = |ψ0, 0⟩ +
|ψ1, 1⟩ ∈ H ⊗ C2, one has ⟨v|Mv⟩ ≥ 0. Explicitly, this amounts to the inequality

⟨ψ0|Xψ0⟩+ ⟨ψ1|K∗ψ0⟩+ ⟨ψ0|Kψ1⟩+ ⟨ψ1|Y ψ1⟩ ≥ 0. (4.6)

Assume that M is positive. To argue that the Schur complement is positive, given any
|ψ⟩ ∈ H, choose |ψ0⟩ = |ψ⟩ and |ψ1⟩ = −Y −1K∗ |ψ0⟩ in (4.6), so that it becomes

⟨ψ|Xψ⟩ −
〈
ψ|KY −1K∗ψ

〉
≥ 0,
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which is the thesis.
Viceversa, assume that the Schur complement is positive. Then,

⟨ψ0|Xψ0⟩ ≥
〈
Kψ0|Y −1K∗ψ0

〉
,

which used in (4.6) yields that it is sufficient to argue that

M ′ =

(
KY −1K∗ K
K∗ Y

)
≥ 0.

Positivity of M ′ then follows from the block factorization

M =

(
KY −1/2

Y 1/2

)(
Y −1/2K∗ Y 1/2

)
.

Indeed, working in (4.6) minding the above factorization, we obtain that〈
v|M ′v

〉
=
∥∥∥Y −1/2K∗ψ0 + Y 1/2ψ1

∥∥∥2 ≥ 0. □

Back to the proof of (4.4), by complete positivity, the operator Φ ⊗ 1L(C2) applied to
the positive M defined in (4.5) yields a positive operator, which can be represented by the
block matrix

Φ⊗ 1L(C2)(M) =

(
Φ(A∗A) Φ(A∗)
Φ(A) 1H̃

)
,

where we used the fact that Φ(1H) = 1H̃ . Using Lemma 4.1 again, we conclude that
inequality (4.4) holds.

Before we proceed with further inequalities, one should be aware that many “natural”
ones, i.e., valid for the case of functions, fail when extended naively to operators. As a
striking example, it is not true in general that A ≤ B implies A2 ≤ B2. However, there
are several others that are operator monotone, when acting on positive operators. For
example, if A, B ∈ O>(H) are self-adjoint positive and invertible operators on H, then

A ≤ B ⇒ A−1 ≥ B−1. (4.7)

The proof is a simple application of Lemma 4.1. Consider the operator on H ⊗ C2 repre-
sented as the block operator

M =

(
B 1H
1H A−1

)
. (4.8)

Since B ≥ A = 1H(A
−1)−11H , the Schur complement is positive hence M ≥ 0 is positive.

But of course we can also apply the criterion reversing the roles of A and B (this would
correspond to invert the order of the vectors in the standard basis of C2), or equivalently

M ′ =

(
A−1 1H
1H B

)
≥ 0.

Again by (4.1), this time we obtain the inequality

A−1 ≥ 1HB
−11H = B−1,

which is (4.7). Let us further notice that, having represented the condition A ≥ B in
terms of positivity of M in (4.8), yields also a monotonicity inequality with respect to

composition with CP unital maps Φ : L(H) → L(H̃). Indeed, if M in (4.7) is positive,
then composing with Φ⊗ 1L(C2) yields(

Φ(B) 1H̃
1H̃ Φ(A−1)

)
≥ 0,

hence, again by Lemma 4.1, we proved that

A ≤ B ⇒ Φ(B) ≥ Φ(A−1)−1.
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(assuming that Φ(A−1) is invertible). In particular, when B = A and using the already
established monotonicity of the inverse, this gives

Φ(A)−1 ≤ Φ(A−1), (4.9)

which classically would be an application of Jensen inequality with the convex function
z 7→ z−1 for z > 0.

Another elementary example of operator monotone function is the square root: given
positive operators A ∈ O≥(H), it holds

A ≤ B ⇒
√
A ≤

√
B. (4.10)

To prove it, assume for simplicity that A is invertible, and write A = X2, B = Y 2 for
positive X, Y , so that the statement becomes

X2 ≤ Y 2 ⇒ X ≤ Y.

Multiplying both sides of the assumption by X−1 (which preserves positivity), we have
the inequality

1H ≤ X−1Y 2X−1 = K∗K, (4.11)

where we define K = Y X−1. Since X−1/2KX1/2 = X−1/2Y X−1/2, and conjugation
preserves the spectrum, it follows that

σ(K) = σ(X−1/2Y X−1/2).

If λ belongs to the set above, it is an eigenvalue for K, for some eigenvector |ψ⟩ ∈ H, i.e.,
K |ψ⟩ = λ |ψ⟩. Then, by (4.11) we deduce that

|λ|2 ⟨ψ|ψ⟩ = ⟨Kψ|Kψ⟩ = ⟨ψ|K∗Kψ⟩ ≥ ⟨ψ|ψ⟩ ,

hence |λ|2 ≥ 1. On the other side, X−1/2Y X−1/2 is a positive operator, hence λ ≥ 0, and

we conclude that λ ≥ 1. This inequality holds for any eigenvalue λ ∈ σ(X−1/2Y X−1/2),
thus

X−1/2Y X−1/2 ≥ 1H .

Multiplying both sides by X1/2, we obtain the thesis9.
In view of (4.5) and (4.9), it seems natural to conjecture that, for any CP unital map

Φ : L(H) → L(H̃), and A ∈ O≥(H),√
Φ(A) ≥ Φ(

√
A). (4.12)

This is indeed the case, as it follows by writing first (4.5) with
√
A instead of A, then

taking the square root both sides.
The square root example10 turns out to be special cases of a generalized family of t-

weighted geometric means for operators. For t ∈ [0, 1], and positive operators A, B ∈
O≥(H), we define

A♯tB = A1/2(A−1/2BA−1/2)tA1/2,

where (A−1/2BA−1/2)t is defined via functional calculus. Notice that the above definition
is actually valid only if A is invertible, but we are going to prove below in (4.15) that we
can exchange the roles of A and B (up to replacing t with 1− t). In fact, for our purposes,
we may always assume that both A and B are invertible.

The operator A♯tB generalizes the geometric mean: to see it, consider the case H = C,
so that A, B are positive real numbers. Then,

A♯tB = A1−tBt. (4.13)

Given U ∈ U(H) unitary, it is also straightforward to check that

(U∗AU)♯t(U
∗BU) = U∗(A♯tB)U.

9Is there a more streamlined proof relying e.g. upon Lemma 4.1?
10but actually also the inverse, see Exercise 4.6
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It follows that, if A and B commute, since they can be simultaneously diagonalized through
the same unitary U , we have that (4.13) also holds.

Notice that
1H♯tA = At.

We collect two useful algebraic identities concerning operator means: for s, t ∈ [0, 1],

A♯s(A♯tB) = A♯stB, (4.14)

which can be proved by straightforward substitution with the definitions, and

A♯tB = B♯1−tA. (4.15)

To prove it, assume for simplicity that both A and B are invertible, and let

X = A−1/2BA−1/2, Y = B−1/2AB−1/2, U = A1/2B−1/2Y −1/2,

so that X, Y ∈ O(H) and U ∈ U(H), since

UU∗ = A1/2B−1/2Y −1B−1/2A1/2 = A1/2B−1/2B1/2A−1B1/2B−1/2A1/2 = 1H .

Moreover,

UY −1U∗ = A1/2B−1/2Y −2B−1/2A1/2 = A1/2B−1/2(B1/2A−1B1/2)2B−1/2A1/2

= A−1/2BA−1/2 = X,

so that, by spectral calculus,

Xt = (UY −1U∗)t = UY −tU∗

= A1/2B−1/2Y −t−1B−1/2A1/2.

Multiplying both sides by A1/2 yields (4.15), since

A♯tB = A1/2XtA1/2

= AB−1/2Y −t−1B−1/2A = B1/2Y Y −t−1Y B1/2

= B1/2Y 1−tB1/2 = B♯1−tA.

We now establish monotonicity inequalities for these operators means (we refer e.g. to
[Car10] for further results on operator inequalities).

Proposition 4.2. Let H, K be finite dimensional Hilbert spaces, let A,A′, B,B′ ∈ O≥(H),
Φ : L(H) → L(K) be CP, and t ∈ [0, 1]. It holds

A′ ≥ A,B′ ≥ B ⇒ A′♯tB
′ ≥ A♯tB, (4.16)

and
Φ(A)♯tΦ(B) ≥ Φ(A♯tB). (4.17)

Proof. Let us begin with the case t = 1/2. We argue that

A♯1/2B ≥ T (4.18)

if and only if the following holds:

there exists W ∈ O≥(H) such that M =

(
A W
W B

)
≥ 0, and W ≥ T. (4.19)

In other words, A♯1/2B is the largest W ∈ O(H) that one can take while keeping M
positive. Such a characterization in terms of a semidefinite linear problem turns out
to be extremely useful to obtain the thesis, but also for computational aspects: similar
representations in fact hold for rational t ∈ [0, 1], see e.g. [FS17].

For simplicity (but without loss of generality), assume that both A and B are invertible.
If (4.18) holds, choose W = A♯tB and notice that M ≥ 0 by Lemma 4.1, since

WB−1W = A1/2(A−1/2BA−1/2)1/2A1/2B−1A1/2(A−1/2BA−1/2)1/2 = A1/2A1/2 = A.
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To prove the converse, assume (4.19), so that M ≥ 0 and Lemma 4.1 entails

B ≥WA−1W ⇒ A−1/2BA−1/2 ≥ (A−1/2WA−1/2)2.

By (4.10), it follows that(
A−1/2BA−1/2

)1/2
≥ A−1/2WA−1/2 ⇒ A♯1/2B = A1/2

(
A−1/2BA−1/2

)1/2
A1/2 ≥W,

hence (4.18), since W ≥ T .
Let us now deduce the thesis for the case t = 1/2. From (4.19), we see immediately

that (4.16) holds, since it always holds

M ′ =

(
A′ W
W B′

)
=

(
A′ −A 0
0 B′ −B

)
+

(
A W
W B

)
≥
(
A W
W B

)
=M.

Choosing W = A♯1/2B, we have that M ≥ 0, hence M ′ ≥ 0 and by (4.19) we deduce that
A′♯tB

′ ≥ A♯tB. Similarly, let T = A♯1/2B and apply (4.19), which yieldsW ≥ T (actually
W = T in this case) such that M ≥ 0. By positivity, Φ(W ) ≥ Φ(T ), and by complete
positivity,

Φ⊗ 1L(C2)(M) =

(
Φ(A) Φ(W )
Φ(W ) Φ(B)

)
≥ 0,

hence, again by (4.19), Φ(A)♯1/2Φ(B) ≥ Φ(A♯1/2B).
To prove the general case t ∈ [0, 1], we notice first that it is sufficient to establish (4.16)

and (4.17) for dyadic t = p/2n, p ∈ {0, . . . , 2n}, for every n ≥ 1. Indeed, both inequalities
involve continuous functions of t, hence, by density, the thesis will then follow from dyadic
t’s to the whole interval.

Next, we argue by induction with respect to n, having already established the case
n = 1, (essentially the case t = 1/2, the other cases being trivial), we now assume that
the thesis, i.e., (4.16) and (4.17), holds true for every t = p/2n−1, p ∈

{
0, . . . , 2n−1

}
and

prove it for every t = q/2n, q ∈ {0, . . . , 2n}. Actually it is enough to prove it for such t’s
in the interval [0, 1/2], i.e., such that q ≤ 2n−1 because then the case t ∈ [1/2, 1] follows
by applying (4.15) (reversing the roles of A and B). Assuming t ∈ [0, 1/2], using (4.14),
we write

A♯tB = A♯1/2(A♯2tB),

so that 2t = q/2n−1 and we can apply the inductive assumption: given A′ ≥ A, B′ ≥ B,
we have

A′♯2tB
′ ≥ A♯2tB and Φ(A)♯2tΦ(B) ≥ Φ(A♯2tB).

Using also the thesis in the case t = 1/2, we deduce

A′♯tB
′ = A′♯1/2(A

′♯2tB
′) ≥ A♯1/2(A♯2tB) = A♯tB

and

Φ(A)♯tΦ(B) = Φ(A)♯1/2(Φ(A)♯2tΦ(B))

≥ Φ(A)♯1/2(Φ(A♯2tB))

≥ Φ(A♯1/2A♯2tB) = Φ(A♯tB),

and the proof is completed. □

4.3. Lieb’s concavity theorem. In this final section, we prove a fundamental inequality
involving the trace of operators and their transformation through quantum channels (or
their adjoint CP unital maps). Historically, it is referred as Lieb’s concavity theorem,
although we are going to directly state and prove it in a monotonicity formulation, in-
spired by the exposition in [Car22]. It is then straightforward to deduce from it the usual
concavity formulation, see Exercise 4.8.
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Theorem 4.3 (Lieb’s concavity theorem, monotonicity version). Let H, H̃ be finite di-

mensional quantum systems and Φ : L(H̃) → L(H)) be CP and unital, so that Φ† is a

quantum channel from H to H̃. Let X, Y ∈ O≥(H) be positive, K ∈ L(H̃) and t ∈ [0, 1].
Then,

tr[Φ(K)∗X1−tΦ(K)Y t] ≤ tr[K∗Φ†(X)1−tKΦ†(Y )t]. (4.20)

In the case K = 1H̃ , we have Φ(1H̃) = 1H , hence (4.20) becomes

tr[Φ†(X1−tY t)] ≤ tr[Φ†(X)1−tΦ†(Y )t], (4.21)

where we used that

tr[X1−tY t] = tr[Φ(1H)X
1−tY t] = tr[Φ†(X1−tY t)].

In this form, the inequality looks like a traced Hölder inequality with exponents p =
1/(1− t) and dual p′ = 1/t. Moreover, by Proposition 4.2, we already know that

Φ†(X♯tY ) ≤ Φ†(X)♯tΦ
†(Y ),

which looks like (4.21), without the trace and replacing X1−tY t, Φ†(X)1−tΦ†(Y )t with the
corresponding operator geometric means. Thus, we are very close to (4.21) (even without
the trace) but X and Y do not necessarily commute. The main idea is to move to a

“higher” level (i.e., think of the spaces L(H) and L(H̃) as the basic Hilbert spaces) so
that some form of commutativity is restored.

Proof. Recall that we consider L(H) and L(H̃) as Hilbert spaces endowed with the Hilbert-
Schmidt scalar product (⟨A|B⟩ = tr[A∗B]). Thus, write |X⟩ , |Y ⟩ ∈ L(H), and |K⟩ ∈
L(H̃). The operator Φ is linear from L(H) to L(H̃), hence we write Φ ∈ L(L(H);L(H̃)) =
L(L(H)), i.e., in Dirac notation, Φ |K⟩ = |Φ(K)⟩. We use it together with its adjoint
(which is indeed Φ†, but we write it as Φ∗ here) to define a map

Φ̃ : L(L(H)) → L(L(H̃)), A 7→ Φ̃(A) = Φ∗AΦ,

which is clearly CP, since it is already given in terms of a single Kraus operator (notice
that here we do not even need that Φ itself is CP).

We introduce two further operators: the left-multiplication by X ∈ L(H)

LX ∈ L(L(H)), LX : L(H) → L(H), LX |A⟩ 7→ |XA⟩ ,

and the right multiplication by Y ∈ L(H),

RY ∈ L(L(H)), RY : L(H) → L(H), RY |A⟩ 7→ |AY ⟩ .

Clearly, LXLX′ = LXX′ while RYRY ′ = RY ′Y . It holds L
∗
X = LX∗ , since〈

LXA|A′〉 = tr[(XA)∗A′] = tr[A∗(X∗A′)] =
〈
A|LX∗A′〉 ,

and similarly R∗
Y = RY ∗ . Therefore, if X ∈ O≥(H), we have that LX = L∗√

X
L√

X ≥ 0,

and similarly RY ≥ 0 if Y ∈ O≥(H). Moreover, any operator LX commutes with any RY ,
since

LXRY |A⟩ = LX |AY ⟩ = |XAY ⟩ = RY |XA⟩ = RY LX |A⟩ ,
so that we can use (4.13) with A = LX , B = RY , to obtain

(LX)♯t(RY ) = L1−t
X RtY = LX1−tRY t ,

where the identities L1−t
X = LX1−t , RtY = RY t follow from spectral calculus (one can argue

that f(LX) = Lf(X) and similarly f(RY ) = Rf(Y ) for a general f).

For operators X̃, Ỹ ∈ L(H̃), we define similarly LX̃ , RỸ . The thesis follows from
Proposition 4.2 in this framework, with the operators

A = Φ̃(LX), A
′ = LΦ†(X), B = Φ̃(RY ), B

′ ∈ RΦ†(Y ) ∈ L(H̃).
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Indeed, notice first that LΦ†(X) ≥ Φ̃(LX), since〈
K|Φ̃(LX)K

〉
= ⟨K|Φ∗LXΦ(K)⟩ = ⟨Φ(K)|XΦ(K)⟩

= tr[Φ(K)∗XΦ(K)] = tr[X1/2Φ(K)Φ(K)∗X1/2]

≤ tr[XΦ(KK∗)] = tr[K∗Φ†(X)K]

=
〈
K|LΦ†(X)K

〉
,

where the inequality follows from (4.4) (with A = K∗), multiplying both sides by X1/2

and taking the trace. Similarly, we have RΦ†(Y ) ≥ Φ̃(RY ). Therefore, combining (4.17)

and (4.16), we have

LΦ†(X)1−tRΦ†(Y )t = LΦ†(X)♯tRΦ†(Y )

≥ Φ̃(LX)♯tΦ̃(RX) ≥ Φ̃(LX♯tRY )

= Φ∗LX1−tRY tΦ.

.

To conclude, it is sufficient to take the scalar product with K ∈ L(H̃). We have,〈
K|LΦ†(X)1−tRΦ†(Y )tK

〉
= tr[K∗Φ†(X)1−tXΦ†(Y )t],

while

⟨K|Φ∗LX1−tRY tΦK⟩ =
〈
Φ(K)|X1−tΦ(K)Y t

〉
= tr[Φ(K)∗X1−tΦ(K)Y t]. □

4.4. Exercises.

Exercise 4.1 (Uncertainty inequality for Pauli operators). Consider a pure density opera-
tor ρ ∈ S(C2) on a single qubit system and write explicitly (4.3) for the Pauli operators, in
terms of the vector b = b(ρ) of the Bloch parametrization (2.7). Investigate when equality
may occur. What about equality cases in the Schrödinger-Robertson inequality for a pair
of Pauli operators?

Exercise 4.2 (Lieb-Ruskai monotonicity theorem). Let H, H̃ be finite-dimensional quan-

tum systems, Φ : L(H) → L(H̃) be CP , K ∈ L(H) and X ∈ O>0(H) be positive and
invertible such that Φ(X) is also invertible. Then,

Φ(K)∗Φ(X)−1Φ(K) ≤ Φ(K∗X−1K).

Exercise 4.3. Show that f(A) = A2 is not operator monotone on O≥(C2), i.e., it does
not hold in general

A ≤ B ⇒ A2 ≤ B2.

Exercise 4.4. Let H be a finite dimensional Hilbert space, X,Y ∈ O>(H), K ∈ L(H).
Then, the operator M ∈ O(H ⊗ C2) represented by the block matrix

M =

(
X K
K∗ Y

)
is positive if and only if there exists Z ∈ L(H) with operator norm ∥Z∥ ≤ 1 (i.e. Z∗Z ≤
1H) such that K =

√
XZ

√
Y .

Exercise 4.5. Given A, B ∈ O≥(H), s, t ∈ [0, 1], show that

(A♯sB)♯tB) = A♯s+t−stB.

Exercise 4.6. One can extend the definition of A♯tB for any t ∈ R, provided that A,
B ∈ O>(H) are positive and invertible. In turns out that monotonicity inequalities hold
true also in the range t ∈ [−1, 0] ∪ [1, 2] (with a reverse inequality than the case t ∈ [0, 1].

(1) Show that (4.15) and (4.14) hold for every t ∈ R.



LECTURE NOTES ON QUANTUM INFORMATION THEORY 35

(2) Show that, for every A,B,C ∈ O>(H), s, t ∈ R,

C♯sA ≤ C♯tB ⇔ C♯−sA ≥ C♯−tA

(3) Show that, for t ∈ [0, 1], given A, B, T ∈ O>(H), the inequality

A♯−tB ≤ T

is equivalent to the following condition:

there exists W ∈ O(H) such that A♯tB ≥W and M =

(
T A
A W

)
≥ 0.

(Hint: write A♯tB = A♯−1(A♯tB) and notice that A♯tB = AB−1A.)
(4) Deduce that, for t ∈ [−1, 0] ∪ [0, 1] and for every CP map Φ : L(H) → L(K) and

A, B ∈ O>(H), the inequality

Φ(A♯tB) ≥ Φ(A)♯tΦ(B)

holds (provided that Φ(A), Φ(B) are invertible).

Exercise 4.7 (Lieb’s theorem for negative exponents). Let H, H̃ be finite dimensional

quantum systems and Φ : L(H) → L(H̃)) be a quantum channel from H to H̃. Let X,
Y ∈ O>(H) be positive, K ∈ L(H) and t ∈ [0, 1]. Then,

tr[Φ(K)∗Φ(X)t−1Φ(K)Φ(Y )−t] ≤ tr[K∗X1−tKY t], (4.22)

provided that Φ(X), Φ(Y ) are invertible.

Exercise 4.8. Deduce from Theorem 4.3 the original concavity formulation of Lieb’s
theorem: for t ∈ [0, 1], K ∈ L(H), the map on O≥(H)×O≥(H)

(X,Y ) 7→ tr[K∗X1−tKY t]

is jointly concave. (Hint: consider the partial tensor map Φ(A) = A ⊗ 1C2 and deduce
mid-point concavity)

Exercise 4.9. Consider a state η on the Weyl algebra and let f : R2 → C, f(r, s) =
η(W (r, s)) denote its characteristic function, which we assume to be twice differentiable
at 0 (by 2.13 assume without loss of generality with ∇f(0) = 0). Recall also the notation
(2.8) for the symplectic form ω from 2.14.

(1) Prove that, for every u, v ∈ R2,

f(u− v)e
i
2
ω(v,u) − 2f(0) + f(v − u)e

i
2
ω(u,v).

(2) Prove that Σ := −∇2f(0) is a real symmetric matrix and that

Σ ≥ i
ω

2
. (4.23)

(Hint: replace u 7→ εu, v 7→ ε in the above point to deduce that a certain block
matrix is positive. Then, use the equivalence between (4.18) and (4.19).)

(3) Specialize to the case ρ = |ψ⟩ ⟨ψ| being the pure state associated to a smooth, com-
pactly supported wavefunction ψ ∈ L2(R, dx), to deduce from (4.23) the original
formulation of Heisenberg’s uncertainty inequality.

Exercise 4.10. Recall that a state η on the Weyl algebra is called a quantum (bosonic)
Gaussian state if its characteristic function is a quadratic polynomial of the variables, i.e.,

f(r, s) = exp

(
a+ b

(
r
s

)
+ (r, s)C

(
r
s

))
,

for some a ∈ C, b ∈ C2 and C ∈ C2×2.

(1) Show that necessarily a = 0 and C ∈ R2×2 is real and symmetric.
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(2) Using the previous exercise, deduce that

C ≤ −iω,

denoting with C the real quadratic form on R2 associated to C.

5. Distances

In this section, we address the following natural problem: how to compare two states of
a quantum system? The answer of course depends on the application one has in mind, e.g.
on the restrictions upon the measurements one can perform, and justifies a large variety
of “distances” (which actually may fail to satisfy all the axioms of proper distances). This
variety should not be a surprise, since a similar picture emerges when comparing classical
probability distributions. In fact, the quantities we are going to introduce are the quantum
analogues of three widely used distances in probability and statistics:

(1) the total variation distance, which will lead to the trace distance in the quantum
case,

(2) the Hellinger distance, or Bhattacharyya coefficient, yielding the quantum fidelity
between two states,

(3) the Kantorovich-Wasserstein (or earth mover’s) distance, which actually has more
than one quantum analogue.

We leave aside one of the most relevant notion of information-theoretic “distance”, the
Kullback-Leibler divergence, or relative entropy, to be addressed in Section 6 together
with related entropic quantities.

Besides their basic properties (e.g., are they actual distances? are there inequalities
between them?) a natural question that we address is their behaviour with respect to
composition with quantum channels between systems, by showing that they contract (or
expand in a controlled way) with respect to such action. This will also require the appli-
cation of the inequalities from the previous section.

5.1. Trace distance. Given two probability distributions p, q over a (finite) set Ω, their
total variation distance is simply given by half of the ℓ1-norm of their difference:

∥p− q∥TV =
1

2

∑
ω∈Ω

|p(ω)− q(ω)| ∈ [0, 1],

Clearly, it defines a proper distance on the set of probability distributions. It is a simple
exercise to check that, given a Markov kernel N = (N(ω, x))ω∈Ω,x∈X from Ω to a finite set
X , its action on probability distributions provides a non-expanding map, with respect to
the total variation:

∥(N †p)− (N †q)∥TV ≤ ∥p− q∥TV . (5.1)

In the particular case of N(ω, x) = δX(ω)(x) where X is a random variable with values in

X, since (N †)p(x) = Pp(X = x) is the distribution of X, one obtains that∑
x∈X

|Pp(X = x)− Pq(X = x)| ≤ ∥p− q∥TV . (5.2)

This can be used e.g. to argue via fixed point arguments that any Markov chain (i.e.,
when Ω = X ) admits at least one invariant distribution and convergence to equilibrium,
under suitable assumptions (i.e., when N † is a proper contraction).

Another useful point of view of the total variation distance is provided by its dual
representation:

∥p− q∥TV = sup
V⊆Ω

∑
ω∈V

p(ω)− q(ω). (5.3)
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The inequality ≥ is obvious, to see the converse use V = {ω ∈ Ω : p(ω) > q(ω)} and notice
that

∥p− q∥TV =
∑
ω∈V

p(ω)− q(ω).

We can also relax the right hand side of (5.3), obtaining a further equivalent representation:

∥p− q∥TV = sup
a:Ω→[0,1]

∑
ω∈V

a(ω) (p(ω)− q(ω)) . (5.4)

The usefulness and simplicity of the total variation distance motivates the introduction
its quantum analogue, called trace distance.

On a finite-dimensional quantum system H, given states ρ, σ ∈ S(H), one defines

Dtr(ρ, σ) =
1

2
tr|ρ− σ|

where |ρ− σ| is defined via spectral calculus on ρ− σ, which is self-adjoint:

|ρ− σ| =
∑

λ∈σ(ρ−σ)

|λ|1(ρ−σ)=λ.

The same expression also yields Dtr(ρ, σ) ∈ [0, 1].

Remark 5.1. Up to the factor 1/2, the trace distance can be seen as the p = 1 case of
the general p-Schatten norm defined (for p ≥ 1) on operators A ∈ L(H) as

∥A∥p := tr[|A|p]1/p = tr[(A∗A)p/2]1/p.

One writes Lp(H) for the space L(H) (we work in finite dimensions) endowed with the
Schatten p-norm, which define analogues of Lebesgue spaces. The case p = ∞ corresponds
to the operator norm

∥A∥∞ = sup
|ψ⟩∈H\{0}

⟨Aψ|Aψ⟩
⟨ψ|ψ⟩

.

One can argue that the following duality holds, for every A ∈ L(H) and conjugate p, q,
i.e. 1/p+ 1/q = 1:

∥A∥p = sup
∥B∥q≤1

tr[B∗A],

hence in particular (see Exercise 5.1) that

∥A∥1 = sup
∥B∥∞≤1

tr[BA]. (5.5)

Clearly, the trace distanceDtr(ρ, σ) is symmetricDtr(ρ, σ) = Dtr(σ, ρ) andDtr(ρ, σ) = 0
if and only if ρ = σ. Moreover, if both ρ and σ are diagonal states with respect to the
same orthonormal basis (|i⟩)i∈I , i.e.,

ρ =
∑
i∈I

pi |i⟩ ⟨i| , σ =
∑
i∈I

qi |i⟩ ⟨i| ,

for classical probability densities (pi)i∈I , (qi)i∈I , then

Dtr(ρ, σ) = ∥p− q∥TV .
Moreover if ρ, σS(H) are pure states associated respectively to state vectors |ψ⟩, |φ⟩,

one can prove (see 5.3) that

Dtr(ρ, σ) =

√
1− |⟨ψ|φ⟩|2. (5.6)

In order to prove that the trace distance enjoys the triangle inequality, we establish first
the following dual representation, completely analogue to (5.3):

Dtr(ρ, σ) = sup
V <H

tr[1V (ρ− σ)] (5.7)
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The right hand side can be equivalently written using a probabilistic notation:

sup
V <H

tr[1V (ρ− σ)] = sup
V <H

(1V )ρ − (1V )σ = sup
V <H

Pρ(V )− Pσ(V ).

In physical terms, the right hand side can be interpreted as the largest “discrepancy”
between the probabilities of observing that V holds, when V can be any subspace of H
(which recall that we interpret as a logical proposition about the system H).

To prove (5.7), notice first that

0 ≤ (ρ− σ)+ = |ρ− σ| − (ρ− σ)

(by spectral calculus applied to ρ− σ and f(x) = x+ = |x| − x), so that

(1V )ρ − (1V )σ = tr[1V (ρ− σ)] ≤ tr[1V |ρ− σ|] ≤ tr[|ρ− σ|] = Dtr(ρ, σ), (5.8)

where in the last inequality we used that 1V ≤ 1H . This yields inequality ≥ in (5.7). To
prove equality, we choose V = {ρ− σ > 0} i.e., the subspace spanned by all the eigenspaces
corresponding to positive eigenvalues of ρ − σ, we obtain the thesis. Indeed, again by
spectral calculus,

1V =
∑

λ∈σ(ρ−σ),λ>0

1{ρ−σ=λ},

hence

(ρ− σ)1V =
∑

λ∈σ(ρ−σ),λ>0

λ1{ρ−σ=λ} = (ρ− σ)+.

On the other hand, since tr[ρ− σ] = 0, we have that

tr[(ρ− σ)+] = tr[(ρ− σ)−],

hence
1

2
tr[|ρ− σ|] = 1

2

(
tr[(ρ− σ)+] + tr[(ρ− σ)−]

)
= tr[(ρ− σ)+] = tr[1V (ρ− σ)].

Using (5.7), it is straightforward to check the triangle inequality. Indeed, for ρ, σ,
τ ∈ S(H), and V < H,

Pρ(V )− Pτ (V ) = (Pρ(V )− Pσ(V )) + (Pσ(V )− Pτ (V )) ≤ Dtr(ρ, σ) +Dtr(σ, τ),

hence

Dtr(ρ, τ) ≤ Dtr(ρ, σ) +Dtr(σ, τ).

The argument leading to inequality ≥ in (5.7) holds if we replace 1V with any observable
A ∈ O(H) so that 0 ≤ A ≤ 1H (i.e., such that σ(A) ⊆ [0, 1]), which includes of course the
case A = 1V . Therefore, we obtain the following analogue of (5.4):

Dtr(ρ, σ) = sup
A∈O(H),σ(A)⊆[0,1]

(A)ρ − (A)σ. (5.9)

Using such characterization, we deduce the quantum analogue of (5.1). Precisely, we
prove that given any quantum channel Φ† : L(H) → L(K) from a quantum system H to
a quantum system K, the trace distance decreases:

Dtr(Φ
†(ρ),Φ†(σ)) ≤ Dtr(ρ, σ) for every ρ, σ ∈ S(H). . (5.10)

To see this, let A ∈ O(K) be such that σ(A) ⊆ [0, 1], i.e., 0 ≤ A ≤ 1K . Then, the dual
map Φ : L(K) → L(H), applied to A yields 0 ≤ Φ(A) ≤ Φ(1K) = 1H , being positive (it
is actually CP) and unital. By definition of dual map,

(Φ(A))ρ = tr[Φ(A)ρ] = tr[AΦ†(ρ)] = (A)Φ†(ρ).

Thus,

(A)Φ†(ρ) − (A)Φ†(σ) = (Φ(A))ρ − (Φ(A))σ ≤ Dtr(ρ, σ).

Being A ∈ O(K) with σ(A) ⊆ [0, 1] arbitrary, we deduce (5.10).
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Example 5.2 (The partial trace decreases the trace distance). Let ρ, σ ∈ S(H ⊗K) and
let ρH = trK [ρ], σH = trK [σ] ∈ S(H). Then

Dtr(ρ
H , σH) ≤ Dtr(ρ, σ).

To obtain the analogue of (5.2) in the case of a quantum measurement X = (1X=x)x∈X ,
i.e.,

∥Pρ(X = ·)− Pσ(X = ·)∥TV ≤ Dtr(ρ, σ), (5.11)

we argue as follows. Consider the quantum channel

ρ 7→ Φ†(ρ) =
∑
x∈X

1{X=x}ρ1{X=x},

and given any a : X → [0, 1], consider the observable

A =
∑
x∈X

a(x)1{X=x},

with σ(A) ∈ [0, 1], so that

(A)Φ†(ρ) =
∑
x∈X

a(x)Pρ(X = x),

hence∑
x∈X

a(x) (Pρ(X = x)− Pσ(X = x)) = (A)Φ†(ρ) − (A)Φ†(σ) = (Φ(A))ρ − (Φ(A))σ

≤ Dtr(ρ, σ).

Since a : X → [0, 1] is arbitrary, by (5.4) we conclude that (5.11) holds.

5.2. Fidelity. The total variation distance has the slight drawback11 that it is modelled
upon the ℓ1 norm which is not strictly convex, nor smooth. One would prefer a smoother
notion of distance, e.g. modelled after an ℓ2 norm. A possible partial solution is to in-
troduce the (squared) Hellinger distance between two probability distributions (p(ω))ω∈Ω,
(q(ω))ω∈Ω, defined as

H2(p, q) =
1

2

∑
ω∈Ω

|
√
p(ω)−

√
q(ω)|2. (5.12)

Up to a factor 1/2, this amounts to the squared ℓ2-norm between the square roots of the
two distributions (hence it is easily seen to be a distance). By developing the square, we
see that

H2(p, q) =
1

2

∑
ω∈Ω

|
√
p(ω)−

√
q(ω)|2 = 1−

∑
ω∈Ω

√
p(ω)q(ω) ≤ 1.

This identity often motivates the introduction of the Bhattacharyya coefficient (BC)

BC(p, q) =
∑
ω∈Ω

√
p(ω)q(ω) ∈ [0, 1],

so that

H(p, q) = 1−BC(p, q),

hence the larger BC(p, q) is, the closer are the two distributions. We can easily compare
the Hellinger distance with the total variation distance:

H2(p, q) ≤ ∥p− q∥TV ≤
√
2H(p, q). (5.13)

It turns out that H satisfies a property similar to (5.1), i.e.,

H(N †p,N †q) ≤ H(p, q).

11to be fair, sometimes this may actually be an advantage, e.g. in LASSO methods in statistics
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for any Markov kernel (N(ω, x)ω∈Ω,x∈X from Ω to X . Again, this entails that for every
random variable X with values in X ,

H (Pp(X = ·),Pq(X = ·)) ≤ H (p, q) .

These can be rephrased in terms of the BC quantity, simply by reversing the inequalities:

BC(N †p,N †q) ≥ BC(p, q), BC (Pp(X = ·),Pq(X = ·)) ≥ BC (p, q) . (5.14)

It turns out that in the quantum setting the analogues of Hellinger distance and Bhat-
tacharyya coefficient have a natural interpretation, in particular for pure states ρ = |ψ⟩ ⟨ψ|,
because the square root can be somehow replaced with the state vector. It is infact more
common to deal with the analogue of the (squared) Bhattacharyya coefficient, which is
called the fidelity between quantum states, ρ, σ ∈ S(H), defined as

F (ρ, σ) =

(
tr[
√√

ρσ
√
ρ]

)2

.

If ρ and σ commute, then clearly √√
ρσ

√
ρ =

√
ρ
√
σ,

thus, when ρ, σ are diagonal operators with respect to a common basis (|i⟩)i∈I , i.e.,

ρ =
∑
i∈I

pi |i⟩ ⟨i| , σ =
∑
i∈I

qi |i⟩ ⟨i| ,

for classical probability densities (pi)i∈I , (qi)i∈I , then

F (ρ, σ) =
∑
i∈I

√
pi
√
qi = BC2(p, q).

The analogue of the Hellinger distance is commonly defined as

DB(ρ, σ)
2 = 2

(
1−

√
F (ρ, σ)

)
,

and called in this context the Bures metric (it is in fact a proper distance, see [Hol19,
section 10.2.3]).

When both states ρ = |ψ⟩ ⟨ψ|, σ = |φ⟩ ⟨φ| one has (since
√
ρ = ρ)√√

ρσ
√
ρ =

√
|ψ⟩ |⟨ψ|φ⟩|2 |ψ⟩ = ρ |⟨ψ|φ⟩|2 ,

hence

F (ρ, σ) = |⟨ψ|φ⟩|2

coincides with a squared amplitude, that we interpreted in section 2 as the probability
that one observes that the system is in state σ, given that it is infact in the state ρ (or
viceversa).

There are several equivalent ways to rewrite the fidelity:

F (ρ, σ) = tr[
∣∣√ρ√σ∣∣]2 = 1

2

(
tr[(ρ♯1/2σ

−1)σ] + tr[(σ♯1/2ρ
−1)ρ]

)
,

which highlight that it is in general symmetric, F (ρ, σ) = F (σ, ρ). Clearly, F (ρ, ρ) = 1,
and one can prove that F (ρ, σ) = 1 if and only if ρ = σ.

Like the trace distance, also the fidelity is well-behaved with respect to the action of
quantum channels. One can prove indeed the analogues of (5.14), which read in this case
as

F (Φ†(ρ),Φ†(σ)) ≥ F (ρ, σ), (5.15)

for any channel Φ† from between two quantum systems, and

BC2(Pρ(X = ·),Pσ(X = ·)) ≥ F (ρ, σ),
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for every measurement X = (Vx)x∈X taking values in X . In fact, one can argue that

F (ρ, σ) = inf
{
BC2(Pρ(X = ·),Pσ(X = ·)) : X = (Vi)i=1,...,d measurement

}
, (5.16)

where d = dim(H).
The key argument relies on the following variational representation of the fidelity:

F (ρ, σ) = sup

{
|tr[X]| : X ∈ L(H), such thatM =

(
ρ X
X∗ σ

)
≥ 0

}
. (5.17)

To see this identity, the simple consequence of Lemma 4.1 noticed in Exercise 4.4 and the
duality 5.5: the condition M ≥ 0 coincides with the representation X =

√
ρZ

√
σ for some

Z with operator norm ∥Z∥ ≤ 1, so that

sup
X

|tr[X]| = sup
Z

∣∣tr[√ρZ√σ]∣∣ = sup
Z

∣∣tr[√σ√ρZ]∣∣ = tr[
∣∣√σ√ρ∣∣] = F (ρ, σ).

Given a channel Φ†, and X ∈ L(H) such that

M =

(
ρ X
X∗ σ

)
≥ 0,

by complete positivity, we have(
Φ†(ρ) Φ†(X)
Φ†(X∗) Φ†(σ)

)
≥ 0,

and, since Φ† is trace preserving,

tr[Φ†(X)] = tr[X].

Thus,
F (Φ†(ρ),Φ†(σ)) ≥ |tr[Φ†(X)]| = |tr[X]|.

Maximizing upon X yields (5.15).
Finally, fidelity (or the Bures metric) and related to the trace distance via the following

analogues of (5.13), called Fuchs–van de Graaf inequalities

1−
√
F ≤ Dtr ≤

√
1− F .

5.3. Quantum optimal transport. The classical optimal transport problem, originated
by the works by G. Monge and L. Kantorovich (see [Vil09]) searches for the most efficient
way to move two probability distributions (p(x))x∈X , (q(x))x∈X , with respect to an average
displacement cost (c(x, y))x,y∈X (often, given in terms of function of a distance d defined
X ). The usefulness of such a problem is that it measures the discrepancy between the two
distributions taking into account the “geometry” induced by c, yielding more flexibility.

The precise definition is given by the following variational problem:

W c(p, q) := inf
π∈C(p,q)

∑
x,y∈X

c(x, y)π(x, y) (5.18)

where C(p, q) denotes the set of so-called couplings between the two probabilities p, q,
given by joint probability distributions π = (π(x, y))x,y∈X such that their marginals are
p, q, i.e.,

∀x, y ∈ X , 0 ≤ π(x, y) ≤ 1,
∑
x∈X

π(x, y) = q(y),
∑
y∈X

π(x, y) = p(x). (5.19)

We can also give a different, more dynamical, description of a coupling, in terms given by
the conditional probabilities

N(x, y) = π(y|x) = π(x, y)

p(x)
, (5.20)

(of course provided that p(x) > 0 for every x ∈ X ). Then, N defines a Markov kernel
from X into itself such that, with the usual notation N †p = q. We can thus interpret N
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(or better N †) as a generalized function, called a transport plan, pushing the probability
distribution p into q.

A further point of view, is provided by the dual formulation of the problem (5.18).
Indeed, both the cost function and the constraints are linear with respect to π, hence one
can invoke duality from linear programming theory and write

W c(p, q) = sup

∑
x∈X

f(x)p(x) +
∑
y∈X

g(y)q(y) : f(x) + g(y) ≤ c(x, y) ∀x, y ∈ X

 ,

(5.21)
Any pair of functions (f, g) that attains the supremum is called a pair of Kantorovich
potentials for the problem. Notice that inequality ≥ follows straightforwardly. In the
special case of c(x, y) = d(x, y) being a distance function, it is simple to prove that one
can actually restrict the dual problem to potentials that are 1-Lipschitz functions, i.e., of
the form (f,−f) for some f : X → R such that

|f(x)− f(y)| ≤ d(x, y) for every x, y ∈ X .

The problem (5.21) reduces to the so-called Kantorovich problem

W d(p, q) = sup
f is 1-Lip

{∑
x∈X

f(x) (p(x)− q(x))

}
, (5.22)

and defines the so-called Wasserstein distance of order 1 associated to the distance d.
Besides providing a fundamental problem in operation research and combinatorial op-

timization (it can be seen indeed a linear programming relaxation of the so-called optimal
matching problem on weighted graphs, [PL86]), in the last three decades optimal trans-
port theory evolved providing a variety of novel mathematical tools with applications in
many fields, from the analysis of PDE’s and Riemannian geometry [Vil09], to statistics
and machine learning, see [PC+19].

In quantum (or more general non-commutative) settings, the first proposals for a opti-
mal transport date back to the 1990’s [CL92; KW98], but in recent years new formulations
have been investigated [Agr13; CM14; GMP16; Gos21; De +21], motivated by the fact
that classical optimal transport admits several equivalent formulations (and we already
described some in the elementary setting above). We briefly describe three such proposals
in the setting of elementary quantum systems.

5.3.1. Optimal Transport via quantum couplings. Given a quantum system H, it is quite
natural, in order define an analogue of (5.18), where p and q are replaced by density
operators ρ, σ ∈ S(H), to introduce a cost operator C ∈ O(H1⊗H2), where H1 = H2 = H
(we label them just to differentiate) and a notion of quantum couplings C(ρ, σ) given by
density operators Π ∈ S(H1 ⊗H2) such that the corresponding reduced density operators
are

ρ = trH2 [Π], σ = trH1 [Π].

One defines the optimal transport cost as

WC(ρ, σ) = inf
Π∈C(p,q)

tr[CΠ].

(where C conveniently stands both for the operator C but also for “coupling”)
As a special case of cost operator one can introduce a “squared-distance” like observable,

given by

C =
∑
i∈I

(Ai ⊗ 1H2 − 1H1 ⊗Ai)
2, (5.23)

for a family of (Ai)i∈I ⊆ O(H). With such a choice, clearly WC(ρ, σ) ≥ 0 and WC(ρ, σ) =
WC(σ, ρ), however further properties depend upon the choice of the family (Ai)i∈I . An
one might expect, if they are all compatible, then the situation becomes closer to the
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classical optimal transport problem, but incompatible observables may lead to interesting
phenomena, some of them are widely open questions: for example, under which conditions√
WC(ρ, σ) is an actual distance? can one characterize, or at least find simple conditions

to estimate how much a quantum channel Φ† expands the cost, i.e., provide a constant∥∥Φ†∥∥
WC

such that

WC(Φ
†(ρ),Φ†(σ)) ≤ ∥Φ†∥WC

WC(ρ, σ), for every ρ, σ ∈ S(H)?

This notion of quantum optimal transport is fruitfully used in [GMP16] and subsequent
works in the infinite-dimensional (CCR) setting, letting Ai being position or momentum
operators, to investigate quantitatively semiclassical limits, i.e., when the Planck constant
h̄ → 0. Other cost operators, have also been proposed and investigated, e.g. projection
operators [BEŻ22].

5.3.2. Optimal Transport via quantum channels. A different take on the problem is pro-
vided by the identification (5.20) of a coupling π ∈ C(p, q) with a plan N such that
N †p = q. In [DT21], it is proposed to replace N † with a quantum channel Φ† from H into
itself such that Φ†(ρ) = σ. Notice that the family of such quantum plans defines a nice
closed and convex set in L(L(H)). However, it is less obvious now how to define the cost
functional.

For simplicity, let us restrict to the quadratic case, i.e. the cost is a “sum of squared
differences” for a family (Ai)i∈I ⊆ O(H) (but one could also consider general costs as in
the previous section). Back to the classical case where Ai corresponds to a function fi,
this amounts to

c(x, y) =
∑
i∈I

(fi(x)− fi(y))
2 =

∑
i∈I

f2i (x)− f2j (y)− 2fi(x)fj(y),

so that, using (5.19),∑
x,y∈X

c(x, y)π(x, y) =
∑
i∈I

∑
x,y∈X

(fi(x)− fi(y))
2π(x, y)

=
∑
i∈I

∑
x∈X

f2i (x)p(x)−
∑
y∈X

f2i (y)−
∑
x,y∈X

2fi(x)fi(y)π(x, y).

The first two terms are simply mean values of f2i with respect to p and q, hence their
quantum analogues are easily written. The problem comes with the third term, which we
can rewrite however using only p and the kernel N :∑

x,y

fi(x)fi(y)π(x, y) =
∑
x∈X

fi(x)p(x)(Nfi)(x).

In the quantum case, we choose to rewrite the quantity as follows:

tr[Ai
√
ρΦ(Ai)

√
ρ] = tr[(

√
ρAi)

∗Φ(Ai)
√
ρ] = ⟨√ρAi|Φ(Ai)

√
ρ⟩ , (5.24)

where we used the Hilbert-Schmidt scalar product in L(H). We are thus lead to the
following expression for the cost in terms of Φ, ρ and σ only:

Cost(Φ, ρ, σ) =
∑
i∈I

tr[A2
i ρ] + tr[A2

iσ]− 2tr[Ai
√
ρΦ(Ai)

√
ρ].

It turns out that minimization of the above quantity with respect to quantum plans Φ†

from ρ to σ, yields an optimal transport cost

WP (ρ, σ) = inf
Φ†(ρ)=σ

Cost(Φ, ρ, σ),
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which in general is different from the one defined in the previous section (we also use P to
remember it is defined via “plans”). Although it may be not evident from the definition,
it holds

WP (ρ, σ) =WP (σ, ρ).

This quantity shares many similarities with WC in terms of general properties, with two
notable differences: one always give a lower bound

WP (ρ, σ) ≥
1

2
(WP (ρ, ρ) +WP (σ, σ)) , for every ρ, σ ∈ S(H), (5.25)

and show a modified triangle inequality:√
WP (ρ, τ) ≤

√
WP (ρ, σ) +

√
WP (σ, σ) +

√
WP (σ, τ), for every ρ, σ, τ ∈ S(H). (5.26)

Both proofs are not difficult relying upon Lieb’s theorem Theorem 4.3, see 5.7. Motivated
by (5.25), one can then introduce the quantity

(ρ, σ) 7→

√
WP (ρ, σ)−

(
1

2
(WP (ρ, ρ) +WP (σ, σ))

)
.

It is an open problem to determine whether this defines an actual distance (possibly
allowing it to be degenerate, in the sense that it may be null even if ρ ̸= σ).

5.3.3. Optimal transport via Lipschitz operators. This third way instead begins from the
observation that one can use the dual problem (5.22) to define W d(p, q), provided that
one specifies a suitable notion of 1-Lipschitz function. Such observation in the non-
commutative case actually dates back at least to [CL92]. It was recently noticed [De
+21] that it leads to a particularly simple yet useful theory in the setting of product sys-
tems H =

⊗
i∈I Hi, providing a quantum analogue of the optimal transport problem with

respect to the Hamming distance on product sets Πi∈IXi, defined as

dHam((xi)i∈I , (yi)i∈I) =
∑
i∈I

1{xi ̸=yi}.

In simple terms, the Hamming distance between two sequences counts the number of
positions in which they differ. Since our aim is to argue by duality, we notice first that a
function f : Πi∈IXi → R is 1-Lipschitz with respect to the Hamming distance if and only
if, for every i ∈ I, one has

|f(x)− f(y)| ≤ 1

whenever the sequences x, y differ only at the position i (let us write x ∼i y) . For every
i ∈ I, we thus introduce the oscillation at position i ∈ I,

∂if = sup
x∼iy

|f(x)− f(y)| (5.27)

Hence, the Lipschitz constant of f is

∥f∥Lip = max
i∈I

∂if,

and with this notion we can define the optimal transport problem with cost given by dHam

by (5.22).
If we forget about the product structure X = Πi∈IXi and think of the whole X as a

single factor, the Hamming distance reduces to the trivial distance

dTri(x, y) = 1{x ̸=y}.

A 1-Lipschitz function f with respect to the trivial distance is, up to an additive constant,
any function a : X → [0, 1]. We find therefore that (5.22) reduces to (5.4), hence the total
variation distance coincides with the optimal transport cost with respect to the trivial
distance. Moreover, the following inequalities hold:

dTri(x, y) ≤ dHam(x, y) ≤ |I|dTri(x, y),
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which easily imply

∥p− q∥TV ≤W dHam(p, q) ≤ |I|∥p− q∥TV . (5.28)

The analogue of the quantum setting of the above construction on a composite sys-
tem H =

⊗
i∈I Hi, where f are replaced with observables A ∈ O(H), stems from the

observation that, in the classical case, one has the equivalent expression

∂if = 2 inf
gi

sup
x

|f(x)− gi(x)| , (5.29)

where the infimum runs among all the functions gi : x 7→ gi(x) which do not depend upon
the coordinate xi. This allows to formulate a quantum analogue of the oscillation (which
we call dependence) at position i, :

∂iA = inf

2 ∥A−Gi ⊗ 1Hi∥∞ : Gi ∈ O(
⊗
j ̸=i

Hj)

 ,

where the structure Gi ⊗ IHi encodes the fact that the observable “is not a function” of
position i. The quantum Lipschitz constant of A ∈ O(H) is defined as

∥A∥L := max
i∈I

∂iA,

and the quantity

∥ρ− σ∥W1 = sup {tr[A(ρ− σ)] : ∥A∥L ≤ 1}
= sup {(A)ρ − (A)σ : ∥A∥L ≤ 1}

is called quantum Wasserstein distance of order 1 between the states ρ, σ ∈ S(H).
If one forgets about the product structure of H =

⊗
i∈I Hi and considers it as a single

system, the notion of Lipschitz observable trivializes, since one can only add subtract a
multiple of the identity operator 1H on H. Thus, any A ∈ O(H) with Lipschitz constant
≤ 1 is, up to adding a multiple of 1H , an observable such that σ(A) ⊆ [0, 1]. It follows
from (5.9) that in such a case the quantum Wasserstein distance of order 1 reduces to the
trace distance. More generally, one can prove the following analogue of (5.28):

Dtr(ρ, σ) ≤ ∥ρ− σ∥W1 ≤ |I|Dtr(ρ, σ).

If the states are product states ρ = ⊗i∈Iρi, σ = ⊗i∈Iσi (with respect to the decompo-
sition H =

⊗
i∈I Hi), then

∥ρ− σ∥W1 =
∑
i∈I

Dtr(ρi, σi). (5.30)

As a quantum analogue of the Hamming distance between two state vectors |ψ⟩, |φ⟩ ∈
H, although one can use the as a replacement quantum Wasserstein distance of order 1
between the associated pure states:

dHam(|ψ⟩ , |φ⟩) = ∥ |ψ⟩ ⟨ψ| − |φ⟩ ⟨φ| ∥W1 .

In particular, if |ψ⟩ = ⊗i∈I |ψi⟩, |φ⟩ = ⊗i∈I |φi⟩, since by (5.6)

Dtr(|ψi⟩ ⟨ψi| , |φi⟩ ⟨φi|) =
√

1− |⟨ψi|φi⟩|2

we have

dHam(⊗i∈I |ψi⟩ ,⊗i∈I |φi⟩) =
∑
i∈I

√
1− |⟨ψi|φi⟩|2.
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5.4. Exercises.

Exercise 5.1. Show that (5.5) holds. (Hint: write the trace in terms of a basis of eigen-
vectors of A, and use Cauchy-Schwarz inequality.)

Exercise 5.2. Show that (5.16) holds.

Exercise 5.3. On a single qubit system H = C2, recall the parametrization of states (2.7)
in terms of vectors b = (bx, by, bz) ∈ R3 with b2x + b2y + b2z ≤ 1.

(1) Find an explicit expression of the trace distanceDtr(ρ, σ) in terms of the associated
vectors bρ, bσ.

(2) Deduce from the previous point the validity of (5.6) (Hint: restrict to the system
spanned by |ψ⟩ , |φ⟩ ∈ H.)

(3) Find an explicit expression of the for the fidelity F (ρ, σ) in terms of the associated
vectors bρ, bσ.

Exercise 5.4. Show through a explicit examples that it is false in general that any channel
Φ from a system H to a system K does not expand WC , i.e.,

WC(Φ
†(ρ),Φ†(σ)) ≤WC(ρ, σ),

and similarly for the distance WP .

Exercise 5.5. Prove the validity of (5.25) using this argument:

(1) By writing explicitly the costs, reduce (5.25) to the validity of the inequality

tr[A
√
ρΦ(A)

√
ρ] ≤ 1

2
tr[A

√
ρΦ(A)

√
ρ] +

1

2
tr[A

√
σA

√
σ],

for any quantum plan Φ†(ρ) = σ.
(2) To obtain it, apply first Cauchy-Schwarz inequality and then Theorem 4.3.
(3) Conclude that the identity channel Φ†(τ) = τ , ∀τ ∈ S(H) is always optimal when

σ = ρ.

Exercise 5.6. Prove the validity of (5.26).

Exercise 5.7. Consider two composite quantum system H =
⊗

i∈I Hi, K =
⊗

i∈I Ki

and a family (Φ†
i )i∈I of quantum channels such that Φi : L(Hi) → L(Ki) and set Φ† :=⊗

i∈I Φ
†
i . Prove that, for any pair of states ρ, σ ∈ S(H), it holds

∥Φ†(ρ)− Φ†(σ)∥W1 ≤ ∥ρ− σ∥W1 .

Exercise 5.8. Compute the Wasserstein distance of order 1 between any two Bell states
on the composite system H = C2 ⊗ C2, e.g. ∥ρ− σ∥W1 where

ρ =
1

2
(|00⟩+ |11⟩) (⟨00|+ ⟨11|) ,

σ =
1

2
(|01⟩+ |10⟩) (⟨01|+ ⟨10|) .

6. Entropy

In this section we introduce entropy, a central quantity in information theory, since the
seminal work by Shannon [Sha48]. Interestingly, its quantum counterpart was introduced
by Von Neumann some years before Shannon, but this should not come as a surprise, since
entropy in physics had been previously considered, first in thermodynamics (Clausius) and
then in statistical mechanics (by Boltzmann and Planck). The main difference between the
“information-theoretic” entropy and the “thermodynamical” one is that the former is in-
terpreted as a way to quantify the information contained in a random variable (considered
as a signal), while the latter is a measure of disorder. This is not a substantial difference,
as in both cases entropy is essentially useful way of counting the possible configurations
of a system (by weighting them with the information available to an observer).
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6.1. Classical entropy. Given a probability distribution p over a (finite) set Ω, we define
its Shannon entropy as

S(p) = −
∑
ω∈Ω

p(ω) log p(ω),

where we set by continuity 0 log 0 = 0. The logarithm is traditionally with respect to basis
2, so that entropy is measured in bits. Let us also notice that S(p) ≥ 0, and that p 7→ S(p)
is concave, since [0, 1] ∋ z 7→ −z log z ≥ 0 is concave.

Example 6.1. The entropy of a uniform distribution over n values is

S((1/n)ni=1) = −n · 1
n
log(1/n) = log n,

so that for the uniform distribution over n-bits sequences Ω = {0, 1}n is n. The larger n,
the larger is the entropy.

Example 6.2. The entropy of a probability distribution over two values (i.e., a Bernoulli
law) is

S((α, 1− α)) = −α logα− (1− α) log(1− α) = h2(α).

The function h2 is also called binary entropy function. Notice that α 7→ h2(α) is concave,
h2(α) = h2(1− α), hence it attains its maximum for α = 1/2.

Although Shannon’s entropy is indeed a function on probability distributions, it is
common to refer to the entropy of a random variable X : Ω 7→ X as the entropy of its law:

S(X) = S((P(X = x))x∈X ) = −
∑
x∈X

P(X = x) log(P(X = x)).

This is slightly ambiguous, since one should also specify the probability distribution p on
Ω which is then used to define the law of X. If it is not clear from the context, one should
use the more precise notation S(X)p instead.

In which sense S(X) measures the information content of a random variable X? The
example of a uniform distribution is particularly clear. Imagine that X codifies a signal
to be transmitted from a source (Alice) to a receiver (Bob), who preliminarily agreed only
that any binary string of length k will be equally possible. Then, before receiving the
message, Bob assumes that X is uniformly distributed over 2k values, hence its entropy
S(X) = k, which is indeed the amount of information transmitted by Alice and gained by
Bob, after receiving the message (assuming that no noise has distorted the message during
the communication). Alternatively, S(X) is a measure of the current state of ignorance of
the subject (Bob) about X (i.e., before observing it): if S(X) is large, Bob is very unsure
about X, hence it will gain a lot of information after observing X. With this interpretation
in mind, many properties of entropy become reasonable (but of course they still require a
mathematical proof). Indeed, it holds12 for any random variable X with values in a finite
set X ,

0 ≤ S(X) ≤ log |X | (6.1)

with S(X) = 0 if and only if X is constant (minimal ignorance) S(X) = log |X | if and
only if the law of X is uniform on the whole set (maximal ignorance).

Back to the example, if Bob happens to receive some information about X through
observation of another random variable Y (possibly correlated with X), how should he
update the entropy of X, i.e., its state of ignorance about X? Clearly, after Bob observes
Y = y, then the answer is simply given by updating the law of X to the conditional
distribution

x 7→ P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
,

12most of the properties in this subsection are stated without proof, since we are going to prove them
in the quantum case, which imply as well those for the classical case. The only exception is Lemma 6.3.
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which would lead to the quantity

S(X)P|Y=y = −
∑
x∈X

P(X = x|Y = y) logP(X = x|Y = y).

In information theory, however, the point of view is that of an engineer (as Shannon was
after all) who is examining the entire process of sending/receiving information between
Alice and Bob, hence it is not interested in the actual value Y = y that Bob may have
observed in a specific instance, but rather on the average with respect to the possible
values he may observe. This motivated Shannon to define the conditional entropy of X
given Y as follows:

S(X|Y ) =
∑
y∈Y

S(X)P|Y=yP(Y = y). (6.2)

Notice that S(X|Y ), being the average of positive quantities, is itself positive, a fact that
in the quantum case will no longer hold. From the very definitions, it is simple to check
that

S(X|Y ) = S((X,Y ))− S(Y ), (6.3)

which can be equivalently stated as the following chain rule for the entropy:

S(X,Y ) = S(Y ) + S(X|Y ),

which is reminiscent of the product rule of probabilities

P(X = x, Y = y) = P(Y = y)P(X = x|Y = y),

where products are replaced with sums because of the logarithm.
Let us collect for later use the following result.

Lemma 6.3 (Fano’s inequality). Let X, X ′ be random variables taking values in the same
set X , and let p = P(X ̸= X ′). Then,

S(X|X ′) ≤ h2(p) + p log(|X | − 1).

Proof. We have

S(X|X ′) =
∑
x∈X

SP|X′=x(X)P(X ′ = x).

For every x ∈ X , we introduce the random variable IX=x and use the chain rule to
decompose

S(X)P|X′=x = S((X, IX=x))P|X′=x

= S(IX=x)P|X′=x + S(X|IX=x)P|X′=x.

For the first term, we simply have

S(IX=x)P|X′=x = h2(P(X = x|X ′ = x)).

Summation upon x ∈ X and concavity of h2 yields∑
x∈X

h2(P(X = x|X ′ = x))P(X ′ = x) ≤ h2

(∑
x∈X

P(X = x|X ′ = x)P(X ′ = x)

)
= h2(P(X = X ′))

= h2(p).

For the second term, by definition of conditional entropy,

S(X|IX=x)P|X′=x

= S(X)P|X=x,X′=xP(X = x|X ′ = x) + S(X)P|X ̸=x,X′=xP(X ̸= x|X ′ = x)

= S(X)P|X ̸=x,X′=xP(X ̸= x|X ′ = x)

≤ log(|X | − 1)P(X ̸= x|X ′ = x),
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having used (6.1), since X ̸= x entails that X takes valued in the set X \{x}. Summation
upon x ∈ X yields∑

x∈X
S(X|IX=x)P|X′=xP(X ′ = x) ≤ log(|X | − 1)P(X ̸= x|X ′ = x)P(X ′ = x)

= P(X ̸= X ′) log(|X | − 1),

hence the thesis. □

Assume now that Y is a noisy version of the initial message X sent by Alice, which was
distorted by the communication channel between the two. Then, a natural question from
the point of view of the engineer is how much is the change in Bob’s ignorance about X
after he receives Y . This led Shannon to the definition of the mutual information, as

I(X;Y ) = S(X)− S(X|Y ). (6.4)

We intuitively expect that I(X;Y ) should be positive since observing Y , Bob’s ignorance
about X should become smaller, and this is indeed the case. Notice also that one can
rewrite

I(X;Y ) = S(X)− (S(X,Y )− S(Y )) = S(X) + S(Y )− S(X,Y ),

which shows that the mutual information is symmetric with respect to X, Y . The expres-
sion

I(X;Y ) = S(Y )− S(Y |X)

can be interpreted as the information content of the signal received by Bob, minus the part
S(Y |X) due to noise in the communication channel. An explicit expression of I(X;Y ) in
terms of the joint and marginal densities can be also easily obtained:

I(X;Y ) =
∑

x∈X ,y∈Y
P(X = x, Y = y) log

(
P(X = x, Y = y)

P(X = x)P(Y = y)

)
. (6.5)

The denominator P(X = x)P(Y = y) would be the joint density in the case that X, Y
were independent variables, and in that case I(X;Y ) = 0, which agrees with our intuition
(if Bob receives pure noise, its ignorance about X will not change at all).

The expression (6.5) suggests replace the denominator with a general probability den-
sity. This of course can be done also in the case of a single random variable (or a single
probability distribution). Indeed, one defines the relative entropy (or Kullback-Leibler
divergence) of p with respect to q (both defined on a set X ) as the quantity

DKL(p||q) =
∑
x∈X

p(x) log(p(x)/q(x))

=
∑
x∈X

p(x) (log p(x)− log q(x))

= −S(p) +
∑
x∈X

p(x) log q(x),

provided that p(x) = 0 whenever q(x) = 0 (i.e., p is absolutely continuous with respect to
q), otherwise we let DKL(p||q) = ∞. The relative entropy can be conveniently thought as
a “distance” (or a distinguishability measure) between p, however it is not symmetric,

DKL(p||q) ̸= DKL(q||p) (in general).

It is a very relevant quantity in information theory, being related to the opposite of Shan-
non’s entropy of p, but enjoying several monotonicity and convexity properties. Indeed,
given any Markov kernel N(x, y)x∈X ,y∈Y , from X to Y, the relative entropy decreases:

DKL(N
†p||N †q) ≤ DKL(p||q), (6.6)
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i.e., the two transformed probabilities N †p, N †q become more difficult to distinguish.
Notice that, by taking any kernel such that N †p = N †q, we obtain that

0 = DKL(N
†p||N †q) ≤ DKL(p||q). (6.7)

The above property implies many other entropic inequalities. It yields easily that

(p, q) 7→ DKL(p||q) is jointly convex,

which can be very useful in minimization problems.

Example 6.4. Let E : X → R and for m ∈ R consider the following problem: what is
the probability distribution p on X which maximizes Shannon’s entropy S(p) with the
constraint that the mean ∑

x∈X
E(x)p(x) = m (6.8)

is given ? Of course, one needs minE ≤ m ≤ maxE. In such a case, the answer is
provided by a Gibbs distribution pβ(x) = e−βE/z, where β ∈ [−∞,+∞], z are parameters:
β (if positive) may be physically interpeted as an inverse temperature, while z = z(β) =∑

x∈X e
−βE(x) is simply a normalization constant, also called partition function in the

statistical physics literature). To prove it, let β be such that pβ has mean m: such a β
exists if minH < m < maxH, since the mean of H with respect to pβ is continuous as
a function of β and as β → ∞ it converges to minH, while for β → −∞ it converges to
maxH. Then, since log pβ = −βE − log z, for every distribution p such that (6.8) holds,
we have

DKL(p||qβ) = −S(p) + βm+ log z(β).

Thus, maximizing p 7→ S(p) is equivalent to minimize the relative entropy as a function of
p, which is convex, non-negative and has a minimum at p = qβ, hence the claim is proved.
One could also argue that, by strict convexity, qβ is the only maximum entropy distribution
(the only degeneracies can be at m ∈ {minE,maxE}). In particular, taking E(x) = 0, we
obtain that the uniform distribution maximizes the entropy, hence the second inequality
in (6.1).

Let us collect further consequences of (6.6). Recall that the mutual information between
variables X, Y is equivalent to the relative entropy between the (joint) law of (X,Y ) and
the product of the marginal laws of X and Y ,

I(X;Y ) = DKL(PXY ||PX ⊗ PY ). (6.9)

Therefore, we obtain immediately that I(X;Y ) ≥ 0. A fundamental inequality is the data
processing inequality, which states that, whenever (X,Y, Z) are three random variables
that constitute a Markov chain, i.e., X and Z are conditionally independent given Y , it
holds

I(X;Z) ≤ I(X;Y ), (6.10)

and by symmetry I(X;Z) ≤ I(Y ;Z) as well. Recalling that I(X;Y ) denotes the change
in the ignorance about X after Bob receives Y , this inequality shows that any further
transformation (Z) of the signal received Y (without accessing X) can only decrease such
a change (of course, the larger I, the better).

To see this, consider the joint probability distribution PXY Z on X ×Y×Z. The Markov
chain assumption yield that there is a Markov kernel (N(y, z))y∈Y,z∈Z from Y to set Z
such that PZ = N †PZ , and moreover

PXY Z(x, y, z) = PXY (x, y)N(y, z). (6.11)

We extend N to a kernel from X × Y to X × Z by acting trivially on X ,

Ñ((x, y), (x′, z)) = δx(x
′)N(y, z),



LECTURE NOTES ON QUANTUM INFORMATION THEORY 51

in the quantum setting, such a kernel corresponds to the channel 1 ⊗ N †. Then, (6.11)

yields that Ñ †PXY = PXZ , while
Ñ †(PX ⊗ PY ) = PX ⊗N †PY = PX ⊗ PZ .

Plugging these identities in (6.6) yields (6.10). As a simple example of (6.10), consider
the case that Z = f(Y ) is a function of Y . Then,

I(X; f(Y )) ≤ I(X;Y ).

In particular, if one replaces Y with a joint variable (Y,Z) is a joint variable and f(y, z) =
y, we obtain that

I(X;Y ) ≤ I(X; (Y, Z)).

Since I(X;Y ) = S(X) − S(X|Y ), I(X; (Y, Z)) = S(X) − S(X|(Y,Z)), this inequality is
equivalent to

S(X|(Y,Z)) ≤ S(X|Y )

which be also equivalently restated as the strong subadditivity property of the Shannon
entropy

S(X,Y, Z) ≤ S(X,Y ) + S(Y,Z)− S(Y ),

which improves upon the ordinary subadditivity

S(X,Y ) ≤ S(X) + S(Y ),

which is simply equivalent to I(X;Y ) ≥ 0.
Using these inequalities we can slightly extend Lemma 6.3: given X and Y , assume

that X ′ = f(Y ) and set p = P(X ̸= X ′). Then,

S(X|Y ) ≤ h2(p) + p log(|X | − 1). (6.12)

Indeed, since (Y, f(Y )) = (Y,X ′) is a function of Y and viceversa, then S(X|Y ) =
S(X|(Y,X ′) hence

S(X|Y ) = S(X|(Y,X ′)) ≤ S(X|X ′) ≤ h2(p) + p log(|X | − 1),

having applied Lemma 6.3 in the last inequality.

6.2. Quantum entropy. Let us consider a finite-dimensional quantum system H. Given
a state ρ ∈ S(H), its von Neumann entropy is defined as

S(ρ) = −tr[ρ log ρ],

where ρ log ρ is defined via functional calculus. Since the spectrum (with multiplicities)
of ρ is contained in [0, 1], it follows immediately that S(ρ) ≥ 0, with S(ρ) = 0 if and only
if ρ is pure (since −z log z equals zero if and only if z ∈ {0, 1}. To mimic the classical
notation with random variables, one often writes S(H)ρ or simply S(H) if the state ρ is
understood.

Similarly as in the classical case, to establish properties of the von Neumann entropy, it
is more convenient to consider the quantum relative entropy of ρ with respect to another
state σ ∈ S(H), which is defined as

S(ρ||σ) = tr[ρ(log ρ− log σ)],

where the operators ρ log ρ and log σ are defined via functional calculus, with the only
caveat that we require that the kernel of σ to be contained in the kernel of ρ and we
interpret ρ(log ρ − log σ) = 0 on the kernel of ρ. This is the equivalent of requiring
absolute continuity of ρ with respect to σ. If this does not happen, we set S(ρ||σ) = ∞.
If ρ and σ commute, i.e., they can be simultaneously diagonalized, then

S(ρ||σ) = DKL(p||q),
where p is the classical probability distribution associated to the spectrum of ρ, and q to
σ. Thus, the properties we are going to prove below include those of the Kullback-Leibler
divergence as special cases.
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Our first result is the quantum analogue of (6.6).

Theorem 6.5 (data processing inequality, DPI). Let H, H̃ be quantum systems and let

Φ† be a quantum channel from H to H̃. Then, for any ρ, σ ∈ S(H), it holds

S(Φ†(ρ)||Φ†(σ)) ≤ S(ρ||σ). (6.13)

The proof relies upon a differentiation argument which is often used with entropic
inequalities, hence it may be worth explaining in general abstract terms. Assume that one
has two functions f, g : [a, b] → R such that, for t ∈ [a, b]

f(t) ≤ g(t) and f(a) = g(a).

If both f and g are (right-)differentiable at t = a, then it follows that

f ′(a) ≤ g′(a).

Indeed, write

f(t) = f(a) + f ′(a)(t− a) + o(t− a) ≤ g(a) + g′(a)(t− a) + o(t− a) = g(t),

hence
f ′(a)(t− a) ≤ g′(a)(t− a) + o(t− a),

so that dividing by t− a > 0 and letting t→ a yields the required inequality.

Proof. Let us recall the special case (4.21) of Lieb’s concavity theorem, for K = 1H̃ , and
X = ρ, Y = σ, t ∈ [0, 1],

tr[ρ1−tσt] ≤ tr[Φ†(ρ)1−tΦ†(σ)t].

For t = 0, the above inequality becomes in fact an identity (Φ is trace preserving). As-
suming for simplicity that ρ, σ, Φ†(ρ), Φ†(σ) are all invertible, then both sides in the
inequality are smooth functions of t, and the thesis follows by differentiation at t = 0.
Indeed, we have

d

dt

∣∣∣∣
t=0+

tr[ρ1−tσt] ≤ d

dt

∣∣∣∣
t=0+

tr[Φ†(ρ)1−tΦ†(σ)t].

We compute
d

dt

∣∣∣∣
t=0+

tr[ρ1−tσt] = tr[−ρ log ρ+ ρ log σ] = −S(ρ||σ),

and similarly for the right hand side. To remove the invertibility assumptions, one should
perturb ρ with a small convex combination with an invertible state, e.g. 1H/dim(H), and
similarly σ, but also perturb the channel Φ† by taking a small convex combination with

the trivial channel Φ†
0(ρ) = 1H̃/dim(H̃). We leave as an exercise to check that the thesis

in the general case follows by a limiting argument. □

From the data processing inequality, we obtain several other properties of the quantum
relative entropy and von Neumann entropy.

(1) By considering any trivial channel that maps any state into the same state, e.g.
Φ†(ρ) = 1H/dim(H), it follows that S(ρ||σ) ≥ 0 for every ρ, σ ∈ S(H).

(2) The quantum relative entropy is jointly convex, i.e.,

(ρ, σ) 7→ S(ρ||σ)
is convex. This can be seen by proving mid-point convexity only (since it is con-
tinuous), i.e.,

S((ρ0 + ρ1)/2||(σ0 + σ1)/2) ≤ (S(ρ0||σ0) + S(ρ1||σ1)) /2.
In turn, this follows from an application of (6.13) to the partial trace channel
Φ†(M) = tr2[M ] to the states on the system H ⊗ C2,

ρ =

(
ρ0 0
0 ρ1

)
, σ =

(
σ0 0
0 σ1

)
.
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(3) Given an observable E ∈ O(H), by translating the argument from Example 6.4
in the quantum setting, it follows that any Gibbs state ρβ = e−βE/z for β ∈ R,
z = tr[e−βE ] > 0 is a maximizer of von Neumann entropy among the states ρ such
that (E)ρ = tr[Eρβ] is fixed. In particular, von Neumann entropy always satisfies
the inequalities

0 ≤ S(H)ρ ≤ log(dim(H)),

akin to (6.1) (of course this can be seen using much simpler arguments).

We next consider the quantum analogue of the conditional entropy. This is perhaps
the most delicate quantity, since one cannot use (6.2) as no quantum analogue of the
conditional density is available. However, one can directly take (6.3) as a definition: given
a composite system H ⊗K and a density operator ρ ∈ S(H ⊗K) with reduced density
operator ρH = trK [ρ] ∈ S(H), one defines the quantum conditional entropy as

S(K|H)ρ = S(ρ)− S(ρH) = S(H ⊗K)ρ − S(H)ρH .

(with some abuse of notation, one may also write S(H)ρ instead of S(H)ρH and S(HK)ρ
instead of S(H ⊗K)ρ). Clearly, this definition ensures the validity of the chain rule

S(H ⊗K)ρ = S(H)ρH + S(K|H)ρ.

However, it may fail to be positive (hence it cannot be in general represented as in (6.2)).
This is a consequence of the existence of entangled states, and indeed negativity of this
entropy can be used to spot entangled states. Without entering too much into the subject,
we provide examples through the following general result, called purification of a state.

Proposition 6.6 (purification of a state). Given any state ρ ∈ S(H) on a quantum
system, there exists an auxiliary quantum system K and a pure state |Ψ⟩ ⟨Ψ| ∈ S(H ⊗K)
such that

trK [|Ψ⟩ ⟨Ψ|] = ρ.

Proof. Let K = H∗ be the dual of H, and consider the canonical isomorphism

|ψ⟩ ⊗ ⟨φ| 7→ |ψ⟩ ⟨φ|

between H ⊗H∗ and L(H). We can thus find |Ψ⟩ ∈ H ⊗K corresponding to
√
ρ ∈ L(H).

We claim that such |Ψ⟩ satisfies the thesis. Indeed, by choosing an orthonormal basis
(|i⟩)i∈I of eigenvectors of ρ (with eigenvalues (pi)i∈I , we have

√
ρ =

∑
i∈I

√
pi |i⟩ ⟨i| ,

hence

|Ψ⟩ =
∑
i∈I

√
pi |i⟩ ⊗ ⟨i| .

Thus,

|Ψ⟩ ⟨Ψ| =
∑
i,j∈I

√
pipj(|i⟩ ⊗ ⟨i|)(⟨j| ⊗ |j⟩),

and taking the partial trace yields

trK [|Ψ⟩ ⟨Ψ|] =
∑
i∈I

pi |i⟩ ⟨i| = ρ. □

By considering a purification |Ψ⟩ ⟨Ψ| ∈ S(H ⊗K) for a given state ρ ∈ S(H), we see
that the relative entropy must be negative, since the chain rule gives

0 = S(H ⊗K)|Ψ⟩⟨Ψ| = S(H)ρ + S(K|H)|Ψ⟩⟨Ψ|.

Finally, we discuss the quantum analogue of the mutual information. To define it,
one may use either (6.4) or (6.9), which lead to the same quantity, called the quantum
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mutual information: given a composite quantum system H ⊗ K and a density operator
ρ ∈ S(H ⊗K) with reduced density operators ρH ∈ S(H), ρK ∈ S(K), one defines

I(H;K)ρ = S(ρ||ρH ⊗ ρK)

= S(H)ρH − S(H|K)ρ

= S(H)ρH + S(K)ρK − S(H ⊗K)ρ.

We leave as an exercise to check indeed that these are all equivalent expressions. The
data processing inequality entails the following result: given a state ρ ∈ S(H ⊗K) and a

quantum channel Φ† from K to K̃, then

I(H; K̃)1L(H)⊗Φ†(ρ) ≤ I(H;K)ρ. (6.14)

Indeed, it is sufficient to apply (6.13) to the channel 1L(H) ⊗ Φ† from H ⊗K to H ⊗ K̃,
and notice that

trK̃ [1L(H) ⊗ Φ†(ρ)] = trK [ρ], trH [1L(H) ⊗ Φ†(ρ)] = Φ†(ρ),

(one can check these identities with M ⊗N in place of ρ, and then argue by linearity).
Replacing K with a composite system K ⊗ L and letting Φ† = trL be the partial trace

channel, we obtain that, for every ρ ∈ S(H ⊗K ⊗ L),

I(H;K)ρHK ≤ I(H;K ⊗ L)ρ,

which can be equivalently rewritten and the strong subadditivity of von Neumann entropy

S(H ⊗K ⊗ L) ≤ S(H ⊗K) + S(K ⊗ L)− S(K).

6.3. Spin systems and specific quantities. Consider an infinite (countable) set I and
a collection of (elementary) quantum systems (Hi)i∈I . In this section we show how to
rigorously define a notion of infinite tensor product⊗

i∈I
Hi, (6.15)

relying upon the C∗-algebra framework. The physical interpretation of such a system is
that I corresponds to a set of sites (think e.g. of a lattice-like structure, I = Zd), each
occupied by a particle, and we are considering the joint system of the whole structure.
The system Hi may e.g. describe the spin of the particle at the site i, hence the name
spin systemsAnother interpretation is that I = Z or I = N is a set of “times” and we
are describing the “path space” of a dynamical system. Considering infinite sets I is
particularly relevant in order to describe phenomena, such as phase transitions, which
would otherwise difficult to investigate in finite systems. Notice that the probabilistic
counterpart of such a construction is that of product set and of measures on the product
space (in particular, infinite product measures) and similar considerations apply as well
(think e.g. of a collection of i.i.d. random variables).

Back to the construction, for any finite set Λ ⊆ I, define the algebra

UΛ = L

(⊗
i∈Λ

Hi

)
.

Given Λ′ ⊆ Λ ⊆ I (both finite), one has a natural injective ∗-homomorphism

πΛ′,Λ : UΛ′ → UΛ, A 7→ A⊗ 1Λ\Λ′ ,

which allows essentially to identify UΛ′ as a sub-algebra of UΛ. The union

UlocI =
⋃
Λ⊆I

UΛ

defines the strictly local algebra associated to the spin system. The operator norm is
well defined on UlocI , but it does not define a Banach space structure on it. However,
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it is sufficient to consider its (abstract) completion to have a well-defined structure of
C∗-algebra13 UI , associated to the spin system (Hi)i∈I .

For every finite Λ ⊆ I, the inclusion maps extend to UI and define ∗-homomorphisms

πΛ : UΛ → UI .

By duality, it induces a “partial trace” map trI\Λ. In particular, given ρ : UI → C one
has a well-defined reduced density operator ρΛ ∈ S(

⊗
i∈ΛHi). Consistency between the

inclusion maps yield by duality the identity between the partial traces

trΛ\Λ′ ◦ trI\Λ = trI\Λ′ ,

hence

ρΛ′ = trΛ\Λ′ [ρΛ] for every Λ′ ⊆ Λ. (6.16)

Viceversa, given any collection of density operators (ρΛ)Λ⊆I with ρΛ ⊆ S(
⊗

i∈ΛHi) over
the finite subsets Λ ⊆ I such that (6.16) holds, they define uniquely a functional ρ over
UlocI , which extends by continuity to a state on UI (since each ρΛ is a state, one has by (5.5)
that |tr[Aρλ]| ≤ ∥A∥∞). For example, product states ρ =

⊗
i∈I ρi are thus well defined

for every family (ρi)i∈I of density operators with ρi ∈ S(Hi), and provide the analogue
for the infinite product construction in probability.

It is common to restrict the study to the homogeneous settings, where each Hi’s are
equal (e.g. to a copy of Cd). In such a case, any bijection τ : I → I induces a ∗-isomorphism
between UΛ and Uτ(Λ), defined on tensor product operators as

Φτ (
⊗
i∈Λ

Ai) =
⊗
i∈τ(Λ)

Aτ−1(i).

E.g. if τ(1) = 2, τ(2) = 1, this amounts to swapping the roles of the operators τ(A1⊗A2) =
A2 ⊗ A1. Clearly, such a family of operators acts consistently on the families UΛ, hence
can be used to define a well-defined ∗-automorphism Φτ of UI (i.e., an ∗-isomorphism of
UI into itself).

By duality, a state ρ on UI is τ -invariant if ρ(Φτ (A)) = ρ(A) for every A ∈ UI (or
equivalently, for every A ∈ U locI ). If I has additional structure, e.g. it is a group or
a homogeneous space, one can isolate the sets of invariant states with respect to the
∗-automorphism induced by the group action. For example, states that are invariant
with respect to any permutation τ : I → I (i.e., that is non-trivial only on a finite
subset) provide the analogues of exchangeable probabilities. If I = Z, invariant states
with respect to translations (i.e., with respect to τ(n) = n+ 1) are the analogues of (the
laws) of stationary processes. These states are particularly relevant for modelling reasons.

It turns out that defining the entropy as limΛ↑I S(ρΛ) is not very useful, on invariant
states ρ, since already on simple examples, e.g. a product state

⊗
i∈I ρi with ρi = ρ0 for

every i, one obtains S(ρΛ) = |λ|S(ρ0). This motivates the introduction of an entropy
density with respect to the number of sites, called specific entropy. When I = Z, it is
defined on any invariant state ρ as

s(ρ) = lim
n→∞

S(ρ[1,n])

n
.

Existence of the limit follows from a sub-additivity argument.
For other “extensive” quantities, one can define a similarly a notion of density with

respect to the number of sites. For example, in [De +21], it is introduced a notion of
specific quantum Wasserstein distance of order 1 between two invariant states, ρ, σ ∈ UZ
as

w1(ρ, σ) = lim
n→∞

∥ρ[1,n] − σ[1,n]∥W1

n
.

13such direct limit construction is also called uniformly hyperfinite (UHF) algebra
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6.4. Exercises.

Exercise 6.1. For α, β ∈ [0, 1], show directly by an application of Jensen inequality to
the (strictly) convex function z 7→ z log z that

DKL((α, 1− α)||(β, 1− β)) ≥ 0,

with equality if and only if α = β. Deduce that, for some constant c > 0 (independent of
α and β), it holds

DKL((α, 1− α)||(β, 1− β)) ≥ c|α− β|2. (6.17)

Exercise 6.2. Complete the proof of Theorem 6.5 for general ρ, σ and channel Φ†.

Exercise 6.3 (Quantum Pinsker inequality). Using (6.17) and the dual characterization
of the trace distance (5.7), show that, there exists a constant c > 0 such that, for any
finite-dimensional quantum system H and density operators ρ, σ ∈ S(H), it holds

S(ρ||σ) ≥ cDtr(ρ, σ)
2.

Exercise 6.4. Compute the von Neumann entropy of a single qubit state ρ in terms of
its Bloch ball representation (2.7).

7. A quantum coding theorem

In this final section, we address a quantum version of the fundamental Shannon’s limit,
which quantifies the maximum rate of data that can theoretically be transferred through
a noisy communication channel. This result, first presented [Sha48] is considered to be
a foundational one in information theory. The question whether one may go beyond
Shannon’s limit, by exploiting quantum mechanical features is both natural and of great
interest in applications.

7.1. The classical case. Recall the example from the last section, where Alice and Bob
agree upon sending a message codified as a random variable X taking values in set X ,
through a noisy communication channel, so that Bob receives a possibly distorted version
Y (maybe even taking values in a different alphabet Y). The channel itself is modelled as
a Markov kernel N from X to Y, so that if p = pX is the law of the variable X, then N †(p)
is the law of Y . More generally, one can define the joint law of (X,Y ) as the distribution
on X × Y as

P(X = x, Y = y) = p(x)N(x, y). (7.1)

Alice and Bob preliminarily agree to use iterated applications of the channel and trans-
mit the message via a suitable coding procedure. Let us give some precise definition: given
n ≥ 1, one defines the composite memoryless channel N⊗n as the kernel from X n to Yn,

N⊗n((xi)
n
i=1, (yi)

n
i=1) =

n∏
i=1

N(xi, yi).

The idea is encode a message through a code (W,V ), which consists of

i) a codebook W : {1, . . . ,m} → X n consisting of m codewords (W (i))mi=1, each of a
fixed length n, to be transmitted by Alice via the composite channel N⊗n,

ii) a decision rule, V : Yn → {0, 1, . . . ,m}, which assigns, to each observed word
y ∈ Yn, Bob’s estimate about the word transmitted by Alice: if V (y) = i, i ̸= 0,
then Bob decodes y as W (i); if V (y) = 0, then Bob makes no decision.

Given a code (W,V ) with m codewords (the “size” of the code), each of length n, Alice
needs n applications of the channel (up to a constant, n bits of information) to send m
codewords, i.e., logm bits of information. The transmission rate, i.e. the number of bits
of information per application of the channel is therefore logm/n.
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Of course, what matters in the picture is that the message sent by Alice is correctly
decoded by Bob. For each i ∈ {1, . . . ,m}, the probability that Bob decodes correctly the
word, given that Alice sent word i, is

P(V (y) = i|W (i)) =
∑

y∈{V=i}

N⊗n(W (i), y) =
∑

y∈{V=i}

n∏
j=1

N(yj |W (i)j).

We introduce the following indicators:

(1) the maximal error probability

pe(W,V ) = max
i=1,...,m

(1− P(V (y) = i|W (i)),

(2) the mean error probability

p̄e(W,V ) =
1

m

m∑
i=1

(1− P(V (y) = i|W (i)).

Clearly,

p̄e(W,V ) ≤ pe(W,V ).

A simple application of Markov inequality yields the following fact: given any code (W,V )

with 2m codewords, there exists a sub-code (W̃ , Ṽ ) (i.e., W̃ obtained by restricting W to

a subset of I ⊆ {1, . . . , 2m}, and setting Ṽ = V on {V = i} for i ∈ I, Ṽ = 0 otherwise) of
size at least m such that

pe(W,V ) ≤ 2p̄e(W̃ , Ṽ ). (7.2)

Given n and m, denote by

pe(n,m) = min
(W,V )

pe(W,V ), p̄e(n,m) = min
(W,V )

p̄e(W,V ),

where the minimum is among all codes with m codewords of length n. With this notation,
we say that r > 0 is an achievable transmission rate for the channel N if

lim
n→∞

pe(n, 2
nr) = 0.

Roughly speaking, by using suitable codes, Alice can transmit to Bob 2nr words, using n
applications of the channel, with an infinitesimal error as n → ∞. Notice that, by (7.2),
one can equivalently use p̄e instead of pe in the definition above.

From the engineer’s perspective, it is then natural to define the (operational) channel
capacity C(N) as the supremum among the achievable transmission rates r, so that it
holds

• (direct statement) for every r < C(N),

lim
n→∞

p̄e(n, 2
nr) = 0,

• (weak converse) for every r > C(N),

lim sup
n→∞

p̄e(n, 2
nr) > 0,

i.e., Alice cannot use codes to transmit information to Bob with a rate r.

Almost immediately from the definition, we have that the channel capacity is an additive
quantity, i.e.,

C(N⊗k) = kC(N), for every k ≥ 1. (7.3)

Indeed, given any code (W,V ) of 2nr codewords, each of length n, can be used to obtain a
code (W k, V k) (essentially by concatenating k independent copies of the code), consisting
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of 2nkr codewords, of length nk, such that, for every y1, . . . , yk ∈ (Yn)k, and i1, . . . , ik ∈
{0, 1, . . . ,m}k,

P(V k(y1, y2, . . . , yk) = (i1, . . . , ik)|Xk = (W (i1), . . . ,W (ik)))

=

k∏
j=1

P(V (yj) = ij |X =Wij ).

Letting n→ ∞, we obtain that for every achievable rate r for N , the rate kr is achievable
for N⊗k, hence kC(N) ≤ C(N⊗k). On the other side, given a code (W,V ) using the channel
N⊗k, consisting ofm = 2ns codewords each of length n (i.e., requiring n applications of the
channel N⊗k), this can be also interpreted as a code with respect to the original channel
N with length kn, hence for every achievable rate s for N⊗k we have that s/k is achievable
for N , i.e. C(N⊗k)/k ≤ C(N).

Shannon’s noisy channel coding theorem, also called Shannon’s limit precisely charac-
terizes C(N) in terms of entropic quantities, in particular related to a single application
of the channel. Recall that we introduced the mutual information

I(X;Y ) = S(X)− S(X|Y ) = S(Y )− S(Y |X)

as a measure of how much the information gain of Bob, about X, after he receives Y . If
we use the joint law (7.1), we have the identity

I(X;Y ) = S

(∑
x∈X

p(x)N(x, ·)

)
−
∑
x∈X

p(x)S(N(x, ·)),

which shows that I(X;Y ) is (in this particular case) a concave function of the probability
distribution p = pX of the message X that Alice may choose to send. Taking once again
the point of view of the engineer whose aim is to optimize the communication, it is natural
to maximize I(X;Y ) among all such distributions, thus defining the information channel
capacity as

CI(N) = max
p
I(X;Y ) = max

p

{
S

(∑
x∈X

p(x)N(x, ·)

)
−
∑
x∈X

p(x)S(N(x, ·))

}
.

It turns out that this quantity coincides with the operational channel capacity C(N).

Theorem 7.1 (Shannon’s limit). It holds

C(N) = CI(N). (7.4)

Let us give only a brief sketch of the main ideas proof, as its fundamental ideas are
further elaborated in the quantum case. The argument is split into two parts: the weak
converse statement, i.e., inequality ≤ in (7.4), is obtained via an application of Fano’s
inequality; the direct statement, i.e., inequality ≥, instead is obtained via a in random
coding argument.

Weak converse. Let (W,V ) be any code of size m and codewords of length n. Then, we
turn W itself into a random variable Xn = W taking m values among those of X n, by
assuming uniform distribution on the m codewords. By applying the composite memory-
less channel N⊗n (i.e., formally applying (7.1) with N⊗n instead of N and the uniform
law over the m codewords), we have that V becomes a random variable with values in
{0, 1, . . . ,m}, which we can use to define an estimator W ′ of W (in case V = 0, estimate
W by any rule, it does not matter), with error probability

P(W ′ ̸=W ) ≤ 1

m

m∑
i=1

(1− P(V = i|W (i)) = p̄e(W,V ).
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Fano’s inequality (6.12) (cleverly applied only to the m values of W instead of the whole
X n)

S(W |V ) ≤ h2(p̄e(W,V )) + p̄e(W,V ) log(m− 1) ≤ 1 + p̄e(W,V ) logm.

Since W is uniform over m values, we have S(W ) = logm, hence

CI(N⊗n) ≥ I(W ;V ) = S(W )− S(W |V ) ≥ logm− p̄e(W,V )) logm− 1,

i.e.,

p̄e(W,V )) ≥ 1− CI(N⊗n) + 1

logm
.

To turns this into an asymptotic lower bound, write m = 2nr so that

p̄e(n, 2
nr) ≥ 1− CI(N⊗n) + 1

nr
.

Letting n→ ∞, this leads to the inequality

lim sup
n→∞

p̄e(n, 2
nr) ≥ 1− 1

r
lim inf
n→∞

CI(N⊗n)

n
,

which shows that any r such that

r > lim inf
n→∞

CI(N⊗n)

n

is not an achievable transmission rate, hence

C(N) ≤ lim inf
n→∞

CI(N⊗n)

n
.

To conclude this part, we need to argue that

lim inf
n→∞

CI(N⊗n)

n
= CI(N). (7.5)

As we are going to argue similarly in the quantum case, let us first notice that is
straightforward to prove CI is super-additive, i.e.,

CI(N⊗(k+h)) ≥ CI(N⊗k) + CI(N⊗h) (7.6)

as a simple consequence of tensorization properties of relative entropy. It then follows
from Fekete’s subadditive lemma that the lim sup above is actually a limit and

lim
n→∞

CI(N⊗n)/n = inf
n≥1

CI(N⊗n)/n.

To prove (7.6), consider two distributions pk, ph that are maximizers respectively for
CI(N⊗k) and CI(N⊗h). Then, considering the product distribution pk ⊗ ph to define
a random variable Xk+h = (Xk, Xh), on the set X k+h, to which we apply the kernel
N⊗k+h yielding variables Y k+h = (Y k, Y h), we see that the joint distribution of (Xk, Y k),
(Xh, Y h) are independent. Therefore, by a general property of the relative entropy,

CI(N⊗k+h) ≥ I(Xk+h;Y k+h)pk⊗ph

= I(Xk;Y k)pk + I(Xh;Y h)ph

= CI(N⊗k) + CI(N⊗h).

(7.7)

Therefore, to obtain (7.5), we need to argue that the information channel capacity is
additive, i.e., equality holds above. To see this, recall that p 7→ I(X;Y )p is a concave
function, hence to ensure that a distribution p is a maximizer it is sufficient to be a
stationary point. It then follows from the identity

I(Xk+h;Y k+h)pk⊗ph = I(Xk;Y k)pk + I(Xh;Y h)ph

that pk ⊗ ph is also a stationary point, hence equality holds in (7.7).
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Direct statement. Here we only sketch the strategy in the proof, which consists of building
a random code, since we are going more into details in the quantum case.

Ultimately, we need to build a connection between information-theoretical quantities
such as entropy and conditional entropy to operational ones, i.e., related to an i.i.d. family
of random variables (Xi)

n
i=1. This is obtained via the law of large numbers, ensuring that

S(p) = −
∑
x∈X

p(x) log p(x) = −E [log p(X)]

can be approximated by the empirical average

− 1

n

n∑
i=1

log p(Xi) = − 1

n
log

(
n∏
i=1

p(Xi)

)
.

If we interpret W = (Xi)
n
i=1 a random word with letters sampled from the alphabet X

(each letter with law p) this connection yields that a typical word will have probability of
occurrence approximatively equal to

P(W = w) =
n∏
i=1

p(Xi) ≈ 2−nS(p),

i.e., for sufficiently large n, the random variable W effectively behaves as a uniformly
distributed variable over 2nS(p) values. In fact, this observation is the starting point in
the proof of another fundamental result by Shannon, the source coding theorem.

Back to the noisy channel setting, we need to build a code (W,V ) to allow communi-
cation between Alice and Bob with any rate r < CI(N). We begin by sampling m = 2nr

independent words (W (i))mi=1, each of length n, according to a single letter distribution p
(which eventually should be taken as the maximizer for CI(N)).

We define the decision rule V . After receiving y, Bob will argue as follows:

(1) First, he checks if y is a typical word for Y , otherwise he sets V (y) = 0 (effectively

restricting to ≈ 2nS(Y ) words)
(2) For every i ∈ {1, . . . ,m}, he checks (in sequence) if y is conditionally typical for

the word W (i) in the codebook, i.e.,

P(y|W (i)) ≈ 2−nS(Y |X).

He stops at the first affirmative case decodes V (y) = i. If no word is conditionally
typical, he sets V (0) = 0.

The output of the channel effectively behaves as a uniformly distributed variable over
2nS(Y ) values, while on average, for each codeword in W , we have 2nS(Y |X) conditionally
typical outputs. By independence, the typical outputs should be well-separated. Thus,
we expect to be able to build a code of size m,

m ≈ 2nS(Y )

2nS(Y |X)
= 2n(S(Y )−S(Y |X)) = 2nI(X;Y )p ,

with asymptotically small error. Finally, choosing p in order to maximize I(X;Y )p would
lead to C(N) ≥ CI(N).

7.2. The quantum case. In the quantum framework, it is tempting to immediately
replace the Markov kernel N with a quantum channel Φ, however, to keep the exposition
simple, we focus on the following intermediate case of a classical to quantum channel,
which transforms each letter in the input alphabet X for Alice into a quantum state in a
suitable finite-dimensional quantum system (which belongs to Bob):

Φ : X ∋ x 7→ Φx ∈ S(H).
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Of course, we can also extend the action of Φ to a quantum channel from the quantum
system CX (denoting its canonical basis as (|x⟩)x∈X ) into H, given by the Kraus repre-
sentation

Φ(ρ) =
∑
x∈X

√
Φx ⟨x|ρx⟩

√
Φx,

for every ρ ∈ S(XX ). With this notation, we see that Φx = Φ(⟨x| |x⟩) (we can also identify
⟨x| |x⟩ as the Dirac delta distribution at x ∈ X ).

Of course, after receiving a quantum state, Bob will have to perform some measurement
on the state in order to extract the information about Alice’s message. We consider general
non-sharp measurements M = (My)y∈Y given by POVM’s, i.e., My ∈ O≥0(H) and such
that ∑

y∈Y
My = 1H .

This family strictly includes that of measurements V = (1Vy)y∈Y , but its use greatly
simplifies the mathematical derivation. Although one slightly loses the analogy with the
classical case, where the decision rule was a function: it is like allowing for probabilistic
decision rules (i.e., given by Markov kernels) in the classical case. Recall anyway that
POVM allows us to construct a quantum channel, hence have an operational meaning.
Precisely, it is useful to associated to M a quantum to classical channel ΦM , from H to
CY , given by

S(H) ∋ ρ 7→
∑
y∈Y

tr[Myρ] |y⟩ ⟨y| ,

(notice that the transformed state is always diagonal in the standard basis, hence in this
sense it is classical). We leave as an exercise to check that ΦM is a channel, i.e., CP and
trace preserving, i.e., (tr[Myρ])y∈Y is a classical probability distribution. We interpret
tr[Myρ] = Pρ(M = y) as the probability that, measuring M , we obtain y (given that the
system is in the state ρ).

Following the analogy with the classical case, we assume that repeated applications of
the channel are memoryless, in the sense that a word w = (xi)

n
i=1 ∈ X n sent by Alice

arrives to Bob as the product state

Φw = Φx1 ⊗ Φx2 ⊗ . . .⊗ Φxn ∈ S(H⊗n).

In other words, n applications of Φ correspond to a single application of the channel Φ⊗n.
Following the scheme of the classical case, Alice and Bob will agree to encode a message

through a code (W,M), which consists of

i) a (classical) codebook W : {1, . . . ,m} → X n consisting of m codewords (W (i))mi=1,
each of a fixed length n, to be transmitted by Alice,

ii) a quantum decision rule, consisting of a non-sharp measurement

M = (Mi)i=0,...m ⊆ O≥0(H
⊗n),

such that
m∑
i=0

Mi = 1H⊗n

As in the classical case, for a code of m codewords, each of length n, we say that
its transmission rate is logm/n. For each w ∈ X n and j ∈ {1, . . . ,m}, we define the
probability that Bob decodes the word j, given that Alice sent the word w, as

P(“measures M and observes j”|“Alice sent the word w”) = PΦw(M = j) = tr[MjΦw].

Using this quantity, we define

(1) the maximal error probability

pe(W,M) = max
j=1,...,m

(1− tr[MjΦW (j)]),
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(2) the mean error probability

p̄e(W,M) =
1

m

m∑
i=1

(
1− tr[MjΦW (j)]

)
.

As in the classical case, the two errors are comparable (at least in the largem asymptotics),
we set

pe(n,m) = min
(W,M)

pe(W,M), p̄e(n,m) = min
(W,M)

p̄e(W,M),

and we say that r > 0 is an achievable transmission rate for the channel Φ if

lim
n→∞

pe(n, 2
nr) = 0.

The (operational classical) channel capacity C(Φ) is defined as the supremum among the
achievable transmission rates r, so that it holds

• (direct statement) for every r < C(Φ),

lim
n→∞

p̄e(n, 2
nr) = 0,

• (weak converse) for every r > C(Φ),

lim sup
n→∞

p̄e(n, 2
nr) > 0,

i.e., Alice cannot use codes to transmit classical information to Bob with a rate r
without errors.

As in the classical case, we have that the channel capacity is an additive quantity, i.e.,

C(Φ⊗k) = kC(Φ), for every k ≥ 1.

What should be a candidate for the information channel capacity in this setting? For
a classical-quantum channel Φ = (Φx)x∈X and a probability distribution p on X , we
introduce the quantity

χ(Φ)p = S

(∑
x∈X

p(x)Φx

)
−
∑
x∈X

p(x)S(Φx),

where S denotes von Neumann entropy. Clearly, this is the analogue of the mutual infor-
mation of the classical noisy channel, when Alice sends X according to the distribution p.
Notice that, by concavity of von Neumann entropy, which follows from the identity

S(ρ) = −S(ρ||1H/dim(H))− log dim(H).

and convexity of relative entropy, p 7→ χ(Φ)p is concave. By further pursuit of the analogy,
we define the χ-capacity of Φ as

Cχ(Φ) = max
p
χ(Φ)p = max

p

{
S

(∑
x∈X

p(x)Φx

)
−
∑
x∈X

p(x)S(Φx)

}
.

Schumacher, Westmoreland and independently Holevo proved that such quantity coin-
cides with the channel capacity C(Φ), thus providing a quantum analogue of Shannon’s
limit.

Theorem 7.2 (HSW). It holds

C(Φ) = Cχ(Φ).

Notice that, in any case,

Cχ(Φ) ≤ max
p
S

(∑
x∈X

p(x)Φx

)
≤ log dimH,



LECTURE NOTES ON QUANTUM INFORMATION THEORY 63

this imposing a non-trivial limit on the transmission rate of information. As in the clas-
sical case, we split the argument considering first the weak converse and then the direct
statement.

Weak converse. For the weak converse, our aim is to reduce to the classical bound, by
considering the entire composition of channel andmeasurement as a single classical channel
with kernel N(x, y) = tr[MyΦx]. Indeed, notice that

χ(Φ)p = I(CX ;H)ρ = S(ρ||ρCX ⊗ ρH), (7.8)

where we define the state ρ ∈ S(CX ⊗H) as

ρ =
∑
x∈X

p(x) |x⟩ ⟨x| ⊗ Φx. (7.9)

Indeed, the reduced density operators are

ρCX = trH [ρ] =
∑
x∈X

p(x) |x⟩ ⟨x| , ρH = trCX [ρ] =
∑
x∈X

p(x)Φx,

we have
log(ρCX ⊗ ρH) =

∑
x∈X

log p(x) |x⟩ ⟨x| ⊗ 1H + 1CX ⊗ log ρH .

Moreover,

log ρ =
∑
x∈X

|x⟩ ⟨x| (log p(x)⊗ 1H + logΦx) ,

hence
log ρ− log(ρCX ⊗ ρH) =

∑
x∈X

|x⟩ ⟨x| log Φx − 1CX ⊗ log ρH .

Multiplying by ρ and taking the trace, we obtain (7.8), since

tr[ρ
∑
x∈X

|x⟩ ⟨x| log Φx] =
∑
x∈X

pxtr[Φx log Φx] = −
∑
x∈X

pxS(Φx).

and
tr[ρ1CX ⊗ log ρH ] = tr[ρH log ρH ] = −S(ρH).

Given any quantum to classical channel ΦM corresponding to a non-sharp measurement
M = (My)y∈Y , we have by the data processing inequality (6.14) that

Cχ(Φ) ≥ I(CX ;H)ρ ≥ I(CX ;CY)1L(CX )
⊗ΦM (ρ) = I(X;Y )p,

where the joint distribution of (X,Y ) is given by (7.1) and N(x, y) = tr[MyΦx].
Of course, we can repeat the argument starting from any probability distribution p over

X n and using Φ⊗n instead of Φ and a measurement M ⊆ O≥0(H
⊗n), so that

Cχ(Φ⊗n) ≥ χ(Φ⊗n)ρ ≥ I(Xn;Y n)p.

Given any code (W,M), consider as in the classical case a uniform distribution over the
m codewords (of length n), and let p denote its law, thus inducing random variables Xn

(over the codewords) and Y n (over {0, 1, . . . ,m}). Arguing as in the classical case, we use
Fano’s inequality to obtain

p̄e(W,M)) ≥ 1− I(Xn;Y n)p + 1

logm
≥ 1− Cχ(Φ⊗n) + 1

logm
.

Letting m = 2nr, we conclude that any rate r such that

r > lim inf
n→∞

Cχ(Φ⊗n)

n
is not admissible, hence

C(Φ) ≤ lim inf
n→∞

Cχ(Φ⊗n)

n
.
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However, we can prove that Cχ(Φ⊗n) = nCχ(Φ) is additive arguing as in the classical case
(we used only concavity and tensorization properties of the entropy, which hold in the
quantum case as well), hence the lower bound follows.

Remark 7.3. One has in general the inequality

Cχ(Φ) ≥ sup
M,p

∑
x∈X ,y∈Y

p(x)tr[MyΦx] log

(
tr[MyΦx]

p(x)
∑

x′∈X p(x
′)tr[MyΦx′ ]

)
,

where maximization is all probability distributions p over the alphabet X and a non-sharp
measurements M = (My)y∈Y . However, it is known that in general it cane be strict.
Indeed, one could prove that the right hand side coincides with the operational channel
capacity of Φ when Bob is restricted to only use measurements of product type

Mj =Mj1 ⊗Mj2 ⊗ . . .⊗Mjn .

This could be seen as a (dual) manifestation of entanglement, since even if Alice’s mes-
sages are presented to Bob as product states, hence separable, using general non-product
observables can be an advantage for Bob.

Direct statement. As in the classical case, the strategy is to find a suitable random code-
book W and rely on the law of large numbers to suitably approximate a product state
with a “uniform” state over a “typical” subspace.

Let us give the following definition (due to Schumacher and Jozsa in the quantum
setting). Given a state ρ ∈ S(H), n ≥ 1 and δ > 0, its δ-typical subspace on H⊗n consists
of the span of the eigenvectors of ρ⊗n with eigenvalues λ such that

2−nS(p)−nδ ≤ λ ≤ 2−nS(p)+nδ.

Using functional calculus, we may rewrite the orthogonal projector over the δ-typical
subspace of ρ as

P δ,n = 1{| 1n
∑n

i=1 log ρi−S(p)|<δ},

where ρi = 1H⊗(i−1) ⊗ ρ ⊗ 1H⊗(n−1) are the copies (on each different factor, hence all
commuting) of the state ρ.

Then, the asymptotic equipartition property states that, for every δ, ε > 0,

(1) For every n, the dimension of the δ-typical subspace of ρ is bounded from above

tr[P δ,n] ≤ 2n(S(p)+δ),

(2) For n sufficiently large, the contribution of vectors δ-typical can be made small,
i.e.,

tr[(1− P δ,n)ρ⊗n] ≤ ε.

(3) For n sufficiently large, the dimension of the δ-typical subspace of ρ is bounded
from below

tr[P δ,n] ≥ (1− ε)2n(S(p)−δ),

The proof of this properties is an application of Markov inequality.
We also need a notion of conditionally typical subspace associated to the classical to

quantum channel (Φx)x∈X . Given a probability distribution p over X , write

S(H|CX )ρ =
∑
x∈X

p(x)S(Φx),

for the the quantum conditional entropy of the state ρ defined as in (7.9). For every n ≥ 1,
δ > 0 and w = (xi)

n
i=1 ∈ X n, define the conditionally typical subspace of Φ given w (and

p) as the linear span of the eigenvectors of Φw = ⊗n
i=1Φxi whose eigenvalues λ satisfy

2−nS(H|CX )ρ−nδ ≤ λ ≤ 2−nS(H|CX )ρ+nδ,



LECTURE NOTES ON QUANTUM INFORMATION THEORY 65

Again, via functional calculus, we may rewrite the orthogonal projector over the δ-typical
subspace of Φ given w (and p) as

P δ,nw = 1{| 1n
∑n

i=1 log Φxi−S(H|CX )ρ|<δ}.

We have the following properties:

(1) For every n, and w, we have

P δ,nw ≤ 2n(S(H|CX )ρ+δ)Φw,

(2) For n sufficiently large, and ε > 0,

E
[
tr[(1− P δ,nW )ΦW ]

]
≤ ε,

where W = (Xi)
n
i=1 are i.i.d. with common distribution p.

We are now in a position to describe the construction of the quantum decision rule
associated to a codebook (wj)

m
j=1 consisting of m words of length n. The construction will

ultimately be performed using a probability distribution p over X maximizing χ(Φ)p, but
we may assume for the moment that p is fixed but general. Let us also fix δ and n in what
follows, so we avoid to write them in the typical subspace projectors. For j ∈ {1, . . . ,m},
we would like to define

Mj = PwjP,

where P denotes the projector on the δ typical subspace associated to

ρH =
∑
x∈X

pxΦx,

and Pwj denotes the projector on the δ-conditionally typical subspace of Φ given wj (and ρ).
Intuitively, this corresponds to the following decision rule by Bob: first he observes whether
the state is a typical output; given an affirmative answer, he observes the conditional
typical subspace to which the state belongs. However, this definition would not give rise
to positive operators, hence we may correct the definition by squaring, i.e., letting

Mj = (PwjP )
∗PwjP = PPwjPwjP = PPwjP.

Still, this is not sufficient, since we need to ensure that
∑m

j=1Mj = 1H⊗n , hence the
definition is

Mj = A−1/2PPwjPA
−1/2 = (PwjPA

−1/2)∗PwjPA
−1/2,

where

A =
m∑
j=1

PPwjP,

and the inverse A−1 = A−11A>0 is actually a pseudo-inverse instead, defined to be 0 on
the kernel of A. We also introduce M0 = 1A=0 as the orthogonal projection on the kernel
of A, so that

∑m
j=0Mj = 1H⊗n is satisfied.

After some estimations that we do not report here for brevity, see [Hol19, section 5.6]
for more details, one obtains the upper bound

p̄e(W,M) ≤ 1

m

m∑
j=1

4tr[Φwj (1− P )] + 4tr[Φwj (1− Pwj )] +
∑
i ̸=j

tr[PΦwjPPwi ].

Let us see how to conclude from this inequality. Assume that each wj , j = 1, . . . ,m is
sampled as i.i.d. words with letter distributions given by p (each independently of each
other), so that for every sampled letter, we have

E [Φx] =
∑
x∈X

p(x)Φx = ρH .
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Then, taking expectation in the inequality above and using independence, we obtain

E [p̄e(W,M)] ≤ 4tr[ρ⊗nH (1− P )] + 4E [tr[Φw(1− Pw)]] + (m− 1)tr[Pρ⊗nH PE [Pw]].

For n large enough, we use the properties of projectors on typical subspaces, so that

tr[ρ⊗nH (1− P )] + E [tr[Φw(1− Pw)]] ≤ 2ε,

and, by definition of typical subspace,

Pρ⊗nH P ≤ 2−nS(H)ρH+nδ1H⊗n ,

so that

tr[Pρ⊗nH PE [Pw]] ≤ 2−nS(H)ρH+nδE [tr[Pw]]

≤ 2−nS(H)ρH+nS(H|CX )ρ+2δn

= 2−nI(H;CX )ρ+2δn.

Choosing p such that
I(H;CX )ρ = Cχ(Φ),

we obtain that, for every r < Cχ(Φ), letting m = 2nr, we obtain

E [p̄e(W,M)] ≤ 8ε+ 2n(r−Cχ(Φ))+2δn

which is infinitesimal, provided that δ is chosen small enough and then ε→ 0.

7.3. Exercises.

Exercise 7.1. Following the suggestion, complete the proof of (7.2).

Exercise 7.2. Prove the asymptotic equipartition properties.
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