PDF Reference

third edition

Adobe Portable Document Format
Version 1.4

Adobe Systems Incorporated

A
A\ A 4
ADDISON-WESLEY

Boston ¢ San Francisco * New York ¢ Toronto ¢ Montreal
London ¢ Munich ¢ Paris * Madrid

Capetown ¢ Sydney * Tokyo ¢ Singapore * Mexico City



Library of Congress Cataloging-in-Publication Data

PDF reference : Adobe portable document format version 1.4 / Adobe Systems
Incorporated. — 3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-75839-3 (alk. paper)
1. Adobe Acrobat. 2. Portable document software. 1. Adobe Systems.

QA76.76.T49 P38 2001
005.7'2—dc21

2001053899

© 1985-2001 Adobe Systems Incorporated. All rights reserved.
NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written consent of the publisher.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Acrobat Reader, Adobe
Garamond, Aldus, Distiller, ePaper, Extreme, FrameMaker, lllustrator, InDesign, Minion, Myriad,
PageMaker, Photoshop, Poetica, PostScript, and XMP are either registered trademarks or trade-
marks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft and
Windows are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Apple, Mac, Mac OS, Macintosh, QuickDraw, and TrueType are
trademarks of Apple Computer, Inc., registered in the United States and other countries. KanjiTalk
is a trademark of Apple Computer, Inc. UNIX is a registered trademark of The Open Group.
Unicode is a registered trademark of Unicode, Inc. Java is a trademark of Sun Microsystems, Inc.
JavaScript is a registered trademark of Netscape Communications Corporation. QuarkXPress is a
trademark of Quark, Inc. and/or certain of the Quark Affiliated Companies, Reg. U.S. Pat. & Tm.
Off. and in many other countries. PANTONE is a registered trademark and Hexachrome is a
trademark of Pantone, Inc. PANOSE is a trademark of Hewlett-Packard Company. OEB is a trade-
mark of the Open eBook Forum. Helvetica and Times are registered trademarks of Linotype-Hell
AG and/or its subsidiaries. Arial and Times New Roman are trademarks of The Monotype Corpo-
ration registered in the U.S. Patent and Trademark Office and may be registered in certain other
jurisdictions. ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
Ryumin Light is a trademark of Morisawa & Co., Ltd. All other trademarks are the property of
their respective owners.

All instances of the name PostScript in the text are references to the PostScript language as defined
by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a
product trademark for Adobe Systems’ implementation of the PostScript language interpreter.
Except as otherwise stated, any mention of a “PostScript output device,” “PostScript printer,”
“PostScript software,” or similar item refers to a product that contains PostScript technology cre-
ated or licensed by Adobe Systems Incorporated, not to one that purports to be merely compatible.

This publication and the information herein are furnished AS IS, are subject to change without
notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe
Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes
no warranty of any kind (express, implied, or statutory) with respect to this publication, and
expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third-party rights.

123456789 CRS 04030201
First printing, December 2001



1.1
1.2
1.3
14

2.1
2.2
23
24

3.1
3.2
33
34
35
3.6
37
3.8
39
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Contents

Preface xix

Chapter 1: Introduction 1

About This Book 1

Introduction to PDF 1.4 Features 4
Related Publications 5

Intellectual Property 6

Chapter 2: Overview 9

Imaging Model 10

Other General Properties 14

Using PDF 19

PDF and the PostScript Language 21

Chapter 3: Syntax 23

Lexical Conventions 24

Objects 27

Filters 41

File Structure 61

Encryption 71

Document Structure 81

Content Streams and Resources 92
Common Data Structures 98
Functions 106

File Specifications 118

Chapter 4: Graphics 131

Graphics Objects 132

Coordinate Systems 136
Graphics State 147

Path Construction and Painting 161
Color Spaces 172

Patterns 219

External Objects 261

Images 262

Form XObjects 281

PostScript XObjects 289



| Contents

5.1
52
53
54
55
56
5.7
5.8
59

6.1
6.2

6.4
6.5

7.1
7.2
7.3
74
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.10

Chapter 5: Text 291

Organization and Use of Fonts 292

Text State Parameters and Operators 300
Text Objects 308

Introduction to Font Data Structures 314
Simple Fonts 316

Composite Fonts 334

Font Descriptors 355

Embedded Font Programs 364
ToUnicode CMaps 368

Chapter 6: Rendering 373

CIE-Based Color to Device Color 374
Conversions among Device Color Spaces 376
Transfer Functions 380

Halftones 382

Scan Conversion Details 403

Chapter 7: Transparency 409

Overview of Transparency 410

Basic Compositing Computations 412
Transparency Groups 425

Soft Masks 439

Specifying Transparency in PDF 441
Color Space and Rendering Issues 454

Chapter 8: Interactive Features 471

Viewer Preferences 471
Document-Level Navigation 474
Page-Level Navigation 481
Annotations 488

Actions 513

Interactive Forms 528

Sounds 568

Movies 570

Chapter 9: Document Interchange 573

Procedure Sets 574
Metadata 575

File Identifiers 580
Page-Piece Dictionaries 581
Marked Content 583
Logical Structure 588
Tagged PDF 612
Accessibility Support 651
Web Capture 659
Prepress Support 676



Contents

B.1
B.2
B.3
B.4

C1
C2

D.1
D.2
D.3
D4

F.1
F.2
F.3
F.4

G.1
G.2
G3
G4
G5
G.6

H.1
H.2
H.3

Appendix A: Operator Summary 699

Appendix B: Operators in Type 4 Functions 703

Arithmetic Operators 703

Relational, Boolean, and Bitwise Operators 704
Conditional Operators 704

Stack Operators 704

Appendix C: Implementation Limits 705

General Implementation Limits 706
Implementation Limits Affecting Web Capture 708

Appendix D: Character Sets and Encodings 709

Latin Character Set and Encodings 711
Expert Set and MacExpertEncoding 715
Symbol Set and Encoding 718
ZapfDingbats Set and Encoding 721

Appendix E: PDF Name Registry 723

Appendix F: Linearized PDF 725

Background and Assumptions 726
Linearized PDF Document Structure 728
Hint Tables 741

Access Strategies 751

Appendix G: Example PDF Files 757

Minimal PDF File 757

Simple Text String Example 760
Simple Graphics Example 762
Page Tree Example 765

Outline Tree Example 770
Updating Example 774

Appendix H: Compatibility and Implementation Notes
PDF Version Numbers 783

Feature Compatibility 786

Implementation Notes 787

Bibliography 811

Index 817

783






2.1
2.2

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

Figures

Creating PDF files using PDF Writer 20
Creating PDF files using Acrobat Distiller 21

PDF components 24

Initial structure of a PDF file 62
Structure of an updated PDF file 70
Structure of a PDF document 82
Inheritance of attributes 92
Mapping with the Decode array 112

Graphics objects 135

Device space 138

User space 140

Relationships among coordinate systems 142

Effects of coordinate transformations 143

Effect of transformation order 144

Miter length 154

Cubic Bézier curve generated by the c operator 165

Cubic Bézier curves generated by the v and y operators 166

Nonzero winding number rule 170

Even-odd rule 171

Color specification 174

Color rendering 175

Component transformations in a ClIE-based ABC color space 182
Component transformations in a CIE-based A color space 183

Starting a new triangle in a free-form Gouraud-shaded triangle mesh 245
Connecting triangles in a free-form Gouraud-shaded triangle mesh 246
Varying the value of the edge flag to create different shapes 247
Lattice-form triangle meshes 248

Coordinate mapping from a unit square to a four-sided Coons patch 251
Painted area and boundary of a Coons patch 252

Color values and edge flags in Coons patch meshes 254

Edge connections in a Coons patch mesh 255

Control points in a tensor-product patch 257

Typical sampled image 262

Source image coordinate system 265

Mapping the source image 266

vii



. viii
| Figures
|

5.1 Glyphs painted in 50% gray 295

5.2 Glyph outlines treated as a stroked path 296

5.3 Graphics clipped by a glyph path 297

5.4 Glyph metrics 298

5.5 Metrics for horizontal and vertical writing modes 300
5.6 Character spacing in horizontal writing 303

5.7 Word spacing in horizontal writing 303

5.8 Horizontal scaling 304

5.9 Leading 304

5.10 Textrise 307

5.11 Operation of the TJ operator in horizontal writing 312
5.12 Output from Example 5.9 327

5.13 Characteristics represented in the Flags entry of a font descriptor 359
6.1 Various halftoning effects 389

6.2 Halftone cell with a nonzero angle 396

6.3 Angled halftone cell divided into two squares 396
6.4 Halftone cell and two squares tiled across device space 397
6.5 Tiling of device space in a type 16 halftone 399

6.6 Flatness tolerance 404

6.7 Rasterization without stroke adjustment 407

8.1 Presentation timing 487

8.2 Open annotation 489

8.3 Coordinate adjustment with the NoRotate flag 494
8.4 Square and circle annotations 505

8.5 QuadPoints specification 506

8.6 FDF file structure 559

9.1 Simple Web Capture file structure 662

9.2 Complex Web Capture file structure 663

9.3 Page boundaries 678

9.4 Trapping example 688

G.1 Output of Example G.3 763

G.2 Page tree for Example G4 765

G.3 Document outline as displayed in Example G.5 770

G.4 Document outline as displayed in Example G.6 772



Figures |

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plate 6
Plate 7
Plate 8
Plate 9
Plate 10
Plate 11
Plate 12
Plate 13
Plate 14
Plate 15
Plate 16
Plate 17
Plate 18
Plate 19
Plate 20

Additive and subtractive color
Uncalibrated color

Lab color space

Color gamuts

Rendering intents

Duotone image

Quadtone image

Colored tiling pattern

Uncolored tiling pattern

Axial shading

Radial shadings depicting a cone
Radial shadings depicting a sphere
Radial shadings with extension
Radial shading effect

Coons patch mesh

Transparency groups

Isolated and knockout groups
RGB blend modes

CMYK blend modes

Blending and overprinting






3.1
3.2
33
3.4
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35

Tables

White-space characters 26

Escape sequences in literal strings 30

Examples of literal names using the # character 33

Entries common to all stream dictionaries 38

Standard filters 42

Typical LZW encoding sequence 48

Optional parameters for LZWDecode and FlateDecode filters 49
Predictor values 51

Optional parameters for the CCITTFaxDecode filter 53
Optional parameter for the JBIG2Decode filter 57

Optional parameter for the DCTDecode filter 60

Entries in the file trailer dictionary 68

Entries common to all encryption dictionaries 72

Additional encryption dictionary entries for the standard security
handler 76

User access permissions 77

Entries in the catalog dictionary 83

Required entries in a page tree node 86

Entries in a page object 88

Entries in the name dictionary 93

Compatibility operators 95

Entries in a resource dictionary 97

PDF data types 99

Entries in a name tree node dictionary 102

Example of a name tree 103

Entries in a number tree node dictionary 106

Entries common to all function dictionaries 108

Additional entries specific to a type 0 function dictionary 110
Additional entries specific to a type 2 function dictionary 113
Additional entries specific to a type 3 function dictionary 114
Operators in type 4 functions 116

Examples of file specifications 121

Entries in a file specification dictionary 122

Additional entries in an embedded file stream dictionary 124
Entries in an embedded file parameter dictionary 125

Entries in a Mac OS file information dictionary 125

Xi



| Tables

xii

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

Operator categories 134

Device-independent graphics state parameters 148
Device-dependent graphics state parameters 150

Line cap styles 153

Line join styles 154

Examples of line dash patterns 155

Graphics state operators 156

Entries in a graphics state parameter dictionary 157

Path construction operators 163

Path-painting operators 167

Clipping path operators 172

Color space families 176

Entries in a CalGray color space dictionary 183

Entries in a CalRGB color space dictionary 185

Entries in a Lab color space dictionary 188

Additional entries specific to an ICC profile stream dictionary 190
ICC profile types 191

Ranges for typical ICC color spaces 192

Rendering intents 198

Entry in a DeviceN color space attributes dictionary 207
Color operators 216

Additional entries specific to a type 1 pattern dictionary 221
Entries in a type 2 pattern dictionary 231

Shading operator 232

Entries common to all shading dictionaries 234

Additional entries specific to a type 1 shading dictionary 237
Additional entries specific to a type 2 shading dictionary 238
Additional entries specific to a type 3 shading dictionary 240
Additional entries specific to a type 4 shading dictionary 244
Additional entries specific to a type 5 shading dictionary 249
Additional entries specific to a type 6 shading dictionary 253
Data values in a Coons patch mesh 256

Data values in a tensor-product patch mesh 260

XObject operator 261

Additional entries specific to an image dictionary 267
Default Decode arrays 272

Entries in an alternate image dictionary 274

Inline image operators 278

Entries in an inline image object 279

Additional abbreviations in an inline image object 280
Additional entries specific to a type 1 form dictionary 284
Entries common to all group attributes dictionaries 287
Entries in a reference dictionary 288

Additional entries specific to a PostScript XObject dictionary 290



xiii

5.1
5.2
53
5.4
55
5.6
57
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
79
7.10
7.11

Text state parameters 301

Text state operators 302

Text rendering modes 306

Text object operators 308

Text-positioning operators 310

Text-showing operators 311

Fonttypes 315

Entries in a Type 1 font dictionary 317

Entries in a Type 3 font dictionary 323

Type 3 font operators 326

Entries in an encoding dictionary 330

Entries in a CIDSysteminfo dictionary 337

Entries in a CIDFont dictionary 338

Predefined CJK CMap names 343

Character collections for predefined CMaps, by PDF version 346
Additional entries in a CMap dictionary 349

Entries in a Type 0 font dictionary 353

Entries common to all font descriptors 356

Fontflags 358

Additional font descriptor entries for CIDFonts 361
Character classes in CJK fonts 362

Embedded font organization for various font types 365
Additional entries in an embedded font stream dictionary 366

Predefined spot functions 385

PDF halftone types 391

Entries in a type 1 halftone dictionary 393

Additional entries specific to a type 6 halftone dictionary 395
Additional entries specific to a type 10 halftone dictionary 398
Additional entries specific to a type 16 halftone dictionary 400
Entries in a type 5 halftone dictionary 401

Variables used in the basic compositing formula 414

Standard separable blend modes 417

Standard nonseparable blend modes 419

Variables used in the source shape and opacity formulas 422
Variables used in the result shape and opacity formulas 423
Revised variables for the basic compositing formulas 427
Arguments and results of the group compositing function 429
Variables used in the group compositing formulas 431
Variables used in the page group compositing formulas 437
Entries in a soft-mask dictionary 446

Restrictions on the entries in a soft-mask image dictionary 448

Tables |



Xiv

| Tables
7.12 Additional entry in a soft-mask image dictionary 449
7.13 Additional entries specific to a transparency group attributes
dictionary 450
7.14 Overprinting behavior in the opaque imaging model 464
7.15 Overprinting behavior in the transparent imaging model 464
8.1 Entries in a viewer preferences dictionary 472
8.2 Destination syntax 475
8.3 Entries in the outline dictionary 478
8.4 Entries in an outline item dictionary 478
8.5 Outline item flags 479
8.6 Entries in a page label dictionary 483
8.7 Entries in a thread dictionary 484
8.8 Entries in a bead dictionary 484
8.9 Entries in a transition dictionary 486
8.10 Entries common to all annotation dictionaries 490
8.11 Annotation flags 493
8.12 Entries in a border style dictionary 495
8.13 Entries in an appearance dictionary 497
8.14 Annotation types 499
8.15 Additional entries specific to a text annotation 500
8.16 Additional entries specific to a link annotation 501
8.17 Additional entries specific to a free text annotation 502
8.18 Additional entries specific to a line annotation 503
8.19 Line ending styles 504
8.20 Additional entries specific to a square or circle annotation 505
8.21 Additional entries specific to markup annotations 506
8.22 Additional entries specific to a rubber stamp annotation 507
8.23 Additional entries specific to an ink annotation 508
8.24 Additional entries specific to a pop-up annotation 509
8.25 Additional entries specific to a file attachment annotation 509
8.26 Additional entries specific to a sound annotation 510
8.27 Additional entries specific to a movie annotation 511
8.28 Additional entries specific to a widget annotation 512
8.29 Entries common to all action dictionaries 514
8.30 Entries in an annotation’s additional-actions dictionary 515
8.31 Entries in a page object’s additional-actions dictionary 515
8.32 Entries in a form field’s additional-actions dictionary 516
8.33 Entries in the document catalog’s additional-actions dictionary 516
8.34 Action types 518
8.35 Additional entries specific to a go-to action 519
8.36 Additional entries specific to a remote go-to action 520
8.37 Additional entries specific to a launch action 521



XV
Tables |

8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53
8.54
8.55
8.56
8.57
8.58
8.59
8.60
8.61
8.62
8.63
8.64
8.65
8.66
8.67
8.68
8.69
8.70

8.71
8.72
8.73
8.74
8.75
8.76
8.77
8.78
8.79
8.80

Entries in a Windows launch parameter dictionary 521
Additional entries specific to a thread action 522
Additional entries specific to a URl action 523

Entry in a URI dictionary 524

Additional entries specific to a sound action 525
Additional entries specific to a movie action 526
Additional entries specific to a hide action 527

Named actions 527

Additional entries specific to named actions 528
Entries in the interactive form dictionary 529
Signature flags 530

Entries common to all field dictionaries 531

Field flags common to all field types 532

Additional entries common to all fields containing variable text 534
Entries in an appearance characteristics dictionary 536
Field flags specific to button fields 538

Additional entry specific to a checkbox field 540
Additional entry specific to a radio button field 543
Field flags specific to text fields 543

Additional entry specific to a text field 544

Field flags specific to choice fields 546

Additional entries specific to a choice field 546

Entries in a signature dictionary 549

Additional entries specific to a submit-form action 551
Flags for submit-form actions 551

Additional entries specific to a reset-form action 555
Flag for reset-form actions 555

Additional entries specific to an import-data action 556
Additional entries specific to a JavaScript action 556
Entry in the FDF trailer dictionary 560

Entries in the FDF catalog dictionary 561

Entries in the FDF dictionary 561

Additional entry in an embedded file stream dictionary for an encrypted
FDF file 563

Entries in the JavaScript dictionary 563

Entries in an FDF field dictionary 564

Entries in an icon fit dictionary 566

Entries in an FDF page dictionary 567

Entries in an FDF template dictionary 567

Entries in an FDF named page reference dictionary 568
Additional entry for annotation dictionaries in an FDF file 568
Additional entries specific to a sound object 569
Entries in a movie dictionary 571

Entries in a movie activation dictionary 571



| Tables

9.1 Predefined procedure sets 574

9.2 Entries in the document information dictionary 576

9.3 Additional entries in a metadata stream dictionary 578

9.4 Additional entry for components having metadata 578

9.5 PDF constructs that do not take metadata 579

9.6 Entries in a page-piece dictionary 582

9.7 Entries in an application data dictionary 582

9.8 Marked-content operators 584

9.9 Entries in the structure tree root 590

9.10 Entries in a structure element dictionary 591

9.11 Entries in a marked-content reference dictionary 594

9.12 Entries in an object reference dictionary 599

9.13 Additional dictionary entries for structure element access 602

9.14 Entry common to all attribute objects 605

9.15 Entry in the mark information dictionary 614

9.16 Property list entries for artifacts 616

9.17 Derivation of font characteristics 622

9.18 Standard structure types for grouping elements 627

9.19 Block-level structure elements 629

9.20 Standard structure types for paragraphlike elements 630

9.21 Standard structure types for list elements 630

9.22 Standard structure types for table elements 631

9.23 Standard structure types for inline-level structure elements 633

9.24 Standard structure types for illustration elements 637

9.25 Standard attribute owners 639

9.26 Standard layout attributes 640

9.27 Standard layout attributes common to all standard structure types 641

9.28 Additional standard layout attributes specific to block-level structure
elements 643

9.29 Standard layout attributes specific to inline-level structure elements 646

9.30 Standard list attribute 650

9.31 Standard table attributes 651

9.32 Entries in the Web Capture information dictionary 660

9.33 Entries common to all Web Capture content sets 668

9.34 Additional entries specific to a Web Capture page set 668

9.35 Additional entries specific to a Web Capture image set 669

9.36 Entries in a source information dictionary 670

9.37 Entries in a URL alias dictionary 671

9.38 Entries in a Web Capture command dictionary 672

9.39 Web Capture command flags 673

9.40 Entries in a Web Capture command settings dictionary 674

9.41 Entries in a box color information dictionary 681

9.42 Entries in a box style dictionary 681



xvii

Tables |

9.43
9.44
9.45
9.46
9.47
9.48
9.49
9.50
9.51

A1

C1

D.1

F.1
F.2
F.3
F.4
F.5
F.6
F.7
F.8
F.9
F.10

G.1
G.2
G.3
G.4
G.5
G.6

H.1
H.2
H.3

Additional entries specific to a printer’'s mark annotation 682
Additional entries specific to a printer’s mark form dictionary 683
Entries in a separation dictionary 684

Entries in a PDF/X output intent dictionary 685

Additional entries specific to a trap network annotation 691
Additional entries specific to a trap network appearance stream 692
Entry in an OPI version dictionary 694

Entries in a version 1.3 OPI dictionary 694

Entries in a version 2.0 OPI dictionary 697

PDF content stream operators 699
Architectural limits 706
Latin-text encodings 710

Entries in the linearization parameter dictionary 733
Standard hint tables 736

Page offset hint table, header section 743

Page offset hint table, per-page entry 744

Shared object hint table, header section 746

Shared object hint table, shared object group entry 747
Thumbnail hint table, header section 748

Thumbnail hint table, per-page entry 749

Generic hinttable 750

Interactive form or logical structure hint table 750

Objects in minimal example 758

Objects in simple text string example 760

Objects in simple graphics example 762

Object usage after adding four text annotations 775
Object usage after deleting two text annotations 778
Object usage after adding three text annotations 780

Abbreviations for standard filter names 789
Acrobat behavior with unknown filters 789
Names of standard fonts 795






Preface

THE ORIGINS OF THE Portable Document Format and the Adobe” Acrobat”
product family date to early 1990. At that time, the PostScript” page description
language was rapidly becoming the worldwide standard for the production of the
printed page. PDF builds on the PostScript page description language by layering
a document structure and interactive navigation features on PostScript’s under-
lying imaging model, providing a convenient, efficient mechanism enabling doc-
uments to be reliably viewed and printed anywhere.

The PDF specification was first published at the same time the first Acrobat prod-
ucts were introduced in 1993. Since then, updated versions of the specification
have been and continue to be available from Adobe via the World Wide Web. This
book is the third professionally published edition of the specification. Like its
predecessor, it is completely self-contained, including the precise documentation
of the underlying imaging model from PostScript along with the PDF-specific
features that are combined in version 1.4 of the PDF standard.

Over the past eight years, aided by the explosive growth of the Internet, PDF has
become the de facto standard for the electronic exchange of documents. Well over
200 million copies of the free Acrobat Reader” application have been distributed
around the world, facilitating efficient sharing of digital content. In addition,
PDF is now the industry standard for the intermediate representation of printed
material in electronic prepress systems for conventional printing applications. As
major corporations, government agencies, and educational institutions stream-
line their operations by replacing paper-based workflow with electronic exchange
of information, the impact and opportunity for the application of PDF will con-
tinue to grow at a rapid pace.

PDF is the file format that underlies Adobe ePaper” Solutions, a family of prod-

ucts supporting Adobe’s vision for Network Publishing—the process of creating,
managing, and accessing digital content on diverse platforms and devices. ePaper

Xix
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fulfills a set of requirements related to business process needs for the global desk-
top user, including:

* Preservation of document fidelity across the enterprise, independently of the
device, platform, and software

* Merging of content from diverse sources—Web sites, word processing and
spreadsheet programs, scanned documents, photos, and graphics—into one
self-contained document while maintaining the integrity of all original source
documents

* Real-time collaborative editing of documents from multiple locations or plat-
forms

* Digital signatures to certify authenticity

* Security and permissions to allow the creator to retain control of the document
and associated rights

* Accessibility of content to those with disabilities

* Extraction and reuse of content using other file formats and applications

A significant number of third-party developers and systems integrators offer cus-
tomized enhancements and extensions to Adobe’s core family of products. Adobe
publishes the PDF specification in order to encourage the development of such
third-party applications.

The emergence of PDF as a standard for electronic information exchange is the
result of concerted effort by many individuals in both the private and public sec-
tors. Without the dedication of Adobe employees, our industry partners, and our
customers, the widespread acceptance of PDF could not have been achieved. We
thank all of you for your continuing support and creative contributions to the
success of PDE.

Chuck Geschke and John Warnock
May 2001



1.1

CHAPTER 1

Introduction

THE ADOBE PORTABLE DOCUMENT FORMAT (PDF) is the native file for-
mat of the Adobe” Acrobat” family of products. The goal of these products is to
enable users to exchange and view electronic documents easily and reliably, inde-
pendently of the environment in which they were created. PDF relies on the same
imaging model as the PostScript” page description language to describe text and
graphics in a device-independent and resolution-independent manner. To im-
prove performance for interactive viewing, PDF defines a more structured format
than that used by most PostScript language programs. PDF also includes objects,
such as annotations and hypertext links, that are not part of the page itself but are
useful for interactive viewing and document interchange.

About This Book

This book provides a description of the PDF file format and is intended primarily
for application developers wishing to develop PDF producer applications that cre-
ate PDF files directly. It also contains enough information to allow developers to
write PDF consumer applications that read existing PDF files and interpret or
modify their contents.

Although the PDF specification is independent of any particular software imple-
mentation, some PDF features are best explained by describing the way they are
processed by a typical application program. In such cases, this book uses the
Adobe Acrobat family of PDF viewer applications as its model. (The prototypical
viewer is the fully capable Acrobat product, not the limited Acrobat Reader”
product.) Similarly, Appendix C discusses some implementation limits in the
Acrobat viewer applications, even though these limits are not part of the file for-
mat itself. To provide guidance to implementors of PDF producer and consumer
applications, compatibility and implementation notes in Appendix H describe
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the behavior of Acrobat viewer applications when they encounter newer features
they do not understand, as well as areas in which the Acrobat products diverge
from the specification presented in this book.

This third edition of the PDF Reference describes version 1.4 of PDF. (See imple-
mentation note 1 in Appendix H.) Throughout the book, information specific to
particular versions of PDF is marked as such—for example, with indicators like
(PDF 1.3) or (PDF 1.4). Features so marked may be new in the indicated version
or may have been substantially redefined in that version. Features designated
(PDF 1.0) have generally been superseded in later versions; unless otherwise stat-
ed, features identified as specific to other versions are understood to be available
in later versions as well. (PDF viewer applications designed for a specific PDF
version generally ignore newer features they do not recognize; implementation
notes in Appendix H point out exceptions.)

The rest of the book is organized as follows:

* Chapter 2, “Overview,” briefly introduces the overall architecture of PDF and
the design considerations behind it, compares it with the PostScript language,
and describes the underlying imaging model that they share.

* Chapter 3, “Syntax,” presents the syntax of PDF at the object, file, and docu-
ment level. It sets the stage for subsequent chapters, which describe how that
information is interpreted as page descriptions, interactive navigational aids,
and application-level logical structure.

* Chapter 4, “Graphics,” describes the graphics operators used to describe the
appearance of pages in a PDF document.

* Chapter 5, “Text,” discusses PDF’s special facilities for presenting text in the
form of character shapes, or glyphs, defined by fonts.

* Chapter 6, “Rendering,” considers how device-independent content descrip-
tions are matched to the characteristics of a particular output device.

* Chapter 7, “Transparency,” discusses the operation of the transparent imaging
model, introduced in PDF 1.4, in which objects can be painted with varying
degrees of opacity, allowing the previous contents of the page to show through.

* Chapter 8, “Interactive Features,” describes those features of PDF that allow a
user to interact with a document on the screen, using the mouse and keyboard.



| SECTION 1.1 | About This Book |

* Chapter 9, “Document Interchange,” shows how PDF documents can incorpo-
rate higher-level information that is useful for the interchange of documents
among applications.

The appendices contain useful tables and other auxiliary information.

* Appendix A, “Operator Summary,” lists all the operators used in describing the
visual content of a PDF document.

* Appendix B, “Operators in Type 4 Functions,” summarizes the PostScript oper-
ators that can be used in PostScript calculator functions, which contain code
written in a small subset of the PostScript language.

* Appendix C, “Implementation Limits,” describes typical size and quantity
limits imposed by the Acrobat viewer applications.

* Appendix D, “Character Sets and Encodings,” lists the character sets and en-
codings that are assumed to be predefined in any PDF viewer application.

* Appendix E, “PDF Name Registry,” discusses a registry, maintained for devel-
opers by Adobe Systems, that contains private names and formats used by PDF
producers or Acrobat plug-in extensions.

* Appendix F “Linearized PDE,” describes a special form of PDF file organiza-
tion designed to work efficiently in network environments.

* Appendix G, “Example PDF Files,” presents several examples showing the
structure of actual PDF files, ranging from one containing a minimal one-page
document to one showing how the structure of a PDF file evolves over the
course of several revisions.

* Appendix H, “Compatibility and Implementation Notes,” provides details on
the behavior of Acrobat viewer applications and describes how viewer applica-
tions should handle PDF files containing features that they do not recognize.

A color plate section provides illustrations of some of PDF’s color-related fea-
tures. References in the text of the form “see Plate 1” refer to the contents of this
section.

The book concludes with a Bibliography and an Index.

The enclosed CD-ROM contains the entire text of this book in PDF form.
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Introduction to PDF 1.4 Features

The most significant addition in PDF 1.4 is the new transparent imaging model,
which extends the opaque imaging model of earlier versions to include the ability
to paint objects with varying degrees of opacity, allowing previously painted
objects to show through. Transparency is covered primarily in Chapter 7, with
implications reflected in other chapters as well. Other new features introduced in
PDF 1.4 include the following:

A filter for decoding JBIG2-encoded data (Section 3.3.6, “JBIG2Decode Filter”)
Enhancements to encryption (Section 3.5, “Encryption”)

Specification of the PDF version in the document catalog (Section 3.6.1, “Doc-
ument Catalog”)

Embedding of data in a file stream (Section 3.10.3, “Embedded File Streams”)

The ability to import content from one PDF document into another (Section
4.9.3, “Reference XObjects™)

New predefined CMaps (“Predefined CMaps” on page 343)

Additional viewer preferences for controlling the area of a page to be displayed
or printed (Section 8.1, “Viewer Preferences”)

Specification of a color and font style for text in an outline item (Section 8.2.2,
“Document Outline”)

Annotation names (Section 8.4, “Annotations”) and new entries in specific
annotation dictionaries (Section 8.4.1, “Annotation Dictionaries”)

Additional trigger events for actions affecting the document as a whole (Sec-
tion 8.5.2, “Trigger Events”)

Assorted enhancements to interactive forms and Forms Data Format (FDF),
including multiple-selection list boxes, file-select controls, XML form submis-
sion, embedded FDF files, Unicode” specification of field export values, and
support for remote collaboration and digital signatures in FDF files (Section
8.6, “Interactive Forms”)

Metadata streams, a new architecture for attaching descriptive information to
PDF documents and their constituent parts (Section 9.2.2, “Metadata
Streams”)
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* Standardized structure types and attributes for describing the logical structure
of a document (Section 9.7, “Tagged PDF”)

* Support for accessibility to disabled users, including specification of the lan-
guage used for text (Section 9.8, “Accessibility Support”)

* Support for the display and preview of production-related page boundaries
such as the crop box, bleed box, and trim box (Section 9.10.1, “Page Bound-
aries”)

* Facilities for including printer’s marks such as registration targets, gray ramps,
color bars, and cut marks to assist in the production process (Section 9.10.2,
“Printer’s Marks”)

* Output intents for matching the color characteristics of a document with those
of a target output device or production environment in which it will be printed
(Section 9.10.4, “Output Intents”)

Related Publications

PDF and the PostScript page description language share the same underlying
Adobe imaging model. A document can be converted straightforwardly between
PDF and the PostScript language; the two representations produce the same out-
put when printed. However, PostScript includes a general-purpose programming
language framework not present in PDE The PostScript Language Reference is the
comprehensive reference for the PostScript language and its imaging model.

PDF and PostScript support several standard formats for font programs, includ-
ing Adobe Type 1, CFF (Compact Font Format), TrueType®, and CID-keyed
fonts. The PDF manifestations of these fonts are documented in this book. How-
ever, the specifications for the font files themselves are published separately,
because they are highly specialized and are of interest to a different user commu-
nity. A variety of Adobe publications are available on the subject of font formats,
most notably the following:

* Adobe Type 1 Font Format and Adobe Technical Note #5015, Type 1 Font Format
Supplement

* Adobe Technical Note #5176, The Compact Font Format Specification

* Adobe Technical Note #5177, The Type 2 Charstring Format

* Adobe Technical Note #5014, Adobe CMap and CID Font Files Specification
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See the Bibliography for additional publications related to PDF and the contents
of this book.

1.4 Intellectual Property

The general idea of using an interchange format for electronic documents is in
the public domain. Anyone is free to devise a set of unique data structures and
operators that define an interchange format for electronic documents. However,
Adobe Systems Incorporated owns the copyright for the particular data struc-
tures and operators and the written specification constituting the interchange
format called the Portable Document Format. Thus, these elements of the Port-
able Document Format may not be copied without Adobe’s permission.

Adobe will enforce its copyright. Adobe’s intention is to maintain the integrity of
the Portable Document Format standard. This enables the public to distinguish
between the Portable Document Format and other interchange formats for elec-
tronic documents. However, Adobe desires to promote the use of the Portable
Document Format for information interchange among diverse products and
applications. Accordingly, Adobe gives anyone copyright permission, subject to
the conditions stated below, to:

* Prepare files whose content conforms to the Portable Document Format

* Write drivers and applications that produce output represented in the Portable
Document Format

* Write software that accepts input in the form of the Portable Document
Format and displays, prints, or otherwise interprets the contents

* Copy Adobe’s copyrighted list of data structures and operators, as well as the
example code and PostScript language function definitions in the written
specification, to the extent necessary to use the Portable Document Format for
the purposes above

The conditions of such copyright permission are:

* Software that accepts input in the form of the Portable Document Format must
respect the access permissions specified in that document. Accessing the docu-
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ment in ways not permitted by the document’s access permissions is a violation
of the document author’s copyright.

* Anyone who uses the copyrighted list of data structures and operators, as stated
above, must include an appropriate copyright notice.

This limited right to use the copyrighted list of data structures and operators
does not include the right to copy this book, other copyrighted material from
Adobe, or the software in any of Adobe’s products that use the Portable Docu-
ment Format, in whole or in part, nor does it include the right to use any Adobe
patents, except as may be permitted by an official Adobe Patent Clarification
Notice (see the Bibliography).

Acrobat, Acrobat Capture, Acrobat Reader, ePaper, the “Get Acrobat Reader” Web
logo, the “Adobe PDF” Web logo, and all other trademarks, service marks, and
logos used by Adobe (the “Marks”) are the registered trademarks or trademarks
of Adobe Systems Incorporated in the United States and other countries. Nothing
in this book is intended to grant you any right or license to use the Marks for any
purpose.






CHAPTER 2

Overview

THE ADOBE PORTABLE DOCUMENT FORMAT (PDF) is a file format for rep-
resenting documents in a manner independent of the application software, hard-
ware, and operating system used to create them and of the output device on
which they are to be displayed or printed. A PDF document consists of a collec-
tion of objects that together describe the appearance of one or more pages, possi-
bly accompanied by additional interactive elements and higher-level application
data. A PDF file contains the objects making up a PDF document along with
associated structural information, all represented as a single self-contained se-
quence of bytes.

A document’s pages (and other visual elements) may contain any combination of
text, graphics, and images. A page’s appearance is described by a PDF content
stream, which contains a sequence of graphics objects to be painted on the page.
This appearance is fully specified; all layout and formatting decisions have al-
ready been made by the application generating the content stream.

In addition to describing the static appearance of pages, a PDF document may
contain interactive elements that are possible only in an electronic representa-
tion. PDF supports annotations of many kinds for such things as text notes,
hypertext links, markup, file attachments, sounds, and movies. A document can
define its own user interface; keyboard and mouse input can trigger actions that
are specified by PDF objects. The document can contain interactive form fields to
be filled in by the user, and can export the values of these fields to or import them
from other applications.

Finally, a PDF document can contain higher-level information that is useful for
interchange of content among applications. In addition to specifying appearance,
a document’s content can include identification and logical structure informa-
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tion that allows it to be searched, edited, or extracted for reuse elsewhere. PDF is
particularly well suited for representing a document as it moves through succes-
sive stages of a prepress production workflow.

Imaging Model

At the heart of PDF is its ability to describe the appearance of sophisticated
graphics and typography. This is achieved through the use of the Adobe imaging
model, the same high-level, device-independent representation used in the Post-
Script page description language.

Although application programs could theoretically describe any page as a full-
resolution pixel array, the resulting file would be bulky, device-dependent, and
impractical for high-resolution devices. A high-level imaging model enables
applications to describe the appearance of pages containing text, graphical
shapes, and sampled images in terms of abstract graphical elements rather than
directly in terms of device pixels. Such a description is economical and device-
independent, and can be used to produce high-quality output on a broad range
of printers, displays, and other output devices.

Page Description Languages

Among its other roles, PDF serves as a page description language: a language for
describing the graphical appearance of pages with respect to an imaging model.
An application program produces output through a two-stage process:

1. The application generates a device-independent description of the desired
output in the page description language.

2. A program controlling a specific output device interprets the description and
renders it on that device.

The two stages may be executed in different places and at different times; the page
description language serves as an interchange standard for the compact, device-
independent transmission and storage of printable or displayable documents.
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2.1.2 Adobe Imaging Model

The Adobe imaging model is a simple and unified view of two-dimensional
graphics borrowed from the graphic arts. In this model, “paint” is placed on a
page in selected areas.

* The painted figures may be in the form of character shapes (glyphs), geometric
shapes, lines, or sampled images such as digital representations of photo-
graphs.

* The paint may be in color or in black, white, or any shade of gray; it may also
take the form of a repeating pattern (PDF 1.2) or a smooth transition between
colors (PDF 1.3).

* Any of these elements may be clipped to appear within other shapes as they are
placed onto the page.

A page’s content stream contains operands and operators describing a sequence of
graphics objects. A PDF viewer application maintains an implicit current page
that accumulates the marks made by the painting operators. Initially, the current
page is completely blank. For each graphics object encountered in the content
stream, the viewer places marks on the current page, which replace or combine
with any previous marks they may overlay. Once the page has been completely
composed, the accumulated marks are rendered on the output medium and the
current page is cleared to blank again.

Versions of PDF up to and including PDF 1.3 use an opaque imaging model in
which each new graphics object painted onto a page completely obscures the pre-
vious contents of the page at those locations (subject to the effects of certain op-
tional parameters that may modify this behavior; see Section 4.5.6, “Overprint
Control”). No matter what color an object has—white, black, gray, or color—it is
placed on the page as if it were applied with opaque paint. PDF 1.4 introduces a
new transparent imaging model in which objects painted on the page are not
required to be fully opaque. Instead, newly painted objects are composited with
the previously existing contents of the page, producing results that combine the
colors of the object and its backdrop according to their respective opacity charac-
teristics. The transparent imaging model is described in Chapter 7.
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The principal graphics objects (among others) are as follows:

* A path object consists of a sequence of connected and disconnected points,
lines, and curves that together describe shapes and their positions. It is built up
through the sequential application of path construction operators, each of which
appends one or more new elements. The path object is ended by a path-
painting operator, which paints the path on the page in some way. The principal
path-painting operators are S (stroke), which paints a line along the path, and f
(fill), which paints the interior of the path.

* A text object consists of one or more glyph shapes representing characters of
text. The glyph shapes for the characters are described in a separate data struc-
ture called a font. Like path objects, text objects can be stroked or filled.

* An image object is a rectangular array of sample values, each representing a
color at a particular position within the rectangle. Such objects are typically
used to represent photographs.

The painting operators require various parameters, some explicit and others im-
plicit. Implicit parameters include the current color, current line width, current
font (typeface and size), and many others. Together, these implicit parameters
make up the graphics state. There are operators for setting the value of each im-
plicit parameter in the graphics state; painting operators use the values currently
in effect at the time they are invoked.

One additional implicit parameter in the graphics state modifies the results of
painting graphics objects. The current clipping path outlines the area of the cur-
rent page within which paint can be placed. Although painting operators may
attempt to place marks anywhere on the current page, only those marks falling
within the current clipping path will affect the page; those falling outside it will
not. Initially, the current clipping path encompasses the entire imageable area of
the page. It can temporarily be reduced to the shape defined by a path or text ob-
ject, or to the intersection of multiple such shapes. Marks placed by subsequent
painting operators will then be confined within that boundary.

Raster Output Devices

Much of the power of the Adobe imaging model derives from its ability to deal
with the general class of raster output devices. These encompass such technologies
as laser, dot-matrix, and ink-jet printers, digital imagesetters, and raster-scan
displays. The defining property of a raster output device is that a printed or dis-
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played image consists of a rectangular array, or raster, of dots called pixels (picture
elements) that can be addressed individually. On a typical bilevel output device,
each pixel can be made either black or white. On some devices, pixels can be set
to intermediate shades of gray or to some color. The ability to set the colors of
individual pixels makes it possible to generate printed or displayed output that
can include text, arbitrary graphical shapes, and reproductions of sampled
images.

The resolution of a raster output device measures the number of pixels per unit of
distance along the two linear dimensions. Resolution is typically—but not neces-
sarily—the same horizontally and vertically. Manufacturers’ decisions on device
technology and price/performance tradeoffs create characteristic ranges of reso-
lution:

* Computer displays have relatively low resolution, typically 75 to 110 pixels per
inch.

* Dot-matrix printers generally range from 100 to 250 pixels per inch.

* Ink-jet and laser-scanned xerographic printing technologies achieve medium-
level resolutions of 300 to 1400 pixels per inch.

* Photographic technology permits high resolutions of 2400 pixels per inch or
more.

Higher resolution yields better quality and fidelity of the resulting output, but is
achieved at greater cost. As the technology improves and computing costs de-
crease, products evolve to higher resolutions.

Scan Conversion

An abstract graphical element (such as a line, a circle, a character glyph, or a
sampled image) is rendered on a raster output device by a process known as scan
conversion. Given a mathematical description of the graphical element, this pro-
cess determines which pixels to adjust and what values to assign to those pixels to
achieve the most faithful rendition possible at the available device resolution.

The pixels on a page can be represented by a two-dimensional array of pixel
values in computer memory. For an output device whose pixels can only be black
or white, a single bit suffices to represent each pixel. For a device that can repro-
duce gray levels or colors, multiple bits per pixel are required.
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Note: Although the ultimate representation of a printed or displayed page is logically
a complete array of pixels, its actual representation in computer memory need not
consist of one memory cell per pixel. Some implementations use other representa-
tions, such as display lists. The Adobe imaging model has been carefully designed not
to depend on any particular representation of raster memory.

For each graphical element that is to appear on the page, the scan converter sets
the values of the corresponding pixels. When the interpretation of the page de-
scription is complete, the pixel values in memory represent the appearance of the
page. At this point, a raster output process can render this representation (make it
visible) on a printed page or display screen.

Scan-converting a graphical shape, such as a rectangle or circle, entails determin-
ing which device pixels lie inside the shape and setting their values appropriately
(for example, to black). Because the edges of a shape do not always fall precisely
on the boundaries between pixels, some policy is required for deciding how to set
the pixels along the edges. Scan-converting a glyph representing a text character
is conceptually the same as scan-converting an arbitrary graphical shape; how-
ever, character glyphs are much more sensitive to legibility requirements and
must meet more rigid objective and subjective measures of quality.

Rendering grayscale elements on a bilevel device is accomplished by a technique
known as halftoning. The array of pixels is divided into small clusters according to
some pattern (called the halftone screen). Within each cluster, some pixels are set
to black and some to white in proportion to the level of gray desired at that loca-
tion on the page. When viewed from a sufficient distance, the individual dots be-
come imperceptible and the perceived result is a shade of gray. This enables a
bilevel raster output device to reproduce shades of gray and to approximate natu-
ral images such as photographs. Some color devices use a similar technique.

Other General Properties

This section describes other notable general properties of PDF, aside from its im-
aging model.

Portability

PDF files are represented as sequences of 8-bit binary bytes. A PDF file is de-
signed to be portable across all platforms and operating systems. The binary rep-
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resentation is intended to be generated, transported, and consumed directly,
without translation between native character sets, end-of-line representations, or
other conventions used on various platforms.

Any PDF file can also be represented in a form that uses only 7-bit ASCII (Ameri-
can Standard Code for Information Interchange) character codes. This is useful
for the purpose of exposition, as in this book. However, this representation is not
recommended for actual use, since it is less efficient than the normal binary rep-
resentation. Regardless of which representation is used, PDF files must be trans-
ported and stored as binary files, not as fext files; inadvertent changes, such as
conversion between text end-of-line conventions, will damage the file and may
render it unusable.

2.2.2 Compression

To reduce file size, PDF supports a number of industry-standard compression
filters:

* JPEG compression of color and grayscale images

* CCITT (Group 3 or Group 4), run-length, and (in PDF 1.4) JBIG2 compres-
sion of monochrome images

* LZW (Lempel-Ziv-Welch) and (beginning with PDF 1.2) Flate compression of
text, graphics, and images

Using JPEG compression, color and grayscale images can be compressed by a fac-
tor of 10 or more. Effective compression of monochrome images depends on the
compression filter used and the properties of the image, but reductions of 2:1 to
8:1 are common (or 20:1 to 50:1 for JBIG2 compression of an image of a page full
of text). LZW or Flate compression of the content streams describing all other
text and graphics in the document results in compression ratios of approximately
2:1. All of these compression filters produce binary data, which can then be
further converted to ASCII base-85 encoding if a 7-bit ASCII representation is
desired.

2.2.3 Font Management

Managing fonts is a fundamental challenge in document interchange. Generally,
the receiver of a document must have the same fonts that were originally used to
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create it. If a different font is substituted, its character set, glyph shapes, and met-
rics may differ from those in the original font. This can produce unexpected and
undesirable results, such as lines of text extending into margins or overlapping
with graphics.

PDF provides various means for dealing with font management:

* The original font programs can be embedded in the PDF file. PDF supports
various font formats, including Type 1, TrueType®, and CID-keyed fonts. This
ensures the most predictable and dependable results.

* To conserve space, a font subset can be embedded, containing just the glyph
descriptions for those characters that are actually used in the document. Also,
Type 1 fonts can be represented in a special compact format.

* PDF prescribes a set of 14 standard fonts that can be used without prior defini-
tion. These include four faces each of three Latin text typefaces (Courier,
Helvetica*, and Times*), as well as two symbolic fonts (Symbol and ITC Zapf
Dingbats®). These fonts, or suitable substitute fonts with the same metrics, are
guaranteed to be available in all PDF viewer applications.

* A PDF file can refer by name to fonts that are not embedded in the PDF file. In
this case, a viewer application will use those fonts if they are available in the
viewer’s environment. This approach suffers from the uncertainties noted
above.

* A PDF file contains a font descriptor for each font that it uses (other than the
standard 14). The font descriptor includes font metrics and style information,
enabling a viewer application to select or synthesize a suitable substitute font if
necessary. Although the glyphs’ shapes will differ from those intended, their
placement will be accurate.

Font management is primarily concerned with producing the correct appearance
of text—that is, the shape and placement of glyphs. However, it is sometimes
necessary for a PDF application to extract the meaning of the text, represented in
some standard information encoding such as Unicode. In some cases, this in-
formation can be deduced from the encoding used to represent the text in the
PDF file. Otherwise, the PDF producer application should specify the mapping
explicitly by including a special object, the ToUnicode CMap.
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Single-Pass File Generation

Because of system limitations and efficiency considerations, it may be necessary
or desirable for an application program to generate a PDF file in a single pass. For
example, the program may have limited memory available or be unable to open
temporary files. For this reason, PDF supports single-pass generation of files.
Although some PDF objects must specify their length in bytes, a mechanism is
provided allowing the length to follow the object itself in the PDF file. In addi-
tion, information such as the number of pages in the document can be written
into the file after all pages have been generated.

A PDF file that is generated in a single pass is generally not ordered for most effi-
cient viewing, particularly when accessing the contents of the file over a network.
When generating a PDF file that is intended to be viewed many times, it is worth-
while to perform a second pass to optimize the order in which objects occur in
the file. PDF specifies a particular file organization, Linearized PDF, which is doc-
umented in Appendix F. Other optimizations are also possible, such as detecting
duplicated sequences of graphics objects and collapsing them to a single shared
sequence that is specified only once.

Random Access

A PDF file should be thought of as a flattened representation of a data structure
consisting of a collection of objects that can refer to each other in any arbitrary
way. The order of the objects’ occurrence in the PDF file has no semantic signifi-
cance. In general, a viewer application should process a PDF file by following ref-
erences from object to object, rather than by processing objects sequentially. This
is particularly important for interactive document viewing or for any application
in which pages or other objects in the PDF file are accessed out of sequence.

To support such random access to individual objects, every PDF file contains a
cross-reference table that can be used to locate and directly access pages and other
important objects within the file. The cross-reference table is stored at the end of
the file, allowing applications that generate PDF files in a single pass to store it
easily and those that read PDF files to locate it easily. Using the cross-reference
table makes the time needed to locate a page or other object nearly independent
of the length of the document. This allows PDF documents containing hundreds
or thousands of pages to be accessed efficiently.
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2.2.6 Security

PDF has two security features that can be used, separately or together, in any doc-
ument:

* The document can be encrypted so that only authorized users can access it.
There is separate authorization for the owner of the document and for all other
users; the users’ access can be selectively restricted to allow only certain opera-
tions, such as viewing, printing, or editing.

* The document can be digitally signed to certify its authenticity. The signature
may take many forms, including a document digest that has been encrypted
with a public/private key, a biometric signature such as a fingerprint, and oth-
ers. Any subsequent changes to a signed PDF file will invalidate the signature.

2.2.7 Incremental Update

Applications may allow users to modify PDF documents. Users should not have
to wait for the entire file—which can contain hundreds of pages or more—to be
rewritten each time modifications to the document are saved. PDF allows modifi-
cations to be appended to a file, leaving the original data intact. The addendum
appended when a file is incrementally updated contains only those objects that
were actually added or modified, and includes an update to the cross-reference
table. Incremental update allows an application to save modifications to a PDF
document in an amount of time proportional to the size of the modification
rather than the size of the file.

In addition, because the original contents of the document are still present in the
file, it is possible to undo saved changes by deleting one or more addenda. The
ability to recover the exact contents of an original document is critical when digi-
tal signatures have been applied and subsequently need to be verified.

2.2.8 Extensibility

PDF is designed to be extensible. Not only can new features be added, but appli-
cations based on earlier versions of PDF can behave reasonably when they en-
counter newer features that they do not understand. Appendix H describes how a
PDF viewer application should behave in such cases.
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Additionally, PDF provides means for applications to store their own private in-
formation in a PDF file. This information can be recovered when the file is im-
ported by the same application, but is ignored by other applications. This allows
PDF to serve as an application’s native file format while allowing its documents to
be viewed and printed by other applications. Application-specific data can be
stored either as marked content annotating the graphics objects in a PDF content
stream or as entirely separate objects unconnected with the PDF content.

Using PDF

PDF files may be produced either directly by application programs or indirectly
by conversion from other file formats or imaging models. As PDF documents and
applications that process them become more prevalent, new ways of creating and
using PDF will be invented. One of the goals of this book is to make the file for-
mat accessible so that application developers can expand on the ideas behind
PDF and the applications that initially support it.

Many applications can generate PDF files directly, and some can import them as
well. This is the most desirable approach, since it gives the application access to
the full capabilities of PDF, including the imaging model and the interactive and
document interchange features. Alternatively, existing applications that do not
generate PDF directly can still be used to produce PDF output by indirect meth-
ods. There are two principal ways of doing this:

* The application describes its printable output by making calls to an application
programming interface (API) such as GDI in Microsoft” Windows" or Quick-
Draw" in the Apple” Mac” OS. A software component called a printer driver in-
tercepts these calls and interprets them to generate output in PDF form.

* The application produces printable output directly in some other file format,
such as PostScript, PCL, HPGL, or DVI, which is then converted into PDF by a
separate translation program.

Note, however, that while these indirect strategies are often the easiest way to ob-
tain PDF output from an existing application, the resulting PDF files may not
make the best use of the high-level Adobe imaging model. This is because the in-
formation embodied in the application’s API calls or in the intermediate output
file often describes the desired results at too low a level; any higher-level informa-
tion maintained by the original application has been lost and is not available to
the printer driver or translator.
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Figures 2.1 and 2.2 show how Adobe Acrobat products support these indirect
approaches. PDF Writer (Figure 2.1), available on the Windows and Mac OS
platforms, acts as a printer driver, intercepting graphics and text operations gen-
erated by a running application program through the operating system’s API.
Instead of converting these operations into printer commands and transmitting
them directly to a printer, PDF Writer converts them to equivalent PDF operators
and embeds them in a PDF file. The result is a platform-independent file that can
be viewed and printed by a PDF viewer application, such as Adobe Acrobat, run-
ning on any supported platform—even a different platform from the one on
which the file was originally generated.

Macintosh application Windows application
QuickDraw GDI
PDF Writer
PDF
Acrobat

FIGURE 2.1 Creating PDF files using PDF Writer

Instead of describing their printable output via API calls, some applications pro-
duce PostScript page descriptions directly—either because of limitations in the
QuickDraw or GDI imaging models or because the applications run on platforms
such as DOS or UNIX", where no system-level printer driver exists. PostScript
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files generated by such applications can be converted into PDF files using the
Acrobat Distiller” application (see Figure 2.2). Because PostScript and PDF share
the same Adobe imaging model, Acrobat Distiller can preserve the exact graph-
ical content of the PostScript file in the translation to PDFE. Additionally, Distiller
supports a PostScript language extension, called pdfmark, that allows the produc-
ing application to embed instructions in the PostScript file for creating hypertext
links, logical structure, and other interactive and document interchange features
of PDF. Again, the resulting PDF file can be viewed with a viewer application,
such as Adobe Acrobat, on any supported platform.

PostScript
page description

Acrobat Distiller

PDF

|

Acrobat

FIGURE 2.2 Creating PDF files using Acrobat Distiller

2.4 PDF and the PostScript Language

The PDF operators for setting the graphics state and painting graphics objects are
similar to the corresponding operators in the PostScript language. Unlike Post-
Script, however, PDF is not a full-scale programming language; it trades reduced
flexibility for improved efficiency and predictability. PDF therefore differs from
PostScript in the following significant ways:

* PDF enforces a strictly defined file structure that allows an application to access
parts of a document in arbitrary order.

* To simplify the processing of content streams, PDF does not include common
programming language features such as procedures, variables, and control con-
structs.
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* PDF files contain information such as font metrics to ensure viewing fidelity.

* A PDF file may contain additional information that is not directly connected

with the imaging model, such as hypertext links for interactive viewing and
logical structure information for document interchange.

Because of these differences, a PDF file generally cannot be transmitted directly
to a PostScript output device for printing (although a few such devices do also
support PDF directly). An application printing a PDF document to a PostScript
device must carry out the following steps:

. Insert procedure sets containing PostScript procedure definitions to implement

the PDF operators.

. Extract the content for each page. Each content stream is essentially the script

portion of a traditional PostScript program using very specific procedures,
such as m for moveto and | for lineto.

. Decode compressed text, graphics, and image data as necessary. The compres-

sion filters used in PDF are compatible with those used in PostScript; they may
or may not be supported, depending on the LanguageLevel of the target out-
put device.

. Insert any needed resources, such as fonts, into the PostScript file. These can

be either the original fonts themselves or suitable substitute fonts based on the
font metrics in the PDF file. Fonts may need to be converted to a format that
the PostScript interpreter recognizes, such as Type 1 or Type 42.

. Put the information in the correct order. The result is a traditional PostScript

program that fully represents the visual aspects of the document but no longer
contains PDF elements such as hypertext links, annotations, and bookmarks.

. Transmit the PostScript program to the output device.



CHAPTER 3

Syntax

THIS CHAPTER COVERS everything about the syntax of PDF at the object, file,
and document level. It sets the stage for subsequent chapters, which describe how
the contents of a PDF file are interpreted as page descriptions, interactive naviga-
tional aids, and application-level logical structure.

PDF syntax is best understood by thinking of it in four parts, as shown in
Figure 3.1:

* Objects. A PDF document is a data structure composed from a small set of
basic types of data object. Section 3.1, “Lexical Conventions,” describes the
character set used to write objects and other syntactic elements. Section 3.2,
“Objects,” describes the syntax and essential properties of the objects them-
selves. Section 3.2.7, “Stream Objects,” provides complete details of the most
complex data type, the stream object.

* File structure. The PDF file structure determines how objects are stored in a
PDF file, how they are accessed, and how they are updated. This structure is
independent of the semantics of the objects. Section 3.4, “File Structure,” de-
scribes the file structure. Section 3.5, “Encryption,” describes a file-level mech-
anism for protecting a document’s contents from unauthorized access.

* Document structure. The PDF document structure specifies how the basic ob-
ject types are used to represent components of a PDF document: pages, fonts,
annotations, and so forth. Section 3.6, “Document Structure,” describes the
overall document structure; later chapters address the detailed semantics of the
components.

* Content streams. A PDF content stream contains a sequence of instructions de-
scribing the appearance of a page or other graphical entity. These instructions,
while also represented as objects, are conceptually distinct from the objects that

23
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represent the document structure and are described separately. Section 3.7,
“Content Streams and Resources,” discusses PDF content streams and their as-
sociated resources.

Objects
File Content
structure stream
Document
structure

FIGURE 3.1 PDF components

In addition, this chapter describes some data structures, built from basic objects,
that are so widely used that they can almost be considered basic object types in
their own right. These objects are covered in Sections 3.8, “Common Data Struc-
tures”; 3.9, “Functions”; and 3.10, “File Specifications.”

PDPF’s object and file syntax is also used as the basis for other file formats. These
include the Forms Data Format (FDF), described in Section 8.6.6, “Forms Data
Format,” and the Portable Job Ticket Format (PJTF), described in Adobe Techni-
cal Note #5620, Portable Job Ticket Format.

Lexical Conventions

At the most fundamental level, a PDF file is a sequence of 8-bit bytes. These bytes
can be grouped into fokens according to the syntax rules described below. One or
more tokens are then assembled to form higher-level syntactic entities, prin-
cipally objects, which are the basic data values from which a PDF document is
constructed.

PDF can be entirely represented using byte values corresponding to the visible
printable subset of the ASCII character set, plus characters that appear as “white
space,” such as space, tab, carriage return, and line feed characters. ASCII is the
American Standard Code for Information Interchange, a widely used convention
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for encoding a specific set of 128 characters as binary numbers. However, a PDF
file is not restricted to the ASCII character set; it can contain arbitrary 8-bit bytes,
subject to the following considerations:

* The tokens that delimit objects and that describe the structure of a PDF file are
all written in the ASCII character set, as are all the reserved words and the
names used as keys in standard dictionaries.

* The data values of certain types of object—strings and streams—can be but
need not be written entirely in ASCII. For the purpose of exposition (as in this
book), ASCII representation is preferred. However, in actual practice, data that
is naturally binary, such as sampled images, is represented directly in binary for
the sake of compactness and efficiency.

* A PDF file containing binary data must be transported and stored by means
that preserve all bytes of the file faithfully; that is, as a binary file rather than a
text file. Such a file is not portable to environments that impose reserved char-
acter codes, maximum line lengths, end-of-line conventions, or other restric-
tions.

Note: In this chapter, the term character is synonymous with byte and merely refers
to a particular 8-bit value. This is entirely independent of any logical meaning that
the value may have when it is treated as data in specific contexts, such as represent-
ing human-readable text or selecting a glyph from a font.

Character Set

The PDF character set is divided into three classes, called regular, delimiter, and
white-space characters. This classification determines the grouping of characters
into tokens, except within strings, streams, and comments; different rules apply
in those contexts.

White-space characters (see Table 3.1) separate syntactic constructs such as names
and numbers from each other. All white-space characters are equivalent, except
in comments, strings, and streams. In all other contexts, PDF treats any sequence
of consecutive white-space characters as if there were just one.
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TABLE 3.1 White-space characters

DECIMAL HEXADECIMAL OCTAL NAME
0 00 000 Null (NUL)
9 09 011 Tab (HT)
10 0A 012 Line feed (LF)
12 0C 014 Form feed (FF)
13 0D 015 Carriage return (CR)
32 20 040 Space (SP)

The carriage return (CR) and line feed (LF) characters, also called newline char-
acters, are treated as end-of-line (EOL) markers. The combination of a carriage
return followed immediately by a line feed is treated as one EOL marker. For the
most part, EOL markers are treated the same as any other white-space characters.
However, there are certain instances in which an EOL marker is required or rec-
ommended—that is, the following token must appear at the beginning of a line.

Note: The examples in this book illustrate a recommended convention for arranging
tokens into lines. However, the examples’ use of white space for indentation is purely
for clarity of exposition and is not recommended for practical use.

The delimiter characters (,), <,>,[,1,{,}, /, and % are special. They delimit syntac-
tic entities such as strings, arrays, names, and comments. Any of these characters
terminates the entity preceding it and is not included in the entity.

All characters besides the white-space characters and delimiters are referred to as
regular characters. These include 8-bit binary characters that are outside the
ASCII character set. A sequence of consecutive regular characters comprises a
single token.

Note: PDF is case-sensitive; corresponding uppercase and lowercase letters are con-
sidered distinct.
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Comments

Any occurrence of the percent sign character (%) outside a string or stream intro-
duces a comment. The comment consists of all characters between the percent
sign and the end of the line, including regular, delimiter, space, and tab charac-
ters. PDF ignores comments, treating them as if they were single white-space
characters. That is, a comment separates the token preceding it from the one fol-
lowing; thus the PDF fragment

abc% comment {/%) blah blah blah
123

is syntactically equivalent to just the tokens abc and 123.

Comments (other than the %PDF-1.4 and %%EOF comments described in Sec-
tion 3.4, “File Structure”) have no semantics. They are not necessarily preserved
by applications that edit PDF files (see implementation note 2 in Appendix H). In
particular, there is no PDF equivalent of the PostScript document structuring
conventions (DSC).

Objects

PDF supports eight basic types of object:

* Boolean values

* Integer and real numbers
* Strings

* Names

* Arrays

* Dictionaries

* Streams

* The null object

Objects may be labeled so that they can be referred to by other objects. A labeled
object is called an indirect object.
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The following sections describe each object type, as well as how to create and
refer to indirect objects.

3.2.1 Boolean Objects

PDF provides boolean objects identified by the keywords true and false. Boolean
objects can be used as the values of array elements and dictionary entries, and
can also occur in PostScript calculator functions as the results of boolean and
relational operators and as operands to the conditional operators if and ifelse
(see Section 3.9.4, “Type 4 (PostScript Calculator) Functions”).

3.2.2 Numeric Objects

PDF provides two types of numeric object: integer and real. Integer objects rep-
resent mathematical integers within a certain interval centered at 0. Real objects
approximate mathematical real numbers, but with limited range and precision;
they are typically represented in fixed-point, rather than floating-point, form.
The range and precision of numbers are limited by the internal representations
used in the machine on which the PDF viewer application is running; Appendix
C gives these limits for typical implementations.

An integer is written one or more decimal digits optionally preceded by a sign:
123 43445 +17 -98 O

The value is interpreted as a signed decimal integer and is converted to an integer
object. If it exceeds the implementation limit for integers, it is converted to a real
object.

A real value is written as one or more decimal digits with an optional sign and a
leading, trailing, or embedded period (decimal point):

345 -362 +1236 4. -.002 0.0

The value is interpreted as a real number and is converted to a real object. If it
exceeds the implementation limit for real numbers, an error occurs.

Note: PDF does not support the PostScript syntax for numbers with nondecimal
radices (such as 16#FFFE) or in exponential format (such as 6.02E23).
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Throughout this book, the term number refers to an object whose type may be
either integer or real. Wherever a real number is expected, an integer may be used
instead and will be automatically converted to an equivalent real value. For ex-
ample, it is not necessary to write the number 1.0 in real format; the integer 1 will
suffice.

String Objects

A string object consists of a series of bytes—unsigned integer values in the range 0
to 255. The string elements are not integer objects, but are stored in a more
compact format. The length of a string is subject to an implementation limit; see
Appendix C.

There are two conventions, described in the following sections, for writing a
string object in PDF:

* Asa sequence of literal characters enclosed in parentheses ()

* As hexadecimal data enclosed in angle brackets < >

This section describes only the basic syntax for writing a string as a sequence of
bytes. Strings can be used for many purposes and can be formatted in a variety of
ways. When a string is used for a specific purpose (to represent a date, for ex-
ample), it is useful to have a standard format for that purpose (see Section 3.8.2,
“Dates”). Such formats are merely conventions for interpreting the contents of a
string and are not in themselves separate object types. The use of a particular for-
mat is described with the definition of the string object that uses that format.

Literal Strings

A literal string is written as an arbitrary number of characters enclosed in paren-
theses. Any characters may appear in a string except unbalanced parentheses and
the backslash, which must be treated specially. Balanced pairs of parentheses
within a string require no special treatment.

The following are valid literal strings:
(This is a string)

(Strings may contain newlines
and such.)
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(Strings may contain balanced parentheses () and
special characters (*!&}A% and so on).)
(The following is an empty string.)

0
(It has zero (0) length.)

Within a literal string, the backslash (\) is used as an escape character for various
purposes, such as to include newline characters, nonprinting ASCII characters,
unbalanced parentheses, or the backslash character itself in the string. The char-
acter immediately following the backslash determines its precise interpretation
(see Table 3.2). If the character following the backslash is not one of those shown
in the table, the backslash is ignored.

TABLE 3.2 Escape sequences in literal strings

SEQUENCE MEANING
\n Line feed (LF)
\r Carriage return (CR)
\t Horizontal tab (HT)
\b Backspace (BS)
\f Form feed (FF)
\( Left parenthesis
\) Right parenthesis
\\ Backslash
\ddd Character code ddd (octal)

If a string is too long to be conveniently placed on a single line, it may be split
across multiple lines by using the backslash character at the end of a line to indi-
cate that the string continues on the following line. The backslash and the end-
of-line marker following it are not considered part of the string. For example:

(These \

two strings \

are the same.)

(These two strings are the same.)
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If an end-of-line marker appears within a literal string without a preceding back-
slash, the result is equivalent to \n (regardless of whether the end-of-line marker
itself was a carriage return, a line feed, or both). For example:

(This string has an end-of-line at the end of it.

)

(So does this one.\n)

The \ddd escape sequence provides a way to represent characters outside the
printable ASCII character set. For example:

(This string contains \245two octal characters\307.)

The number ddd may consist of one, two, or three octal digits, with high-order
overflow ignored. It is required that three octal digits be used, with leading zeros
as needed, if the next character of the string is also a digit. For example, the literal

(\0053)

denotes a string containing two characters, \005 (Control-E) followed by the digit
3, whereas both

(\053)
and
(\53)
denote strings containing the single character \053, a plus sign (+).

This notation provides a way to specify characters outside the 7-bit ASCII charac-
ter set using ASCII characters only. However, any 8-bit value may appear in a
string. In particular, when a document is encrypted (see Section 3.5, “Encryp-
tion”), all of its strings are encrypted and often contain arbitrary 8-bit values.
Note that the backslash character is still required as an escape to specify unbal-
anced parentheses or the backslash character itself.
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Hexadecimal Strings

Strings may also be written in hexadecimal form,; this is useful for including arbi-
trary binary data in a PDF file. A hexadecimal string is written as a sequence of
hexadecimal digits (0-9 and either A—F or a—f) enclosed within angle brackets
(< and >):

<4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space char-
acters (such as space, tab, carriage return, line feed, and form feed) are ignored.

If the final digit of a hexadecimal string is missing—that is, if there is an odd
number of digits—the final digit is assumed to be 0. For example,

<901FA3>

is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F,
and A3, but

<901FA>

is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F,
and AO.

3.2.4 Name Objects

A name object is an atomic symbol uniquely defined by a sequence of characters.
Uniquely defined means that any two name objects made up of the same sequence
of characters are identically the same object. Atomic means that a name has no
internal structure; although it is defined by a sequence of characters, those char-
acters are not “elements” of the name.

A slash character (/) introduces a name. The slash is not part of the name itself,
but a prefix indicating that the following sequence of characters constitutes a
name. There can be no white-space characters between the slash and the first
character in the name. The name may include any regular characters, but not
delimiter or white-space characters (see Section 3.1, “Lexical Conventions”).
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Uppercase and lowercase letters are considered distinct: /A and /a are different
names. The following are examples of valid literal names:

/Namel1

/ASomewhatLongerName
/A;Name_With-Various***Characters?
/1.2

/%%

/@pattern

/.notdef

Note: The token / (a slash followed by no regular characters) is a valid name.

Beginning with PDF 1.2, any character except null (character code 0) may be in-
cluded in a name by writing its 2-digit hexadecimal code, preceded by the num-
ber sign character (#); see implementation notes 3 and 4 in Appendix H. This
syntax is required in order to represent any of the delimiter or white-space char-
acters or the number sign character itself; it is reccommended but not required for
characters whose codes are outside the range 33 (!) to 126 (~). The examples
shown in Table 3.3 are valid literal names in PDF 1.2 and higher.

TABLE 3.3 Examples of literal names using the # character

LITERAL NAME RESULT
/Adobe#20Green Adobe Green
/PANTONE#205757#20CV PANTONE 5757 CV
/paired#28#29parentheses paired()parentheses
/The_Key_of_F#23_Minor The_Key_of_F#_Minor
/A#42 AB

The length of a name is subject to an implementation limit; see Appendix C. The
limit applies to the number of characters in the name’s internal representation.
For example, the name /A#20B has four characters (/, A, space, B), not six.

As stated above, name objects are treated as atomic symbols within a PDF file.
Ordinarily, the bytes making up the name are never treated as text to be presented
to a human user or to an application external to a PDF viewer. However, occa-
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sionally the need arises to treat a name object as text, such as one that represents a
font name (see the BaseFont entry in Table 5.8 on page 317) or a structure type
(see Section 9.6.2, “Structure Types”).

In such situations, it is recommended that the sequence of bytes (after expansion
of # sequences, if any) be interpreted according to UTF-8, a variable-length byte-
encoded representation of Unicode in which the printable ASCII characters have
the same representations as in ASCII. This enables a name object to represent text
in any natural language, subject to the implementation limit on the length of a
name. (See implementation note 5 in Appendix H.)

Note: PDF does not prescribe what UTF-8 sequence to choose for representing any
given piece of externally specified text as a name object. In some cases, there are mul-
tiple UTF-8 sequences that could represent the same logical text. Name objects de-
fined by different sequences of bytes constitute distinct name objects in PDEF, even
though the UTF-8 sequences might have identical external interpretations.

In PDE name objects always begin with the slash character (/), unlike keywords
such as true, false, and obj. This book follows a typographic convention of writ-
ing names without the leading slash when they appear in running text and tables.
For example, Type and FullScreen denote names that would actually be written in
a PDF file (and in code examples in this book) as /Type and /FullScreen.

3.2.5 Array Objects

An array object is a one-dimensional collection of objects arranged sequentially.
Unlike arrays in many other computer languages, PDF arrays may be hetero-
geneous; that is, an array’s elements may be any combination of numbers, strings,
dictionaries, or any other objects, including other arrays. The number of ele-
ments in an array is subject to an implementation limit; see Appendix C.

An array is written as a sequence of objects enclosed in square brackets ([ and 1):
[549 3.14 false (Ralph) /SomeName]

PDF directly supports only one-dimensional arrays. Arrays of higher dimension
can be constructed by using arrays as elements of arrays, nested to any depth.
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3.2.6 Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known as the
dictionary’s entries. The first element of each entry is the key and the second
element is the value. The key must be a name (unlike dictionary keys in Post-
Script, which may be objects of any type). The value can be any kind of object,
including another dictionary. A dictionary entry whose value is null (see Section
3.2.8, “The Null Object”) is equivalent to an absent entry. (Note that this differs
from PostScript, where null behaves like any other object as the value of a diction-
ary entry.) The number of entries in a dictionary is subject to an implementation
limit; see Appendix C.

Note: No two entries in the same dictionary should have the same key. If a key does
appear more than once, its value is undefined.

A dictionary is written as a sequence of key-value pairs enclosed in double angle
brackets (<<...>>). For example:

<< /[Type /Example
/Subtype /DictionaryExample
/Version 0.01
/Integerltem 12
/Stringltem (a string)
/Subdictionary << /ltem1 0.4
/ltem2 true
/Lastltem (not!)
/VeryLastltem (OK)
>>
>>

Note: Do not confuse the double angle brackets with single angle brackets (< and >),
which delimit a hexadecimal string (see “Hexadecimal Strings” on page 32).

Dictionary objects are the main building blocks of a PDF document. They are
commonly used to collect and tie together the attributes of a complex object,
such as a font or a page of the document, with each entry in the dictionary speci-
fying the name and value of an attribute. By convention, the Type entry of such a
dictionary identifies the type of object the dictionary describes. In some cases, a
Subtype entry (sometimes abbreviated S) is used to further identify a specialized
subcategory of the general type. The value of the Type or Subtype entry is always
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a name. For example, in a font dictionary, the value of the Type entry is always
Font, whereas that of the Subtype entry may be Type1, TrueType, or one of sever-
al other values.

The value of the Type entry can almost always be inferred from context. The op-
erand of the Tf operator, for example, must be a font object, so the Type entry in a
font dictionary serves primarily as documentation and as information for error
checking. The Type entry is not required unless so stated in its description; how-
ever, if the entry is present, it must have the correct value. In addition, the value
of the Type entry in any dictionary, even in private data, must be either a name
defined in this book or a registered name; see Appendix E for details.

Stream Objects

A stream object, like a string object, is a sequence of bytes. However, a PDF appli-
cation can read a stream incrementally, while a string must be read in its entirety.
Furthermore, a stream can be of unlimited length, whereas a string is subject to
an implementation limit. For this reason, objects with potentially large amounts
of data, such as images and page descriptions, are represented as streams.

Note: As with strings, this section describes only the syntax for writing a stream as a
sequence of bytes. What those bytes represent is determined by the context in which
the stream is referenced.

A stream consists of a dictionary that describes a sequence of bytes, followed by
zero or more lines of bytes bracketed between the keywords stream and
endstream:

dictionary

stream

...Zero or more lines of bytes ...
endstream

All streams must be indirect objects (see Section 3.2.9, “Indirect Objects”) and
the stream dictionary must be a direct object. The keyword stream that follows
the stream dictionary should be followed by either a carriage return and a line
feed or by just a line feed, and not by a carriage return alone. The sequence of
bytes that make up a stream lie between the stream and endstream keywords; the
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stream dictionary specifies the exact number of bytes. Alternatively, in PDF 1.2
the bytes may be contained in an external file, in which case the stream dictionary
specifies the file and any bytes between stream and endstream are ignored. (See
implementation note 6 in Appendix H.)

Note: Without the restriction against following the keyword stream by a carriage re-
turn alone, it would be impossible to differentiate a stream that uses carriage return
as its end-of-line marker and has a line feed as its first byte of data from one that uses
a carriage return—line feed sequence to denote end-of-line.

Table 3.4 lists the entries common to all stream dictionaries; certain types of
stream may have additional dictionary entries, as indicated where those streams
are described. The optional entries regarding filters for the stream indicate
whether and how the data in the stream must be transformed (“decoded”) before
it is used. Filters are described further in Section 3.3, “Filters.”

Stream Extent

Every stream dictionary has a Length entry that indicates how many bytes of the
PDF file are used for the stream’s data. (If the stream has a filter, Length is the
number of bytes of encoded data.) In addition, most filters are defined so that the
data is self-limiting; that is, they use an encoding scheme in which an explicit
end-of-data (EOD) marker delimits the extent of the data. Finally, streams are
used to represent many objects from whose attributes a length can be inferred. All
of these constraints must be consistent.

For example, an image with 10 rows and 20 columns, using a single color compo-
nent and 8 bits per component, requires exactly 200 bytes of image data. If the
stream uses a filter, there must be enough bytes of encoded data in the PDF file to
produce those 200 bytes. An error occurs if Length is too small, if an explicit
EOD marker occurs too soon, or if the decoded data does not contain 200 bytes.

It is also an error if the stream contains too much data, with the exception that
there may be an extra end-of-line marker in the PDF file before the keyword
endstream.
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TABLE 3.4 Entries common to all stream dictionaries

KEY

TYPE

VALUE

Length

Filter

DecodeParms

FFilter

FDecodeParms

integer

name or array

dictionary or array

file specification

name or array

dictionary or array

(Required) The number of bytes from the beginning of the line fol-
lowing the keyword stream to the last byte just before the keyword
endstream. (There may be an additional EOL marker, preceding
endstream, that is not included in the count and is not logically part
of the stream data.) See “Stream Extent,” above, for further discus-
sion.

(Optional) The name of a filter to be applied in processing the stream
data found between the keywords stream and endstream, or an array
of such names. Multiple filters should be specified in the order in
which they are to be applied.

(Optional) A parameter dictionary, or an array of such dictionaries,
used by the filters specified by Filter. If there is only one filter and that
filter has parameters, DecodeParms must be set to the filter’s parame-
ter dictionary unless all the filter’s parameters have their default
values, in which case the DecodeParms entry may be omitted. If there
are multiple filters and any of the filters has parameters set to non-
default values, DecodeParms must be an array with one entry for
each filter: either the parameter dictionary for that filter, or the null
object if that filter has no parameters (or if all of its parameters have
their default values). If none of the filters have parameters, or if all
their parameters have default values, the DecodeParms entry may be
omitted. (See implementation note 7 in Appendix H.)

(Optional; PDF 1.2) The file containing the stream data. If this entry
is present, the bytes between stream and endstream are ignored, the
filters are specified by FFilter rather than Filter, and the filter parame-
ters are specified by FDecodeParms rather than DecodeParms. How-
ever, the Length entry should still specify the number of those bytes.
(Usually there are no bytes and Length is 0.)

(Optional; PDF 1.2) The name of a filter to be applied in processing
the data found in the stream’s external file, or an array of such names.
The same rules apply as for Filter.

(Optional; PDF 1.2) A parameter dictionary, or an array of such dic-
tionaries, used by the filters specified by FFilter. The same rules apply
as for DecodeParms.
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3.2.8 Null Object

The null object has a type and value that are unequal to those of any other object.
There is only one object of type null, denoted by the keyword null. An indirect
object reference (see Section 3.2.9, “Indirect Objects”) to a nonexistent object is
treated the same as a null object; specifying the null object as the value of a dic-
tionary entry (Section 3.2.6, “Dictionary Objects”) is equivalent to omitting the
entry entirely.

3.2.9 Indirect Objects

Any object in a PDF file may be labeled as an indirect object. This gives the object
a unique object identifier by which other objects can refer to it (for example, as an
element of an array or as the value of a dictionary entry). The object identifier
consists of two parts:

* A positive integer object number. Indirect objects are often numbered sequen-
tially within a PDF file, but this is not required; object numbers may be
assigned in any arbitrary order.

* A nonnegative integer generation number. In a newly created file, all indirect
objects have generation numbers of 0. Nonzero generation numbers may be in-
troduced when the file is later updated; see Sections 3.4.3, “Cross-Reference
Table,” and 3.4.5, “Incremental Updates.”

Together, the combination of an object number and a generation number
uniquely identifies an indirect object. The object retains the same object number
and generation number throughout its existence, even if its value is modified.

The definition of an indirect object in a PDF file consists of its object number and
generation number, followed by the value of the object itself bracketed between
the keywords obj and endobj. For example, the definition

12 0 obj
(Brillig)
endobj

defines an indirect string object with an object number of 12, a generation num-
ber of 0, and the value Brillig. The object can then be referred to from elsewhere in
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the file by an indirect reference consisting of the object number, the generation
number, and the keyword R:

12 0 R

An indirect reference to an undefined object is not an error; it is simply treated as
a reference to the null object. For example, if a file contains the indirect reference

17 O R
but does not contain the corresponding definition
17 0 obj
end.c';bj
then the indirect reference is considered to refer to the null object.

Note: In the data structures that make up a PDF document, certain values are re-
quired to be specified as indirect object references. Except where this is explicitly
called out, any object (other than a stream) may be specified either directly or as an
indirect object reference; the semantics are entirely equivalent. Note in particular
that content streams, which define the visible contents of the document, may not con-
tain indirect references (see Section 3.7.1, “Content Streams”).

Example 3.1 shows the use of an indirect object to specify the length of a stream.
The value of the stream’s Length entry is an integer object that follows the stream
itself in the file. This allows applications that generate PDF in a single pass to
defer specifying the stream’s length until after its contents have been generated.

Example 3.1

7 0 obj
<< /Length 80R >> % An indirect reference to object 8
stream
BT
/F1 12 Tf
72 712 Td
(A stream with an indirect length) Tj
ET
endstream
endobj
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8 0 obj
77 % The length of the preceding stream
endobj

3.3 Filters

Stream filters are introduced in Section 3.2.7, “Stream Objects” A filter is an
optional part of the specification of a stream, indicating how the data in the
stream must be decoded before it is used. For example, if a stream has an
ASClIHexDecode filter, an application reading the data in that stream will trans-
form the ASCII hexadecimal-encoded data in the stream into binary data.

An application program that produces a PDF file can encode certain information
(for example, data for sampled images) to compress it or to convert it to a port-
able ASCII representation. Then an application that reads (“consumes”) the PDF
file can invoke the corresponding decoding filter to convert the information back
to its original form.

The filter or filters for a stream are specified by the Filter entry in the stream’s dic-
tionary (or the FFilter entry if the stream is external). Filters can be cascaded to
form a pipeline that passes the stream through two or more decoding transforma-
tions in sequence. For example, data encoded using LZW and ASCII base-85
encoding (in that order) can be decoded using the following entry in the stream
dictionary:

/Filter [/ASClI85Decode /LZWDecode]

Some filters may take parameters to control how they operate. These optional
parameters are specified by the DecodeParms entry in the stream’s dictionary (or
the FDecodeParms entry if the stream is external).

PDF supports a standard set of filters that fall into two main categories:

* ASCII filters enable decoding of arbitrary 8-bit binary data that has been en-
coded as ASCII text. (See Section 3.1, “Lexical Conventions,” for an explanation
of why this type of encoding might be useful.) Note that ASCII filters serve no
useful purpose in a PDF file that is encrypted; see Section 3.5, “Encryption.”

* Decompression filters enable decoding of data that has been compressed. The
compressed data is always in 8-bit binary format, even if the original data hap-
pens to be ASCII text. (Compression is particularly valuable for large sampled
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images, since it reduces storage requirements and transmission time. Note that
some types of compression are lossy, meaning that some data is lost during the
encoding, resulting in a loss of quality when the data is decompressed; com-
pression in which no loss of data occurs is called lossless.)

The standard filters are summarized in Table 3.5, which also indicates whether
they accept any optional parameters. The following sections describe these filters
and their parameters (if any) in greater detail, including specifications of encod-
ing algorithms for some filters. (See also implementation notes 8 and 9 in Appen-

dix H.)
TABLE 3.5 Standard filters

FILTER NAME PARAMETERS? DESCRIPTION

ASClIHexDecode no Decodes data encoded in an ASCII hexadecimal representation,
reproducing the original binary data.

ASClI85Decode no Decodes data encoded in an ASCII base-85 representation, repro-
ducing the original binary data.

LZWDecode yes Decompresses data encoded using the LZW (Lempel-Ziv-Welch)
adaptive compression method, reproducing the original text or bin-
ary data.

FlateDecode yes (PDF 1.2) Decompresses data encoded using the zlib/deflate com-
pression method, reproducing the original text or binary data.

RunLengthDecode no Decompresses data encoded using a byte-oriented run-length encod-
ing algorithm, reproducing the original text or binary data (typically
monochrome image data, or any data that contains frequent long
runs of a single byte value).

CCITTFaxDecode yes Decompresses data encoded using the CCITT facsimile standard,
reproducing the original data (typically monochrome image data at 1
bit per pixel).

JBIG2Decode yes (PDF 1.4) Decompresses data encoded using the JBIG2 standard,
reproducing the original monochrome (1 bit per pixel) image data
(or an approximation of that data).

DCTDecode yes Decompresses data encoded using a DCT (discrete cosine transform)

technique based on the JPEG standard, reproducing image sample
data that approximates the original data.
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Example 3.2 shows a stream, containing the marking instructions for a page, that
was compressed using the LZW compression method and then encoded in ASCII
base-85 representation. Example 3.3 shows the same stream without any encod-
ing. (The stream’s contents are explained in Section 3.7.1, “Content Streams,” and
the operators used there are further described in Chapter 5.)

Example 3.2

1 0 obj

<< /Length 534

/Filter [/ASCII85Decode /LZWDecode]

>>
stream
J.)6T 7p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n'$"<Atdi"\Vn%b%)&'cA*VnK\CJY(sF>clJnl@
RMIWM;jjH6GNC75idkL5]+cPZKEBPWdR>FF(kj1_R%W_d
&/jStiuad7h?[L-F$+]110A3Ck*$I0KZ?;<)CJtqi65Xb
Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg172:|UpR;60N[C2E4
ZNr8Udn.'p+2#X+1>0Kuk$SbCDF/(3fL510q)AkJZ!IC2H1
'TOIRI?Q:&'<5&iP!SRq;BXRecDNIIJB’,)08XJ0OSJ9sD
SIhQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6BmM%IY!Kb1+
":aAa'S'VilglLb8<W9Ik6YIN\\OMcJQkDeLWdPN?9A'X*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?MS0QP)IKn0611apKDC@\qJ4B!(5m+j.7F790m(Vj8
818Q:_CZ(Gm1%X\N1&u!FKHMB~>
endstream
endobj

Example 3.3

1 0 obj
<< /Length 568 >>
stream
2
BT
/F1 12 Tf
0 Tc
0 Tw
725 712 TD
[(Unencoded streams can be read easily) 65 (,)] TJ
0 -14 TD
[(b) 20 (utgenerally tak) 10 (e more space than\311)] TJ
T* (encoded streams.) Tj
0 -28 TD
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[(Se) 25 (v) 15 (eral encoding methods area) 20 (v) 25 (ailablein PDF) 80 (.)] TJ
0 -14 TD

(Some are used for compression and others simply) Tj

T* [(torepresent binary datainan) 55 (ASCIl format.)] TJ
T* (Some of the compression encoding methods are \
suitable) Tj

T* (for both data and images, while others are \

suitable only) Tj

T* (for continuous—tone images.) Tj

ET

endstream

endobj

3.3.1 ASClIHexDecode Filter

The ASClIHexDecode filter decodes data that has been encoded in ASCII hexa-
decimal form. ASCII hexadecimal encoding and ASCII base-85 encoding
(described in the next section) convert binary data, such as image data, to 7-bit
ASCII characters. In general, ASCII base-85 encoding is preferred to ASCII hexa-
decimal encoding because it is more compact: it expands the data by a factor of
4:5, compared with 1:2 for ASCII hexadecimal encoding.

For each pair of ASCII hexadecimal digits (0-9 and A—F or a—f), the ASClIHex-
Decode filter produces one byte of binary data. All white-space characters (see
Section 3.1, “Lexical Conventions”) are ignored. A right angle bracket character
(>) indicates EOD. Any other characters will cause an error. If the filter encoun-
ters the EOD marker after reading an odd number of hexadecimal digits, it will
behave as if a 0 followed the last digit.

3.3.2 ASCIlI85Decode Filter

The ASClI85Decode filter decodes data that has been encoded in ASCII base-85
encoding and produces binary data. The following paragraphs describe the pro-
cess for encoding binary data in ASCII base-85; the ASCII85Decode filter reverses
this process.

The ASCII base-85 encoding uses the characters ! through u and the character z,
with the 2-character sequence ~> as its EOD marker. The ASClI85Decode filter
ignores all white-space characters (see Section 3.1, “Lexical Conventions”). Any
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other characters, and any character sequences that represent impossible combi-
nations in the ASCII base-85 encoding, will cause an error.

Specifically, ASCII base-85 encoding produces 5 ASCII characters for every 4
bytes of binary data. Each group of 4 binary input bytes, (b, b, b3 b,), is convert-
ed to a group of 5 output bytes, (c; ¢, 5 ¢, c5), using the relation

(by x 256°) + (b, x 256°) + (by x 256 ) + b, =
(¢ x 854) +(c, X 853) +(c5 % 852) +(cy X 851) +cs

In other words, 4 bytes of binary data are interpreted as a base-256 number and
then converted into a base-85 number. The five “digits” of the base-85 number
are then converted to ASCII characters by adding 33 (the ASCII code for the
character !) to each. The resulting encoded data contains only printable ASCII
characters with codes in the range 33 (!) to 117 (u). As a special case, if all five
digits are 0, they are represented by the character with code 122 (z) instead of by
five exclamation points (!!!!!).

If the length of the binary data to be encoded is not a multiple of 4 bytes, the last,
partial group of 4 is used to produce a last, partial group of 5 output characters.
Given 7 (1, 2, or 3) bytes of binary data, the encoder first appends 4 — # zero bytes
to make a complete group of 4. It then encodes this group in the usual way, but
without applying the special z case. Finally, it writes only the first n + 1 characters
of the resulting group of 5. These characters are immediately followed by the ~>
EOD marker.

The following conditions (which never occur in a correctly encoded byte se-
quence) will cause errors during decoding:

* The value represented by a group of 5 characters is greater than 2321,

* A z character occurs in the middle of a group.

* A final partial group contains only one character.

LZWDecode and FlateDecode Filters

The LZWDecode and (in PDF 1.2) FlateDecode filters have much in common
and so are discussed together in this section. They decode data that has been en-
coded using the LZW or Flate data compression method, respectively.
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* LZW (Lempel-Ziv-Welch) is a variable-length, adaptive compression method
that has been adopted as one of the standard compression methods in the Tag
Image File Format (TIFF) standard. Details on LZW encoding follow in the
next section.

* The Flate method is based on the public-domain zlib/deflate compression
method, which is a variable-length Lempel-Ziv adaptive compression method
cascaded with adaptive Huffman coding. It is fully defined in Internet RFCs
1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE Com-
pressed Data Format Specification (see the Bibliography).

Both of these methods compress either binary data or ASCII text but (like all
compression methods) always produce binary data, even if the original data was
text.

The LZW and Flate compression methods can discover and exploit many pat-
terns in the input data, whether the data is text or images. As described later, both
filters support optional transformation by a predictor function, which improves
the compression of sampled image data. Thanks to its cascaded adaptive Huft-
man coding, Flate-encoded output is usually much more compact than LZW-
encoded output for the same input. Flate and LZW decoding speeds are com-
parable, but Flate encoding is considerably slower than LZW encoding.

Usually, both Flate and LZW encodings compress their input substantially. How-
ever, in the worst case (in which no pair of adjacent characters appears twice),
Flate encoding expands its input by no more than 11 bytes or a factor of 1.003
(whichever is larger), plus the effects of algorithm tags added by PNG predictors.
For LZW encoding, the best case (all zeros) provides a compression approaching
1365:1 for long files, but the worst-case expansion is at least a factor of 1.125,
which can increase to nearly 1.5 in some implementations (plus the effects of
PNG tags as with Flate encoding).

Details of LZW Encoding

Data encoded using the LZW compression method consists of a sequence of
codes that are 9 to 12 bits long. Each code represents a single character of input
data (0-255), a clear-table marker (256), an EOD marker (257), or a table entry
representing a multiple-character sequence that has been encountered previously
in the input (258 or greater).
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Initially, the code length is 9 bits and the LZW table contains only entries for the
258 fixed codes. As encoding proceeds, entries are appended to the table, asso-
ciating new codes with longer and longer sequences of input characters. The
encoder and the decoder maintain identical copies of this table.

Whenever both the encoder and the decoder independently (but synchronously)
realize that the current code length is no longer sufficient to represent the num-
ber of entries in the table, they increase the number of bits per code by 1. The first
output code that is 10 bits long is the one following the creation of table entry
511, and similarly for 11 (1023) and 12 (2047) bits. Codes are never longer than
12 bits, so entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each output
code:

1. Accumulate a sequence of one or more input characters matching a sequence
already present in the table. For maximum compression, the encoder looks for
the longest such sequence.

2. Emit the code corresponding to that sequence.
3. Create a new table entry for the first unused code. Its value is the sequence

found in step 1 followed by the next input character.

For example, suppose the input consists of the following sequence of ASCII char-
acter codes:

45 45 45 45 45 65 45 45 45 66
Starting with an empty table, the encoder proceeds as shown in Table 3.6.

Codes are packed into a continuous bit stream, high-order bit first. This stream is
then divided into 8-bit bytes, high-order bit first. Thus, codes can straddle byte
boundaries arbitrarily. After the EOD marker (code value 257), any leftover bits
in the final byte are set to 0.
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TABLE 3.6 Typical LZW encoding sequence

INPUT OUTPUT CODE ADDED SEQUENCE REPRESENTED
SEQUENCE CODE TO TABLE BY NEW CODE

- 256 (clear-table) - _

45 45 258 45 45
45 45 258 259 45 45 45
45 45 258 260 45 45 65
65 65 261 65 45

45 45 45 259 262 45 45 45 66
66 66 - -

- 257 (EOD) - -

In the example above, all the output codes are 9 bits long; they would pack into
bytes as follows (represented in hexadecimal):

80 0B 60 50 22 0C 0C 85 01

To adapt to changing input sequences, the encoder may at any point issue a clear-
table code, which causes both the encoder and the decoder to restart with initial
tables and a 9-bit code length. By convention, the encoder begins by issuing a
clear-table code. It must issue a clear-table code when the table becomes full; it
may do so sooner.

Note: The LZW compression method is the subject of U.S. patent number 4,558,302
and corresponding foreign patents owned by the Unisys Corporation. Adobe Systems
has licensed this patent for use in its Acrobat products; however, independent soft-
ware vendors (ISVs) may be required to license this patent directly from Unisys to
develop software that uses the LZW method to compress data in PDF files. For infor-
mation on Unisys licensing policies, send e-mail to <lzw_info@unisys.com>, or visit
the Unisys Web site at <http://www.unisys.com>.

LZWDecode and FlateDecode Parameters

The LZWDecode and FlateDecode filters accept optional parameters to control
the decoding process. Most of these parameters are related to techniques that re-
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duce the size of compressed sampled images (rectangular arrays of color values,
described in Section 4.8, “Images”). For example, image data frequently changes
very little from sample to sample; subtracting the values of adjacent samples (a
process called differencing), and encoding the differences rather than the raw
sample values, can reduce the size of the output data. Furthermore, when the
image data contains several color components (red-green-blue or cyan-magenta-
yellow-black) per sample, taking the difference between the values of corre-
sponding components in adjacent samples, rather than between different color
components in the same sample, often reduces the output data size.

Table 3.7 shows the parameters that can optionally be specified for LZWDecode
and FlateDecode filters. Except where otherwise noted, all values supplied to the
decoding filter for any optional parameters must match those used when the data
was encoded.

TABLE 3.7 Optional parameters for LZWDecode and FlateDecode filters

KEY

TYPE

VALUE

Predictor

Colors

BitsPerComponent

Columns

EarlyChange

integer

integer

integer

integer

integer

A code that selects the predictor algorithm, if any. If the value of this entry
is 1, the filter assumes that the normal algorithm was used to encode the data,
without prediction. If the value is greater than 1, the filter assumes that the
data was differenced before being encoded, and Predictor selects the predic-
tor algorithm. For more information regarding Predictor values greater
than 1, see “LZW and Flate Predictor Functions,” below. Default value: 1.

(Used only if Predictor is greater than 1) The number of interleaved color com-
ponents per sample. Valid values are 1 to 4 in PDF 1.2 or earlier, and 1 or
greater in PDF 1.3 or later. Default value: 1.

(Used only if Predictor is greater than 1) The number of bits used to represent
each color component in a sample. Valid values are 1, 2, 4, and 8. Default
value: 8.

(Used only if Predictor is greater than 1) The number of samples in each row.
Default value: 1.

(LZWDecode only) An indication of when to increase the code length. If the
value of this entry is 0, code length increases are postponed as long as pos-
sible. If it is 1, they occur one code early. This parameter is included because
LZW sample code distributed by some vendors increases the code length one
code earlier than necessary. Default value: 1.
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LZW and Flate Predictor Functions

LZW and Flate encoding compress more compactly if their input data is highly
predictable. One way of increasing the predictability of many continuous-tone
sampled images is to replace each sample with the difference between that sample
and a predictor function applied to earlier neighboring samples. If the predictor
function works well, the postprediction data will cluster toward 0.

Two groups of predictor functions are supported. The first, the TIFF group, con-
sists of the single function that is Predictor 2 in the TIFF standard. (In the TIFF
standard, Predictor 2 applies only to LZW compression, but here it applies to
Flate compression as well.) TIFF Predictor 2 predicts that each color component
of a sample will be the same as the corresponding color component of the sample
immediately to its left.

The second supported group of predictor functions, the PNG group, consists of
the “filters” of the World Wide Web Consortium’s Portable Network Graphics
recommendation, documented in Internet RFC 2083, PNG (Portable Network
Graphics) Specification (see the Bibliography). The term predictors is used here in-
stead of filters to avoid confusion. There are five basic PNG predictor algorithms
(and a sixth that chooses the optimum predictor function separately for each
row):

None No prediction

Sub Predicts the same as the sample to the left

Up Predicts the same as the sample above

Average  Predicts the average of the sample to the left and the sample above
Paeth A nonlinear function of the sample above, the sample to the left,

and the sample to the upper left

The predictor algorithm to be used, if any, is indicated by the Predictor filter
parameter (see Table 3.7), which can have any of the values listed in Table 3.8.

For LZWDecode and FlateDecode, a Predictor value greater than or equal to 10
merely indicates that a PNG predictor is in use; the specific predictor function
used is explicitly encoded in the incoming data. The value of Predictor supplied
by the decoding filter need not match the value used when the data was encoded
if they are both greater than or equal to 10.
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TABLE 3.8 Predictor values

VALUE MEANING

1 No prediction (the default value)

2 TIFF Predictor 2
10 PNG prediction (on encoding, PNG None on all rows)
11 PNG prediction (on encoding, PNG Sub on all rows)
12 PNG prediction (on encoding, PNG Up on all rows)
13 PNG prediction (on encoding, PNG Average on all rows)
14 PNG prediction (on encoding, PNG Paeth on all rows)
15 PNG prediction (on encoding, PNG optimum)

The two groups of predictor functions have some commonalities. Both assume
the following:

* Data is presented in order, from the top row to the bottom row and, within a
row, from left to right.

* A row occupies a whole number of bytes, rounded up if necessary.

* Samples and their components are packed into bytes from high-order to low-
order bits.

* All color components of samples outside the image (which are necessary for
predictions near the boundaries) are 0.

The predictor function groups also differ in significant ways:

* The postprediction data for each PNG-predicted row begins with an explicit
algorithm tag, so different rows can be predicted with different algorithms to
improve compression. TIFF Predictor 2 has no such identifier; the same algo-
rithm applies to all rows.

* The TIFF function group predicts each color component from the prior in-
stance of that component, taking into account the number of bits per com-
ponent and components per sample. In contrast, the PNG function group
predicts each byte of data as a function of the corresponding byte of one or
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more previous image samples, regardless of whether there are multiple color
components in a byte or whether a single color component spans multiple
bytes. This can yield significantly better speed at the cost of somewhat worse
compression.

RunLengthDecode Filter

The RunLengthDecode filter decodes data that has been encoded in a simple
byte-oriented format based on run length. The encoded data is a sequence of
runs, where each run consists of a length byte followed by 1 to 128 bytes of data. If
the length byte is in the range 0 to 127, the following length + 1 (1 to 128) bytes
are copied literally during decompression. If length is in the range 129 to 255, the
following single byte is to be copied 257 — length (2 to 128) times during decom-
pression. A length value of 128 denotes EOD.

The compression achieved by run-length encoding depends on the input data. In
the best case (all zeros), a compression of approximately 64:1 is achieved for long
files. The worst case (the hexadecimal sequence 00 alternating with FF) results in
an expansion of 127:128.

CCITTFaxDecode Filter

The CCITTFaxDecode filter decodes image data that has been encoded using
either Group 3 or Group 4 CCITT facsimile (fax) encoding. CCITT encoding is
designed to achieve efficient compression of monochrome (1 bit per pixel) image
data at relatively low resolutions, and so is useful only for bitmap image data, not
for color images, grayscale images, or general data.

The CCITT encoding standard is defined by the International Telecommunica-
tions Union (ITU), formerly known as the Comité Consultatif International
Téléphonique et Télégraphique (International Coordinating Committee for Tele-
phony and Telegraphy). The encoding algorithm is not described in detail here,
but can be found in ITU Recommendations T.4 and T.6 (see the Bibliography).
For historical reasons, we refer to these documents as the CCITT standard.
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CCITT encoding is bit-oriented, not byte-oriented. This means that, in principle,
encoded or decoded data might not end at a byte boundary. This problem is dealt
with in the following ways:

* Unencoded data is treated as complete scan lines, with unused bits inserted at
the end of each scan line to fill out the last byte. This is compatible with the
PDF convention for sampled image data.

* Encoded data is ordinarily treated as a continuous, unbroken bit stream. The
EncodedByteAlign parameter (described in Table 3.9) can be used to cause
each encoded scan line to be filled to a byte boundary; although this is not pre-
scribed by the CCITT standard and fax machines never do this, some software
packages find it convenient to encode data this way.

* When a filter reaches EOD, it always skips to the next byte boundary following
the encoded data.

If the CCITTFaxDecode filter encounters improperly encoded source data, an
error will occur. The filter will not perform any error correction or resynchroni-
zation, except as noted for the DamagedRowsBeforeError parameter in Table 3.9.

Table 3.9 lists the optional parameters that can be used to control the decoding.
Except where noted otherwise, all values supplied to the decoding filter by any of
these parameters must match those used when the data was encoded.

TABLE 3.9 Optional parameters for the CCITTFaxDecode filter
KEY TYPE VALUE

K integer A code identifying the encoding scheme used:
<0 Pure two-dimensional encoding (Group 4)
0  Pure one-dimensional encoding (Group 3, 1-D)

>0 Mixed one- and two-dimensional encoding (Group 3,
2-D), in which a line encoded one-dimensionally can be
followed by at most K — 1 lines encoded two-dimensionally

The filter distinguishes among negative, zero, and positive values of
K to determine how to interpret the encoded data; however, it does
not distinguish between different positive K values. Default value: 0.



| CHAPTER 3

54
| Syntax |

EndOfLine

EncodedByteAlign

Columns

Rows

EndOfBlock

Blackls1

DamagedRowsBeforeError

boolean

boolean

integer

integer

boolean

boolean

integer

A flag indicating whether end-of-line bit patterns are required to be
present in the encoding. The CCITTFaxDecode filter always accepts
end-of-line bit patterns, but requires them only if EndOfLine is true.
Default value: false.

A flag indicating whether the filter expects extra 0 bits before each
encoded line so that the line begins on a byte boundary. If true, the
filter skips over encoded bits to begin decoding each line at a byte
boundary. If false, the filter does not expect extra bits in the encod-
ed representation. Default value: false.

The width of the image in pixels. If the value is not a multiple of 8,
the filter adjusts the width of the unencoded image to the next mul-
tiple of 8, so that each line starts on a byte boundary. Default value:
1728.

The height of the image in scan lines. If the value is 0 or absent, the
image’s height is not predetermined, and the encoded data must be
terminated by an end-of-block bit pattern or by the end of the fil-
ter’s data. Default value: 0.

A flag indicating whether the filter expects the encoded data to be
terminated by an end-of-block pattern, overriding the Rows pa-
rameter. If false, the filter stops when it has decoded the number of
lines indicated by Rows or when its data has been exhausted, which-
ever occurs first. The end-of-block pattern is the CCITT end-of-
facsimile-block (EOFB) or return-to-control (RTC) appropriate for
the K parameter. Default value: true.

A flag indicating whether 1 bits are to be interpreted as black pixels
and 0 bits as white pixels, the reverse of the normal PDF convention
for image data. Default value: false.

The number of damaged rows of data to be tolerated before an
error occurs. This entry applies only if EndOfLine is true and K is
nonnegative. Tolerating a damaged row means locating its end in
the encoded data by searching for an EndOfLine pattern and then
substituting decoded data from the previous row if the previous
row was not damaged, or a white scan line if the previous row was
also damaged. Default value: 0.

The compression achieved using CCITT encoding depends on the data, as well as
on the value of various optional parameters. For Group 3 one-dimensional en-
coding, in the best case (all zeros), each scan line compresses to 4 bytes, and the
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compression factor depends on the length of a scan line. If the scan line is 300
bytes long, a compression ratio of approximately 75:1 is achieved. The worst
case, an image of alternating ones and zeros, produces an expansion of 2:9.

JBIG2Decode Filter

The JBIG2Decode filter (PDF 1.4) decodes monochrome (1 bit per pixel) image
data that has been encoded using JBIG2 encoding. JBIG stands for the Joint Bi-
Level Image Experts Group, a group within the International Organization for
Standardization (ISO) that developed the format; JBIG2 is the second version of
a standard originally released as JBIG1 and was approaching standards approval
at the time of publication of this book.

JBIG2 encoding, which provides for both lossy and lossless compression, is useful
only for monochrome images, not for color images, grayscale images, or general
data. The algorithms used by the encoder, and the details of the format, are not
described here; a working draft of the JBIG2 specification can be found through
the Web site for the JBIG and JPEG (Joint Photographic Experts Group) commit-
tees at <http://www.jpeg.org>.

In general, JBIG2 provides considerably better compression than the existing
CCITT standard (discussed in Section 3.3.5). The compression it achieves de-
pends strongly on the nature of the image. Images of pages containing text in any
language will compress particularly well, with typical compression ratios of 20:1
to 50:1 for a page full of text. The JBIG2 encoder builds a table of unique symbol
bitmaps found in the image, and other symbols found later in the image are
matched against the table. Matching symbols are replaced by an index into the ta-
ble, and symbols that fail to match are added to the table. The table itself is com-
pressed using other means. This results in high compression ratios for
documents in which the same symbol is repeated often, as is typical for images
created by scanning text pages. This method also results in high compression of
“white space” in the image, which does not need to be encoded because it con-
tains no symbols.

While best compression is achieved for images of text, the JBIG2 standard also in-
cludes algorithms for compressing regions of an image that contain dithered half-
tone images (for example, photographs).
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The JBIG2 compression method can also be used for encoding multiple images
into a single JBIG2 bit stream. Typically, these images will be scanned pages of a
multiple-page document. Since a single table of symbol bitmaps is used to match
symbols across multiple pages, this type of encoding can result in higher com-
pression ratios than if each of the pages had been individually encoded using
JBIG2.

In general, an image may be specified in PDF as either an image XObject or an in-
line image (as described in Section 4.8, “Images”); however, the JBIG2Decode fil-
ter can be applied only to image XObjects.

This filter addresses both single-page and multiple-page JBIG2 bit streams, by
representing each JBIG2 “page” as a PDF image, as follows:

* The filter uses the embedded file organization of JBIG2. (The details of this and
the other types of file organization are provided in an annex of the ISO specifi-
cation.) The optional 2-byte combination (marker) mentioned in the specifica-
tion is not used in PDE JBIG2 bit streams in random-access organization
should be converted to the embedded file organization. Bit streams in sequen-
tial organization need no reorganization, except for the mappings described
below.

* The JBIG2 file header, end-of-page segments, and end-of-file segment are not
used in PDEF. These should be removed before the PDF objects described below
are created.

* The image XObject to which the JBIG2Decode filter is applied contains all seg-
ments that are associated with the JBIG2 page represented by that image—that
is, all segments whose segment page association field contains the page number
of the JBIG2 page represented by the image. In the image XObject, however, the
segment’s page number should always be 1—that is, when each such segment is
written to the XObject, the value of its segment page association field should be
set to 1.

* If the bit stream contains global segments (segments whose segment page asso-
ciation field contains 0), these must be placed in a separate PDF stream, and
the filter parameter listed in Table 3.10 should refer to that stream. The stream
can be shared by multiple image XObjects whose JBIG2 encodings use the
same global segments.
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TABLE 3.10 Optional parameter for the JBIG2Decode filter

KEY

TYPE VALUE

JBIG2GIlobals

stream A stream containing the JBIG2 global (page 0) segments. Global segments
must be placed in this stream even if only a single JBIG2 image XObject refers

to it.

Example 3.4 shows an image that was compressed using the JBIG2 compression
method and then encoded in ASCII hexadecimal representation. Since the JBIG2
bit stream contains global segments, these are placed in a separate PDF stream, as
indicated by the JBIG2Globals filter parameter.

Example 3.4

5 0 obj
<< /Type /XObject
/Subtype /Image
/Width 52
/Height 66
/ColorSpace /DeviceGray
/BitsPerComponent 1
/Length 224
/Filter [/ASClIHexDecode /JBIG2Decode]
/DecodeParms [null << /JBIG2Globals 6 0R >>]
>>
stream
000000013000010000001300000034000000420000000000
00000040000000000002062000010000001e000000340000
004200000000000000000200100000000231db51ce51ffac>
endstream
endobj

6 0 obj

<< /Length 126

/Filter /ASClIHexDecode

>>
stream
0000000000010000000032000003fffdff02fefefe000000
01000000012ae225aea9a5a538b4d9999¢5¢8e56ef0f872
7f2b53d4e37ef795cc5506dffac >
endstream
endobj
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The JBIG2 bit stream for this example is as follows:

97 4A 42 32 0D OA 1A OA 01 00 00 00 O1 00 OO OO OO 00 O1 00 00 00 00 32
00 00 03 FF FD FF 02 FE FE FE 00 00 00 01 00 00 00 O1 2A E2 25 AE A9 A5

A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87 27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D
FF AC 00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00

00 00 00 00 00 40 00 00 00 00 00 02 06 20 00 O1 OO OO OO 1E 00 00 00 34

00 00 00 42 00 00 00 00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51

FF AC 00 00 00 03 31 00 01 00 00 00 00 00 00 00 04 33 01 00 00 00 00

This bit stream is made up of the parts listed below (in the order listed).

1. The JBIG2 file header
97 4A 42 32 0D OA 1A OA 01 00 00 00 01

Since the JBIG?2 file header is not used in PDEF, this header is not placed in the
JBIG2 stream object, and is discarded.

2. The first JBIG2 segment (segment 0)—in this case, the symbol dictionary seg-
ment

00 00 00 00 00 01 00 00 00 00 32 00 00 03 FF FD FF 02 FE FE FE 00 00 00
01 00 00 00 01 2A E2 25 AE A9 A5 A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87
27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D FF AC

This is a global segment (segment page association = 0) and so is placed in the
JBIG2Globals stream.

3. The page information segment

00 00 00 01 30 00 01 00 00 00 13 00 OO 0O 34 00 00 00 42 00 00 00 00
00 00 00 00 40 00 00

and the immediate text region segment

00 00 00 02 06 20 00 O1 00 OO OO 1E 00 OO OO 34 00 00 00 42 00 00 00
00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51 FF AC

These two segments constitute the contents of the JBIG2 page, and are placed
in the PDF XObject representing this image.

4. The end-of-page segment
00 00 00 03 31 00 01 00 00 00 0O
and the end-of-file segment
00 00 00 04 33 01 00 00 00 0O

Since these are not used in PDF, they are discarded.
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The resulting PDF image object, then, contains the page information segment
and the immediate text region segment, and refers to a JBIG2Globals stream that
contains the symbol dictionary segment.

3.3.7 DCTDecode Filter

The DCTDecode filter decodes grayscale or color image data that has been encod-
ed in the JPEG baseline format. (JPEG stands for the Joint Photographic Experts
Group, a group within the International Organization for Standardization that
developed the format; DCT stands for discrete cosine transform, the primary
technique used in the encoding.)

JPEG encoding is a lossy compression method, designed specifically for compres-
sion of sampled continuous-tone images and not for general data compression.
Data to be encoded using JPEG consists of a stream of image samples, each con-
sisting of one, two, three, or four color components. The color component values
for a particular sample must appear consecutively. Each component value occu-
pies an 8-bit byte.

During encoding, several parameters control the algorithm and the information
loss. The values of these parameters, which include the dimensions of the image
and the number of components per sample, are entirely under the control of the
encoder and are stored in the encoded data. DCTDecode generally obtains the
parameter values it requires directly from the encoded data. However, in one
instance, the parameter might not be present in the encoded data but must be
specified in the filter parameter dictionary; see Table 3.11.

The details of the encoding algorithm are not presented here but can be found in
the ISO specification and in JPEG: Still Image Data Compression Standard, by
Pennebaker and Mitchell (see the Bibliography). Briefly, the JPEG algorithm
breaks an image up into blocks 8 samples wide by 8 high. Each color component
in an image is treated separately. A two-dimensional DCT is performed on each
block. This operation produces 64 coefficients, which are then quantized. Each
coefficient may be quantized with a different step size. It is this quantization that
results in the loss of information in the JPEG algorithm. The quantized coef-
ficients are then compressed.
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TABLE 3.11 Optional parameter for the DCTDecode filter
KEY TYPE VALUE

ColorTransform integer A code specifying the transformation to be performed on the sample values:
0  No transformation.

1 If the image has three color components, transform RGB values to
YUV before encoding and from YUV to RGB after decoding. If the
image has four components, transform CMYK values to YUVK be-
fore encoding and from YUVK to CMYK after decoding. This option
is ignored if the image has one or two color components.

Note: The RGB and YUV used here have nothing to do with the color spaces de-
fined as part of the Adobe imaging model. The purpose of converting from RGB
to YUV is to separate luminance and chrominance information (see below).

The default value of ColorTransform is 1 if the image has three components
and 0 otherwise. In other words, conversion between RGB and YUV is per-
formed for all three-component images unless explicitly disabled by setting
ColorTransform to 0. Additionally, the encoding algorithm inserts an Adobe-
defined marker code in the encoded data indicating the ColorTransform value
used. If present, this marker code overrides the ColorTransform value given to
DCTDecode. Thus it is necessary to specify ColorTransform only when decod-
ing data that does not contain the Adobe-defined marker code.

The encoding algorithm can reduce the information loss by making the step size
in the quantization smaller at the expense of reducing the amount of compres-
sion achieved by the algorithm. The compression achieved by the JPEG algorithm
depends on the image being compressed and the amount of loss that is accept-
able. In general, a compression of 15:1 can be achieved without perceptible loss
of information, and 30:1 compression causes little impairment of the image.

Better compression is often possible for color spaces that treat luminance and
chrominance separately than for those that do not. The RGB-to-YUV conversion
provided by the filters is one attempt to separate luminance and chrominance; it
conforms to CCIR recommendation 601-1. Other color spaces, such as the CIE
1976 L*a*b* space, may also achieve this objective. The chrominance compo-
nents can then be compressed more than the luminance by using coarser sam-
pling or quantization, with no degradation in quality.
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The JPEG filter implementation in Adobe Acrobat products does not support
features of the JPEG standard that are irrelevant to images. In addition, certain
choices have been made regarding reserved marker codes and other optional fea-
tures of the standard. For details, see Adobe Technical Note #5116, Supporting the
DCT Filters in PostScript Level 2.

In addition to the baseline JPEG format, beginning with PDF 1.3 the DCTDecode
filter supports the progressive JPEG extension. This extension does not add any
entries to the DCTDecode parameter dictionary; the distinction between baseline
and progressive JPEG is represented in the encoded data.

Note: There is no benefit to using progressive JPEG for stream data that is embedded
in a PDF file. Decoding progressive JPEG is slower and consumes more memory than
baseline JPEG. The purpose of this feature is to enable a stream to refer to an ex-
ternal file whose data happens to be already encoded in progressive JPEG. (See also
implementation note 10 in Appendix H.)

File Structure

The preceding sections describe the syntax of individual objects. This section
describes how objects are organized in a PDF file for efficient random access and
incremental update. A canonical PDF file initially consists of four elements (see
Figure 3.2):

* A one-line header identifying the version of the PDF specification to which the
file conforms
* A body containing the objects that make up the document contained in the file

* A cross-reference table containing information about the indirect objects in the

file

* A trailer giving the location of the cross-reference table and of certain special
objects within the body of the file

This initial structure may be modified by later updates, which append additional
elements to the end of the file; see Section 3.4.5, “Incremental Updates,” for
details.
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Header

Body

Cross-reference
table

Trailer

FIGURE 3.2 Initial structure of a PDF file

As a matter of convention, the tokens in a PDF file are arranged into lines; see
Section 3.1, “Lexical Conventions.” Each line is terminated by an end-of-line
(EOL) marker, which may be a carriage return (character code 13), a line feed
(character code 10), or both. PDF files with binary data may have arbitrarily long
lines. However, to increase compatibility with other applications that process
PDF files, lines that are not part of stream object data are limited to no more than
255 characters, with one exception: beginning with PDF 1.3, an exception is
made to the restriction on line length in the case of the Contents string of a signa-
ture dictionary (see “Signature Fields” on page 547). See also implementation
note 11 in Appendix H.

The rules described here are sufficient to produce a well-formed PDF file. How-
ever, there are some additional rules for organizing a PDF file to enable efficient
incremental access to a document’s components in a network environment. This
form of organization, called Linearized PDEF, is described in Appendix F.
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File Header

The first line of a PDF file is a header identifying the version of the PDF specifica-
tion to which the file conforms. For a file conforming to PDF version 1.4, the
header should be

%PDF-1.4

However, since any file conforming to an earlier version of PDF also conforms to
version 1.4, an application that processes PDF 1.4 can also accept files with any of
the following headers:

%PDF-1.0
%PDF-1.1
%PDF-1.2
%PDF-1.3

(See also implementation notes 12 and 13 in Appendix H.)

In PDF 1.4, the version in the file header can be overridden by the Version entry
in the document’s catalog dictionary (located via the Root entry in the file’s trail-
er, as described in Section 3.4.4, “File Trailer”). This enables a PDF producer ap-
plication to update the version using an incremental update (see Section 3.4.5,
“Incremental Updates”).

Under some conditions, a viewer application may be able to process PDF files
conforming to a later version than it was designed to accept. New PDF features
are often introduced in such a way that they can safely be ignored by a viewer that
does not understand them (see Section H.1, “PDF Version Numbers”).

Note: If a PDF file contains binary data, as most do (see Section 3.1, “Lexical Con-
ventions”), it is recommended that the header line be immediately followed by a
comment line containing at least four binary characters—that is, characters whose
codes are 128 or greater. This will ensure proper behavior of file transfer applications
that inspect data near the beginning of a file to determine whether to treat the file’s
contents as text or as binary.
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3.4.2 File Body

The body of a PDF file consists of a sequence of indirect objects representing the
contents of a document. The objects, which are of the basic types described in
Section 3.2, “Objects,” represent components of the document such as fonts,
pages, and sampled images.

3.4.3 Cross-Reference Table

The cross-reference table contains information that permits random access to in-
direct objects within the file, so that the entire file need not be read to locate any
particular object. The table contains a one-line entry for each indirect object,
specifying the location of that object within the body of the file.

The cross-reference table is the only part of a PDF file with a fixed format; this
permits entries in the table to be accessed randomly. The table comprises one or
more cross-reference sections. Initially, the entire table consists of a single section
(or two sections if the file is linearized; see Appendix F); one additional section is
added each time the file is updated (see Section 3.4.5, “Incremental Updates”).

Each cross-reference section begins with a line containing the keyword xref. Fol-
lowing this line are one or more cross-reference subsections, which may appear in
any order. The subsection structure is useful for incremental updates, since it
allows a new cross-reference section to be added to the PDF file, containing
entries only for objects that have been added or deleted. For a file that has never
been updated, the cross-reference section contains only one subsection, whose
object numbering begins at 0.

Each cross-reference subsection contains entries for a contiguous range of object
numbers. The subsection begins with a line containing two numbers, separated
by a space: the object number of the first object in this subsection and the num-
ber of entries in the subsection. For example, the line

28 5

introduces a subsection containing five objects, numbered consecutively from 28
to 32.

Following this line are the cross-reference entries themselves, one per line. Each
entry is exactly 20 bytes long, including the end-of-line marker. There are two
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kinds of cross-reference entry: one for objects that are in use and another for
objects that have been deleted and so are free. Both types of entry have similar
basic formats, distinguished by the keyword n (for an in-use entry) or f (for a free
entry). The format of an in-use entry is as follows:

nnnnnnnnnn ggggg n eol

where

nnnnnnnnnn is a 10-digit byte offset

ggggg is a 5-digit generation number

n is a literal keyword identifying this as an in-use entry

eol is a 2-character end-of-line sequence
The byte offset is a 10-digit number, padded with leading zeros if necessary,
giving the number of bytes from the beginning of the file to the beginning of the
object. It is separated from the generation number by a single space. The genera-
tion number is a 5-digit number, also padded with leading zeros if necessary. Fol-
lowing the generation number is a single space, the keyword n, and then a
2-character end-of-line sequence. If the file’s end-of-line marker is a single char-
acter (either a carriage return or a line feed), it is preceded by a single space; if the

marker is 2 characters (both a carriage return and a line feed), it is not preceded
by a space. Thus the overall length of the entry is always exactly 20 bytes.

The cross-reference entry for a free object has essentially the same format, except
that the keyword is f instead of n and the interpretation of the first item is differ-
ent:

nnnnnnnnnn ggggg f eol

where
nnnnnnnnnn is the 10-digit object number of the next free object
ggggg is a 5-digit generation number
f is a literal keyword identifying this as a free entry
eol is a 2-character end-of-line sequence

The free entries in the cross-reference table form a linked list, with each free entry
containing the object number of the next. The first entry in the table (object
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number 0) is always free and has a generation number of 65,535; it is the head of
the linked list of free objects. The last free entry (the tail of the linked list) links
back to object number 0.

Except for object number 0, all objects in the cross-reference table initially have
generation numbers of 0. When an indirect object is deleted, its cross-reference
entry is marked free and it is added to the linked list of free entries. The entry’s
generation number is incremented by 1 to indicate the generation number to be
used the next time an object with that object number is created. Thus each time
the entry is reused, it is given a new generation number. The maximum genera-
tion number is 65,535; when a cross-reference entry reaches this value, it will
never be reused.

The cross-reference table (comprising the original cross-reference section and all
update sections) must contain one entry for each object number from 0 to the
maximum object number used in the file, even if one or more of the object num-
bers in this range do not actually occur in the file.

Example 3.5 shows a cross-reference section consisting of a single subsection with
six entries: four that are in use (objects number 1, 2, 4, and 5) and two that are
free (objects number 0 and 3). Object number 3 has been deleted, and the next
object created with that object number will be given a generation number of 7.

Example 3.5

xref

06

0000000003 65535 f
0000000017 00000 n
0000000081 00000 n
0000000000 00007 f
0000000331 00000 n
0000000409 00000 n

Example 3.6 shows a cross-reference section with four subsections, containing a
total of five entries. The first subsection contains one entry, for object number 0,
which is free. The second subsection contains one entry, for object number 3,
which is in use. The third subsection contains two entries, for objects number 23
and 24, both of which are in use. Object number 23 has been reused, as can be
seen from the fact that it has a generation number of 2. The fourth subsection
contains one entry, for object number 30, which is in use.
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Example 3.6

xref

01

0000000000 65535 f
31

0000025325 00000 n
23 2

0000025518 00002 n
0000025635 00000 n
30 1

0000025777 00000 n

See Section G.6, “Updating Example,” for a more extensive example of the struc-
ture of a PDF file that has been updated several times.

File Trailer

The trailer of a PDF file enables an application reading the file to quickly find the
cross-reference table and certain special objects. Applications should read a PDF
file from its end. The last line of the file contains only the end-of-file marker,
%%EOF. (See implementation note 14 in Appendix H.) The two preceding lines
contain the keyword startxref and the byte offset from the beginning of the file to
the beginning of the xref keyword in the last cross-reference section. The startxref
line is preceded by the trailer dictionary, consisting of the keyword trailer followed
by a series of key-value pairs enclosed in double angle brackets (<<...>>). Thus
the trailer has the following overall structure:

trailer
<< key, value,
key, value,

key,, value,
>>
startxref
Byte_offset_of_last_cross-reference_section
%%EOF

Table 3.12 lists the contents of the trailer dictionary; Example 3.7 shows an ex-
ample trailer for a file that has never been updated (as indicated by the absence of
a Prev entry in the trailer dictionary).
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TABLE 3.12 Entries in the file trailer dictionary
KEY TYPE VALUE
Size integer (Required) The total number of entries in the file’s cross-reference table, as defined
by the combination of the original section and all update sections. Equivalently, this
value is 1 greater than the highest object number used in the file.
Prev integer (Present only if the file has more than one cross-reference section) The byte offset from
the beginning of the file to the beginning of the previous cross-reference section.
Root dictionary (Required; must be an indirect reference) The catalog dictionary for the PDF docu-
ment contained in the file (see Section 3.6.1, “Document Catalog”).
Encrypt dictionary (Required if document is encrypted; PDF 1.1) The document’s encryption dictionary
(see Section 3.5, “Encryption”).
Info dictionary (Optional; must be an indirect reference) The document’s information dictionary
(see Section 9.2.1, “Document Information Dictionary”).
ID array (Optional; PDF 1.1) An array of two strings constituting a file identifier (see Section
9.3, “File Identifiers”) for the file.
Example 3.7
trailer
<< /Size 22
/Root 20R
/Info 10R
/ID [ <81b14aafa313db63dbd6f981e49f94f4 >
<81b14aafa313db63dbd6f981e49f94f4 >
>>
startxref
18799
%%EOF
3.4.5 Incremental Updates

The contents of a PDF file can be updated incrementally, without rewriting the
entire file. Changes are appended to the end of the file, leaving its original con-
tents intact. The main advantage to updating a file in this way (as discussed in
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Section 2.2.7, “Incremental Update”) is that it enables small changes to a large
document to be saved quickly. Other advantages include the following:

* In some cases, incremental updating is the only way to save changes to a docu-
ment. An accepted practice for minimizing the risk of data loss when saving a
document is to write it to a new file and then rename the new file to replace the
old one; however, in certain contexts, such as when editing a document across
an HTTP connection or using OLE embedding (a Windows-specific technolo-
gy), it is not possible to overwrite the contents of the original file in this man-
ner. Incremental updates can be used to save changes to documents in these
contexts.

* Once a document has been signed (see Section 2.2.6, “Security”), all changes
made to the document must be saved using incremental updates, since altering
any existing bytes in the file will invalidate existing signatures.

In an incremental update, any new or changed objects are appended to the file, a
cross-reference section is added, and a new trailer is inserted. The resulting file
has the structure shown in Figure 3.3. A complete example of an updated file is
shown in Section G.6, “Updating Example.”

The cross-reference section added when a file is updated contains entries only for
objects that have been changed, replaced, or deleted, plus the entry for object 0.
Deleted objects are left unchanged in the file, but are marked as deleted via their
cross-reference entries. The added trailer contains all the entries (perhaps modi-
fied) from the previous trailer, as well as a Prev entry giving the location of the
previous cross-reference section (see Table 3.12 on page 68). As shown in Figure
3.3, a file that has been updated several times contains several trailers; note that
each trailer is terminated by its own end-of-file (%%EOF) marker.

Because updates are appended to PDF files, it is possible to end up with several
copies of an object with the same object identifier (object number and generation
number). This can occur, for example, if a text annotation (see Section 8.4,
“Annotations”) is changed several times, with the file being saved between chang-
es. Because the text annotation object is not deleted, it retains the same object
number and generation number as before. An updated copy of the object is in-
cluded in the new update section added to the file; the update’s cross-reference
section includes a byte offset to this new copy of the object, overriding the old
byte offset contained in the original cross-reference section. When a viewer appli-
cation reads the file, it must build its cross-reference information in such a way
that the most recent copy of each object is the one accessed in the file.
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Header

Original
body

Original
cross-reference
section

Original trailer

Body update 1

Cross-reference
section 1

Updated trailer 1

N A T
N A T

Body update n

Cross-reference
sectionn

Updated trailer n

FIGURE 3.3 Structure of an updated PDF file

In versions of PDF prior to 1.4, it was not possible to use an incremental update
to alter the version of PDF to which the document conforms, since the version
was specified only in the header at the beginning of the file (see Section 3.4.1,
“File Header”). In PDF 1.4, it is possible for a Version entry in the document’s
catalog dictionary (see Section 3.6.1, “Document Catalog”) to override the ver-
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sion specified in the header; this enables the version to be altered using an incre-
mental update.

Encryption

A PDF document can be encrypted (PDF 1.1) to protect its contents from un-
authorized access. Encryption applies to all strings and streams in the document’s
PDF file, but not to other object types such as integers and boolean values, which
are used primarily to convey information about the document’s structure rather
than its content. Leaving these values unencrypted allows random access to the
objects within a document, while encrypting the strings and streams protects the
document’s substantive contents.

Note: When a PDF stream object (see Section 3.2.7, “Stream Objects”) refers to an
external file, the stream’s contents are not encrypted, since they are not part of the
PDF file itself. However, if the contents of the stream are embedded within the PDF
file (see Section 3.10.3, “Embedded File Streams”), they are encrypted like any other
stream in the file.

Encryption is controlled by an encryption dictionary, which is the value of the
Encrypt entry in the document’s trailer dictionary (see Table 3.12 on page 68).
The absence of this entry from the trailer dictionary means that the document is
not encrypted. The entries shown in Table 3.13 are common to all encryption
dictionaries.

The encryption dictionary’s Filter entry identifies the file’s security handler, a soft-
ware module that implements various aspects of the encryption process and con-
trols access to the contents of the encrypted document. PDF specifies a standard
security handler that all viewer applications are expected to support, but applica-
tions may optionally substitute security handlers of their own.

The V entry, in specifying which algorithm to use, determines the length or
lengths allowed for the encryption key, on which the encryption (and decryp-
tion) of data in a PDF file is based. If more than one length is allowed (that is, for
V values 2 and 3), the Length entry specifies the exact length of the encryption
key.

The remaining contents of the encryption dictionary are determined by the secu-
rity handler, and may vary from one handler to another. Those for the standard
security handler are described in Section 3.5.2, “Standard Security Handler.”
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TABLE 3.13 Entries common to all encryption dictionaries

KEY TYPE VALUE

Filter name (Required) The name of the security handler for this document; see below. Default value:
Standard, for the built-in security handler. (Names for other security handlers can be
registered using the procedure described in Appendix E.)

v number (Optional but strongly recommended) A code specifying the algorithm to be used in en-
crypting and decrypting the document:

0  An algorithm that is undocumented and no longer supported, and whose use is
strongly discouraged.

1 Algorithm 3.1 on page 73, with an encryption key length of 40 bits; see below.

2 (PDF 1.4) Algorithm 3.1 on page 73, but allowing encryption key lengths greater
than 40 bits.

3 (PDF 1.4) An unpublished algorithm allowing encryption key lengths ranging
from 40 to 128 bits. (This algorithm is unpublished as an export requirement of
the U.S. Department of Commerce.)

The default value if this entry is omitted is 0, but a value of 1 or greater is strongly rec-
ommended. (See implementation note 15 in Appendix H.)
Length  integer (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits. The value

must be a multiple of 8, in the range 40 to 128. Default value: 40.

Unlike strings within the body of the document, those in the encryption diction-

ary must be direct objects and are not encrypted by the usual methods. The secu-

rity handler itself is responsible for encrypting and decrypting strings in the

encryption dictionary, using whatever encryption algorithm it chooses.

Note: Document creators have two choices if the standard security handler and en-

cryption methods provided by PDF are not sufficient for their needs: they can pro-

vide an alternate, more secure security handler or they can encrypt whole PDF

documents themselves, not making use of PDF security.

3.5.1 General Encryption Algorithm

PDF’s standard encryption methods use the MD5 message-digest algorithm
(described in Internet RFC 1321, The MD5 Message-Digest Algorithm; see the
Bibliography) and a proprietary encryption algorithm known as RC4. RC4 is a
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symmetric stream cipher: the same algorithm is used for both encryption and de-
cryption, and the algorithm does not change the length of the data.

Note: RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Adobe Sys-
tems has licensed this algorithm for use in its Acrobat products. Independent soft-
ware vendors may be required to license RC4 in order to develop software that
encrypts or decrypts PDF documents. For further information, visit the RSA Web site
at <http://www.rsasecurity.com> or send e-mail to <products@rsasecurity.com>.

The encryption of data in a PDF file is based on the use of an encryption key com-
puted by the security handler. Different security handlers can compute the en-
cryption key in a variety of ways, more or less cryptographically secure.
Regardless of how the key is computed, its use in the encryption of data is always
the same (see Algorithm 3.1). Because the RC4 algorithm is symmetric, this same
sequence of steps can be used both to encrypt and to decrypt data.

Algorithm 3.1 Encryption of data using an encryption key

1. Obtain the object number and generation number from the object identifier of
the string or stream to be encrypted (see Section 3.2.9, “Indirect Objects”). If the
string is a direct object, use the identifier of the indirect object containing it.

2. Treating the object number and generation number as binary integers, extend the
original n-byte encryption key to #n + 5 bytes by appending the low-order 3 bytes
of the object number and the low-order 2 bytes of the generation number in that
order, low-order byte first. (1 is 5 unless the value of V in the encryption diction-
ary is greater than 1, in which case # is the value of Length divided by 8.)

3. Initialize the MD5 hash function and pass the result of step 2 as input to this func-
tion.

4. Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
hash as the key for the RC4 encryption function, along with the string or stream
data to be encrypted. The output is the encrypted data to be stored in the PDF file.

Stream data is encrypted after applying all stream encoding filters, and is de-
crypted before applying any stream decoding filters; the number of bytes to be
encrypted or decrypted is given by the Length entry in the stream dictionary.
Decryption of strings (other than those in the encryption dictionary) is done
after escape-sequence processing and hexadecimal decoding as appropriate to the
string representation described in Section 3.2.3, “String Objects.”
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3.5.2 Standard Security Handler

PDF’s standard security handler allows access permissions and up to two pass-
words to be specified for a document: an owner password and a user password. An
application’s decision to encrypt a document is based on whether the user creat-
ing the document specifies any passwords or access restrictions (for example, in a
security settings dialog that the user can invoke before saving the PDF file); if so,
the document is encrypted, and the permissions and information required to val-
idate the passwords are stored in the encryption dictionary. (An application may
also create an encrypted document without any user interaction, if it has some
other source of information about what passwords and permissions to use.)

If a user attempts to open an encrypted document that has a user password, the
viewer application should prompt for a password. Correctly supplying either
password allows the user to open the document, decrypt it, and display it on the
screen. If the document does not have a user password, no password is requested;
the viewer application can simply open, decrypt, and display the document.
Whether additional operations are allowed on a decrypted document depends on
which password (if any) was supplied when the document was opened and on
any access restrictions that were specified when the document was created:

* Opening the document with the correct owner password (assuming it is not
the same as the user password) allows full (owner) access to the document.
This unlimited access includes the ability to change the document’s passwords
and access permissions.

* Opening the document with the correct user password (or opening a docu-
ment that does not have a user password) allows additional operations to be
performed according to the user access permissions specified in the document’s
encryption dictionary.

Access permissions are specified in the form of flags corresponding to the various
operations, and the set of operations to which they correspond depends in turn
on the security handler’s revision number (also stored in the encryption diction-
ary). If the revision number is 2, the operations to which user access can be con-
trolled are as follows:

* Modifying the document’s contents

* Copying or otherwise extracting text and graphics from the document, includ-
ing extraction for accessibility purposes (that is, to make the contents of the
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document accessible through assistive technologies such as screen readers or
Braille output devices; see Section 9.8, “Accessibility Support™)

* Adding or modifying text annotations (“sticky notes”; see “Text Annotations”
on page 499) and interactive form fields (Section 8.6, “Interactive Forms”)

* Printing the document

If the security handler’s revision number is 3, user access to the following opera-
tions can be controlled more selectively:

* Filling in forms (that is, filling in existing interactive form fields) and signing
the document (which amounts to filling in existing signature fields, a type of
interactive form field)

* Assembling the document: inserting, rotating, or deleting pages and creating
navigation elements such as bookmarks or thumbnail images (see Section 8.2,
“Document-Level Navigation™)

* Printing to a representation from which a faithful digital copy of the PDF con-
tent could be generated. Disallowing such printing may result in degradation
of output quality (a feature implemented as “Print As Image” in Acrobat)

In addition, revision 3 enables the extraction of text and graphics (in support of
accessibility to disabled users or for other purposes) to be controlled separately.

Note: Once the document has been opened and decrypted successfully, the viewer ap-
plication has access to the entire contents of the document. There is nothing inherent
in PDF encryption that enforces the document permissions specified in the encryp-
tion dictionary. It is up to the implementors of PDF viewer applications to respect the
intent of the document creator by restricting user access to an encrypted PDF file ac-
cording to the permissions contained in the file.

Standard Encryption Dictionary

Table 3.14 shows the encryption dictionary entries for the standard security
handler (in addition to those in Table 3.13 on page 72).
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TABLE 3.14 Additional encryption dictionary entries for the standard security handler

KEY

TYPE

VALUE

number

string

string

integer

(Required) A number specifying which revision of the standard security handler should
be used to interpret this dictionary. The revision number should be 2 if the document is
encrypted with a V value less than 2 (see Table 3.13) and does not have any of the access
permissions set (via the P entry, below) that are designated “Revision 3” in Table 3.15;
otherwise (that is, if the document is encrypted with a V value greater than 2 or has any
“Revision 3” access permissions set), this value should be 3.

(Required) A 32-byte string, based on both the owner and user passwords, that is used in
computing the encryption key and in determining whether a valid owner password was
entered. For more information, see “Encryption Key Algorithm” on page 78 and “Pass-
word Algorithms” on page 79.

(Required) A 32-byte string, based on the user password, that is used in determining
whether to prompt the user for a password and, if so, whether a valid user or owner pass-
word was entered. For more information, see “Password Algorithms” on page 79.

(Required) A set of flags specifying which operations are permitted when the document is
opened with user access (see Table 3.15).

The values of the O and U entries in this dictionary are used to determine wheth-
er a password entered when the document is opened is the correct owner pass-
word, user password, or neither.

The value of the P entry is an unsigned 32-bit integer containing a set of flags
specifying which access permissions should be granted when the document is
opened with user access. Table 3.15 shows the meanings of these flags. Bit posi-
tions within the flag word are numbered from 1 (low-order) to 32 (high-order); a
1 bit in any position enables the corresponding access permission. Which bits are
meaningful, and in some cases how they are interpreted, depends on the security
handler’s revision number (specified in the encryption dictionary’s R entry).

Note: PDF integer objects in fact are represented internally in signed twos-
complement form. Since all the reserved high-order flag bits in the encryption
dictionary’s P value are required to be 1, the value must be specified as a negative
integer. For example, assuming revision 2 of the security handler, the value -44 al-
lows printing and copying but disallows modifying the contents and annotations.
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TABLE 3.15 User access permissions

BIT POSITION

MEANING

10

11

12

13-32

Reserved; must be 0.

(Revision 2) Print the document.
(Revision 3) Print the document (possibly not at the highest quality
level, depending on whether bit 12 is also set).

Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

(Revision 2) Copy or otherwise extract text and graphics from the
document, including extracting text and graphics (in support of ac-
cessibility to disabled users or for other purposes).

(Revision 3) Copy or otherwise extract text and graphics from the
document by operations other than that controlled by bit 10.

Add or modify text annotations, fill in interactive form fields, and,
if bit 4 is also set, create or modify interactive form fields (including
signature fields).

Reserved; must be 1.

(Revision 3 only) Fill in existing interactive form fields (including
signature fields), even if bit 6 is clear.

(Revision 3 only) Extract text and graphics (in support of accessibil-
ity to disabled users or for other purposes).

(Revision 3 only) Assemble the document (insert, rotate, or delete
pages and create bookmarks or thumbnail images), even if bit 4 is
clear.

(Revision 3 only) Print the document to a representation from
which a faithful digital copy of the PDF content could be generated.
When this bit is clear (and bit 3 is set), printing is limited to a low-
level representation of the appearance, possibly of degraded quality.
(See implementation note 16 in Appendix H.)

(Revision 3 only) Reserved; must be 1.
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Encryption Key Algorithm

As noted earlier, one function of a security handler is to generate an encryption
key for use in encrypting and decrypting the contents of a document. Given a
password string, the standard security handler computes an encryption key as
shown in Algorithm 3.2.

Algorithm 3.2 Computing an encryption key

1. Pad or truncate the password string to exactly 32 bytes. If the password string is
more than 32 bytes long, use only its first 32 bytes; if it is less than 32 bytes long,
pad it by appending the required number of additional bytes from the beginning
of the following padding string:

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 DO 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is # bytes long, append the first 32 — n bytes of the
padding string to the end of the password string. If the password string is empty
(zero-length), meaning there is no user password, substitute the entire padding
string in its place.

2. Initialize the MD5 hash function and pass the result of step 1 as input to this func-
tion.

3. Pass the value of the encryption dictionary’s O entry to the MD5 hash function.
(Algorithm 3.3 shows how the O value is computed.)

4. Treat the value of the P entry as an unsigned 4-byte integer and pass these bytes to
the MDS5 hash function, low-order byte first.

5. Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.12 on page 68) to the MD5 hash
function and finish the hash.

6. (Revision 3 only) Do the following 50 times: Take the output from the previous
MDS5 hash and pass it as input into a new MDS5 hash.

7. Set the encryption key to the first n bytes of the output from the final MD5 hash,
where n is always 5 for revision 2 but for revision 3 depends on the value of the en-
cryption dictionary’s Length entry.

This algorithm, when applied to the user password string, produces the encryp-
tion key used to encrypt or decrypt string and stream data according to Algo-
rithm 3.1 on page 73. Parts of this algorithm are also used in the algorithms
described below.
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Password Algorithms

In addition to the encryption key, the standard security handler must provide the
contents of the encryption dictionary (Tables 3.13 on page 72 and 3.14 on page
76). The values of the Filter, V, Length, R, and P entries are straightforward, but
the computation of the O (owner password) and U (user password) entries re-
quires further explanation. Algorithms 3.3 through 3.5 show how the values of
the owner password and user password entries are computed (with separate ver-
sions of the latter for revisions 2 and 3 of the security handler).

Algorithm 3.3 Computing the encryption dictionary’s O (owner password) value

1. Pad or truncate the owner password string as described in step 1 of Algorithm 3.2.
If there is no owner password, use the user password instead. (See implementa-
tion note 17 in Appendix H.)

2. Initialize the MD5 hash function and pass the result of step 1 as input to this func-
tion.

3. (Revision 3 only) Do the following 50 times: Take the output from the previous
MDS5 hash and pass it as input into a new MD5 hash.

4. Create an RC4 encryption key using the first n bytes of the output from the final
MDS5 hash, where 7 is always 5 for revision 2 but for revision 3 depends on the
value of the encryption dictionary’s Length entry.

5. Pad or truncate the user password string as described in step 1 of Algorithm 3.2.

6. Encrypt the result of step 5, using an RC4 encryption function with the encryp-
tion key obtained in step 4.

7. (Revision 3 only) Do the following 19 times: Take the output from the previous in-
vocation of the RC4 function and pass it as input to a new invocation of the func-
tion; use an encryption key generated by taking each byte of the encryption key
obtained in step 4 and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

8. Store the output from the final invocation of the RC4 function as the value of the
O entry in the encryption dictionary.
Algorithm 3.4 Computing the encryption dictionary’s U (user password) value (Revision 2)

1. Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.
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2.

3.

Encrypt the 32-byte padding string shown in step 1 of Algorithm 3.2, using an
RC4 encryption function with the encryption key from the preceding step.

Store the result of step 2 as the value of the U entry in the encryption dictionary.

Algorithm 3.5 Computing the encryption dictionary’s U (user password) value (Revision 3)

1.

Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.

Initialize the MD5 hash function and pass the 32-byte padding string shown in
step 1 of Algorithm 3.2 as input to this function.

Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.12 on page 68) to the hash function
and finish the hash.

Encrypt the 16-byte result of the hash, using an RC4 encryption function with the
encryption key from step 1.

Do the following 19 times: Take the output from the previous invocation of the
RC4 function and pass it as input to a new invocation of the function; use an en-
cryption key generated by taking each byte of the original encryption key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

Append 16 bytes of arbitrary padding to the output from the final invocation of
the RC4 function and store the 32-byte result as the value of the U entry in the en-
cryption dictionary.

The standard security handler uses Algorithms 3.6 and 3.7 to determine whether
a supplied password string is the correct user or owner password. Note too that
Algorithm 3.6 can be used to determine whether a document’s user password is
the empty string, and therefore whether to suppress prompting for a password
when the document is opened.

Algorithm 3.6 Authenticating the user password

1.

Perform all but the last step of Algorithm 3.4 (Revision 2) or Algorithm 3.5 (Revi-
sion 3) using the supplied password string.

If the result of step 1 is equal to the value of the encryption dictionary’s U entry
(comparing on the first 16 bytes in the case of Revision 3), the password supplied
is the correct user password. The key obtained in step 1 (that is, in the first step of
Algorithm 3.4 or 3.5) can be used to decrypt the document using Algorithm 3.1
on page 73.
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Algorithm 3.7 Authenticating the owner password

1. Compute an encryption key from the supplied password string, as described in
steps 1 to 4 of Algorithm 3.3.

2. (Revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using
an RC4 encryption function with the encryption key computed in step 1.

(Revision 3 only) Do the following 20 times: Decrypt the value of the encryption
dictionary’s O entry (first iteration) or the output from the previous iteration (all
subsequent iterations), using an RC4 encryption function with a different encryp-
tion key at each iteration. The key is generated by taking the original key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between each
byte of the key and the single-byte value of the iteration counter (from 19 to 0).

3. The result of step 2 purports to be the user password. Authenticate this user pass-
word using Algorithm 3.6. If it is found to be correct, the password supplied is the
correct owner password.

3.6 Document Structure

A PDF document can be regarded as a hierarchy of objects contained in the body
section of a PDF file. At the root of the hierarchy is the document’s catalog
dictionary (see Section 3.6.1, “Document Catalog”). Most of the objects in the
hierarchy are dictionaries. For example, each page of the document is represent-
ed by a page object—a dictionary that includes references to the page’s contents
and other attributes, such as its thumbnail image (Section 8.2.3, “Thumbnail
Images”) and any annotations (Section 8.4, “Annotations”) associated with it.
The individual page objects are tied together in a structure called the page tree
(described in Section 3.6.2, “Page Tree”), which in turn is located via an indirect
reference in the document catalog. Parent, child, and sibling relationships within
the hierarchy are defined by dictionary entries whose values are indirect refer-
ences to other dictionaries. Figure 3.4 illustrates the structure of the object hier-
archy.

Note: The data structures described in this section, particularly the catalog and page
dictionaries, combine entries describing document structure with ones dealing with
the detailed semantics of documents and pages. All entries are listed here, but many
of their descriptions are deferred to subsequent chapters.
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3.6.1 Document Catalog
The root of a document’s object hierarchy is the catalog dictionary, located via the
Root entry in the trailer of the PDF file (see Section 3.4.4, “File Trailer”). The cat-
alog contains references to other objects defining the document’s contents, out-
line, article threads (PDF 1.1), named destinations, and other attributes. In
addition, it contains information about how the document should be displayed
on the screen, such as whether its outline and thumbnail page images should be
displayed automatically and whether some location other than the first page
should be shown when the document is opened. Table 3.16 shows the entries in
the catalog dictionary.

TABLE 3.16 Entries in the catalog dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must
be Catalog for the catalog dictionary.

Version name (Optional; PDF 1.4) The version of the PDF specification to which the
document conforms (for example, 1.4), if later than the version specified
in the file’s header (see Section 3.4.1, “File Header”). If the header speci-
fies a later version, or if this entry is absent, the document conforms to
the version specified in the header. This entry enables a PDF producer
application to update the version using an incremental update; see Sec-
tion 3.4.5, “Incremental Updates.” (See implementation note 18 in Ap-
pendix H.)

Note: The value of this entry is a name object, not a number, and so must
be preceded by a slash character (/) when written in the PDF file (for ex-
ample, /1.4).

Pages dictionary (Required; must be an indirect reference) The page tree node that is the
root of the document’s page tree (see Section 3.6.2, “Page Tree”).

Pagelabels number tree (Optional; PDF 1.3) A number tree (see Section 3.8.5, “Number Trees”)
defining the page labeling for the document. The keys in this tree are
page indices; the corresponding values are page label dictionaries (see
Section 8.3.1, “Page Labels”). Each page index denotes the first page in a
labeling range to which the specified page label dictionary applies. The
tree must include a value for page index 0.

Names dictionary (Optional; PDF 1.2) The document’s name dictionary (see Section 3.6.3,

“Name Dictionary”).
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Dests

ViewerPreferences

PagelLayout

PageMode

Outlines

Threads

OpenAction

dictionary

dictionary

name

name

dictionary

array

array or
dictionary

(Optional; PDF 1.1; must be an indirect reference) A dictionary of names
and corresponding destinations (see “Named Destinations” on page
476).

(Optional; PDF 1.2) A viewer preferences dictionary (see Section 8.1,
“Viewer Preferences”) specifying the way the document is to be dis-
played on the screen. If this entry is absent, viewer applications should
use their own current user preference settings.

(Optional) A name object specifying the page layout to be used when the
document is opened:

SinglePage Display one page at a time.
OneColumn Display the pages in one column.
TwoColumnLeft Display the pages in two columns, with odd-

numbered pages on the left.
TwoColumnRight ~ Display the pages in two columns, with odd-
numbered pages on the right.

(See implementation note 19 in Appendix H.) Default value: SinglePage.

(Optional) A name object specifying how the document should be dis-
played when opened:

UseNone Neither document outline nor thumbnail im-
ages visible

UseOutlines Document outline visible

UseThumbs Thumbnail images visible

FullScreen Full-screen mode, with no menu bar, window

controls, or any other window visible
Default value: UseNone.

(Optional; must be an indirect reference) The outline dictionary that is the
root of the document’s outline hierarchy (see Section 8.2.2, “Document
Outline”).

(Optional; PDF 1.1; must be an indirect reference) An array of thread
dictionaries representing the document’s article threads (see Section
8.3.2, “Articles™).

(Optional; PDF 1.1) A value specifying a destination to be displayed or
an action to be performed when the document is opened. The value is
either an array defining a destination (see Section 8.2.1, “Destinations”)
or an action dictionary representing an action (Section 8.5, “Actions”). If
this entry is absent, the document should be opened to the top of the
first page at the default magnification factor.
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AA dictionary
URI dictionary
AcroForm dictionary
Metadata stream
StructTreeRoot dictionary
Markinfo dictionary
Lang text string
Spiderinfo dictionary
Outputintents array

(Optional; PDF 1.4) An additional-actions dictionary defining the actions
to be taken in response to various trigger events affecting the document
as a whole (see “Trigger Events” on page 514). (See also implementation
note 20 in Appendix H.)

(Optional) A URI dictionary containing document-level information for
URI (uniform resource identifier) actions (see “URI Actions” on page
523).

(Optional; PDF 1.2) The document’s interactive form (AcroForm) dic-
tionary (see Section 8.6.1, “Interactive Form Dictionary”).

(Optional; PDF 1.4; must be an indirect reference) A metadata stream
containing metadata for the document (see Section 9.2.2, “Metadata
Streams”).

(Optional; PDF 1.3) The document’s structure tree root dictionary (see
Section 9.6.1, “Structure Hierarchy”).

(Optional; PDF 1.4) A mark information dictionary containing informa-
tion about the document’s usage of Tagged PDF conventions (see Sec-
tion 9.7.1, “Mark Information Dictionary”).

(Optional; PDF 1.4) A language identifier specifying the natural language
for all text in the document except where overridden by language speci-
fications for structure elements or marked content (see Section 9.8.1,
“Natural Language Specification”). If this entry is absent, the language is
considered unknown.

(Optional; PDF 1.3) A Web Capture information dictionary containing
state information used by the Acrobat Web Capture (AcroSpider) plug-
in extension (see Section 9.9.1, “Web Capture Information Dictionary”).

(Optional; PDF 1.4) An array of output intent dictionaries describing the
color characteristics of output devices on which the document might be
rendered (see “Output Intents” on page 684).

Example 3.8 shows a sample catalog object.

Example 3.8

1 0 obj
<< /Type /Catalog

>>
endobj

/Pages 20R

/PageMode /UseOutlines

/Outlines 30R
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3.6.2 PageTree

The pages of a document are accessed through a structure known as the page tree,
which defines their ordering within the document. The tree structure allows PDF
viewer applications to quickly open a document containing thousands of pages
using only limited memory. The tree contains nodes of two types—intermediate
nodes, called page tree nodes, and leaf nodes, called page objects—whose form is
described in the sections below. Viewer applications should be prepared to han-
dle any form of tree structure built of such nodes. The simplest structure would
consist of a single page tree node that references all of the document’s page
objects directly; however, to optimize the performance of viewer applications, the
Acrobat Distiller and PDF Writer programs construct trees of a particular form,
known as balanced trees. Further information on this form of tree can be found in
Data Structures and Algorithms, by Aho, Hopcroft, and Ullman (see the Bibliog-

raphy).

Page Tree Nodes

Table 3.17 shows the required entries in a page tree node.

TABLE 3.17 Required entries in a page tree node

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be Pages for
a page tree node.

Parent dictionary (Required except in root node; must be an indirect reference) The page tree node that
is the immediate parent of this one.

Kids array (Required) An array of indirect references to the immediate children of this node.
The children may be page objects or other page tree nodes.

Count integer (Required) The number of leaf nodes (page objects) that are descendants of this
node within the page tree.

Note: The structure of the page tree is not necessarily related to the logical structure
of the document itself; that is, page tree nodes do not represent chapters, sections, and
so forth. (Other data structures are defined for that purpose; see Section 9.6, “Logical
Structure.”) Applications that consume or produce PDF files are not required to pre-
serve the existing structure of the page tree.
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Example 3.9 illustrates the page tree for a document with three pages. See “Page
Objects,” below, for the contents of the individual page objects, and Section G.4,
“Page Tree Example,” for a more extended example showing the page tree for a
longer document.

Example 3.9
2 0 obj
<< [Type /Pages
/Kids [ 40R
100R
240R
]
/Count 3
>>
endobj
4 0 obj

<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

10 0 obj
<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

24 0 obj
<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

In addition to the entries shown in Table 3.17, a page tree node may contain fur-
ther entries defining inherited attributes for the page objects that are its descen-
dants (see “Inheritance of Page Attributes” on page 91).

Page Objects

The leaves of the page tree are page objects, each of which is a dictionary specify-
ing the attributes of a single page of the document. Table 3.18 shows the contents
of this dictionary (see also implementation note 21 in Appendix H). The table
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also identifies which attributes a page may inherit from its ancestor nodes in the
page tree, as described under “Inheritance of Page Attributes” on page 91.
Attributes that are not explicitly identified in the table as inheritable cannot be

TABLE 3.18 Entries in a page object

VALUE

inherited.
KEY TYPE
Type name
Parent dictionary
LastModified date
Resources dictionary
MediaBox rectangle
CropBox rectangle
BleedBox rectangle

(Required) The type of PDF object that this dictionary describes; must be
Page for a page object.

(Required; must be an indirect reference) The page tree node that is the im-
mediate parent of this page object.

(Required if Piecelnfo is present; optional otherwise; PDF 1.3) The date and
time (see Section 3.8.2, “Dates”) when the page’s contents were most re-
cently modified. If a page-piece dictionary (Piecelnfo) is present, the
modification date is used to ascertain which of the application data dic-
tionaries that it contains correspond to the current content of the page
(see Section 9.4, “Page-Piece Dictionaries”).

(Required; inheritable) A dictionary containing any resources required by
the page (see Section 3.7.2, “Resource Dictionaries”). If the page requires
no resources, the value of this entry should be an empty dictionary; omit-
ting the entry entirely indicates that the resources are to be inherited from
an ancestor node in the page tree.

(Required; inheritable) A rectangle (see Section 3.8.3, “Rectangles”), ex-
pressed in default user space units, defining the boundaries of the physical
medium on which the page is intended to be displayed or printed (see
Section 9.10.1, “Page Boundaries”).

(Optional; inheritable) A rectangle, expressed in default user space units,
defining the visible region of default user space. When the page is dis-
played or printed, its contents are to be clipped (cropped) to this rectangle
and then imposed on the output medium in some implementation-
defined manner (see Section 9.10.1, “Page Boundaries”). Default value:
the value of MediaBox.

(Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the region to which the contents of the page should be clipped
when output in a production environment (see Section 9.10.1, “Page
Boundaries”). Default value: the value of CropBox.
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TrimBox

ArtBox

BoxColorinfo

Contents

Rotate

Group

Thumb

rectangle

rectangle

dictionary

stream or array

integer

dictionary

stream

array

(Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the intended dimensions of the finished page after trimming (see
Section 9.10.1, “Page Boundaries”). Default value: the value of CropBox.

(Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the extent of the page’s meaningful content (including potential
white space) as intended by the page’s creator (see Section 9.10.1, “Page
Boundaries”). Default value: the value of CropBox.

(Optional) A box color information dictionary specifying the colors and
other visual characteristics to be used in displaying guidelines on the
screen for the various page boundaries (see “Display of Page Boundaries”
on page 679). If this entry is absent, the viewer application should use its
own current default settings.

(Optional) A content stream (see Section 3.7.1, “Content Streams”) de-
scribing the contents of this page. If this entry is absent, the page is empty.

The value may be either a single stream or an array of streams. If it is an
array, the effect is as if all of the streams in the array were concatenated, in
order, to form a single stream. This allows a program generating a PDF
file to create image objects and other resources as they occur, even though
they interrupt the content stream. The division between streams may
occur only at the boundaries between lexical tokens (see Section 3.1, “Lex-
ical Conventions”), but is unrelated to the page’s logical content or orga-
nization. Applications that consume or produce PDF files are not required
to preserve the existing structure of the Contents array. (See implementa-
tion note 22 in Appendix H.)

(Optional; inheritable) The number of degrees by which the page should
be rotated clockwise when displayed or printed. The value must be a mul-
tiple of 90. Default value: 0.

(Optional; PDF 1.4) A group attributes dictionary specifying the attributes
of the page’s page group for use in the transparent imaging model (see
Sections 7.3.6, “Page Group,” and 7.5.5, “Transparency Group XObjects”).

(Optional) A stream object defining the page’s thumbnail image (see Sec-
tion 8.2.3, “Thumbnail Images”).

(Optional; PDF 1.1; recommended if the page contains article beads) An ar-
ray of indirect references to article beads appearing on the page (see Sec-
tion 8.3.2, “Articles”; see also implementation note 23 in Appendix H).
The beads are listed in the array in natural reading order.
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Dur number
Trans dictionary
Annots array
AA dictionary
Metadata stream
Piecelnfo dictionary
StructParents integer
ID string
PZ number

Separationinfo  dictionary

(Optional; PDF 1.1) The page’s display duration (also called its advance
timing): the maximum length of time, in seconds, that the page will be
displayed during presentations before the viewer application automati-
cally advances to the next page (see Section 8.3.3, “Presentations”). By
default, the viewer does not advance automatically.

(Optional; PDF 1.1) A transition dictionary describing the transition effect
to be used when displaying the page during presentations (see Section
8.3.3, “Presentations”).

(Optional) An array of annotation dictionaries representing annotations
associated with the page (see Section 8.4, “Annotations”).

(Optional; PDF 1.2) An additional-actions dictionary defining actions to
be performed when the page is opened or closed (see Section 8.5.2, “Trig-
ger Events”; see also implementation note 24 in Appendix H).

(Optional; PDF 1.4) A metadata stream containing metadata for the page
(see Section 9.2.2, “Metadata Streams”).

(Optional; PDF 1.3) A page-piece dictionary associated with the page (see
Section 9.4, “Page-Piece Dictionaries”).

(Required if the page contains structural content items; PDF 1.3) The inte-
ger key of the page’s entry in the structural parent tree (see “Finding Struc-
ture Elements from Content Items” on page 600).

(Optional; PDF 1.3; indirect reference preferred) The digital identifier of the
page’s parent Web Capture content set (see Section 9.9.5, “Object At-
tributes Related to Web Capture”).

(Optional; PDF 1.3) The page’s preferred zoom (magnification) factor: the
factor by which it should be scaled to achieve the “natural” display magni-
fication (see Section 9.9.5, “Object Attributes Related to Web Capture”).

(Optional; PDF 1.3) A separation dictionary containing information need-
ed to generate color separations for the page (see Section 9.10.3, “Separa-
tion Dictionaries”).

Example 3.10 shows the definition of a page object with a thumbnail image and
two annotations. The media box specifies that the page is to be printed on letter-
size paper. In addition, the resource dictionary is specified as a direct object and
shows that the page makes use of three fonts, named F3, F5, and F7.
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Example 3.10

3 0 obj
<< /Type /Page
/Parent 40R
/MediaBox [0 0 612 792]
/Resources << /Font << /F3 70R

/F5 90R
/F7 110R
>>
/ProcSet [/PDF]
>>
/Contents 120R
/Thumb 140R
/Annots [ 230R
240R
]
>>
endobj

Inheritance of Page Attributes

Some of the page attributes shown in Table 3.18 are designated as inheritable. If
such an attribute is omitted from a page object, its value is inherited from an an-
cestor node in the page tree. If the attribute is a required one, a value must be
supplied in an ancestor node; if it is optional and no inherited value is specified,
the default value is used.

An attribute can thus be defined once for a whole set of pages, by specifying it in
an intermediate page tree node and arranging the pages that share the attribute as
descendants of that node. For example, a document might specify the same
media box for all of its pages by including a MediaBox entry in the root node of
the page tree. If necessary, an individual page object could then override this in-
herited value with a MediaBox entry of its own.

Note: In a document conforming to the Linearized PDF organization (see Appen-
dix F), all page attributes must be specified explicitly as entries in the page diction-
aries to which they apply; they may not be inherited from an ancestor node.

Figure 3.5 illustrates the inheritance of attributes. In the page tree shown, pages 1,
2, and 4 are rotated clockwise by 90 degrees, page 3 by 270 degrees, page 6 by 180
degrees, and pages 5 and 7 not at all (0 degrees).
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Pages
Pages Pages Pages
/Rotate 90 /Rotate 180

—

==

=

Page Page Pages Page Page Page
/Rotate 0
Page 1 Page 2 Page 5 Page 6 Page 7

—

Page Page
/Rotate 270 /Rotate 90
Page 3 Page 4

3.6.3

3.7

FIGURE 3.5 [nheritance of attributes

Name Dictionary

Some categories of objects in a PDF file can be referred to by name rather than by
object reference. The correspondence between names and objects is established
by the document’s name dictionary (PDF 1.2), located via the Names entry in the
document’s catalog (see Section 3.6.1, “Document Catalog”). Each entry in this
dictionary designates the root of a name tree (Section 3.8.4, “Name Trees”) de-
fining names for a particular category of objects. Table 3.19 shows the contents of
the name dictionary.

Content Streams and Resources

Content streams are the primary means for describing the appearance of pages
and other graphical elements. A content stream depends on information con-
tained in an associated resource dictionary; in combination, these two objects
form a self-contained entity. This section describes these objects.
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TABLE 3.19 Entries in the name dictionary

KEY TYPE VALUE

Dests name tree (Optional; PDF 1.2) A name tree mapping name strings to destinations (see
“Named Destinations” on page 476).

AP name tree (Optional; PDF 1.3) A name tree mapping name strings to annotation
appearance streams (see Section 8.4.4, “Appearance Streams”).

JavaScript name tree (Optional; PDF 1.3) A name tree mapping name strings to document-level
]avaScript® actions (see “JavaScript Actions” on page 556).

Pages name tree (Optional; PDF 1.3) A name tree mapping name strings to visible pages for
use in interactive forms (see Section 8.6.5, “Named Pages”).

Templates name tree (Optional; PDF 1.3) A name tree mapping name strings to invisible (tem-
plate) pages for use in interactive forms (see Section 8.6.5, “Named Pages”).

IDS name tree (Optional; PDF 1.3) A name tree mapping digital identifiers to Web Capture
content sets (see Section 9.9.3, “Content Sets”).

URLS name tree (Optional; PDF 1.3) A name tree mapping uniform resource locators (URLSs)

EmbeddedFiles  name tree

to Web Capture content sets (see Section 9.9.3, “Content Sets”).

(Optional; PDF 1.4) A name tree mapping name strings to embedded file
streams (see Section 3.10.3, “Embedded File Streams”).

3.7.1 Content Streams

A content stream is a PDF stream object whose data consists of a sequence of in-
structions describing the graphical elements to be painted on a page. The instruc-
tions are represented in the form of PDF objects, using the same object syntax as
in the rest of the PDF document. However, whereas the document as a whole is a
static, random-access data structure, the objects in the content stream are intend-
ed to be interpreted and acted upon sequentially.

Each page of a document is represented by one or more content streams. Content
streams are also used to package up sequences of instructions as self-contained
graphical elements, such as forms (see Section 4.9, “Form XObjects”), patterns
(Section 4.6, “Patterns”), certain fonts (Section 5.5.4, “Type 3 Fonts”), and anno-
tation appearances (Section 8.4.4, “Appearance Streams”).
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A content stream, after decoding with any specified filters, is interpreted accord-
ing to the PDF syntax rules described in Section 3.1, “Lexical Conventions.” It
consists of PDF objects denoting operands and operators. The operands needed
by an operator precede it in the stream. See Example 3.3 on page 43 for an exam-
ple of a content stream.

An operand is a direct object belonging to any of the basic PDF data types except
a stream. Dictionaries are permitted as operands only by certain specific opera-
tors. Indirect objects and object references are not permitted at all.

An operator is a PDF keyword that specifies some action to be performed, such as
painting a graphical shape on the page. An operator keyword is distinguished
from a name object by the absence of an initial slash character (/). Operators are
meaningful only inside a content stream.

Note: This “postfix” notation, in which an operator is preceded by its operands, is
superficially the same as in the PostScript language. However, PDF has no concept of
an operand stack as PostScript has. In PDEF, all of the operands needed by an opera-
tor must immediately precede that operator. Operators do not return results, and
there may not be operands left over when an operator finishes execution.

Most operators have to do with painting graphical elements on the page or with
specifying parameters that affect subsequent painting operations. The individual
operators are described in the chapters devoted to their functions:

* Chapter 4 describes operators that paint general graphics, such as filled areas,
strokes, and sampled images, and that specify device-independent graphical
parameters, such as color.

* Chapter 5 describes operators that paint text using character glyphs defined in
fonts.

* Chapter 6 describes operators that specify device-dependent rendering param-
eters.

* Chapter 9 describes the marked-content operators that associate higher-level
logical information with objects in the content stream. These operators do not
affect the rendered appearance of the content; rather, they specify information
useful to applications that use PDF for document interchange.
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Ordinarily, when a viewer application encounters an operator in a content stream
that it does not recognize, an error will occur. (See implementation note 25 in
Appendix H.) A pair of compatibility operators, BX and EX (PDF 1.1), modify
this behavior (see Table 3.20). These operators must occur in pairs and may be
nested. They bracket a compatibility section, a portion of a content stream within
which unrecognized operators are to be ignored without error. This mechanism
enables a PDF document to use operators defined in newer versions of PDF with-
out sacrificing compatibility with older viewers; it should be used only in cases
where ignoring such newer operators is the appropriate thing to do. The BX and
EX operators are not themselves part of any graphics object (see Section 4.1,
“Graphics Objects”) or of the graphics state (Section 4.3, “Graphics State”).

TABLE 3.20 Compatibility operators
OPERANDS OPERATOR DESCRIPTION

— BX (PDF 1.1) Begin a compatibility section. Unrecognized operators (along with their
operands) will be ignored without error until the balancing EX operator is encoun-
tered.

— EX (PDF 1.1) End a compatibility section begun by a balancing BX operator.

3.7.2 Resource Dictionaries

As stated above, the operands supplied to operators in a content stream may only
be direct objects; indirect objects and object references are not permitted. In
some cases, an operator needs to refer to a PDF object that is defined outside the
content stream, such as a font dictionary or a stream containing image data. This
can be accomplished by defining such objects as named resources and referring to
them by name from within the content stream.

Note: Named resources are meaningful only in the context of a content stream. The
scope of a resource name is local to a particular content stream, and is unrelated to
externally known identifiers for objects such as fonts. References from one object to
another outside of content streams should be made by means of indirect object refer-
ences rather than named resources.

A content stream’s named resources are defined by a resource dictionary, which
enumerates the named resources needed by the operators in the content stream
and the names by which they can be referred to. For example, if a text operator
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appearing within the content stream needed a certain font, the content stream’s
resource dictionary might associate the name F42 with the corresponding font
dictionary. The text operator could then use this name to refer to the font.

A resource dictionary is associated with a content stream in one of the following
ways:

* For a content stream that is the value of a page’s Contents entry (or is an
element of an array that is the value of that entry), the resource dictionary is
designated by the page dictionary’s Resources entry. (Since a page’s Resources
attribute is inheritable, as described under “Inheritance of Page Attributes” on
page 91, it may actually reside in some ancestor node of the page object.)

* For other content streams, the resource dictionary is specified by the Resources
entry in the stream dictionary of the content stream itself. This applies to con-
tent streams that define form XObjects, patterns, Type 3 fonts, and annotation
appearances.

* A form XObject or a Type 3 font’s glyph description may omit the Resources
entry, in which case resources will be looked up in the Resources entry of the
page on which the form or font is used. This practice is not recommended.

In the context of a given content stream, the term current resource dictionary
refers to the resource dictionary associated with the stream in one of the ways
described above.

Each key in a resource dictionary is the name of a resource type, as shown in
Table 3.21. For most resource types, the corresponding value is a subdictionary
whose keys, in turn, are the names of resources of the given type and whose
values are the PDF objects representing those resources. (For resource type
ProcSet, the value is an array of procedure set names instead of a subdictionary.)

Example 3.11 shows a resource dictionary containing procedure sets, fonts, and
external objects. The procedure sets are specified by an array, as described in Sec-
tion 9.1, “Procedure Sets.” The fonts are specified with a subdictionary associat-
ing the names F5, F6, F7, and F8 with objects 6, 8, 10, and 12, respectively.
Likewise, the XObject subdictionary associates the names Im1 and Im2 with ob-
jects 13 and 15, respectively.
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TABLE 3.21 Entries in a resource dictionary

KEY TYPE VALUE

ExtGState dictionary (Optional) A dictionary mapping resource names to graphics state parameter
dictionaries (see Section 4.3.4, “Graphics State Parameter Dictionaries”).

ColorSpace dictionary (Optional) A dictionary mapping each resource name to either the name of a
device-dependent color space or an array describing a color space (see Sec-
tion 4.5, “Color Spaces”).

Pattern dictionary (Optional) A dictionary mapping resource names to pattern objects (see Sec-
tion 4.6, “Patterns”).

Shading dictionary (Optional; PDF 1.3) A dictionary mapping resource names to shading dic-
tionaries (see “Shading Dictionaries” on page 233).

XObject stream (Optional) A dictionary mapping resource names to external objects (see Sec-
tion 4.7, “External Objects”).

Font dictionary (Optional) A dictionary mapping resource names to font dictionaries (see
Chapter 5).

ProcSet array (Optional) An array of predefined procedure set names (see Section 9.1,
“Procedure Sets”).

Properties dictionary (Optional; PDF 1.2) A dictionary mapping resource names to property list

dictionaries for marked content (see Section 9.5.1, “Property Lists”).

Example 3.11

<< /ProcSet [/PDF /ImageB]
/Font << /F5 60R

>>

/F6 80R
/F7 100R
/F8 120R

/XObject << /Im1 130R

>>

/Im2 150R
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3.8 Common Data Structures

3.8.1

As mentioned at the beginning of this chapter, there are some general-purpose
data structures that are built from the basic object types described in Section 3.2,
“Objects,” and are used in many places throughout PDF. This section describes
data structures for text strings, dates, rectangles, name trees, and number trees.
The subsequent two sections describe more complex data structures for func-
tions and file specifications.

All of these data structures are meaningful only as part of the document hier-
archy; they cannot appear within content streams. In particular, the special con-
ventions for interpreting the values of string objects apply only to strings outside
content streams. An entirely different convention is used within content streams
for using strings to select sequences of glyphs to be painted on the page (see
Chapter 5). Table 3.22 summarizes the basic and higher-level data types that are
used throughout this book to describe the values of dictionary entries and other
PDF data values.

Text Strings

Certain strings contain information that is intended to be human-readable, such
as text annotations, bookmark names, article names, document information, and
so forth. Such strings are referred to as text strings. Text strings are encoded in
either PDFDocEncoding or Unicode character encoding. PDFDocEncoding is a
superset of the ISO Latin 1 encoding and is documented in Appendix D. Unicode
is described in the Unicode Standard by the Unicode Consortium (see the Bibli-

ography).

For text strings encoded in Unicode, the first two bytes must be 254 followed by
255, representing the Unicode byte order marker, U+FEFF. (This sequence con-
flicts with the PDFDocEncoding character sequence thorn ydieresis, which is un-
likely to be a meaningful beginning of a word or phrase.) The remainder of the
string consists of Unicode character codes, according to the UTF-16 encoding
specified in the Unicode standard, version 2.0. Commonly used Unicode values
are represented as 2 bytes per character, with the high-order byte appearing first
in the string.
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TABLE 3.22 PDF data types

TYPE DESCRIPTION SECTION PAGE
array Array object 3.2.5 34
boolean Boolean value 3.2.1 28
date Date (string) 3.8.2 100
dictionary Dictionary object 3.2.6 35
file specification File specification (string or dictionary) 3.10 118
function Function (dictionary or stream) 3.9 106
integer Integer number 3.22 28
name Name object 3.2.4 32
name tree Name tree (dictionary) 3.84 101
null Null object 3.2.8 39
number Number (integer or real) 322 28
number tree Number tree (dictionary) 3.8.5 105
rectangle Rectangle (array) 3.8.3 101
stream Stream object 3.2.7 36
string String object 3.2.3 29
text string Text string 3.8.1 98

Anywhere in a Unicode text string, an escape sequence may appear to indicate the
language in which subsequent text is written; this is useful when the language
cannot be determined from the character codes used in the text itself. The escape
sequence consists of the following elements, in order:

1. The Unicode value U+001B (that is, the byte sequence 0 followed by 27)

2. A 2-character ISO 639 language code—for example, en for English or ja for
Japanese

3. (Optional) A 2-character ISO 3166 country code—for example, US for the
United States or JP for Japan

4. The Unicode value U+001B
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The complete list of codes defined by ISO 639 and ISO 3166 can be obtained
from the International Organization for Standardization (see the Bibliography).

3.8.2 Dates

PDF defines a standard date format, which closely follows that of the internation-
al standard ASN.1 (Abstract Syntax Notation One), defined in ISO/IEC 8824 (see
the Bibliography). A date is a string of the form

(D:YYYYMMDDHHmMmmMSSOHH'mm')

where
YYYY is the year
MM is the month
DD is the day (01-31)
HH is the hour (00-23)
mm is the minute (00-59)
SS is the second (00-59)

O is the relationship of local time to Universal Time (UT), denoted by one of
the characters +, —, or Z (see below)

HH followed by ' is the absolute value of the offset from UT in hours (00-23)

mm followed by ' is the absolute value of the offset from UT in minutes (00-59)

The apostrophe character (') after HH and mm is part of the syntax. All fields after
the year are optional. (The prefix D:, although also optional, is strongly recom-
mended.) The default values for MM and DD are both 01; all other numerical
fields default to zero values. A plus sign (+) as the value of the O field signifies that
local time is later than UT, a minus sign (-) that local time is earlier than UT, and
the letter Z that local time is equal to UT. If no UT information is specified, the
relationship of the specified time to UT is considered to be unknown. Whether or
not the time zone is known, the rest of the date should be specified in local time.

For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is rep-
resented by the string

D:199812231952-08'00'
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3.8.3 Rectangles

Rectangles are used to describe locations on a page and bounding boxes for a
variety of objects, such as fonts. A rectangle is written as an array of four numbers
giving the coordinates of a pair of diagonally opposite corners. Typically, the
array takes the form

[IIX Ily ur, ury]

specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordi-
nates of the rectangle, in that order.

Note: Although rectangles are conventionally specified by their lower-left and upper-
right corners, it is acceptable to specify any two diagonally opposite corners. Applica-
tions that process PDF should be prepared to normalize such rectangles in situations
where specific corners are required.

3.8.4 NameTrees

A name tree serves a similar purpose to a dictionary—associating keys and
values—but by different means. A name tree differs from a dictionary in the fol-
lowing important ways:

* Unlike the keys in a dictionary, which are name objects, those in a name tree
are strings.

* The keys are ordered.

* The values associated with the keys may be objects of any type, but they must
always be specified via indirect object references.

* The data structure can represent an arbitrarily large collection of key-value
pairs, which can be looked up efficiently without requiring the entire data
structure to be read from the PDF file. (In contrast, a dictionary is subject to an
implementation limit on the number of entries it can contain.)

A name tree is constructed of nodes, each of which is a dictionary object. Table
3.23 shows the entries in a node dictionary. The nodes are of three kinds,
depending on the specific entries they contain. The tree always has exactly one
root node, which contains a single entry: either Kids or Names but not both. If the
root node has a Names entry, it is the only node in the tree. If it has a Kids entry,
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then each of the remaining nodes is either an intermediate node, containing a
Limits entry and a Kids entry, or a leaf node, containing a Limits entry and a
Names entry.

TABLE 3.23 Entries in a name tree node dictionary

KEY

TYPE VALUE

Kids

Names

Limits

array (Root and intermediate nodes only; required in intermediate nodes; present in the root node
if and only if Names is not present) An array of indirect references to the immediate chil-

dren of this node. The children may be intermediate or leaf nodes.

array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids

is not present) An array of the form

[key, value, key, value, ... key,value,]

where each key; is a string and the corresponding value; is an indirect reference to the
object associated with that key. The keys are sorted in lexical order, as described below.

array (Intermediate and leaf nodes only; required) An array of two strings, specifying the (lexi-
cally) least and greatest keys included in the Names array of a leaf node or in the Names

arrays of any leaf nodes that are descendants of an intermediate node.

The Kids entries in the root and intermediate nodes define the tree’s structure by
identifying the immediate children of each node. The Names entries in the leaf
(or root) nodes contain the tree’s keys and their associated values, arranged in
key-value pairs and sorted lexically in ascending order by key. Shorter keys
appear before longer ones beginning with the same byte sequence. The encoding
of the keys is immaterial as long as it is self-consistent; keys are compared for
equality on a simple byte-by-byte basis.

The keys contained within the various nodes’ Names entries do not overlap; that
is, each Names entry contains a single contiguous range of all the keys in the tree.
In a leaf node, the Limits entry specifies the least and greatest keys contained
within the node’s Names entry; in an intermediate node, it specifies the least and
greatest keys contained within the Names entries of any of that node’s descen-
dants. The value associated with a given key can thus be found by walking the tree
in order, searching for the leaf node whose Names entry contains that key.
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Table 3.24 is an abbreviated outline, showing object numbers and nodes, of a
name tree that maps the names of all the chemical elements, from actinium to
zirconium, to their atomic numbers. Example 3.12 shows the representation of
this tree in a PDF file.

TABLE 3.24 Example of a name tree

1:  Root node
2: Intermediate node: Actinium to Gold
5: Leaf node: Actinium = 25, ..., Astatine = 31
25: Integer: 89

31: Integer: 85

11: Leaf node: Gadolinium = 56, ..., Gold = 59
56: Integer: 64

59: Integer: 79
3: Intermediate node: Hafnium to Protactinium
12:  Leaf node: Hafnium = 60, ..., Hydrogen = 65
60: Integer: 72

65: Integer: 1

19: Leaf node: Palladium = 92, ..., Protactinium = 100
92: Integer: 46

100: Integer: 91
4: Intermediate node: Radium to Zirconium
20: Leaf node: Radium = 101, ..., Ruthenium = 107
101: Integer: 89
107: Integer: 85

24: Leaf node: Xenon = 129, ..., Zirconium = 133
129: Integer: 54

133: Integer: 40
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Example 3.12
1 0 obj
/Kids [ 20R
30R
40R
1
>>
endobj
2 0 obj
<< /Limits [(Actinium) (Gold)]
/Kids [ 50R
60R
70R
80R
90R
100R
110R
1
>>
endobj
3 0 obj
<< /Limits [(Hafnium) (Protactinium)]
/Kids [ 120R
130R
140R
150R
160R
170R
180R
190R
1
>>
endobj
4 0 obj
<< /Limits [(Radium) (Zirconium)]
/Kids [ 200R
210R
220R
230R
240R
]
>>

endobj

% Root node

% Intermediate node

% Intermediate node

% Intermediate node
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5 0 obj
<< /Limits [(Actinium) (Astatine)] % Leaf node

/Names [ (Actinium) 250R
Aluminum) 26 0R
Americium) 270R
Antimony) 28 0R
Argon) 290R
Arsenic) 300R
Astatine) 310R

— o~ o~ o~ o~ —

>>
endobj
24 0 obj
<< /Limits [(Xenon) (Zirconium)] % Leaf node
/Names [ (Xenon) 1290R
(Ytterbium) 1300R
(Yttrium) 1310R
(Zinc) 1320R
(Zirconium) 1330R
]
>>
endobj
25 0 obj
89 % Atomic number (Actinium)
endobj
133 0 obj
40 % Atomic number (Zirconium)
endobj

3.8.5 Number Trees

A number tree is similar to a name tree (see Section 3.8.4, “Name Trees”), except
that its keys are integers instead of strings, sorted in ascending numerical order.
The entries in the leaf (or root) nodes containing the key-value pairs are named
Nums instead of Names as in a name tree. Table 3.25 shows the entries in a num-
ber tree’s node dictionaries.
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TABLE 3.25 Entries in a number tree node dictionary

KEY TYPE VALUE

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the root node
if and only if Nums is not present) An array of indirect references to the immediate chil-
dren of this node. The children may be intermediate or leaf nodes.

Nums array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids
is not present) An array of the form

[key, value; key, value, ... key,value,]

where each key; is an integer and the corresponding value; is an indirect reference to the
object associated with that key. The keys are sorted in numerical order, analogously to
the arrangement of keys in a name tree as described in Section 3.8.4, “Name Trees.”

Limits array (Intermediate and leaf nodes only; required) An array of two integers, specifying the
(numerically) least and greatest keys included in the Nums array of a leaf node or in the
Nums arrays of any leaf nodes that are descendants of an intermediate node.

3.9 Functions

PDF is not a programming language, and a PDF file is not a program; however,
PDF does provide several types of function object (PDF 1.2) that represent param-
eterized classes of functions, including mathematical formulas and sampled
representations with arbitrary resolution. Functions are used in various ways in
PDF: device-dependent rasterization information for high-quality printing (half-
tone spot functions and transfer functions), color transform functions for certain
color spaces, and specification of colors as a function of position for smooth
shadings.

Functions in PDF represent static, self-contained numerical transformations. A
function to add two numbers has two input values and one output value:

Similarly, a function that computes the arithmetic and geometric mean of two
numbers could be viewed as a function of two input values and two output
values:
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In general, a function can take any number (m) of input values and produce any
number (n) of output values:

f(Xgs coos X 1) = Voo ees Vg

In PDF functions, all the input values and all the output values are numbers, and
functions have no side effects.

Each function definition includes a domain, the set of legal values for the input.
Some types of functions also define a range, the set of legal values for the output.
Input values passed to the function are clipped to the domain, and output values
produced by the function are clipped to the range. For example, suppose the
function

flx) = x+2

is defined with a domain of [-1 1]. If the function is called with the input value 6,
that value is replaced with the nearest value in the defined domain, 1, before the
function is evaluated; the resulting output value is therefore 3. Similarly, if the
function

flxg, %) = 3xx, + x;

is defined with a range of [0 100], and if the input values -6 and 4 are passed to
the function (and are within its domain), then the output value produced by the
function, —14, is replaced with 0, the nearest value in the defined range.

A function object may be a dictionary or a stream, depending on the type of
function; the term function dictionary will be used generically in this section to
refer to either a dictionary object or the dictionary portion of a stream object. A
function dictionary specifies the function’s representation, the set of attributes
that parameterize that representation, and the additional data needed by that
representation. Four types of function are available, as indicated by the diction-
ary’s FunctionType entry:

* (PDF 1.2) A sampled function (type 0) uses a table of sample values to define the
function. Various techniques are used to interpolate values between the sample
values.

* (PDF 1.3) An exponential interpolation function (type 2) defines a set of coef-
ficients for an exponential function.
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* (PDF 1.3) A stitching function (type 3) is a combination of other functions, par-
titioned across a domain.

* (PDF 1.3) A PostScript calculator function (type 4) uses operators from the
PostScript language to describe an arithmetic expression.

All function dictionaries share the entries listed in Table 3.26.

TABLE 3.26 Entries common to all function dictionaries

KEY TYPE VALUE
FunctionType integer (Required) The function type:
0  Sampled function
2 Exponential interpolation function
3 Stitching function
4 PostScript calculator function
Domain array (Required) An array of 2 x m numbers, where m is the number of input
values. For each i from 0 to m — 1, Domain,; must be less than or equal to
Domain,;, ;, and the ith input value, x;, must lie in the interval
Domain ,; < x; < Domain,; ;. Input values outside the declared domain are
clipped to the nearest boundary value.
Range array (Required for type 0 and type 4 functions, optional otherwise; see below) An

array of 2 x n numbers, where # is the number of output values. For each j
fromOton-1, Rangezj must be less than or equal to Range2j+1 , and the jth
output value, y., must lie in the interval Range); <y; < Range,; ;. Output
values outside the declared range are clipped to the nearest boundary value.
If this entry is absent, no clipping is done.

In addition, each type of function dictionary must include entries appropriate to
the particular function type. The number of output values can usually be inferred
from other attributes of the function; if not (as is always the case for type 0 and
type 4 functions), the Range entry is required. The dimensionality of the func-
tion implied by the Domain and Range entries must be consistent with that im-
plied by other attributes of the function.
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3.9.1 Type 0 (Sampled) Functions

Type 0 functions use a sequence of sample values (contained in a stream) to pro-
vide an approximation for functions whose domains and ranges are bounded.
The samples are organized as an m-dimensional table in which each entry has n
components.

Sampled functions are highly general and offer reasonably accurate representa-
tions of arbitrary analytic functions at low expense. For example, a 1-input sinus-
oidal function can be represented over the range [0 180] with an average error of
only 1 percent, using just ten samples and linear interpolation. Two-input func-
tions require significantly more samples, but usually not a prohibitive number, so
long as the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent functions with
high dimensionality multiplies rapidly unless the sampling resolution is very low.
Also, the process of multilinear interpolation becomes computationally intensive
if the number of inputs m is greater than 2. The multidimensional spline interpo-
lation is even more computationally intensive.

In addition to the entries in Table 3.26, a type 0 function dictionary includes
those shown in Table 3.27.

The Domain, Encode, and Size entries determine how the function’s input vari-
able values are mapped into the sample table. For example, if Size is [21 31], the
default Encode array is [0 20 0 30], which maps the entire domain into the full
set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and Range,
we use the following notation:

y = Interpolate (x, x . . X ¥V sV max)

Ymax ™ Ymin

Y min + (x_xmin)

max ~ *min

For a given value of x, Interpolate calculates the y value on the line defined by the

two pOintS (xmin’ )/mm) and (xmax’ ymax)
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TABLE 3.27 Additional entries specific to a type 0 function dictionary

KEY TYPE VALUE

Size array (Required) An array of m positive integers specifying the number of samples
in each input dimension of the sample table.

BitsPerSample  integer (Required) The number of bits used to represent each sample. (If the function
has multiple output values, each one occupies BitsPerSample bits.) Valid
values are 1, 2, 4, 8, 12, 16, 24, and 32.

Order integer (Optional) The order of interpolation between samples. Valid values are 1
and 3, specifying linear and cubic spline interpolation, respectively. (See im-
plementation note 26 in Appendix H.) Default value: 1.

Encode array (Optional) An array of 2 x m numbers specifying the linear mapping of input
values into the domain of the function’s sample table. Default value:
[0 (Sizeo— 1) 0 (Size1 -1 ...1.

Decode array (Optional) An array of 2 x n numbers specifying the linear mapping of sam-
ple values into the range appropriate for the function’s output values. Default
value: same as the value of Range.

other stream (various) (Optional) Other attributes of the stream that provides the sample values, as

attributes appropriate (see Table 3.4 on page 38).

When a sampled function is called, each input value x;, for 0 < i < m, is clipped to
the domain:

| A—

x; = min(max(xi, Domainzl.), Domain,; , 1)

That value is encoded:

e; = Interpolate(xi’, Domain,;, Domain Encode,;, Encode

2i+1° 2i+1)

That value is clipped to the size of the sample table in that dimension:

e;/ = min(max(e;, 0), Size; — 1)
The encoded input values are real numbers, not restricted to integers. Interpola-
tion is then used to determine output values from the nearest surrounding values

in the sample table. Each output value i for 0 = j <, is then decoded:

"= BitsPerSample _
= Interpolate(rj, 0, 2BitsPerSample _ 7 | Decodezj, Decode2j+ D)
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Finally, each decoded value is clipped to the range:

y; = min(max(rj’, Rangezj ), Range2j+ )

Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order
bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no
padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last dimen-
sion vary slowest. For example, for a function f(a, b, ¢), where a, b, and ¢ vary
from 0 to 9 in steps of 1, the sample values would appear in this order: f(0, 0, 0),
1(1,0,0), ..., f(9,0,0), f(0,1,0), f(1, 1,0), ..., f(9,1,0), £(0, 2, 0), f(1,2,0), ...,
1(9,9,0),£(0,0,1),£(1,0, 1), and so on.

For a function with multidimensional output (more than one output value), the
values are stored in the same order as Range.

The stream data must be long enough to contain the entire sample array, as indi-
cated by Size, Range, and BitsPerSample; see “Stream Extent” on page 37.

Example 3.13 illustrates a sampled function with 4-bit samples in an array
containing 21 columns and 31 rows (651 values). The function takes two argu-
ments, x and y, in the domain [-1.0 1.0], and returns one value, z, in that same
range. The x argument is linearly transformed by the encoding to the domain
[0 20]and the y argument to the domain [0 30]. Using bilinear interpolation be-
tween sample points, the function computes a value for z, which (because Bits-
PerSample is 4) will be in the range [0 15], and the decoding transforms z to a
number in the range [-1.0 1.0] for the result. The sample array is stored in a
string of 326 bytes, calculated as follows (rounded up):

326 bytes = 31 rows x 21 samples/row x 4 bits/sample + 8 bits/byte

The first byte contains the sample for the point (-1.0, -1.0) in the high-order 4
bits and the sample for the point (0.9, —1.0) in the low-order 4 bits.
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Example 3.13

14 0 obj
<< /FunctionType 0

/Domain [-1.0 1.0 -1.0 1.0]

/Size [21 31]
/Encode [0 20 0 30]
/BitsPerSample 4
/Range [-1.0 1.0]
/Decode [-1.0 1.0]
/Length ...
[Filter ...
>>

stream

...651sample values ...

endstream

endobj

Syntax |

The Decode entry can be used creatively to increase the accuracy of encoded
samples corresponding to certain values in the range. For example, if the desired
range of the function is [-1.0 1.0] and BitsPerSample is 4, the usual value of
Decode would be [-1.0 1.0] and the sample values would be integers in the inter-
val [0 15] (as shown in Figure 3.6). But if these values were used, the midpoint of
the range, 0.0, would not be represented exactly by any sample value, since it
would fall halfway between 7 and 8. On the other hand, if the Decode array were
[-1.0 +1.1429] (1.1429 being approximately equal to 16 + 14) and the sample
values supplied were in the interval [0 14], then the desired effective range of
[-1.0 1.0] would be achieved, and the range value 0.0 would be represented by

the sample value 7.

Range

7 8
Samples

/Decode [-1 1]

Range
o

7 8
Samples

/Decode [-1 1.1429]

FIGURE 3.6

Mapping with the Decode array
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The Size value for an input dimension can be 1, in which case all input values in
that dimension will be mapped to the single allowed value. If Size is less than 4,
cubic spline interpolation is not possible and Order 3 will be ignored if specified.

3.9.2 Type 2 (Exponential Interpolation) Functions

Type 2 functions (PDF 1.3) include a set of parameters that define an exponential
interpolation of one input value and » output values:

f(x) = ygr s ¥y

In addition to the entries in Table 3.26 on page 108, a type 2 function dictionary
includes those; listed in Table 3.28. (See implementation note 27 in Appendix H.)

TABLE 3.28 Additional entries specific to a type 2 function dictionary

KEY TYPE VALUE

co array (Optional) An array of n numbers defining the function result when x = 0.0 (hence the “0”
in the name). Default value: [0.0].

c1 array (Optional) An array of n numbers defining the function result when x = 1.0 (hence the “1”
in the name). Default value: [1.0].

N number (Required) The interpolation exponent. Each input value x will return n values, given by
yj=C0j+xN X (C1]~—C0j),for0sj< n.

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be nonnegative, and if N is negative, no value of x may be zero.
Typically, Domain will be declared as [0.0 1.0], and N will be a positive number.
The Range attribute is optional and can be used to clip the output to a desired
range. Note that when N is 1, the function performs a linear interpolation be-
tween CO and C1; this can also be expressed as a sampled function (type 0).

3.9.3 Type 3 (Stitching) Functions

Type 3 functions (PDF 1.3) define a “stitching” of the subdomains of several
I-input functions to produce a single new 1-input function. Since the resulting
stitching function is a 1-input function, the domain is given by a two-element
array, [DomainO Domainl].



CHAPTER 3 | Syntax |

In addition to the entries in Table 3.26 on page 108, a type 3 function dictionary
includes those listed in Table 3.29. (See implementation note 28 in Appendix H.)

TABLE 3.29 Additional entries specific to a type 3 function dictionary

KEY

TYPE VALUE

Functions

Bounds

Encode

array (Required) An array of k 1-input functions making up the stitching function. The out-
put dimensionality of all functions must be the same, and compatible with the value of
Range if Range is present.

array (Required) An array of k — 1 numbers that, in combination with Domain, define the
intervals to which each function from the Functions array applies. Bounds elements
must be in order of increasing value, and each value must be within the domain
defined by Domain.

array (Required) An array of 2 x k numbers that, taken in pairs, map each subset of the do-
main defined by Domain and the Bounds array to the domain of the corresponding
function.

Domain must be of size 2 (that is, m = 1), and Domain, must be strictly less than
Domain, unless k = 1. The domain is partitioned into k subdomains, as indicated
by the dictionary’s Bounds entry, which is an array of k — 1 numbers that obey
the following relationships (with exceptions as noted below):

Domain, < Bounds, < Bounds, < ... <Bounds, _, < Domain,
The Bounds array describes a series of half-open intervals, closed on the left and
open on the right (except the last, which is closed on the right as well). The value
of the Functions entry is an array of k functions. The first function applies to x
values in the first subdomain, Domain, < x < Bounds; the second function ap-
plies to x values in the second subdomain, Bounds < x < Bounds; and so on.
The last function applies to x values in the last subdomain, which includes the
upper bound: Bounds;_, < x < Domain, . The value of k may be 1, in which case
the Bounds array is empty and the single item in the Functions array applies to all
x values, Domain < x < Domain, .

The Encode array contains 2 x k numbers. A value x from the ith subdomain is
encoded as follows:

| —
x' = Interpolate (x, Boundsi_l, Bounds , Encodezl., Encodezi+ l)
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for 0 =i < k. In this equation, Bounds_; means Domain, and Bounds;_; means
Domain, . If the last bound, Bounds, _,, is equal to Domain , then x’ is defined to
be Encode,;.

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern, over different parts of the shading’s domain.
(Shading patterns are discussed in Section 4.6.3, “Shading Patterns.”) The same
effect could be achieved by creating a separate shading dictionary for each of the
functions, with adjacent domains. However, since each shading would have simi-
lar parameters, and because the overall effect is one shading, it is more con-
venient to have a single shading with multiple function definitions.

Also, type 3 functions provide a general mechanism for inverting the domains of
1-input functions. For example, consider a function f with a Domain of [0.0 1.0],
and a stitching function g with a Domain of [0.0 1.0], a Functions array contain-
ing f, and an Encode array of [1.0 0.0]. In effect, g(x) = f(1 - x).

Type 4 (PostScript Calculator) Functions

A type 4 function (PDF 1.3), also called a PostScript calculator function, is repre-
sented as a stream containing code written in a small subset of the PostScript lan-
guage. While any function can be sampled (in a type 0 PDF function) and others
can be described with exponential functions (type 2 in PDF), type 4 functions
offer greater flexibility and potentially greater accuracy. For example, a tint
transformation function for a hexachrome (six-component) DeviceN color space
with an alternate color space of DeviceCMYK (see “DeviceN Color Spaces” on
page 205) requires a 6-in, 4-out function. If such a function were sampled with m
values for each input variable, the number of samples, 4 x m®, could be prohibi-
tively large. In practice, such functions are often written as short, simple Post-
Script functions. (See implementation note 29 in Appendix H.)

Type 4 functions also make it possible to include a wide variety of halftone spot
functions without the loss of accuracy that comes from sampling, and without
adding to the list of predefined spot functions (see Section 6.4.2, “Spot Func-
tions”). All of the predefined spot functions can be written as type 4 functions.

The language that can be used in a type 4 function contains expressions involving
integers, real numbers, and boolean values only. There are no composite data
structures such as strings or arrays, no procedures, and no variables or names.
Table 3.30 lists the operators that can be used in this type of function. (For more
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information on these operators, see Appendix B of the PostScript Language Refer-
ence, Third Edition.) Although the semantics are those of the corresponding
PostScript operators, a PostScript interpreter is not required.

TABLE 3.30 Operators in type 4 functions

OPERATORTYPE OPERATORS

Arithmetic operators  abs cvi floor mod sin
add cvr idiv mul sqrt
atan div In neg sub
ceiling exp log round truncate
cos

Relational, boolean, and false le not true

and bitwise operators  bitshift ge It or xor
eq gt ne

Conditional operators  if ifelse

Stack operators copy exch pop
dup index roll

The operand syntax for type 4 functions follows PDF conventions rather than
PostScript conventions. The entire code stream defining the function is enclosed
in braces { }. Braces also delimit expressions that are executed conditionally by the
if and ifelse operators:

boolean {expression} if
boolean {expression,} {expression,} ifelse

Note that this is a purely syntactic construct; unlike in PostScript, no “procedure
objects” are involved.

124

A type 4 function dictionary includes the entries in Table 3.26 on page 108, as
well as other stream attributes as appropriate (see Table 3.4 on page 38). Example
3.14 shows a type 4 function equivalent to the predefined spot function Double-
Dot (see Section 6.4.2, “Spot Functions™).
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Example 3.14

10 0 obj
<< /FunctionType 4
/Domain [-1.0 1.0 -1.0 1.0]
/Range [-1.0 1.0]
/Length 71
>>
stream
{ 360 mul sin
2 div
exch 360 mul sin
2 div
add
}

endstream
endobj

The Domain and Range entries are both required. The input variables constitute
the initial operand stack; the items remaining on the operand stack after execu-
tion of the function are the output variables. It is an error for the number of re-
maining operands to differ from the number of output variables specified by
Range, or for any of them to be objects other than numbers.

Implementations of type 4 functions must provide a stack with room for at least
100 entries. No implementation is required to provide a larger stack, and it is an
error to overflow the stack.

Although any integers or real numbers that may appear in the stream fall under
the same implementation limits (defined in Appendix C) as in other contexts, the
intermediate results in type 4 function computations do not. An implementation
may use a representation that exceeds those limits. Operations on real numbers,
for example, might use single-precision or double-precision floating-point num-
bers. (See implementation note 30 in Appendix H.)

Errors in Type 4 Functions

The code that reads a type 4 function (analogous to the PostScript scanner) must
detect and report syntax errors. It may also be able to detect some errors that will
occur when the function is used, although this is not always possible. Any errors
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detected by the scanner are considered to be errors in the PDF file itself and are
handled like other errors in the file.

The code that executes a type 4 function (analogous to the PostScript interpreter)
must detect and report errors. PDF does not define a representation for the
errors; those details are provided by the application that processes the PDF file.
The following types of errors can occur (among others):

* Stack overflow

* Stack underflow

* A type error (for example, applying not to a real number)

* A range error (for example, applying sqrt to a negative number)

* An undefined result (for example, dividing by 0)

File Specifications

A PDF file can refer to the contents of another file by using a file specification
(PDF 1.1), which can take either of two forms. A simple file specification gives just
the name of the target file in a standard format, independent of the naming con-
ventions of any particular file system; a full file specification includes information
related to one or more specific file systems. A simple file specification may take
the form of either a string or a dictionary; a full file specification can only be rep-
resented as a dictionary.

Although the file designated by a file specification is normally external to the PDF
file referring to it, PDF 1.3 permits a copy of the external file to be embedded
within the PDF file itself, allowing its contents to be stored or transmitted along
with the PDF file. However, embedding a file does not change the presumption
that it is external to the PDF file. Consequently, in order for the PDF file to be
processed correctly, it may be necessary to copy the embedded files it contains
back into a local file system.

File Specification Strings

The standard format for representing a simple file specification in string form
divides the string into component substrings separated by the slash character (/).
The slash is a generic component separator that is mapped to the appropriate
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platform-specific separator when generating a platform-dependent file name.
Any of the components may be empty. If a component contains one or more lit-
eral slashes, each must be preceded by a backslash (\), which in turn must be pre-
ceded by another backslash to indicate that it is part of the string and not an
escape character. For example, the string

(in\\/out)
represents the file name

in/out

The backslashes are removed in processing the string; they are needed only to dis-
tinguish the component values from the component separators. The component
substrings are stored as bytes and are passed to the operating system without in-
terpretation or conversion of any sort.

Absolute and Relative File Specifications

A simple file specification that begins with a slash is an absolute file specification.
The last component is the file name; the preceding components specify its con-
text. In some file specifications, the file name may be empty; for example, URL
(uniform resource locator) specifications can specify directories instead of files. A
file specification that does not begin with a slash is a relative file specification giv-
ing the location of the file relative to that of the PDF file containing it.

In the case of a URL-based file system, the rules of Internet RFC 1808, Relative
Uniform Resource Locators (see the Bibliography), are used to compute an abso-
lute URL from a relative file specification and the specification of the PDF file.
Prior to this process, the relative file specification is converted to a relative URL
by using the escape mechanism of RFC 1738, Uniform Resource Locators, to rep-
resent any bytes that would be either “unsafe” according to RFC 1738 or not
representable in 7-bit U.S. ASCIL In addition, such URL-based relative file speci-
fications are limited to paths as defined in RFC 1808; the scheme, network loca-
tion/login, fragment identifier, query information, and parameter sections are
not allowed.

In the case of other file systems, a relative file specification is converted to an ab-
solute file specification by removing the file name component from the specifica-
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tion of the containing PDF file and appending the relative file specification in its
place. For example, the relative file specification

ArtFiles/Figure1.pdf

appearing in a PDF file whose specification is

/HardDisk/PDFDocuments/AnnualReport/Summary.pdf

yields the absolute specification

/HardDisk/PDFDocuments/AnnualReport/ArtFiles/Figure1.pdf

The special component .. (two periods) can be used in a relative file specification
to move up a level in the file system hierarchy. When the component immediately
preceding .. is not another .., the two cancel each other; both are eliminated from
the file specification and the process is repeated. Thus in the example above, the
relative file specification

../../ ArtFiles/Figure1.pdf

would yield the absolute specification

/HardDisk/ArtFiles/Figure1.pdf

Conversion to Platform-Dependent File Names

The conversion of a file specification into a platform-dependent file name de-
pends on the specific file naming conventions of each platform. For example:

* For DOS, the initial component is either a physical or logical drive identifier or
a network resource name as returned by the Microsoft Windows function
WNetGetConnection, and is followed by a colon (:). A network resource name
is constructed from the first two components; the first component is the server
name and the second is the share name (volume name). All components are
then separated by backslashes. It is possible to specify an absolute DOS path
without a drive by making the first component empty. (Empty components are
ignored by other platforms.)

* For Mac OS, all components are separated by colons (:).
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* For UNIX, all components are separated by slashes (/). An initial slash, if
present, is preserved.

Strings used to specify a file name are interpreted in the standard encoding for
the platform on which the document is being viewed. Table 3.31 shows examples
of file specifications on the most common platforms.

TABLE 3.31 Examples of file specifications

SYSTEM SYSTEM-DEPENDENT PATHS WRITTEN FORM

DOS \pdfdocs\spec.pdf (no drive) (//pdfdocs/spec.pdf)
r:\pdfdocs\spec.pdf (/r/pdfdocs/spec.pdf)
pclib/eng:\pdfdocs\spec.pdf (/pclib/eng/pdfdocs/spec.pdf)

Mac OS Mac HD:PDFDocs:spec.pdf (/Mac HD/PDFDocs/spec.pdf)

UNIX /user/fred/pdfdocs/spec.pdf (/user/fred/pdfdocs/spec.pdf)
pdfdocs/spec.pdf (relative) (pdfdocs/spec.pdf)

When creating documents that are to be viewed on multiple platforms, care must
be taken to ensure file name compatibility. Only a subset of the U.S. ASCII char-
acter set should be used in file specifications: the uppercase alphabetic characters
(A-Z), the numeric characters (0-9), and the underscore (_). The period (.) has
special meaning in DOS and Windows file names, and as the first character in a
Mac OS pathname. In file specifications, the period should be used only to sepa-
rate a base file name from a file extension.

Some file systems are case-insensitive, so names within a directory should re-
main distinguishable if lowercase letters are changed to uppercase or vice versa.
On DOS and Windows 3.1 systems and on some CD-ROM file systems, file
names are limited to 8 characters plus a 3-character extension. File system soft-
ware typically converts long names to short names by retaining the first 6 or 7
characters of the file name and the first 3 characters after the last period, if any.
Since characters beyond the sixth or seventh are often converted to other values
unrelated to the original value, file names must be distinguishable from the first
6 characters.
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Multiple-Byte Strings in File Specifications

In PDF 1.2 or higher, a file specification may contain multiple-byte character
codes, represented in hexadecimal form between angle brackets (< and >). Since
the slash character <2F> is used as a component delimiter and the backslash
<5C> is used as an escape character, any occurrence of either of these bytes in a
multiple-byte character must be preceded by the ASCII code for the backslash
character. For example, a file name containing the 2-byte character code
<89 5C> must write it as <89 5C 5C>. When the viewer application encounters
this sequence of bytes in a file name, it replaces the sequence with the original
2-byte code.

3.10.2 File Specification Dictionaries
The dictionary form of file specification provides more flexibility than the string
form, allowing different files to be specified for different file systems or platforms,
or for file systems other than the standard ones (DOS/Windows, Mac OS, and
UNIX). Table 3.32 shows the entries in a file specification dictionary. Viewer ap-
plications running on a particular platform should use the appropriate platform-
specific entry (DOS, Mac, or Unix) if available. If the required platform-specific
entry is not present and there is no file system entry (FS), the generic F entry
should be used as a simple file specification.
TABLE 3.32 Entries in a file specification dictionary
KEY TYPE VALUE
Type name (Required if an EF or RF entry is present; recommended always) The type of PDF object
that this dictionary describes; must be Filespec for a file specification dictionary.
FS name (Optional) The name of the file system to be used to interpret this file specification. If
this entry is present, all other entries in the dictionary are interpreted by the desig-
nated file system. PDF defines only one standard file system, URL (see Section 3.10.4,
“URL Specifications”); a viewer application or plug-in extension can register a differ-
ent one (see Appendix E). Note that this entry is independent of the F, DOS, Mac, and
Unix entries.
F string (Required if the DOS, Mac, and Unix entries are all absent) A file specification string of

the form described in Section 3.10.1, “File Specification Strings,” or (if the file system
is URL) a uniform resource locator, as described in Section 3.10.4, “URL Specifica-

tions.”
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DOS string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a DOS file name.

Mac string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a Mac OS file name.

Unix string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a UNIX file name.

ID array (Optional) An array of two strings constituting a file identifier (see Section 9.3, “File
Identifiers”) that is also included in the referenced file. The use of this entry improves
a viewer application’s chances of finding the intended file and allows it to warn the
user if the file has changed since the link was made.

v boolean (Optional; PDF 1.2) A flag indicating whether the file referenced by the file specifica-
tion is volatile (changes frequently with time). If the value is true, viewer applications
should never cache a copy of the file. For example, a movie annotation referencing a
URL to a live video camera could set this flag to true, notifying the application that it
should reacquire the movie each time it is played. Default value: false.

EF dictionary (Required if RF is present; PDF 1.3) A dictionary containing a subset of the keys F,
DOS, Mac, and Unix, corresponding to the entries by those names in the file specifica-
tion dictionary. The value of each such key is an embedded file stream (see Section
3.10.3, “Embedded File Streams”) containing the corresponding file. If this entry is
present, the Type entry is required and the file specification dictionary must be indi-
rectly referenced.

RF dictionary (Optional; PDF 1.3) A dictionary with the same structure as the EF dictionary, which
must also be present. Each key in the RF dictionary must also be present in the EF dic-
tionary. Each value is a related files array (see “Related Files Arrays” on page 125)
identifying files that are related to the corresponding file in the EF dictionary. If this
entry is present, the Type entry is required and the file specification dictionary must
be indirectly referenced.

3.10.3 Embedded File Streams

File specifications ordinarily refer to files external to the PDF file in which they
occur. To preserve the integrity of the PDF file, this requires that all external files
it refers to must accompany it when it is archived or transmitted. Embedded file
streams (PDF 1.3) address this problem by allowing the contents of the referenced
files to be embedded directly within the body of the PDF file itself. For example, if
the file contains OPI (Open Prepress Interface) dictionaries that refer to external-
ly stored high-resolution images (see Section 9.10.6, “Open Prepress Interface
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(OPI)”), the image data can be incorporated into the PDF file with embedded file
streams. This makes the PDF file a self-contained unit that can be stored or trans-
mitted as a single entity. (The embedded files are included purely for conve-
nience, and need not be directly processed by any PDF consumer application.)

One way of including an embedded file stream in a PDF document is through the
EF entry in the file specification dictionary. This method still requires a file speci-
fication to be provided, associating a location in the file system with the stream
data. It is also possible to embed data in a PDF document independently of any
file system: the data’s presence in the document is all that is required. This can be
done using an embedded file stream referenced by a private entry in a dictionary.
However, PDF 1.4 defines a standard location for the data: the EmbeddedFiles
entry in the PDF document’s name dictionary can contain a name tree that maps
name strings to embedded file streams (see Section 3.6.3, “Name Dictionary”).

Note: The relationship between the name string provided in the name dictionary
and the associated embedded file stream is an artificial one for data management
purposes. This allows embedded files to be easily identified by the author of the docu-
ment, in much the same way that the JavaScript name tree associates name strings
with document-level JavaScript actions (see “JavaScript Actions” on page 556).

The stream dictionary describing an embedded file contains the standard entries
for any stream, such as Length and Filter (see Table 3.4 on page 38), as well as the
additional entries shown in Table 3.33.

TABLE 3.33 Additional entries in an embedded file stream dictionary

KEY

TYPE VALUE

Type

Subtype

Params

name (Optional) The type of PDF object that this dictionary describes; if present,

must be EmbeddedFile for an embedded file stream.

name (Optional) The subtype of the embedded file. The value of this entry must be
a first-class name, as defined in Appendix E. Names without a registered pre-
fix must conform to the MIME media type names defined in Internet RFC
2046, Multipurpose Internet Mail Extensions (MIME), Part Two: Media Types
(see the Bibliography), with the provision that characters not allowed in
names must use the 2-character hexadecimal code format described in Sec-

tion 3.2.4, “Name Objects.”

dictionary (Optional) An embedded file parameter dictionary containing additional, file-

specific information (see Table 3.34).
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TABLE 3.34 Entries in an embedded file parameter dictionary

KEY TYPE VALUE

Size integer (Optional) The size of the embedded file, in bytes.

CreationDate date (Optional) The date and time when the embedded file was created.

ModDate date (Optional) The date and time when the embedded file was last modified.
Mac dictionary (Optional) A subdictionary containing additional information specific to

Mac OS files (see Table 3.35).

CheckSum string (Optional) A 16-byte string that is the checksum of the bytes of the uncom-
pressed embedded file. The checksum is calculated by applying the standard
MD5 message-digest algorithm (described in Internet REC 1321, The MD5
Message-Digest Algorithms; see the Bibliography) to the bytes of the embedded
file stream.

For Mac OS files, the Mac entry in the embedded file parameter dictionary holds
a further subdictionary containing Mac OS—specific file information. Table 3.35
shows the contents of this subdictionary.

TABLE 3.35 Entries in a Mac OS file information dictionary

KEY TYPE VALUE

Subtype string (Optional) The embedded file’s file type.
Creator string (Optional) The embedded file’s creator signature.

ResFork stream  (Optional) The binary contents of the embedded file’s resource fork.

Related Files Arrays

In some circumstances, a PDF file can refer to a group of related files, such as the
set of five files that make up a DCS 1.0 color-separated image. The file specifica-
tion explicitly names only one of the files; the rest are identified by some system-
atic variation of that file name (such as by altering the extension). When such a
file is to be embedded in a PDF file, the related files must be embedded as well.
This is accomplished by including a related files array (PDF 1.3) as the value of the
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RF entry in the file specification dictionary. The array has 2 x n elements, which
are paired in the form

[ string, stream,
string, stream,

string,, stream,

]

The first element of each pair is a string giving the name of one of the related files;
the second element is an embedded file stream holding the file’s contents.

In Example 3.15, objects 21, 31, and 41 are embedded file streams containing the
DOS file SUNSET.EPS, the Mac OS file Sunset.eps, and the UNIX file Sunset.eps,
respectively. The file specification dictionary’s RF entry specifies an array, object
30, identifying a set of embedded files related to the Mac OS file, forming a
DCS 1.0 set. The example shows only the first two embedded file streams in the
set; an actual PDF file would of course include all of them.

Example 3.15

10 0 obj % File specification dictionary
<< /[Type /Filespec
/DOS (SUNSET.EPS)
/Mac (Sunset.eps) % Name of Mac OS file
/Unix (Sunset.eps)
/EF << /DOS 210R

/Mac 310R % Embedded Mac OS file
/Unix 410R
>>
/RF << /Mac 300R >> % Related files array for Mac OS file
>>
endobj
30 0 obj % Related files array for Mac OS file

[ (Sunset.eps) 310R % Includes file Sunset.eps itself
(Sunset.C) 320R

(Sunset.M) 330R

(Sunset.Y) 340R

(Sunset.K) 350R

]

endobj
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31 0 obj % Embedded file stream for Mac OS file
<< [Type /EmbeddedFile % Sunset.eps
/Length ...
[Filter ...
>>
stream
...Data for Sunset.eps...
endstream
endobj

32 0 obj % Embedded file stream for related file
<< /Type /EmbeddedFile % Sunset.C
/Length ...
[Filter ...
>>
stream
...Data for Sunset.C...
endstream
endobj

3.10.4 URL Specifications

When the FS entry in a file specification dictionary has the value URL, the value of
the F entry in that dictionary is not a file specification string, but a uniform
resource locator (URL) of the form defined in Internet RFC 1738, Uniform
Resource Locators (see the Bibliography). Example 3.16 shows a URL specifica-
tion.

Example 3.16

<< /FS /URL
/F (ftp://www.beatles.com/Movies/AbbeyRoad.mov)
>>

The URL must adhere to the character-encoding requirements specified in RFC
1738. Because 7-bit U.S. ASCII is a strict subset of PDFDocEncoding, this value
may also be considered to be in that encoding.
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3.10.5 Maintenance of File Specifications

The techniques described in this section can be used to maintain the integrity of
the file specifications within a PDF file during operations such as the following:

* Updating the relevant file specification when a referenced file is renamed

* Determining the complete collection of files that must be copied to a mirror
site

* When creating new links to external files, discovering existing file specifications
that refer to the same files and sharing them

* Finding the file specifications associated with embedded files to be packed or
unpacked

It is not possible, in general, to find all file specification strings in a PDF file, be-
cause there is no way to determine whether a given string is a file specification
string. It is possible, however, to find all file specification dictionaries, provided
that they meet the following conditions:

* They are indirect objects.

* They contain a Type entry whose value is the name Filespec.

An application can then locate all of the file specification dictionaries by travers-
ing the PDF file’s cross-reference table (see Section 3.4.3, “Cross-Reference
Table”) and finding all dictionaries with Type keys whose value is Filespec. For
this reason, it is highly recommended that all file specifications be expressed in
dictionary form and meet the conditions stated above. Note that any file specifi-
cation dictionary specifying embedded files (that is, one that contains an EF en-
try) must satisfy these conditions (see Table 3.32 on page 122).

Note: It may not be possible to locate file specification dictionaries that are direct ob-
jects, since they are neither self-typed nor necessarily reachable via any standard
path of object references.

Files may be embedded in a PDF file either directly, using the EF entry in a file
specification dictionary, or indirectly, using related files arrays specified in the RF
entry. If a file is embedded indirectly, its name is given by the string that precedes
the embedded file stream in the related files array; if it is embedded directly, its
name is obtained from the value of the corresponding entry in the file specifica-
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tion dictionary. In Example 3.15 on page 126, for instance, the EF dictionary has a
DOS entry identifying object number 21 as an embedded file stream; the name of
the embedded DOS file, SUNSET.EPS, is given by the DOS entry in the file
specification dictionary.

A given external file may be referenced from more than one file specification.
Therefore, when embedding a file with a given name, it is necessary to check for
other occurrences of the same name as the value associated with the correspond-
ing key in other file specification dictionaries. This requires finding all embed-
dable file specifications and, for each matching key, checking for both of the
following conditions:

* The string value associated with the key matches the name of the file being em-

bedded.

* A value has not already been embedded for the file specification. (If there is
already a corresponding key in the EF dictionary, then a file has already been
embedded for that use of the file name.)

Note that there is no requirement that the files associated with a given file name
be unique. The same file name, such as readme.txt, may be associated with differ-
ent embedded files in distinct file specifications.






CHAPTER 4

Graphics

THE GRAPHICS OPERATORS used in PDF content streams describe the ap-
pearance of pages that are to be reproduced on a raster output device. The
facilities described in this chapter are intended for both printer and display appli-
cations.

The graphics operators form six main groups:

Graphics state operators manipulate the data structure called the graphics state,
the global framework within which the other graphics operators execute. The
graphics state includes the current transformation matrix (CTM), which maps
user space coordinates used within a PDF content stream into output device
coordinates. It also includes the current color, the current clipping path, and
many other parameters that are implicit operands of the painting operators.

Path construction operators specify paths, which define shapes, line trajectories,
and regions of various sorts. They include operators for beginning a new path,
adding line segments and curves to it, and closing it.

Path-painting operators fill a path with a color, paint a stroke along it, or use it
as a clipping boundary.

Other painting operators paint certain self-describing graphics objects. These
include sampled images, geometrically defined shadings, and entire content
streams that in turn contain sequences of graphics operators.

Text operators select and show character glyphs from fonts (descriptions of type-
faces for representing text characters). Because PDF treats glyphs as general
graphical shapes, many of the text operators could be grouped with the graph-
ics state or painting operators. However, the data structures and mechanisms
for dealing with glyph and font descriptions are sufficiently specialized that
Chapter 5 focuses on them.

131



4.1

CHAPTER 4 | Graphics

* Marked-content operators associate higher-level logical information with ob-
jects in the content stream. This information does not affect the rendered ap-
pearance of the content; it is useful to applications that use PDF for document
interchange. Marked content is described in Section 9.5, “Marked Content.”

This chapter presents general information about device-independent graphics in
PDF: how a PDF content stream describes the abstract appearance of a page.
Rendering—the device-dependent part of graphics—is covered in Chapter 6. The
Bibliography lists a number of books that give details of these computer graphics
concepts and their implementation.

Graphics Objects

As discussed in Section 3.7.1, “Content Streams,” the data in a content stream is
interpreted as a sequence of operators and their operands, expressed as basic data
objects according to standard PDF syntax. A content stream can describe the
appearance of a page, or it can be treated as a graphical element in certain other
contexts.

The operands and operators are written sequentially using postfix notation.
Although this notation resembles the sequential execution model of the Post-
Script language, a PDF content stream is not a program to be interpreted; rather,
it is a static description of a sequence of graphics objects. There are specific rules,
described below, for writing the operands and operators that describe a graphics
object.

PDF provides five types of graphics object:

* A path object is an arbitrary shape made up of straight lines, rectangles, and
cubic Bézier curves. A path may intersect itself and may have disconnected
sections and holes. A path object ends with one or more painting operators
that specify whether the path is stroked, filled, used as a clipping boundary, or
some combination of these operations.

* A text object consists of one or more character strings that identify sequences of
glyphs to be painted. Like a path, text can be stroked, filled, or used as a clip-
ping boundary.

* An external object (XObject) is an object defined outside the content stream and
referenced as a named resource (see Section 3.7.2, “Resource Dictionaries”).
The interpretation of an XObject depends on its type. An image XObject defines
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a rectangular array of color samples to be painted; a form XObject is an entire
content stream to be treated as a single graphics object. Specialized types of
form XObject are used to import content from one PDF file into another
(reference XObjects) and to group graphical elements together as a unit for
various purposes (group XObjects). In particular, the latter are used to define
transparency groups for use in the transparent imaging model (transparency
group XObjects, discussed in detail in Chapter 7). There is also a PostScript
XObject, whose use is discouraged.

* An inline image object is a means of expressing the data for a small image di-
rectly within the content stream, using a special syntax.

* A shading object describes a geometric shape whose color is an arbitrary func-
tion of position within the shape. (A shading can also be treated as a color
when painting other graphics objects; it is not considered to be a separate
graphics object in that case.)

PDF 1.3 and earlier versions use an opaque imaging model in which each graphics
object is painted in sequence, completely obscuring any previous marks it may
overlay on the page. PDF 1.4 introduces a new fransparent imaging model in
which objects can be less than fully opaque, allowing previously painted marks to
show through. Each object is painted on the page with a specified opacity, which
may be constant at every point within the object’s shape or may vary from point
to point. The previously existing contents of the page form a backdrop with which
the new object is composited, producing results that combine the colors of the
object and backdrop according to their respective opacity characteristics. The ob-
jects at any given point on the page can be thought of as forming a transparency
stack, where the stacking order is defined to be the order in which the objects are
specified, bottommost object first. All objects in the stack can potentially contrib-
ute to the result, depending on their colors, shapes, and opacities.

PDF’s graphics parameters are so arranged that objects are painted by default
with full opacity, reducing the behavior of the transparent imaging model to that
of the opaque model. Accordingly, the material in this chapter applies to both the
opaque and transparent models except where explicitly stated otherwise; the
transparent model is described in its full generality in Chapter 7.

Although the painting behavior described above is often attributed to individual
operators making up an object, it is always the object as a whole that is painted.
Figure 4.1 shows the ordering rules for the operations that define graphics
objects. Some operations are permitted only in certain types of graphics object or
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in the intervals between graphics objects (called the page description level in the
figure). Every content stream begins at the page description level, where changes
can be made to the graphics state, such as colors and text attributes, as discussed
in the following sections.

In the figure, arrows indicate the operators that mark the beginning or end of
each type of graphics object. Some operators are identified individually, others by
general category. Table 4.1 summarizes these categories for all PDF operators. For
example, the path construction operators m and re signal the beginning of a path
object. Inside the path object, additional path construction operators are permit-
ted, as are the clipping path operators W and W*, but not general graphics state
operators such as w or J. A path-painting operator, such as S or f, ends the path
object and returns to the page description level.

TABLE 4.1 Operator categories

CATEGORY OPERATORS TABLE PAGE
General graphics state w,J,j,M,d,ri, i,gs 4.7 156
Special graphics state q,Q,cm 4.7 156
Path construction m,l,c,v,y, h,re 4.9 163
Path painting S,s, f,F, f* B, B* b, b* n 4.10 167
Clipping paths W, w# 4.11 172
Text objects BT, ET 5.4 308
Text state Te, Tw, Tz, TL, Tf, Tr, Ts 5.2 302
Text positioning Td, TD, Tm, T* 5.5 310
Text showing T5,T5,%" 5.6 311
Type 3 fonts do, d1 5.10 326
Color CS, ¢s, SC, SCN, sc, scn, G, g, RG, rg, K, k 4.21 216
Shading patterns sh 4.24 232
Inline images B, ID, El 4.38 278
XObjects Do 4.34 261
Marked content MP, DP, BMC, BDC, EMC 9.8 584
Compeatibility BX, EX 3.20 95
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FIGURE 4.1 Graphics objects
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Note: A content stream whose operations violate these rules for describing graphics
objects can produce unpredictable behavior, even though it may display and print
correctly. Applications that attempt to extract graphics objects for editing or other
purposes depend on the objects’ being well formed. The rules for graphics objects are
also important for the proper interpretation of marked content (see Section 9.5,
“Marked Content”).

A graphics object also implicitly includes all graphics state parameters that affect
its behavior. For instance, a path object depends on the value of the current color
parameter at the moment the path object is defined. The effect is as if this param-
eter were specified as part of the definition of the path object. However, the oper-
ators that are invoked at the page description level to set graphics state
parameters are not considered to belong to any particular graphics object. Graph-
ics state parameters need to be specified only when they change. A graphics
object may depend on parameters that were defined much earlier.

Similarly, the individual character strings within a text object implicitly include
the graphics state parameters on which they depend. Most of these parameters
may be set either inside or outside the text object. The effect is as if they were sep-
arately specified for each text string.

The important point is that there is no semantic significance to the exact arrange-
ment of graphics state operators. An application that reads and writes a PDF con-
tent stream is not required to preserve this arrangement, but is free to change it to
any other arrangement that achieves the same values of the relevant graphics
state parameters for each graphics object. An application should not infer any
higher-level logical semantics from the arrangement of tokens constituting a
graphics object. A separate mechanism, marked content (see Section 9.5, “Marked
Content”), allows such higher-level information to be explicitly associated with
the graphics objects.

Coordinate Systems

Coordinate systems define the canvas on which all painting occurs. They deter-
mine the position, orientation, and size of the text, graphics, and images that
appear on a page. This section describes each of the coordinate systems used in
PDEF, how they are related, and how transformations among them are specified.
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4.2.1 Coordinate Spaces

Paths and positions are defined in terms of pairs of coordinates on the Cartesian
plane. A coordinate pair is a pair of real numbers x and y that locate a point
horizontally and vertically within a two-dimensional coordinate space. A coordi-
nate space is determined by the following properties with respect to the current

page:

* The location of the origin
* The orientation of the x and y axes

* The lengths of the units along each axis

PDF defines several coordinate spaces in which the coordinates specifying graph-
ics objects are interpreted. The following sections describe these spaces and the
relationships among them.

Transformations among coordinate spaces are defined by transformation matrices,
which can specify any linear mapping of two-dimensional coordinates, including
translation, scaling, rotation, reflection, and skewing. Transformation matrices
are discussed in Sections 4.2.2, “Common Transformations,” and 4.2.3, “Trans-
formation Matrices.”

Device Space

The contents of a page ultimately appear on a raster output device such as a dis-
play or a printer. Such devices vary greatly in the built-in coordinate systems they
use to address pixels within their imageable areas. A particular device’s coordi-
nate system is called its device space. The origin of the device space on different
devices can fall in different places on the output page; on displays, the origin can
vary depending on the window system. Because the paper or other output me-
dium moves through different printers and imagesetters in different directions,
the axes of their device spaces may be oriented differently; for instance, vertical
(y) coordinates may increase from the top of the page to the bottom on some
devices and from bottom to top on others. Finally, different devices have different
resolutions; some even have resolutions that differ in the horizontal and vertical
directions.
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If coordinates in a PDF file were specified in device space, the file would be
device-dependent and would appear differently on different devices. For exam-
ple, images specified in the typical device spaces of a 72-pixel-per-inch display
and a 600-dot-per-inch printer would differ in size by more than a factor of 8; an
8-inch line segment on the display would appear less than 1 inch long on the
printer. Figure 4.2 shows how the same graphics object, specified in device space,
can appear drastically different when rendered on different output devices.

| B |
1 8

o]
==}

Device space for Device space for
72-dpi screen 300-dpi printer

FIGURE 4.2 Device space

User Space

To avoid the device-dependent effects of specifying objects in device space, PDF
defines a device-independent coordinate system that always bears the same rela-
tionship to the current page, regardless of the output device on which printing or
displaying will occur. This device-independent coordinate system is called user
space.

The user space coordinate system is initialized to a default state for each page of a
document. The CropBox entry in the page dictionary specifies the rectangle of
user space corresponding to the visible area of the intended output medium (dis-
play window or printed page). The positive x axis extends horizontally to the
right and the positive y axis vertically upward, as in standard mathematical prac-
tice (subject to alteration by the Rotate entry in the page dictionary). The length
of a unit along both the x and y axes is 1/72 inch. This coordinate system is called
default user space.
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Note: In PostScript, the origin of default user space always corresponds to the lower-
left corner of the output medium. While this convention is common in PDF docu-
ments as well, it is not required; the page dictionary’s CropBox entry can specify any
rectangle of default user space to be made visible on the medium.

Note: The unit size in default user space (1/72 inch) is approximately the same as a
point, a unit widely used in the printing industry. It is not exactly the same, how-
ever; there is no universal definition of a point.

Conceptually, user space is an infinite plane. Only a small portion of this plane
corresponds to the imageable area of the output device: a rectangular region de-
fined by the CropBox entry in the page dictionary. The region of default user
space that is viewed or printed can be different for each page, and is described in
Section 9.10.1, “Page Boundaries.”

Note: Because coordinates in user space (as in any other coordinate space) may be
specified as either integers or real numbers, the unit size in default user space does
not constrain positions to any arbitrary grid. The resolution of coordinates in user
space is not related in any way to the resolution of pixels in device space.

The transformation from user space to device space is defined by the current
transformation matrix (CTM), an element of the PDF graphics state (see Sec-
tion 4.3, “Graphics State”). A PDF viewer application can adjust the CTM for
the native resolution of a particular output device, maintaining the device-
independence of the PDF page description itself. Figure 4.3 shows how this
allows an object specified in user space to appear the same regardless of the de-
vice on which it is rendered.

The default user space provides a consistent, dependable starting place for PDF
page descriptions regardless of the output device used. If necessary, a PDF con-
tent stream may then modify user space to be more suitable to its needs by apply-
ing the coordinate transformation operator, cm (see Section 4.3.3, “Graphics State
Operators”). Thus what may appear to be absolute coordinates in a content
stream are not absolute with respect to the current page, because they are
expressed in a coordinate system that may slide around and shrink or expand.
Coordinate system transformation not only enhances device-independence but is
a useful tool in its own right. For example, a content stream originally composed
to occupy an entire page can be incorporated without change as an element of
another page by shrinking the coordinate system in which it is drawn.
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FIGURE 4.3 User space

Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate
spaces for specialized purposes:

* The coordinates of text are specified in text space. The transformation from text
space to user space is defined by a text matrix in combination with several text-
related parameters in the graphics state (see Section 5.3.1, “Text-Positioning
Operators”).

* Character glyphs in a font are defined in glyph space (see Section 5.1.3, “Glyph
Positioning and Metrics”). The transformation from glyph space to text space
is defined by the font matrix. For most types of font, this matrix is predefined
to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix is given explicitly in the font dictionary (see Section 5.5.4, “Type 3
Fonts™).
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* All sampled images are defined in image space. The transformation from image

space to user space is predefined and cannot be changed. All images are 1 unit
wide by 1 unit high in user space, regardless of the number of samples in the
image. To be painted, an image must be mapped to the desired region of the
page by temporarily altering the current transformation matrix (CTM).

Note: In PostScript, unlike PDEF, the relationship between image space and user
space can be specified explicitly. The fixed transformation prescribed in PDF corre-
sponds to the convention that is recommended for use in PostScript.

A form XObject (discussed in Section 4.9, “Form XObjects”) is a self-contained
content stream that can be treated as a graphical element within another con-
tent stream. The space in which it is defined is called form space. The transfor-
mation from form space to user space is specified by a form matrix contained in
the form XObject.

PDF 1.2 defines a type of color known as a pattern, discussed in Section 4.6,
“Patterns.” A pattern is defined either by a content stream that is invoked
repeatedly to tile an area or by a shading whose color is a function of position.
The space in which a pattern is defined is called pattern space. The transforma-
tion from pattern space to user space is specified by a pattern matrix contained
in the pattern.

Relationships among Coordinate Spaces

Figure 4.4 shows the relationships among the coordinate spaces described above.
Each arrow in the figure represents a transformation from one coordinate space
to another. PDF allows modifications to many of these transformations.

Because PDF coordinate spaces are defined relative to one another, changes made
to one transformation can affect the appearance of objects defined in several
coordinate spaces. For example, a change in the CTM, which defines the trans-
formation from user space to device space, will affect forms, text, images, and
patterns, since they are all “upstream” from user space.

Common Transformations

A transformation matrix specifies the relationship between two coordinate spaces.
By modifying a transformation matrix, objects can be scaled, rotated, translated,
or transformed in other ways.
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FIGURE 4.4 Relationships among coordinate systems

A transformation matrix in PDF is specified by six numbers, usually in the form
of an array containing six elements. In its most general form, this array is denoted
[a b ¢ d e f]; it can represent any linear transformation from one coordinate
system to another. This section lists the arrays that specify the most common
transformations; Section 4.2.3, “Transformation Matrices,” discusses more math-
ematical details of transformations, including information on specifying trans-
formations that are combinations of those listed here.

* Translations are specifiedas[1 0 0 1 t, ty], where t, and t, are the distances to
translate the origin of the coordinate system in the horizontal and vertical
dimensions, respectively.

* Scaling is obtained by [s, 0 0 5, 0 0]. This scales the coordinates so that 1
unit in the horizontal and vertical dimensions of the new coordinate system is
the same size as s, and s, units, respectively, in the previous coordinate system.

* Rotations are produced by [cos 8 sin @ —sin 6 cos 6 0 0], which has the effect
of rotating the coordinate system axes by an angle 6 counterclockwise.

* Skew is specified by [1 tan @ tan 8 1 0 0], which skews the x axis by an angle
a and the y axis by an angle S.
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Figure 4.5 shows examples of each transformation. The directions of translation,
rotation, and skew shown in the figure correspond to positive values of the array
elements.

Translation Scaling Rotation Skewing

FIGURE 4.5 Effects of coordinate transformations

If several transformations are combined, the order in which they are applied is
significant. For example, first scaling and then translating the x axis is not the
same as first translating and then scaling it. In general, to obtain the expected
results, transformations should be done in the following order:

1. Translate

2. Rotate

3. Scale or skew

Figure 4.6 shows the effect of the order in which transformations are applied. The

figure shows two sequences of transformations applied to a coordinate system.
After each successive transformation, an outline of the letter n is drawn.
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FIGURE 4.6 Effect of transformation order

The transformations shown in the figure are as follows:

* A translation of 10 units in the x direction and 20 units in the y direction

* A rotation of 30 degrees

* A scaling by a factor of 3 in the x direction

In the figure, the axes are shown with a dash pattern having a 2-unit dash and a
2-unit gap. In addition, the original (untransformed) axes are shown in a lighter
color for reference. Notice that the scale-rotate-translate ordering results in a

distortion of the coordinate system, leaving the x and y axes no longer perpendic-
ular, while the recommended translate-rotate-scale ordering does not.

4.2.3 Transformation Matrices

This section discusses the mathematics of transformation matrices. It is not
necessary to read this section in order to use the transformations described previ-
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ously; the information is presented for the benefit of readers who want to gain a
deeper understanding of the theoretical basis of coordinate transformations.

To understand the mathematics of coordinate transformations in PDF, it is vital
to remember two points:

* Transformations alter coordinate systems, not graphics objects. All objects painted
before a transformation is applied are unaffected by the transformation. Ob-
jects painted after the transformation is applied will be interpreted in the trans-
formed coordinate system.

* Transformation matrices specify the transformation from the new (transformed)
coordinate system to the original (untransformed) coordinate system. All coor-
dinates used after the transformation are expressed in the transformed coordi-
nate system. PDF applies the transformation matrix to find the equivalent
coordinates in the untransformed coordinate system.

Note: Many computer graphics textbooks consider transformations of graphics ob-
jects rather than of coordinate systems. Although either approach is correct and self-
consistent, some details of the calculations differ depending on which point of view is
taken.

PDF represents coordinates in a two-dimensional space. The point (x, y) in such
a space can be expressed in vector form as [x y 1]. The constant third element of
this vector (1) is needed so that the vector can be used with 3-by-3 matrices in the
calculations described below.

The transformation between two coordinate systems is represented by a 3-by-3
transformation matrix written as

a b 0
c d o0
e f 1

Because a transformation matrix has only six elements that can be changed, it is
usually specified in PDF as the six-element array [a b ¢ d e f].
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Coordinate transformations are expressed as matrix multiplications:

a b 0
[x"y 1]=[xyllx| ¢ g o0
e f 1

Because PDF transformation matrices specify the conversion from the trans-
formed coordinate system to the original (untransformed) coordinate system, x’
and y’ in this equation are the coordinates in the untransformed coordinate sys-
tem, while x and y are the coordinates in the transformed system. Carrying out
the multiplication, we have

’

axx+tcxy+te
Yy =bxx+tdxy+f

If a series of transformations is carried out, the matrices representing each of the
individual transformations can be multiplied together to produce a single equiv-
alent matrix representing the composite transformation.

Matrix multiplication is not commutative—the order in which matrices are mul-
tiplied is significant. Consider a sequence of two transformations: a scaling trans-
formation applied to the user space coordinate system, followed by a conversion
from the resulting scaled user space to device space. Let M be the matrix specify-
ing the scaling and M- the current transformation matrix, which transforms user
space to device space. Recalling that coordinates are always specified in the trans-
formed space, the correct order of transformations must first convert the scaled
coordinates to default user space and then the default user space coordinates to
device space. This can be expressed as

Xp = XyxMe = (XS><MS)xMC = sz(MSxMC)
where
X}, denotes the coordinates in device space

Xy denotes the coordinates in default user space

X denotes the coordinates in scaled user space
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This shows that when a new transformation is concatenated with an existing one,
the matrix representing it must be multiplied before (premultiplied with) the
existing transformation matrix.

This result is true in general for PDF: when a sequence of transformations is car-
ried out, the matrix representing the combined transformation (M) is calculated
by premultiplying the matrix representing the additional transformation (M)
with the one representing all previously existing transformations (M):

M' = MpxM

Note: When rendering graphics objects, it is sometimes necessary for a viewer ap-
plication to perform the inverse of a transformation—that is, to find the user space
coordinates that correspond to a given pair of device space coordinates. Not all trans-
formations are invertible, however. For example, if a matrix contains a, b, ¢, and d
elements that are all zero, all user coordinates map to the same device coordinates
and there is no unique inverse transformation. Such noninvertible transformations
are not very useful and generally arise from unintended operations, such as scaling
by 0. Use of a noninvertible matrix when painting graphics objects can result in un-
predictable behavior.

Graphics State

A PDF viewer application maintains an internal data structure called the graphics
state that holds current graphics control parameters. These parameters define the
global framework within which the graphics operators execute. For example, the
f (fill) operator implicitly uses the current color parameter, and the S (stroke)
operator additionally uses the current line width parameter from the graphics
state.

The graphics state is initialized at the beginning of each page, using the default
values specified in Tables 4.2 and 4.3. Table 4.2 lists those graphics state parame-
ters that are device-independent and are appropriate to specify in page descrip-
tions. The parameters listed in Table 4.3 control details of the rendering (scan
conversion) process and are device-dependent; a page description that is intend-
ed to be device-independent should not modify these parameters.
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TABLE 4.2 Device-independent graphics state parameters

PARAMETER

TYPE

VALUE

CTM

clipping path

color space

color

text state

line width

line cap

line join

miter limit

array

(internal)

name or array

(various)

(various)

number

integer

integer

number

The current transformation matrix, which maps positions from user
coordinates to device coordinates (see Section 4.2, “Coordinate Sys-
tems”). This matrix is modified by each application of the coordi-
nate transformation operator, cm. Initial value: a matrix that
transforms default user coordinates to device coordinates.

The current clipping path, which defines the boundary against
which all output is to be cropped (see Section 4.4.3, “Clipping Path
Operators”). Initial value: the boundary of the entire imageable
portion of the output page.

The current color space in which color values are to be interpreted
(see Section 4.5, “Color Spaces”). There are two separate color space
parameters: one for stroking and one for all other painting opera-
tions. Initial value: DeviceGray.

The current color to be used during painting operations (see Section
4.5, “Color Spaces”). The type and interpretation of this parameter
depend on the current color space; for most color spaces, a color
value consists of one to four numbers. There are two separate color
parameters: one for stroking and one for all other painting opera-
tions. Initial value: black.

A set of nine graphics state parameters that pertain only to the
painting of text. These include parameters that select the font, scale
the glyphs to an appropriate size, and accomplish other effects. The
text state parameters are described in Section 5.2, “Text State
Parameters and Operators.”

The thickness, in user space units, of paths to be stroked (see “Line
Width” on page 152). Initial value: 1.0.

A code specifying the shape of the endpoints for any open path that
is stroked (see “Line Cap Style” on page 153). Initial value: 0, for
square butt caps.

A code specifying the shape of joints between connected segments
of a stroked path (see “Line Join Style” on page 153). Initial value: 0,
for mitered joins.

The maximum length of mitered line joins for stroked paths (see
“Miter Limit” on page 153). This parameter limits the length of
“spikes” produced when line segments join at sharp angles. Initial
value: 10.0, for a miter cutoff below approximately 11.5 degrees.



| Graphics State |

| SECTION 4.3
dash pattern array and
number

rendering intent

stroke adjustment

blend mode

soft mask

alpha constant

alpha source

name

boolean

name or array

dictionary
or name

number

boolean

A description of the dash pattern to be used when paths are
stroked (see “Line Dash Pattern” on page 155). Initial value: a solid
line.

The rendering intent to be used when converting CIE-based colors
to device colors (see “Rendering Intents” on page 197). Default
value: RelativeColorimetric.

(PDF 1.2) A flag specifying whether to compensate for possible ras-
terization effects when stroking a path with a line width that is
small relative to the pixel resolution of the output device (see Sec-
tion 6.5.4, “Automatic Stroke Adjustment”). Note that this is con-
sidered a device-independent parameter, even though the details of
its effects are device-dependent. Initial value: false.

(PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Spec-
ifying Blending Color Space and Blend Mode”). This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: Normal.

(PDF 1.4) A soft-mask dictionary (see “Soft-Mask Dictionaries” on
page 445) specifying the mask shape or mask opacity values to be
used in the transparent imaging model (see “Source Shape and
Opacity” on page 421 and “Mask Shape and Opacity” on page 443),
or the name None if no such mask is specified. This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: None.

(PDF 1.4) The constant shape or constant opacity value to be used
in the transparent imaging model (see “Source Shape and Opacity”
on page 421 and “Constant Shape and Opacity” on page 444).
There are two separate alpha constant parameters: one for stroking
and one for all other painting operations. This parameter is implic-
itly reset to its initial value at the beginning of execution of a trans-
parency group XObject (see Section 7.5.5, “Transparency Group
XObjects”). Initial value: 1.0.

(PDF 1.4) A flag specifying whether the current soft mask and alpha
constant parameters are to be interpreted as shape values (true) or
opacity values (false). This flag also governs the interpretation of
the SMask entry, if any, in an image dictionary (see Section 4.8.4,
“Image Dictionaries”). Initial value: false.
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TABLE 4.3 Device-dependent graphics state parameters
PARAMETER TYPE VALUE
overprint boolean (PDF 1.2) A flag specifying (on output devices that support the

overprint mode

black generation

undercolor removal

transfer

halftone

flatness

number

function
or name

function
or name

function,
array, or name

dictionary,
stream, or name

number

overprint control feature) whether painting in one set of colorants
should cause the corresponding areas of other colorants to be
erased (false) or left unchanged (true); see Section 4.5.6, “Over-
print Control.” In PDF 1.3, there are two separate overprint param-
eters: one for stroking and one for all other painting operations.
Initial value: false.

(PDF 1.3) A code specifying whether a color component value of 0
in a DeviceCMYK color space should erase that component (0) or
leave it unchanged (1) when overprinting (see Section 4.5.6, “Over-
print Control”). Initial value: 0.

(PDF 1.2) A function that calculates the level of the black color
component to use when converting RGB colors to CMYK (see Sec-
tion 6.2.3, “Conversion from DeviceRGB to DeviceCMYK”). Initial
value: installation-dependent.

(PDF 1.2) A function that calculates the reduction in the levels of
the cyan, magenta, and yellow color components to compensate for
the amount of black added by black generation (see Section 6.2.3,
“Conversion from DeviceRGB to DeviceCMYK?”). Initial value: in-
stallation-dependent.

(PDF 1.2) A function that adjusts device gray or color component
levels to compensate for nonlinear response in a particular out-
put device (see Section 6.3, “Transfer Functions”). Initial value:
installation-dependent.

(PDF 1.2) A halftone screen for gray and color rendering, specified
as a halftone dictionary or stream (see Section 6.4, “Halftones”).
Initial value: installation-dependent.

The precision with which curves are to be rendered on the output
device (see Section 6.5.1, “Flatness Tolerance”). The value of this
parameter gives the maximum error tolerance, measured in output
device pixels; smaller numbers give smoother curves at the expense
of more computation and memory use. Initial value: 1.0.
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smoothness number (PDF 1.3) The precision with which color gradients are to be ren-
dered on the output device (see Section 6.5.2, “Smoothness Toler-
ance”). The value of this parameter gives the maximum error
tolerance, expressed as a fraction of the range of each color compo-
nent; smaller numbers give smoother color transitions at the
expense of more computation and memory use. Initial value:
installation-dependent.

Some graphics state parameters are set with specific PDF operators, some are set
by including a particular entry in a graphics state parameter dictionary, and some
can be specified either way. The current line width, for example, can be set either
with the w operator or (in PDF 1.3) with the LW entry in a graphics state param-
eter dictionary, whereas the current color is set only with specific operators and
the current halftone is set only with a graphics state parameter dictionary. It is
expected that all future graphics state parameters will be specified with new
entries in the graphics state parameter dictionary rather than with new operators.

In general, the operators that set graphics state parameters simply store them un-
changed for later use by the painting operators. However, some parameters have
special properties or behavior:

* Most parameters must be of the correct type or have values that fall within a
certain range.

* Parameters that are numeric values, such as the current color, line width, and
miter limit, are forced into valid range, if necessary. However, they are not ad-
justed to reflect capabilities of the raster output device, such as resolution or
number of distinguishable colors. Painting operators perform such adjust-
ments, but the adjusted values are not stored back into the graphics state.

* Paths are internal objects that are not directly represented in PDE

Note: As indicated in Tables 4.2 and 4.3, some of the parameters—color space, color,
and overprint—have two values, one used for stroking (of paths and text objects)
and one for all other painting operations. The two parameter values can be set inde-
pendently, allowing for operations such as combined filling and stroking of the same
path with different colors. Except where noted, a term such as current color should
be interpreted to refer to whichever color parameter applies to the operation being
performed. When necessary, the individual color parameters are distinguished ex-
plicitly as the stroking color and the nonstroking color.
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Graphics State Stack

A well-structured PDF document typically contains many graphical elements
that are essentially independent of each other and sometimes nested to multiple
levels. The graphics state stack allows these elements to make local changes to the
graphics state without disturbing the graphics state of the surrounding environ-
ment. The stack is a LIFO (last in, first out) data structure in which the contents
of the graphics state can be saved and later restored using the following operators:

* The q operator pushes a copy of the entire graphics state onto the stack.

* The Q operator restores the entire graphics state to its former value by popping
it from the stack.

These operators can be used to encapsulate a graphical element so that it can
modify parameters of the graphics state and later restore them to their previous
values. Occurrences of the q and Q operators must be balanced within a given
content stream (or within the sequence of streams specified in a page dictionary’s
Contents array).

Details of Graphics State Parameters

This section gives details of several of the device-independent graphics state pa-
rameters listed in Table 4.2 on page 148.

Line Width

The line width parameter specifies the thickness of the line used to stroke a path.
It is a nonnegative number expressed in user space units; stroking a path entails
painting all points whose perpendicular distance from the path in user space is
less than or equal to half the line width. The effect produced in device space
depends on the current transformation matrix (CTM) in effect at the time the
path is stroked. If the CTM specifies scaling by different factors in the horizontal
and vertical dimensions, the thickness of stroked lines in device space will vary
according to their orientation. The actual line width achieved can differ from the
requested width by as much as 2 device pixels, depending on the positions of
lines with respect to the pixel grid. Automatic stroke adjustment can be used to
ensure uniform line width; see Section 6.5.4, “Automatic Stroke Adjustment.”
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A line width of 0 denotes the thinnest line that can be rendered at device resolu-
tion: 1 device pixel wide. However, some devices cannot reproduce 1-pixel lines,
and on high-resolution devices, they are nearly invisible. Since the results of ren-
dering such “zero-width” lines are device-dependent, their use is not recom-
mended.

Line Cap Style

The line cap style specifies the shape to be used at the ends of open subpaths (and
dashes, if any) when they are stroked. Table 4.4 shows the possible values.

TABLE 4.4 Line cap styles
STYLE APPEARANCE DESCRIPTION

Butt cap. The stroke is squared off at the endpoint of the path. There is no
projection beyond the end of the path.

L ]
|
1 — Round cap. A semicircular arc with a diameter equal to the line width is
drawn around the endpoint and filled in.
_ Projecting square cap. The stroke continues beyond the endpoint of the path
for a distance equal to half the line width and is then squared off.

Line Join Style

The line join style specifies the shape to be used at the corners of paths that are
stroked. Table 4.5 shows the possible values. Join styles are significant only at
points where consecutive segments of a path connect at an angle; segments that
meet or intersect fortuitously receive no special treatment.

Miter Limit

When two line segments meet at a sharp angle and mitered joins have been speci-
fied as the line join style, it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miter limit imposes a maximum on
the ratio of the miter length to the line width (see Figure 4.7). When the limit is
exceeded, the join is converted from a miter to a bevel.
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TABLE 4.5 Line join styles

APPEARANCE DESCRIPTION

Miter join. The outer edges of the strokes for the two segments are extended
until they meet at an angle, as in a picture frame. If the segments meet at
too sharp an angle (as defined by the miter limit parameter—see “Miter
Limit,” above), a bevel join is used instead.

Round join. A circle with a diameter equal to the line width is drawn around
the point where the two segments meet and is filled in, producing a round-
ed corner.

Note: If path segments shorter than half the line width meet at a sharp angle,
an unintended “wrong side” of the circle may appear.

Bevel join. The two segments are finished with butt caps (see “Line Cap
Style” on page 153) and the resulting notch beyond the ends of the seg-
ments is filled with a triangle.

The ratio of miter length to line width is directly related to the angle ¢ between
the segments in user space by the formula

miterLength _ 1
lineWidth i ( Q)
2

For example, a miter limit of 1.414 converts miters to bevels for @ less than 90
degrees, a limit of 2.0 converts them for ¢ less than 60 degrees, and a limit of 10.0
converts them for @ less than approximately 11.5 degrees.

Line width

FIGURE 4.7 Miter length
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Line Dash Pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
It is specified by a dash array and a dash phase. The dash array’s elements are
numbers that specify the lengths of alternating dashes and gaps; the dash phase
specifies the distance into the dash pattern at which to start the dash. The ele-
ments of both the dash array and the dash phase are expressed in user space units.

Before beginning to stroke a path, the dash array is cycled through, adding up the
lengths of dashes and gaps. When the accumulated length equals the value speci-
fied by the dash phase, stroking of the path begins, using the dash array cyclically
from that point onward. Table 4.6 shows examples of line dash patterns. As can
be seen from the table, an empty dash array and zero phase can be used to restore
the dash pattern to a solid line.

TABLE 4.6 Examples of line dash patterns

DASH ARRAY
AND PHASE APPEARANCE DESCRIPTION
[10 I o dash; solid, unbroken lines
310 B B B 3unitson,3unitsoff, ...
[2] 1 H B B B !on2off2on,2off ...
2110 B B B B HE 2onlofi2onloff,...
[35]6 N B 2 off,30n,50ff,3 0n,5off, ...
[2 3] 1 H B B @ l!on3off,f2on3o0ff,20n,...

Dashed lines wrap around curves and corners just as solid stroked lines do. The
ends of each dash are treated with the current line cap style, and corners within
dashes are treated with the current line join style. A stroking operation takes no
measures to coordinate the dash pattern with features of the path; it simply dis-
penses dashes and gaps along the path in the pattern defined by the dash array.

When a path consisting of several subpaths is stroked, each subpath is treated in-
dependently—that is, the dash pattern is restarted and the dash phase is reapplied
to it at the beginning of each subpath.
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4.3.3 Graphics State Operators

Table 4.7 shows the operators that set the values of parameters in the graphics
state. (See also the color operators listed in Table 4.21 on page 216 and the text
state operators in Table 5.2 on page 302.)

TABLE 4.7 Graphics state operators

OPERANDS

OPERATOR

DESCRIPTION

abcdef

lineWidth

lineCap

lineJoin

miterLimit

dashArray dashPhase

intent

flatness

dictName

q

<m

ri

gs

Save the current graphics state on the graphics state stack (see “Graphics
State Stack” on page 152).

Restore the graphics state by removing the most recently saved state from
the stack and making it the current state (see “Graphics State Stack” on
page 152).

Modify the current transformation matrix (CTM) by concatenating the
specified matrix (see Section 4.2.1, “Coordinate Spaces”). Although the
operands specify a matrix, they are written as six separate numbers, not as
an array.

Set the line width in the graphics state (see “Line Width” on page 152).

Set the line cap style in the graphics state (see “Line Cap Style” on page
153).

Set the line join style in the graphics state (see “Line Join Style” on page
153).

Set the miter limit in the graphics state (see “Miter Limit” on page 153).

Set the line dash pattern in the graphics state (see “Line Dash Pattern” on
page 155).

(PDF 1.1) Set the color rendering intent in the graphics state (see “Ren-
dering Intents” on page 197).

Set the flatness tolerance in the graphics state (see Section 6.5.1, “Flatness
Tolerance”). flatness is a number in the range 0 to 100; a value of 0 speci-
fies the output device’s default flatness tolerance.

(PDF 1.2) Set the specified parameters in the graphics state. dictName is
the name of a graphics state parameter dictionary in the ExtGState sub-
dictionary of the current resource dictionary (see the next section).
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4.3.4 Graphics State Parameter Dictionaries

While some parameters in the graphics state can be set with individual operators,
as shown in Table 4.7, others cannot. The latter can only be set with the generic
graphics state operator gs (PDF 1.2). The operand supplied to this operator is the
name of a graphics state parameter dictionary whose contents specify the values of
one or more graphics state parameters. This name is looked up in the ExtGState
subdictionary of the current resource dictionary. (The name ExtGState, for
“extended graphics state,” is a vestige of earlier versions of PDE.)

Note: The graphics state parameter dictionary is also used by type 2 patterns, which
do not have a content stream in which the graphics state operators could be invoked
(see Section 4.6.3, “Shading Patterns”).

Each entry in the parameter dictionary specifies the value of an individual graph-
ics state parameter, as shown in Table 4.8. It is not necessary for all entries to be
present for every invocation of the gs operator; the parameter dictionary sup-
plied may include any desired combination of parameter entries. The results of
gs are cumulative; parameter values established in previous invocations will per-
sist until explicitly overridden. Note that some parameters appear in both Tables
4.7 and 4.8; these parameters can be set either with individual graphics state
operators or with gs. It is expected that any future extensions to the graphics state
will be implemented by adding new entries to the graphics state parameter dic-
tionary, rather than by introducing new graphics state operators.

TABLE 4.8 Entries in a graphics state parameter dictionary

KEY TYPE DESCRIPTION

Type name (Optional) The type of PDF object that this dictionary describes; must be
ExtGState for a graphics state parameter dictionary.

Lw number (Optional; PDF 1.3) The line width (see “Line Width” on page 152).

LC integer (Optional; PDF 1.3) The line cap style (see “Line Cap Style” on page 153).

L integer (Optional; PDF 1.3) The line join style (see “Line Join Style” on page 153).

ML number (Optional; PDF 1.3) The miter limit (see “Miter Limit” on page 153).

D array (Optional; PDF 1.3) The line dash pattern, expressed as an array of the form

[dashArray dashPhase], where dashArray is itself an array and dashPhase is an
integer (see “Line Dash Pattern” on page 155).
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name

boolean

boolean

integer

array

function

function or name

function

function or name

function, array,
or name

(Optional; PDF 1.3) The name of the rendering intent (see “Rendering
Intents” on page 197).

(Optional) A flag specifying whether to apply overprint (see Section 4.5.6,
“Overprint Control”). In PDF 1.2 and earlier, there is a single overprint
parameter that applies to all painting operations. Beginning with PDF 1.3,
there are two separate overprint parameters: one for stroking and one for all
other painting operations. Specifying an OP entry sets both parameters un-
less there is also an op entry in the same graphics state parameter dictionary,
in which case the OP entry sets only the overprint parameter for stroking.

(Optional; PDF 1.3) A flag specifying whether to apply overprint (see Section
4.5.6, “Overprint Control”) for painting operations other than stroking. If
this entry is absent, the OP entry, if any, sets this parameter.

(Optional; PDF 1.3) The overprint mode (see Section 4.5.6, “Overprint Con-
trol”).

(Optional; PDF 1.3) An array of the form [font size], where font is an indirect
reference to a font dictionary and size is a number expressed in text space
units. These two objects correspond to the operands of the Tf operator (see
Section 5.2, “Text State Parameters and Operators”); however, the first oper-
and is an indirect object reference instead of a resource name.

(Optional) The black-generation function, which maps the interval [0.0 1.0]
to the interval [0.0 1.0] (see Section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK”).

(Optional; PDF 1.3) Same as BG except that the value may also be the name
Default, denoting the black-generation function that was in effect at the start
of the page. If both BG and BG2 are present in the same graphics state param-
eter dictionary, BG2 takes precedence.

(Optional) The undercolor-removal function, which maps the interval
[0.0 1.0] to the interval [-1.0 1.0] (see Section 6.2.3, “Conversion from
DeviceRGB to DeviceCMYK”).

(Optional; PDF 1.3) Same as UCR except that the value may also be the name
Default, denoting the undercolor-removal function that was in effect at the
start of the page. If both UCR and UCR2 are present in the same graphics state
parameter dictionary, UCR2 takes precedence.

(Optional) The transfer function, which maps the interval [0.0 1.0] to the
interval [0.0 1.0] (see Section 6.3, “Transfer Functions”). The value is either
a single function (which applies to all process colorants) or an array of four
functions (which apply to the process colorants individually). The name
Identity may be used to represent the identity function.
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TR2 function, array, (Optional; PDF 1.3) Same as TR except that the value may also be the name
or name Default, denoting the transfer function that was in effect at the start of the

page. If both TR and TR2 are present in the same graphics state parameter dic-
tionary, TR2 takes precedence.

HT dictionary, (Optional) The halftone dictionary or stream (see Section 6.4, “Halftones”)
stream, or name or the name Default, denoting the halftone that was in effect at the start of the
page.
FL number (Optional; PDF 1.3) The flatness tolerance (see Section 6.5.1, “Flatness Toler-
ance”).
SM number (Optional; PDF 1.3) The smoothness tolerance (see Section 6.5.2, “Smooth-

ness Tolerance”).

SA boolean (Optional) A flag specifying whether to apply automatic stroke adjustment
(see Section 6.5.4, “Automatic Stroke Adjustment”).

BM name or array (Optional; PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Specifying
Blending Color Space and Blend Mode”).

SMask dictionary or name  (Optional; PDF 1.4) The current soft mask, specifying the mask shape or
mask opacity values to be used in the transparent imaging model (see
“Source Shape and Opacity” on page 421 and “Mask Shape and Opacity” on
page 443).

>

Note: Although the current soft mask is sometimes referred to as a “soft clip,’
altering it with the gs operator completely replaces the old value with the new
one, rather than intersecting the two as is done with the current clipping path
parameter (see Section 4.4.3, “Clipping Path Operators”).

CA number (Optional; PDF 1.4) The current stroking alpha constant, specifying the con-
stant shape or constant opacity value to be used for stroking operations in the
transparent imaging model (see “Source Shape and Opacity” on page 421
and “Constant Shape and Opacity” on page 444).

ca number (Optional; PDF 1.4) Same as CA, but for nonstroking operations.

AlS boolean (Optional; PDF 1.4) The alpha source flag (“alpha is shape”), specifying
whether the current soft mask and alpha constant are to be interpreted as
shape values (true) or opacity values (false).

TK boolean (Optional; PDF 1.4) The text knockout flag, which determines the behavior
of overlapping glyphs within a text object in the transparent imaging model
(see Section 5.2.7, “Text Knockout™).
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Example 4.1 shows two graphics state parameter dictionaries. In the first, auto-
matic stroke adjustment is turned on, and the dictionary includes a transfer func-
tion that inverts its value, f(x) = 1 — x. In the second, overprint is turned off, and
the dictionary includes a parabolic transfer function, f(x) = (2x - 1)2, with a
sample of 21 values. The domain of the transfer function, [0.0 1.0], is mapped to
[0 20], and the range of the sample values, [0 255], is mapped to the range of
the transfer function, [0.0 1.0].

Example 4.1

10 0 obj % Page object
<< /[Type /Page
/Parent 50R
/Resources 200R
/Contents 400R
>>
endobj

20 0 obj % Resource dictionary for page
<< /ProcSet [/PDF /Text]
/Font << /F1 250R >>
/ExtGState << /GS1 300R
/GS2 350R
>>
>>
endobj

30 0 obj % First graphics state parameter dictionary
<< /Type /ExtGState
/SA true
/TR 310R
>>
endobj

31 0 obj % First transfer function
<< /FunctionType 0
/Domain [0.0 1.0]
/Range [0.0 1.0]
/Size 2
/BitsPerSample 8
/Length 7
/Filter /ASClIHexDecode
>>
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stream

01 00 >
endstream
endobj

35 0 obj % Second graphics state parameter dictionary
<< /Type /ExtGState
/OP false
/TR 36 0R
>>
endobj

36 0 obj % Second transfer function
<< /FunctionType 0
/Domain [0.0 1.0]
/Range [0.0 1.0]

/Size 21
/BitsPerSample 8
/Length 63
/Filter /ASClIHexDecode
>>
stream
FF CE A3 7C 5B 3F 28 16 OA 02 00 02 OA 16 28 3F 5B 7C A3 CE FF >
endstream
endobj

4.4 Path Construction and Painting

Paths define shapes, trajectories, and regions of all sorts. They are used to draw
lines, define the shapes of filled areas, and specify boundaries for clipping other
graphics. The graphics state includes a current clipping path that defines the clip-
ping boundary for the current page. At the beginning of each page, the clipping
path is initialized to include the entire page.

A path is composed of straight and curved line segments, which may connect to
one another or may be disconnected. A pair of segments are said to connect only
if they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a path are defined is signifi-
cant. Nonconsecutive segments that meet or intersect fortuitously are not consid-
ered to connect.
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A path is made up of one or more disconnected subpaths, each comprising a se-
quence of connected segments. The topology of the path is unrestricted: it may
be concave or convex, may contain multiple subpaths representing disjoint areas,
and may intersect itself in arbitrary ways. There is an operator, h, that explicitly
connects the end of a subpath back to its starting point; such a subpath is said to
be closed. A subpath that has not been explicitly closed is open.

As discussed in Section 4.1, “Graphics Objects,” a path object is defined by a se-
quence of operators to construct the path, followed by one or more operators to
paint the path or to use it as a clipping boundary. PDF path operators fall into
three categories:

* Path construction operators (Section 4.4.1) define the geometry of a path. A
path is constructed by sequentially applying one or more of these operators.

* Path-painting operators (Section 4.4.2) end a path object, usually causing the
object to be painted on the current page in any of a variety of ways.

* Clipping path operators (Section 4.4.3), invoked immediately prior to a path-
painting operator, cause the path object also to be used for clipping of sub-
sequent graphics objects.

4.4.1 Path Construction Operators

A page description begins with an empty path and builds up its definition by in-
voking one or more path construction operators to add segments to it. The path
construction operators may be invoked in any sequence, but the first one invoked
must be m or re to begin a new subpath. The path definition concludes with the
application of a path-painting operator such as S, f, or b (see Section 4.4.2, “Path-
Painting Operators”); this may optionally be preceded by one of the clipping path
operators W or W* (Section 4.4.3, “Clipping Path Operators”). Note that the path
construction operators in themselves do not place any marks on the page; only
the painting operators do that. A path definition is not complete until a path-
painting operator has been applied to it.

The path currently under construction is called the current path. In PDF (unlike
PostScript), the current path is not part of the graphics state and is not saved and
restored along with the other graphics state parameters. PDF paths are strictly in-
ternal objects with no explicit representation. Once a path has been painted, it is
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no longer defined; there is then no current path until a new one is begun with the
m or re operator.

The trailing endpoint of the segment most recently added to the current path is
referred to as the current point. If the current path is empty, the current point is
undefined. Most operators that add a segment to the current path start at the cur-
rent point; if the current point is undefined, they generate an error.

Table 4.9 shows the path construction operators. All operands are numbers de-
noting coordinates in user space.

TABLE 4.9 Path construction operators

OPERANDS

OPERATOR

DESCRIPTION

xy

xy

X9 Y1 X3 V2 X3 )3

X3 Y2 X3 Y3

X1 Y1 X3 Y3

m

I (lowercase L)

Begin a new subpath by moving the current point to coordinates
(x,y), omitting any connecting line segment. If the previous path
construction operator in the current path was also m, the new m
overrides it; no vestige of the previous m operation remains in the
path.

Append a straight line segment from the current point to the point
(%, ¥). The new current point is (x, y).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (xs,ys;), using (x;,y;) and
(x5, y,) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x5, y5).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x3, y3 ), using the current point
and (x,, y,) as the Bézier control points (see “Cubic Bézier Curves,”
below). The new current point is (x5, y3 ).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x;,y;), using (x;,y,) and
(x5, y5) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x5, y3).

Close the current subpath by appending a straight line segment
from the current point to the starting point of the subpath. This
operator terminates the current subpath; appending another seg-
ment to the current path will begin a new subpath, even if the new
segment begins at the endpoint reached by the h operation. If the
current subpath is already closed, h does nothing.
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x y width height re Append a rectangle to the current path as a complete subpath, with
lower-left corner (x,y) and dimensions width and height in user
space. The operation

x y width height re
is equivalent to

Xy m

(x + width) y |

(x + width) (y + height) |
x (y+ height) |

h

Cubic Bézier Curves

Curved path segments are specified as cubic Bézier curves. Such curves are defined
by four points: the two endpoints (the current point P, and the final point P;)
and two control points P, and P,. Given the coordinates of the four points, the
curve is generated by varying the parameter ¢ from 0.0 to 1.0 in the following
equation:

R(H) = (1-1)’Py+31(1-1)°P, +3(1=)P, + £ P,

When ¢ = 0.0, the value of the function R(#) coincides with the current point Py;
when £ = 1.0, R(#) coincides with the final point P;. Intermediate values of  gen-
erate intermediate points along the curve. The curve does not, in general, pass
through the two control points P, and P,.

Cubic Bézier curves have two desirable properties:

* The curve can be very quickly split into smaller pieces for rapid rendering.

* The curve is contained within the convex hull of the four points defining the
curve, most easily visualized as the polygon obtained by stretching a rubber
band around the outside of the four points. This property allows rapid testing
of whether the curve lies completely outside the visible region, and hence does
not have to be rendered.
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The Bibliography lists several books that describe cubic Bézier curves in more
depth.

The most general PDF operator for constructing curved path segments is the c
operator, which specifies the coordinates of points P, P,, and P; explicitly, as
shown in Figure 4.8. (The starting point, P, is defined implicitly by the current
point.)

P (x3, ¥,)

P, (current point)

X1 Y1 X2 Y2X3)3C

FIGURE 4.8 Cubic Bézier curve generated by the c operator

Two more operators, v and y, each specify one of the two control points implic-
itly (see Figure 4.9). In both of these cases, one control point and the final point
of the curve are supplied as operands; the other control point is implied, as fol-
lows:

* For the v operator, the first control point coincides with initial point of the
curve.

* For the y operator, the second control point coincides with final point of the
curve.
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(2, ¥)

3. y3)

Current point Current point

X3 Y2 X3 Y3V X1 Y1 X3Y3Y

FIGURE 4.9 Cubic Bézier curves generated by the v and y operators

4.4.2 Path-Painting Operators

The path-painting operators end a path object, causing it to be painted on the
current page in the manner that the operator specifies. The principal path-
painting operators are S (for stroking) and f (for filling). Variants of these opera-
tors combine stroking and filling in a single operation or apply different rules for
determining the area to be filled. Table 4.10 lists all the path-painting operators.

Stroking

The S operator paints a line along the current path. The stroked line follows each
straight or curved segment in the path, centered on the segment with sides paral-
lel to it. Each of the path’s subpaths is treated separately.

The results of the S operator depend on the current settings of various parame-
ters in the graphics state. See Section 4.3, “Graphics State,” for further informa-
tion on these parameters.
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TABLE 4.10 Path-painting operators

OPERANDS  OPERATOR

DESCRIPTION

Stroke the path.
Close and stroke the path. This operator has the same effect as the sequence h S.

Fill the path, using the nonzero winding number rule to determine the region to fill
(see “Nonzero Winding Number Rule” on page 169).

Equivalent to f; included only for compatibility. Although applications that read
PDF files must be able to accept this operator, those that generate PDF files should
use f instead.

Fill the path, using the even-odd rule to determine the region to fill (see “Even-Odd
Rule” on page 170).

Fill and then stroke the path, using the nonzero winding number rule to determine
the region to fill. This produces the same result as constructing two identical path
objects, painting the first with f and the second with S. Note, however, that the fill-
ing and stroking portions of the operation consult different values of several graph-
ics state parameters, such as the current color. See also “Special Path-Painting
Considerations” on page 462.

Fill and then stroke the path, using the even-odd rule to determine the region to fill.
This operator produces the same result as B, except that the path is filled as if with
f* instead of f. See also “Special Path-Painting Considerations” on page 462.

Close, fill, and then stroke the path, using the nonzero winding number rule to de-
termine the region to fill. This operator has the same effect as the sequence h B. See
also “Special Path-Painting Considerations” on page 462.

Close, fill, and then stroke the path, using the even-odd rule to determine the re-
gion to fill. This operator has the same effect as the sequence h B*. See also “Special
Path-Painting Considerations” on page 462.

End the path object without filling or stroking it. This operator is a “path-painting
no-op,” used primarily for the side effect of changing the current clipping path (see
Section 4.4.3, “Clipping Path Operators”).
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* The width of the stroked line is determined by the current line width parame-
ter (“Line Width” on page 152).

* The color or pattern of the line is determined by the current color and color
space for stroking operations.

* The line can be painted either solid or with a dash pattern, as specified by the
current line dash pattern (“Line Dash Pattern” on page 155).

* If a subpath is open, the unconnected ends are treated according to the current
line cap style, which may be butt, rounded, or square (“Line Cap Style” on page
153).

* Wherever two consecutive segments are connected, the joint between them is
treated according to the current line join style, which may be mitered, rounded,
or beveled (“Line Join Style” on page 153). Mitered joins are also subject to the
current miter limit (“Miter Limit” on page 153).

Note: Points at which unconnected segments happen to meet or intersect receive no
special treatment. In particular, “closing” a subpath with an explicit | operator
rather than with h may result in a messy corner, because line caps will be applied
instead of a line join.

* The stroke adjustment parameter (PDF 1.2) specifies that coordinates and line
widths be adjusted automatically to produce strokes of uniform thickness
despite rasterization effects (Section 6.5.4, “Automatic Stroke Adjustment”).

If a subpath is degenerate (consists of a single-point closed path or of two or
more points at the same coordinates), the S operator paints it only if round line
caps have been specified, producing a filled circle centered at the single point. If
butt or projecting square line caps have been specified, S produces no output,
because the orientation of the caps would be indeterminate. (Note that this rule
applies only to zero-length subpaths of the path being stroked, and not to zero-
length dashes in a dash pattern. In the latter case, the line caps are always paint-
ed, since their orientation is determined by the direction of the underlying
path.) A single-point open subpath (specified by a trailing m operator) produces
no output.

Filling

The f operator uses the current nonstroking color to paint the entire region en-
closed by the current path. If the path consists of several disconnected subpaths, f
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paints the insides of all subpaths, considered together. Any subpaths that are
open are implicitly closed before being filled.

If a subpath is degenerate (consists of a single-point closed path or of two or
more points at the same coordinates), f paints the single device pixel lying under
that point; the result is device-dependent and not generally useful. A single-point
open subpath (specified by a trailing m operator) produces no output.

For a simple path, it is intuitively clear what region lies inside. However, for a
more complex path—for example, a path that intersects itself or has one subpath
that encloses another—the interpretation of “inside” is not always obvious. The
path machinery uses one of two rules for determining which points lie inside a
path: the nonzero winding number rule and the even-odd rule, both discussed in
detail below.

The nonzero winding number rule is more versatile than the even-odd rule and is
the standard rule the f operator uses. Similarly, the W operator uses this rule to
determine the inside of the current clipping path. The even-odd rule is occasion-
ally useful for special effects or for compatibility with other graphics systems; the
f* and W* operators invoke this rule.

Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a
path by conceptually drawing a ray from that point to infinity in any direction
and then examining the places where a segment of the path crosses the ray. Start-
ing with a count of 0, the rule adds 1 each time a path segment crosses the ray
from left to right and subtracts 1 each time a segment crosses from right to left.
After counting all the crossings, if the result is 0 then the point is outside the path;
otherwise it is inside.

Note: The method just described does not specify what to do if a path segment coin-
cides with or is tangent to the chosen ray. Since the direction of the ray is arbitrary,
the rule simply chooses a ray that does not encounter such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside
and outside as one would intuitively expect. The more interesting cases are those
involving complex or self-intersecting paths like the ones shown in Figure 4.10.
For a path consisting of a five-pointed star, drawn with five connected straight
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line segments intersecting each other, the rule considers the inside to be the entire
area enclosed by the star, including the pentagon in the center. For a path com-
posed of two concentric circles, the areas enclosed by both circles are considered
to be inside, provided that both are drawn in the same direction. If the circles are
drawn in opposite directions, only the “doughnut” shape between them is inside,
according to the rule; the “doughnut hole” is outside.

FIGURE 4.10 Nonzero winding number rule

Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule
determines the “insideness” of a point by drawing a ray from that point in any
direction and simply counting the number of path segments that cross the ray,
regardless of direction. If this number is odd, the point is inside; if even, the point
is outside. This yields the same results as the nonzero winding number rule for
paths with simple shapes, but produces different results for more complex
shapes.

Figure 4.11 shows the effects of applying the even-odd rule to complex paths. For
the five-pointed star, the rule considers the triangular points to be inside the
path, but not the pentagon in the center. For the two concentric circles, only the
“doughnut” shape between the two circles is considered inside, regardless of the
directions in which the circles are drawn.
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FIGURE 4.11 Even-odd rule

4.4.3 Clipping Path Operators

The graphics state contains a current clipping path that limits the regions of the
page affected by painting operators. The closed subpaths of this path define the
area that can be painted. Marks falling inside this area will be applied to the page;
those falling outside it will not. (Precisely what is considered to be “inside” a path
is discussed under “Filling,” above.)

Note: In the context of the transparent imaging model (PDF 1.4), the current clip-
ping path constrains an object’s shape (see Section 7.1, “Overview of Transparency”).
The effective shape is the intersection of the object’s intrinsic shape with the clipping
path; the source shape value is 0.0 outside this intersection. Similarly, the shape of a
transparency group (defined as the union of the shapes of its constituent objects) is
influenced both by the clipping path in effect when each of the objects is painted and
by the one in effect at the time the group’s results are painted onto its backdrop.

The initial clipping path includes the entire page. A clipping path operator (W or
W#, shown in Table 4.11) may appear after the last path construction operator
and before the path-painting operator that terminates a path object. Although
the clipping path operator appears before the painting operator, it does not alter
the clipping path at the point where it appears. Rather, it modifies the effect of
the succeeding painting operator. Affer the path has been painted, the clipping
path in the graphics state is set to the intersection of the current clipping path
and the newly constructed path.
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TABLE 4.11 Clipping path operators

OPERANDS  OPERATOR DESCRIPTION

— w Modify the current clipping path by intersecting it with the current path, using the
nonzero winding number rule to determine which regions lie inside the clipping
path.

— w# Modify the current clipping path by intersecting it with the current path, using the

even-odd rule to determine which regions lie inside the clipping path.

Note: In addition to path objects, text objects can also be used for clipping see Sec-
tion 5.2.5, “Text Rendering Mode.”

The n operator (see Table 4.10 on page 167) is a “no-op” path-painting operator;
it causes no marks to be placed on the page, but can be used with a clipping path
operator to establish a new clipping path. That is, after a path has been con-
structed, the sequence W n will intersect that path with the current clipping path
to establish a new clipping path.

There is no way to enlarge the current clipping path or to set a new clipping path
without reference to the current one. However, since the clipping path is part of
the graphics state, its effect can be localized to specific graphics objects by en-
closing the modification of the clipping path and the painting of those objects
between a pair of q and Q operators (see Section 4.3.1, “Graphics State Stack”).
Execution of the Q operator causes the clipping path to revert to the value that
was saved by the q operator, before the clipping path was modified.

4.5 Color Spaces

PDF includes powerful facilities for specifying the colors of graphics objects to be
painted on the current page. The color facilities are divided into two parts:

* Color specification. A PDF file can specify abstract colors in a device-
independent way. Colors can be described in any of a variety of color systems,
or color spaces. Some color spaces are related to device color representation
(grayscale, RGB, CMYK), others to human visual perception (CIE-based). Cer-
tain special features are also modeled as color spaces: patterns, color mapping,
separations, and high-fidelity and multitone color.
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* Color rendering. The viewer application reproduces colors on the raster output
device by a multiple-step process that includes some combination of color con-
version, gamma correction, halftoning, and scan conversion. Some aspects of
this process use information that is specified in PDE. However, unlike the facil-
ities for color specification, the color rendering facilities are device-dependent
and ordinarily should not be included in a page description.

Figures 4.12 and 4.13 on pages 174 and 175 illustrate the division between PDF’s
(device-independent) color specification and (device-dependent) color render-
ing facilities. This section describes the color specification features, covering
everything that most PDF documents need in order to specify colors. The facili-
ties for controlling color rendering are described in Chapter 6; a PDF document
should use these facilities only to configure or calibrate an output device or to
achieve special device-dependent effects.

Color Values

As described in Section 4.4.2, “Path-Painting Operators,” marks placed on the
page by operators such as f and S have a color that is determined by the current
color parameter of the graphics state. A color value consists of one or more color
components, which are usually numbers. For example, a gray level can be speci-
fied by a single number ranging from 0.0 (black) to 1.0 (white). Full color values
can be specified in any of several ways; a common method uses three numeric
values to specify red, green, and blue components.

Color values are interpreted according to the current color space, another param-
eter of the graphics state. A PDF content stream first selects a color space by
invoking the CS operator (for the stroking color) or the cs operator (for the
nonstroking color). It then selects color values within that color space with the
SC operator (stroking) or the sc operator (nonstroking). There are also conve-
nience operators—G, g, RG, rg, K, and k—that select both a color space and a
color value within it in a single step. Table 4.21 on page 216 lists all the color-
setting operators.

Sampled images (see Section 4.8, “Images”) specify the color values of individual
samples with respect to a color space designated by the image object itself. While
these values are independent of the current color space and color parameters in
the graphics state, all later stages of color processing treat them in exactly the
same way as color values specified with the SC or sc operator.
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4.5.2 Color Space Families

Color spaces can be classified into color space families. Spaces within a family
share the same general characteristics; they are distinguished by parameter values
supplied at the time the space is specified. The families, in turn, fall into three
broad categories:

* Device color spaces directly specify colors or shades of gray that the output
device is to produce. They provide a variety of color specification methods,
including grayscale, RGB (red-green-blue), and CMYK (cyan-magenta-yellow-
black), corresponding to the color space families DeviceGray, DeviceRGB, and
DeviceCMYK. Since each of these families consists of just a single color space
with no parameters, they are often loosely referred to as the DeviceGray,
DeviceRGB, and DeviceCMYK color spaces.

* CIE-based color spaces are based on an international standard for color specifi-
cation created by the Commission Internationale de I'Eclairage (International
Commission on Illumination). These spaces allow colors to be specified in a
way that is independent of the characteristics of any particular output device.
Color space families in this category include CalGray, CalRGB, Lab, and ICC-
Based. Individual color spaces within these families are specified by means of
dictionaries containing the parameter values needed to define the space.

* Special color spaces add features or properties to an underlying color space.
They include facilities for patterns, color mapping, separations, and high-
fidelity and multitone color. The corresponding color space families are
Pattern, Indexed, Separation, and DeviceN. Individual color spaces within
these families are specified by means of additional parameters.

Table 4.12 summarizes the color space families supported by PDF. (See imple-
mentation note 31 in Appendix H.)

TABLE 4.12 Color space families

DEVICE CIE-BASED SPECIAL

DeviceGray (PDF 1.1) CalGray (PDF 1.1) Indexed (PDF 1.1)
DeviceRGB (PDF 1.1) CalRGB (PDF 1.1) Pattern (PDF 1.2)
DeviceCMYK (PDF 1.1) Lab (PDF 1.1) Separation (PDF 1.2)

ICCBased (PDF 1.3) DeviceN (PDF 1.3)
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A color space is defined by an array object whose first element is a name object
identifying the color space family. The remaining array elements, if any, are
parameters that further characterize the color space; their number and types vary
according to the particular family. For families that do not require parameters,
the color space can be specified simply by the family name itself instead of an
array.

There are two principal ways in which a color space can be specified:

* Within a content stream, the CS or cs operator establishes the current color
space parameter in the graphics state. The operand is always a name object,
which either identifies one of the color spaces that need no additional parame-
ters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern) or is used
as a key in the ColorSpace subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). In the latter case, the value of the dic-
tionary entry is in turn a color space array or name. A color space array is never
permitted inline within a content stream.

* QOutside a content stream, certain objects, such as image XObjects, specify a
color space as an explicit parameter, often associated with the key ColorSpace.
In this case, the color space array or name is always defined directly as a PDF
object, not by an entry in the ColorSpace resource subdictionary. This conven-
tion also applies when color spaces are defined in terms of other color spaces.

The following operators set the current color space and current color parameters
in the graphics state:

* CS sets the stroking color space; cs sets the nonstroking color space.

* SC and SCN set the stroking color; sc and scn set the nonstroking color. De-
pending on the color space, these operators require one or more operands,
each specifying one component of the color value.

* G, RG, and K set the stroking color space implicitly and the stroking color as
specified by the operands; g, rg, and k do the same for the nonstroking color
space and color.
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4.5.3 Device Color Spaces

The device color spaces enable a page description to specify color values that are
directly related to their representation on an output device. Color values in these
spaces map directly (or via simple conversions) to the application of device color-
ants, such as quantities of ink or intensities of display phosphors. This enables a
PDF document to control colors precisely for a particular device, but the results
may not be consistent from one device to another.

Output devices form colors either by adding light sources together or by sub-
tracting light from an illuminating source. Computer displays and film recorders
typically add colors, while printing inks typically subtract them. These two ways
of forming colors give rise to two complementary methods of color specification,
called additive and subtractive color (see Plate 1). The most widely used forms of
these two types of color specification are known as RGB and CMYK, respectively,
for the names of the primary colors on which they’re based. The corresponding
device color spaces are as follows:

* DeviceGray controls the intensity of achromatic light, on a scale from black to
white.

* DeviceRGB controls the intensities of red, green, and blue light, the three addi-
tive primary colors used in displays.

* DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black
inks, the four subtractive process colors used in printing.

Although the notion of explicit color spaces is a PDF 1.1 feature, the operators for
specifying colors in the device color spaces—G@, g, RG, rg, K, and k—are available
in all versions of PDF. Beginning with PDF 1.2, colors specified in device color
spaces can optionally be remapped systematically into other color spaces; see
“Default Color Spaces” on page 194.

Note: In the transparent imaging model (PDF 1.4), the use of device color spaces is
subject to special treatment within a transparency group whose group color space is
CIE-based (see Sections 7.3, “Transparency Groups,” and 7.5.5, “Transparency
Group XObjects”). In particular, the device color space operators should be used only
if device color spaces have been remapped to CIE-based spaces by means of the
default color space mechanism. Otherwise, the results will be implementation-
dependent and unpredictable.
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DeviceGray Color Space

Black, white, and intermediate shades of gray are special cases of full color. A
grayscale value is represented by a single number in the range 0.0 to 1.0, where
0.0 corresponds to black, 1.0 to white, and intermediate values to different gray
levels. Example 4.2 shows alternative ways to select the DeviceGray color space
and a specific gray level within that space for stroking operations.

Example 4.2
/DeviceGray CS % Set DeviceGray color space
gray SC % Set gray level
gray G % Set both in one operation

The CS and SC operators select the current stroking color space and current
stroking color separately; G sets them in combination. (The cs, sc, and g opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceGray initializes the corresponding current color to 0.0.

DeviceRGB Color Space

Colors in the DeviceRGB color space are specified according to the additive RGB
(red-green-blue) color model, in which color values are defined by three compo-
nents representing the intensities of the additive primary colorants red, green,
and blue. Each component is specified by a number in the range 0.0 to 1.0, where
0.0 denotes the complete absence of a primary component and 1.0 denotes maxi-
mum intensity. If all three components have equal intensity, the perceived result
theoretically is a pure gray on the scale from black to white. If the intensities are
not all equal, the result is some color other than a pure gray.

Example 4.3 shows alternative ways to select the DeviceRGB color space and a
specific color within that space for stroking operations.

Example 4.3
/DeviceRGB CS % Set DeviceRGB color space
red green blue SC % Set color

red green blue RG % Set both in one operation
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The CS and SC operators select the current stroking color space and current
stroking color separately; RG sets them in combination. (The cs, sc, and rg opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceRGB initializes the red, green, and blue components of
the corresponding current color to 0.0.

DeviceCMYK Color Space

The DeviceCMYK color space allows colors to be specified according to the sub-
tractive CMYK (cyan-magenta-yellow-black) model typical of printers and other
paper-based output devices. In theory, each of the three standard process colorants
used in printing (cyan, magenta, and yellow) absorbs one of the additive primary
colors (red, green, and blue, respectively). Black, a fourth standard process color-
ant, absorbs all of the additive primaries in equal amounts. The four components
in a DeviceCMYK color value represent the concentrations of these process color-
ants. Each component is specified by a number in the range 0.0 to 1.0, where 0.0
denotes the complete absence of a process colorant (that is, absorbs none of the
corresponding additive primary) and 1.0 denotes maximum concentration (ab-
sorbs as much as possible of the additive primary). Note that the sense of these
numbers is opposite to that of RGB color components.

Example 4.4 shows alternative ways to select the DeviceCMYK color space and a
specific color within that space for stroking operations.

Example 4.4
/DeviceCMYK CS % Set DeviceCMYK color space
cyan magenta yellow black SC % Set color
cyan magenta yellow black K % Set both in one operation

The CS and SC operators select the current stroking color space and current
stroking color separately; K sets them in combination. (The cs, sc, and k operators
perform the same functions for nonstroking operations.) Setting either current
color space to DeviceCMYK initializes the cyan, magenta, and yellow components
of the corresponding current color to 0.0 and the black component to 1.0.
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4.5.4 CIE-Based Color Spaces

Calibrated color in PDF is defined in terms of an international standard used in
the graphic arts, television, and printing industries. CIE-based color spaces en-
able a page description to specify color values in a way that is related to human
visual perception. The goal is for the same color specification to produce consis-
tent results on different output devices, within the limitations of each device;
Plate 2 illustrates the kind of variation in color reproduction that can result from
the use of uncalibrated color on different devices. PDF 1.1 supports three CIE-
based color space families, named CalGray, CalRGB, and Lab; PDF 1.3 adds a
fourth, named ICCBased.

Note: In PDF 1.1, a color space family named CalCMYK was partially defined, with
the expectation that its definition would be completed in a future version. However,
this is no longer being considered. PDF 1.3 and later versions support calibrated
four-component color spaces by means of ICC profiles (see “ICCBased Color Spaces”
on page 189). PDF consumer applications should ignore CalCMYK color space at-
tributes and render colors specified in this family as if they had been specified using
DeviceCMYK.

The details of the CIE colorimetric system and the theory on which it is based are
beyond the scope of this book; see the Bibliography for sources of further in-
formation. The semantics of CIE-based color spaces are defined in terms of the
relationship between the space’s components and the tristimulus values X, Y, and
Z of the CIE 1931 XYZ space. The CalRGB and Lab color spaces (PDF 1.1) are
special cases of three-component CIE-based color spaces, known as CIE-based
ABC color spaces. These spaces are defined in terms of a two-stage, nonlinear
transformation of the CIE 1931 XYZ space. The formulation of such color spaces
models a simple zone theory of color vision, consisting of a nonlinear trichro-
matic first stage combined with a nonlinear opponent-color second stage. This
formulation allows colors to be digitized with minimum loss of fidelity, an im-
portant consideration in sampled images.

Color values in a CIE-based ABC color space have three components, arbitrarily
named A, B, and C. The first stage transforms these components by first forcing
their values to a specified range, then applying decoding functions, and finally
multiplying the results by a 3-by-3 matrix, producing three intermediate com-
ponents arbitrarily named L, M, and N. The second stage transforms these inter-
mediate components in a similar fashion, producing the final X, Y, and Z
components of the CIE 1931 XYZ space (see Figure 4.14).
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FIGURE 4.14 Component transformations in a CIE-based ABC color space

Color spaces in the CIE-based families are defined by an array
[name dictionary]

where name is the name of the family and dictionary is a dictionary containing
parameters that further characterize the space. The entries in this dictionary have
specific interpretations that vary depending on the color space; some entries are
required and some are optional. See the sections on specific color space families,
below, for details.

Setting the current stroking or nonstroking color space to any CIE-based color
space initializes all components of the corresponding current color to 0.0 (unless
the range of valid values for a given component does not include 0.0, in which
case the nearest valid value is substituted.)

Note: The model and terminology used here—CIE-based ABC (above) and CIE-
based A (below)—are derived from the PostScript language, which supports these
color space families in their full generality. PDF supports specific useful cases of CIE-
based ABC and CIE-based A spaces; most others can be represented as ICCBased
spaces.

CalGray Color Spaces

A CalGray color space (PDF 1.1) is a special case of a single-component CIE-
based color space, known as a CIE-based A color space. This type of space is the
one-dimensional (and usually achromatic) analog of CIE-based ABC spaces.
Color values in a CIE-based A space have a single component, arbitrarily named
A. Figure 4.15 illustrates the transformations of the A component to X, ¥; and Z
components of the CIE 1931 XYZ space.
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FIGURE 4.15 Component transformations in a CIE-based A color space

A CalGray color space is a CIE-based A color space with only one transformation
stage instead of two. In this type of space, A represents the gray component of a
calibrated gray space. This component must be in the range 0.0 to 1.0. The de-
coding function (denoted by “Decode A” in Figure 4.15) is a gamma function
whose coefficient is specified by the Gamma entry in the color space dictionary
(see Table 4.13). The transformation matrix denoted by “Matrix A” in the figure
is derived from the dictionary’s WhitePoint entry, as described below. Since there
is no second transformation stage, “Decode LMN” and “Matrix LMN” are im-
plicitly taken to be identity transformations.

TABLE 4.13 Entries in a CalGray color space dictionary

KEY

TYPE VALUE

WhitePoint

BlackPoint

Gamma

array (Required) An array of three numbers [X, Y, Z,, ] specifying the tri-
stimulus value, in the CIE 1931 XYZ space, of the diffuse white point; see
“CalRGB Color Spaces,” below, for further discussion. The numbers Xy, and
Zy, must be positive, and Yy, must be equal to 1.0.

array (Optional) An array of three numbers [ Xy Y Z;] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB
Color Spaces,” below, for further discussion. All three of these numbers must
be nonnegative. Default value: [0.0 0.0 0.0].

number (Optional) A number G defining the gamma for the gray (A) component. G
must be positive and will generally be greater than or equal to 1. Default
value: 1.
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The transformation defined by the Gamma and WhitePoint entries is

X =1L =XyxA°
G
Y=M=Y,xA
G
Z=N=ZyxA

In other words, the A component is first decoded by the gamma function, and the
result is multiplied by the components of the white point to obtain the L, M, and
N components of the intermediate representation. Since there is no second stage,
these are also the X, Y, and Z components of the final representation.

The following examples illustrate interesting and useful special cases of CalGray
spaces. Example 4.5 establishes a space consisting of the Y dimension of the CIE
1931 XYZ space with the CCIR XA/11-recommended D65 white point.

Example 4.5

[ /CalGray
<< /WhitePoint [0.9505 1.0000 1.0890] >>
]

Example 4.6 establishes a calibrated gray space with the CCIR XA/11-
recommended D65 white point and opto-electronic transfer function.

Example 4.6

[ /CalGray
<< /WhitePoint [0.9505 1.0000 1.0890]
/Gamma 2.222
>>

CalRGB Color Spaces

A CalRGB color space is a CIE-based ABC color space with only one transforma-
tion stage instead of two. In this type of space, A, B, and C represent calibrated
red, green, and blue color values. These three color components must be in the
range 0.0 to 1.0; component values falling outside that range will be adjusted to
the nearest valid value without error indication. The decoding functions
(denoted by “Decode ABC” in Figure 4.14 on page 182) are gamma functions
whose coefficients are specified by the Gamma entry in the color space dictionary
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(see Table 4.14). The transformation matrix denoted by “Matrix ABC” in Figure
4.14 is defined by the dictionary’s Matrix entry. Since there is no second transfor-
mation stage, “Decode LMN” and “Matrix LMN” are implicitly taken to be iden-
tity transformations.

TABLE 4.14 Entries in a CalRGB color space dictionary

KEY TYPE VALUE

WhitePoint  array (Required) An array of three numbers [Xy,, Yy, Zy,] specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see below for further discus-
sion. The numbers Xy, and Z;,, must be positive, and Yy,, must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [X Y Zg] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see below for further discussion.
All three of these numbers must be nonnegative. Default value: [0.0 0.0 0.0].

Gamma array (Optional) An array of three numbers [Gp G Gpl specifying the gamma for the red,
green, and blue (A, B, and C) components of the color space. Default value:
[1.0 1.0 1.0].

Matrix array (Optional) An array of nine numbers [X, Y, Z, Xp Yy Zp X Y- Z] specifying

the linear interpretation of the decoded A, B, and C components of the color space
with respect to the final XYZ representation. Default value: the identity matrix

[TOOO1000O0 1]

The WhitePoint and BlackPoint entries in the color space dictionary control the
overall effect of the CIE-based gamut mapping function described in Section 6.1,
“CIE-Based Color to Device Color.” Typically, the colors specified by WhitePoint
and BlackPoint are mapped to the nearly lightest and nearly darkest achromatic
colors that the output device is capable of rendering in a way that preserves color
appearance and visual contrast.

WhitePoint is assumed to represent the diffuse achromatic highlight, not a specu-
lar highlight. Specular highlights, achromatic or otherwise, are often reproduced
lighter than the diffuse highlight. BlackPoint is assumed to represent the diffuse
achromatic shadows its value is typically limited by the dynamic range of the in-
put device. In images produced by a photographic system, the values of White-
Point and BlackPoint vary with exposure, system response, and artistic intent;
hence, their values are image-dependent.
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The transformation defined by the Gamma and Matrix entries in the CalRGB
color space dictionary is

G Gg G
X=1=X,xA"+XgxB“+Xo.xC"
G G G
Y=M=Y,xA "+ YyxB “+Y.xC"
G Gg G
Z=N=2Z,xA"+Z;xB+Z.xC"

In other words, the A, B, and C components are first decoded individually by the
gamma functions. The results are treated as a three-element vector and multi-
plied by Matrix (a 3-by-3 matrix) to obtain the L, M, and N components of the
intermediate representation. Since there is no second stage, these are also the X, Y,
and Z components of the final representation.

Example 4.7 shows an example of a CalRGB color space for the CCIR XA/11-
recommended D65 white point with 1.8 gammas and Sony Trinitron” phosphor
chromaticities.

Example 4.7

[ /CalRGB
<< /WhitePoint [0.9505 1.0000 1.0890]
/Gamma [1.8000 1.8000 1.8000]
/Matrix [ 0.4497 0.2446 0.0252
0.3163 0.6720 0.1412
0.1845 0.0833 0.9227
]

>>

In some cases, the parameters of a CalRGB color space may be specified in terms
of the CIE 1931 chromaticity coordinates (Xp> YR)> (xG, yG), (x> ¥p) of the red,
green, and blue phosphors, respectively, and the chromaticity (xy, yy,) of the
diffuse white point corresponding to some linear RGB value (R, G, B), where
usually R = G = B = 1.0. Note that standard CIE notation uses lowercase letters to
specify chromaticity coordinates and uppercase letters to specify tristimulus
values. Given this information, Matrix and WhitePoint can be found as follows:

zZ = ywX ((xG—xB)X)/R - (XR—XB)X)/G + (xR—xG)X)/B)
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YR (xG_xB)x)’W_ (xw_xB)xJ’G + (xW—xG)X)/B
X

Y, = =
A R z
Xp l—xR
X, =Y, x— Z, =Y, x -1
A A YR A A YR
y = G (xg=xp) Xy = (e =xp) x yp + (xyy—Xp) X yp
B~ G z
X 1—x
Xy = Ypx 2 Zy = Yyx| —2 -1
YaG VG
VB (xR_xG) XYw ~ (xw_x(;) XYw + (xW_xR) XVG
YC:—x
B z
Xp l—xB
X~ =Y-.x— Z~=Y.x -1
C C Vg C C Vg
XW=XA><R+XB><G+XC><B
YW:YAxR+YB><G+YC><B
ZWZZAxR+ZBxG+ZCxB

Lab Color Spaces

A Lab color space is a CIE-based ABC color space with two transformation stages
(see Figure 4.14 on page 182). In a this type of space, A, B, and C represent the L%,
a*, and b* components of a CIE 1976 L*a*b* space. The range of the first (L*)
component is always 0 to 100; the ranges of the second and third (a* and b*)
components are defined by the Range entry in the color space dictionary (see
Table 4.15).

Plate 3 illustrates the coordinates of a typical Lab color space; Plate 4 compares
the gamuts (ranges of representable colors) for L*a*b*, RGB, and CMYK spaces.
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TABLE 4.15 Entries in a Lab color space dictionary

KEY TYPE VALUE

WhitePoint  array (Required) An array of three numbers [Xy,, Yy,, Z;)/] specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see “CalRGB Color Spaces” on
page 184 for further discussion. The numbers X;,, and Z;,, must be positive, and Yy,
must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [ Xy Yy Z] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB Color Spaces” on
page 184 for further discussion. All three of these numbers must be nonnegative.
Default value: [0.0 0.0 0.0].

Range array (Optional) An array of four numbers [a_; a . b . b 1specifying the range of

valid values for the a* and b* (B and C) components of the color space—that is,

%
Imin =4 = 9qax

and

b_. =b*<bh

min max

Component values falling outside the specified range will be adjusted to the nearest
valid value without error indication. Default value: [-100 100 —100 100].

A Lab color space does not specify explicit decoding functions or matrix coef-
ficients for either stage of the transformation from L*a*b* space to XYZ space
(denoted by “Decode ABC,” “Matrix ABC,” “Decode LMN,” and “Matrix LMN” in
Figure 4.14 on page 182). Instead, these parameters have constant implicit values.
The first transformation stage is defined by the equations

* %
_L+16+a

116 500
L*+16
116

L*+16  b*
116 200
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The second transformation stage is given by

X = Xy xg(L)
Y =Y, xg(M)
Z = Zyxg(N)

where the function g(x) is defined as

g(x) = x3 if xz%
g(x) = %AOI? x <x—z4§> otherwise

Example 4.8 defines the CIE 1976 L*a*b* space with the CCIR XA/11-
recommended D65 white point. The a* and b* components, although theoreti-
cally unbounded, are defined to lie in the useful range —128 to +127.

Example 4.8

[ /Lab
<< /WhitePoint [0.9505 1.0000 1.0890]
/Range [-128 127 -128 127]
>>

ICCBased Color Spaces

ICCBased color spaces (PDF 1.3) are based on a cross-platform color profile as
defined by the International Color Consortium (ICC). Unlike the CalGray,
CalRGB, and Lab color spaces, which are characterized by entries in the color
space dictionary, an ICCBased color space is characterized by a sequence of bytes
in a standard format. Details of the profile format can be found in the ICC speci-
fication (see the Bibliography).

An ICCBased color space is specified as an array:

[/ICCBased stream]
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The stream contains the ICC profile. Besides the usual entries common to all
streams (see Table 3.4 on page 38), the profile stream has the additional entries
listed in Table 4.16.

TABLE 4.16 Additional entries specific to an ICC profile stream dictionary

KEY TYPE VALUE

N integer (Required) The number of color components in the color space described by the ICC
profile data. This number must match the number of components actually in the ICC
profile. As of PDF 1.4, N must be 1, 3, or 4.

Alternate array or (Optional) An alternate color space to be used in case the one specified in the stream
name data is not supported (for example, by viewer applications designed for earlier
versions of PDF). The alternate space may be any valid color space (except a Pattern
color space) that has the number of components specified by N. If this entry is omit-
ted and the viewer application does not understand the ICC profile data, the color
space used will be DeviceGray, DeviceRGB, or DeviceCMYK, depending on whether
the value of N is 1, 3, or 4, respectively.

Note: Note that there is no conversion of source color values, such as a tint transforma-
tion, when using the alternate color space. Color values that are within the range of the
ICCBased color space might not be within the range of the alternate color space. In this
case, the nearest values within the range of the alternate space will be substituted.

Range array (Optional) An array of 2 x N numbers [min, max, min, max, ...] specifying the
minimum and maximum valid values of the corresponding color components.
These values must match the information in the ICC profile. Default value:
[0.01.0 0.01.0 ...].

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the color space (see
Section 9.2.2, “Metadata Streams”).

The ICC specification is an evolving standard. The ICCBased color spaces
supported in PDF 1.3 are based on ICC specification version 3.3; those in PDF
1.4 are based on the ICC specification ICC.1:1998-09 and its addendum
ICC.1A:1999-04. (Earlier versions of the ICC specification are also supported.)
This has the following consequences for producers and consumers of PDF:

* A consumer that supports a given PDF version is required to support ICC pro-
files conforming to the corresponding version (and earlier versions) of the ICC
specification, as described above. It may optionally support later ICC versions.
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* For the most predictable and consistent results, a producer of a given PDF ver-
sion should embed only profiles conforming to the corresponding version of
the ICC specification.

* A PDF producer may embed profiles conforming to a later ICC version, with
the understanding that the results will vary depending on the capabilities of the
consumer. The consumer might process the profile while ignoring newer
features, or it might fail altogether to process the profile. In light of this, it is
recommended that the producer provide an alternate color space (Alternate
entry in the ICCBased color space dictionary) containing a profile that is appro-
priate for the PDF version.

As of version 1.4, PDF supports only the profile types shown in Table 4.17; other
types may be supported in the future. (In particular, note that XYZ and 16-bit
L*a*b* profiles are not supported.) Each of the indicated fields must have one of
the values listed for that field in the second column of the table. (Profiles must
satisfy both the criteria shown in the table.) The terminology is taken from the
ICC specifications.

TABLE 4.17 ICC profile types

HEADER FIELD REQUIRED VALUE

deviceClass icSigInputClass ('scnr')
icSigDisplayClass ('mntr')
icSigOutputClass ('prtr')
icSigColorSpaceClass (‘spac’)

colorSpace icSigGrayData ('GRAY')
icSigRgbData ('RGB ')
icSigCmykData ('CMYK')
icSigLabData ('Lab ')

The terminology used in PDF color spaces and ICC color profiles is similar, but
sometimes the same terms are used with different meanings. For example, the
default value for each component in an ICCBased color space is 0. The range of
each color component is a function of the color space specified by the profile and
is indicated in the ICC specification. The ranges for several ICC color spaces are
shown in Table 4.18.
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TABLE 4.18 Ranges for typical ICC color spaces

ICC COLOR SPACE COMPONENT RANGES

Gray [0.0 1.0]
RGB [0.0 1.0]
CMYK [0.0 1.0]
L*a*b* L*: [0 100]; a* and b*: [-128 127]

Since the ICCBased color space is being used as a source color space, only the “to
CIE” profile information (AToB in ICC terminology) is used; the “from CIE”
(BToA) information is ignored when present. An ICC profile may also specify a
rendering intent, but PDF viewer applications ignore this information; the ren-
dering intent is specified in PDF by a separate parameter (see “Rendering
Intents” on page 197).

Note: The requirements stated above apply to an ICCBased color space that is used
to specify the source colors of graphics objects. When such a space is used as the
blending color space for a transparency group in the transparent imaging model
(see Sections 7.2.3, “Blending Color Space™; 7.3, “Transparency Groups”; and 7.5.5,
“Transparency Group XObjects”), it must have both “to CIE” (AToB) and “from
CIE” (BToA) information. This is because the group color space is used as both the
destination for objects being painted within the group and the source for the group’s
results. ICC profiles are also used in specifying output intents for matching the
color characteristics of a PDF document with those of a target output device or pro-
duction environment. When used in this context, they are subject to still other con-
straints on the “to CIE” and “from CIE” information; see Section 9.10.4, “Output
Intents,” for details.

The representations of ICCBased color spaces are less compact than CalGray,
CalRGB, and Lab, but can represent a wider range of color spaces. In those cases
where a given color space can be expressed by more than one of the CIE-based
color space families, the resulting colors are expected to be rendered similarly,
regardless of the method selected for representation.

One particular color space is the so-called “standard RGB” or sRGB, defined in
the International Electrotechnical Commission (IEC) document Colour Measure-
ment and Management in Multimedia Systems and Equipment (see the Bibliogra-
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phy). In PDF, the sRGB color space can be expressed precisely only as an
ICCBased space, although it can be approximated by a CalRGB space.

Example 4.9 shows an ICCBased color space for a typical three-component RGB
space. The profile’s data has been encoded in hexadecimal representation for
readability; in actual practice, a lossless decompression filter such as FlateDecode
should be used.

Example 4.9
10 0 obj % Color space
[/ICCBased 150R]
endobj
15 0 obj % ICC profile stream
<< /N 3

/Alternate /DeviceRGB

/Length 1605

/Filter /ASClIHexDecode

>>

stream
00 00 02 0C 61 70 70 6C 02 00 00 00 6D 6E 74 72
52 47 42 20 58 59 5A 20 07 CB 00 02 00 16 00 OE
00 22 00 2C 61 63 73 70 41 50 50 4C 00 00 00 00
61 70 70 6C 00 00 04 01 00 00 00 00 00 00 00 02
00 00 00 00 00 00 F6 D4 00 01 00 00 00 00 D3 2B
00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
00 00 00 09 64 65 73 63 00 00 00 FO 00 00 00 71
72 58 59 5A 00 00 01 64 00 00 00 14 67 58 59 5A
00 00 01 78 00 00 00 14 62 58 59 5A 00 00 01 8C
00 00 00 14 72 54 52 43 00 00 01 A0 00 00 00 OE
67 54 52 43 00 00 01 BO 00 00 00 OE 62 54 52 43
00 00 01 CO 00 00 00 OE 77 74 70 74 00 00 01 DO
00 00 00 14 63 70 72 74 00 00 01 E4 00 00 00 27
64 65 73 63 00 00 00 00 00 00 00 17 41 70 70 6C
65 20 31 33 22 20 52 47 42 20 53 74 61 6E 64 61
72 64 00 00 00 00 00 00 00 OO0 00 00 00 17 41 70
70 6C 65 20 31 33 22 20 52 47 42 20 53 74 61 6E
64 61 72 64 00 00 00 00 OO 00 00 00 OO 00 00 OO
00 00 00 00 00 00 00 00 OO0 00 00 00 OO0 00 00 00
00 00 00 00 00 00 00 00 OO0 00 00 00 OO0 00 00 00
00 58 59 5A 58 59 5A 20 00 00 00 00 00 00 63 OA



| CHAPTER 4 | Graphics

00 00 35 OF 00 00 03 30 58 59 5A 20 00 00 00 00
00 00 53 3D 00 00 AE 37 00 00 15 76 58 59 5A 20
00 00 00 00 00 00 40 89 00 00 1C AF 00 00 BA 82
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 58 59
58 59 5A 20 00 00 00 00 00 00 F3 1B 00 01 00 00
00 01 67 E7 74 65 78 74 00 00 00 00 20 43 6F 70
79 72 69 67 68 74 20 41 70 70 6C 65 20 43 6F 6D
70 75 74 65 72 73 20 31 39 39 34 00 >

endstream

endobj

Default Color Spaces

Specifying colors in a device color space (DeviceGray, DeviceRGB, or Device-
CMYK) makes them device-dependent. By setting default color spaces (PDF 1.1), a
PDF document can request that such colors be systematically transformed
(remapped) into device-independent CIE-based color spaces. This capability can
be useful in a variety of circumstances, such as the following:

* A document originally intended for one output device is redirected to a differ-
ent device.

* A document is intended to be compatible with viewer applications designed for
earlier versions of PDF, and thus cannot specify CIE-based colors directly.

* Color corrections or rendering intents need to be applied to device colors (see
“Rendering Intents” on page 197).

A color space is selected for painting each graphics object. This is either the cur-
rent color space parameter in the graphics state or a color space given as an entry
in an image XObject, inline image, or shading dictionary. Regardless of how the
color space is specified, it may be subject to remapping as described below.

When a device color space is selected, the ColorSpace subdictionary of the cur-
rent resource dictionary (see Section 3.7.2, “Resource Dictionaries”) is checked
for the presence of an entry designating a corresponding default color space
(DefaultGray, DefaultRGB, or DefaultCMYK, corresponding to DeviceGray,
DeviceRGB, or DeviceCMYK, respectively). If such an entry is present, its value is
used as the color space for the operation currently being performed. (If the view-
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er application does not recognize this color space, no remapping will occur; the
original device color space will be used.)

Color values in the original device color space are passed unchanged to the
default color space, which must have the same number of components as the
original space. The default color space should be chosen to be compatible with
the original, taking into account the components’ ranges and whether the com-
ponents are additive or subtractive. If a color value lies outside the range of the
default color space, it will be adjusted to the nearest valid value.

Note: Any color space other than a Lab, Indexed, or Pattern color space may be used
as a default color space, provided that it is compatible with the original device color
space as described above.

If the selected space is a special color space based on an underlying device color
space, the default color space will be used in place of the underlying space. This
applies to the following:

* The underlying color space of a Pattern color space
* The base color space of an Indexed color space

* The alternate color space of a Separation or DeviceN color space (but only if
the alternate color space is actually selected)

See Section 4.5.5, “Special Color Spaces,” for details on these color spaces.

Note: Note that there is no conversion of color values, such as a tint transformation,
when using the default color space. Color values that are within the range of the
device color space might not be within the range of the default color space (particu-
larly if the default is an ICCBased color space). In this case, the nearest values within
the range of the default space will be used. For this reason, a Lab color space is not
permitted as the DefaultRGB color space.

Implicit Conversion of CIE-Based Color Spaces

In workflows in which PDF documents are intended for rendering on a specific
target output device (such as a printing press with particular inks and media), it
is often useful to specify the source colors for some or all of a document’s objects
in a CIE-based color space that matches the calibration of the intended device.
The resulting document, while tailored to the specific characteristics of the target



196 .
| CHAPTER 4 | Graphics |

device, remains device-independent and will produce reasonable results if re-
targeted to a different output device. However, the expectation is that if the docu-
ment is printed on the intended target device, source colors that have been
specified in a color space matching the calibration of the device will pass through
unchanged, without conversion to and from the intermediate CIE 1931 XYZ
space as depicted in Figure 4.14 on page 182.

In particular, when colors intended for a CMYK output device are specified in an
ICCBased color space using a matching CMYK printing profile, converting such
colors from four components to three and back is unnecessary and will result in
an undesirable loss of fidelity in the black component. In such cases, PDF viewer
applications may provide the ability for the user to specify a particular calibration
to use for printing, proofing, or previewing. This calibration is then considered
to be that of the native color space of the intended output device (typically
DeviceCMYK), and colors expressed in a CIE-based source color space matching
it can be treated as if they were specified directly in the device’s native color space.
Note that the conditions under which such implicit conversion is done cannot be
specified in PDF itself, since nothing in PDF describes the calibration of the out-
put device (although an output intent dictionary, if present, may suggest such a
calibration; see Section 9.10.4, “Output Intents”). The conversion is completely
hidden by the viewer application and plays no part in the interpretation of PDF
color spaces.

When this type of implicit conversion is done, all of the semantics of the device
color space should also apply, even though they do not apply to CIE-based spaces
in general. In particular:

* The nonzero overprint mode (see Section 4.5.6, “Overprint Control”) deter-
mines the interpretation of color component values in the space.

* If the space is used as the blending color space for a transparency group in the
transparent imaging model (see Sections 7.2.3, “Blending Color Space”; 7.3,
“Transparency Groups”; and 7.5.5, “Transparency Group XObjects”), compo-
nents of the space, such as Cyan, can be selected in a Separation or DeviceN
color space used within the group (see “Separation Color Spaces” on page 201
and “DeviceN Color Spaces” on page 205).

* Likewise, any uses of device color spaces for objects within such a transparency
group have well-defined conversions to the group color space.
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Note: A source color space can be specified directly (for example, with an ICCBased
color space) or indirectly using the default color space mechanism (for example,
DefaultCMYK; see “Default Color Spaces” on page 194). The implicit conversion of a
CIE-based color space to a device space should not depend on whether the CIE-based
space is specified directly or indirectly.

Rendering Intents

Although CIE-based color specifications are theoretically device-independent,
they are subject to practical limitations in the color reproduction capabilities of
the output device. Such limitations may sometimes require compromises to be
made among various properties of a color specification when rendering colors
for a given device. Specifying a rendering intent (PDF 1.1) allows a PDF file to set
priorities regarding which of these properties to preserve and which to sacrifice.
For example, the PDF file might request that colors falling within the output
device’s gamut (the range of colors it can reproduce) be rendered exactly while
sacrificing the accuracy of out-of-gamut colors, or that a scanned image such as a
photograph be rendered in a perceptually “pleasing” manner at the cost of strict
colorimetric accuracy.

Rendering intents are specified with the ri operator (see Section 4.3.3, “Graphics
State Operators”) and with the Intent entry in image dictionaries (Section 4.8.4,
“Image Dictionaries”). The value is a name identifying the desired rendering
intent. Table 4.19 lists the standard rendering intents recognized in the initial
release of PDF viewer applications from Adobe Systems; Plate 5 illustrates their
effects. These intents have been deliberately chosen to correspond closely to those
defined by the International Color Consortium (ICC), an industry organization
that has developed standards for device-independent color. Note, however, that
the exact set of rendering intents supported may vary from one output device to
another; a particular device may not support all possible intents, or may support
additional ones beyond those listed in the table. If the viewer application does not
recognize the specified name, it uses the RelativeColorimetric intent by default.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular
“Rendering Intent and Color Conversions” on page 468, for further discussion of
the role of rendering intents in the transparent imaging model.
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TABLE 4.19 Rendering intents

NAME

DESCRIPTION

AbsoluteColorimetric

RelativeColorimetric

Saturation

Perceptual

Colors are represented solely with respect to the light source; no
correction is made for the output medium’s white point (such as
the color of unprinted paper). Thus, for example, a monitor’s
white point, which is bluish compared to that of a printer’s
paper, would be reproduced with a blue cast. In-gamut colors
are reproduced exactly; out-of-gamut colors are mapped to the
nearest value within the reproducible gamut. This style of
reproduction has the advantage of providing exact color
matches from one output medium to another. It has the
disadvantage of causing colors with Y values between the
medium’s white point and 1.0 to be out of gamut. A typical use
might be for logos and solid colors that require exact
reproduction across different media.

Colors are represented with respect to the combination of the
light source and the output medium’s white point (such as the
color of unprinted paper). Thus, for example, a monitor’s white
point would be reproduced on a printer by simply leaving the
paper unmarked, ignoring color differences between the two
media. In-gamut colors are reproduced exactly; out-of-gamut
colors are mapped to the nearest value within the reproducible
gamut. This style of reproduction has the advantage of adapting
for the varying white points of different output media. It has the
disadvantage of not providing exact color matches from one
medium to another. A typical use might be for vector graphics.

Colors are represented in a manner that preserves or emphasizes
saturation. Reproduction of in-gamut colors may or may not be
colorimetrically accurate. A typical use might be for business
graphics, where saturation is the most important attribute of the
color.

Colors are represented in a manner that provides a pleasing
perceptual appearance. This generally means that both in-gamut
and out-of-gamut colors are modified from their precise
colorimetric values in order to preserve color relationships. A
typical use might be for scanned images.
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4.5.5 Special Color Spaces

Special color spaces add features or properties to an underlying color space.
There are four special color space families: Pattern, Indexed, Separation, and
DeviceN.

Pattern Color Spaces

A Pattern color space (PDF 1.2) enables a PDF content stream to paint an area
with a “color” defined as a pattern, which may be either a tiling pattern (type 1) or
a shading pattern (type 2). Section 4.6, “Patterns,” discusses patterns in detail.

Indexed Color Spaces

An Indexed color space allows a PDF content stream to select from a color map or
color table of arbitrary colors in some other space, using small integers as indices.
A PDF viewer application treats each sample value as an index into the color table
and uses the color value it finds there. This technique can considerably reduce the
amount of data required to represent a sampled image—for example, by using
8-bit index values as samples instead of 24-bit RGB color values.

An Indexed color space is defined by a four-element array, as follows:
[/Indexed base hival lookup]

The first element is the color space family name Indexed. The remaining ele-
ments are parameters that an Indexed color space requires; their meanings are
discussed below. Setting the current stroking or nonstroking color space to an
Indexed color space initializes the corresponding current color to 0.

The base parameter is an array or name that identifies the base color space in
which the values in the color table are to be interpreted. It can be any device or
CIE-based color space or (in PDF 1.3) a Separation or DeviceN space, but not a
Pattern space or another Indexed space. For example, if the base color space is
DeviceRGB, the values in the color table are to be interpreted as red, green, and
blue components; if the base color space is a CIE-based ABC space such as a
CalRGB or Lab space, the values are to be interpreted as A, B, and C components.
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Note: Attempting to use a Separation or DeviceN color space as the base for an
Indexed color space will generate an error in PDF 1.2.

The hival parameter is an integer that specifies the maximum valid index value. In
other words, the color table is to be indexed by integers in the range 0 to hival.
hival can be no greater than 255, which is what would be required to index a table
with 8-bit index values.

The color table is defined by the lookup parameter, which can be either a stream
or (in PDF 1.2) a string. It provides the mapping between index values and the
corresponding colors in the base color space.

The color table data must be m x (hival + 1) bytes long, where m is the number of
color components in the base color space. Each byte is an unsigned integer in the
range 0 to 255 that is scaled to the range of the corresponding color component
in the base color space; that is, 0 corresponds to the minimum value in the range
for that component, and 255 corresponds to the maximum.

Note: This is different from the interpretation of an Indexed color space’s color table
in PostScript. In PostScript, the component value is always scaled to the range 0.0 to
1.0, regardless of the range of color values in the base color space.

The color components for each entry in the table appear consecutively in the
string or stream. For example, if the base color space is DeviceRGB and the
indexed color space contains two colors, the order of bytes in the string or stream
isR, G, B, R, G, B;, where letters denote the color component and numeric
subscripts denote the table entry.

Example 4.10 illustrates the specification of an Indexed color space that maps
8-bit index values to three-component color values in the DeviceRGB color space.

Example 4.10

[ /Indexed
/DeviceRGB
255
<000000 FFOO00 OOFFOO OOOOFF B57342 ...>

The example shows only the first five color values in the lookup string; in all, there
should be 256 color values and the string should be 768 bytes long. Having



SECTION 4.5 | Color Spaces |

established this color space, the program can now specify colors using single-
component values in the range 0 to 255. For example, a color value of 4 selects an
RGB color whose components are coded as the hexadecimal integers B5, 73, and
42. Dividing these by 255 and scaling the results to the range 0.0 to 1.0 yields a
color with red, green, and blue components of 0.710, 0.451, and 0.259, respec-
tively.

Although an Indexed color space is useful mainly for images, index values can
also be used with the color selection operators SC, SCN, sc, and scn. For example,

123 sc

selects the same color as does an image sample value of 123. The index value
should be an integer in the range 0 to hival. If it is a real number, it is rounded to
the nearest integer; if it is outside the range 0 to hival, it is adjusted to the nearest
value within that range.

Separation Color Spaces

Color output devices produce full color by combining primary or process
colorants in varying amounts. On an additive color device such as a display, the
primary colorants consist of red, green, and blue phosphors; on a subtractive de-
vice such as a printer, they typically consist of cyan, magenta, yellow, and some-
times black inks. In addition, some devices can apply special colorants, often
called spot colorants, to produce effects that cannot be achieved with the standard
process colorants alone. Examples include metallic and fluorescent colors and
special textures.

When printing a page, most devices produce a single composite page on which all
process colorants (and spot colorants, if any) are combined. However, some de-
vices, such as imagesetters, produce a separate, monochromatic rendition of the
page, called a separation, for each individual colorant. When the separations are
later combined—on a printing press, for example—and the proper inks or other
colorants are applied to them, a full-color page results.

A Separation color space (PDF 1.2) provides a means for specifying the use of
additional colorants or for isolating the control of individual color components
of a device color space for a subtractive device. When such a space is the current
color space, the current color is a single-component value, called a tint, that con-
trols the application of the given colorant or color components only.
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Note: The term separation is often misused as a synonym for an individual device
colorant. In the context of this discussion, a printing system that produces separa-
tions generates a separate piece of physical medium (generally film) for each color-
ant. It is these pieces of physical medium that are correctly referred to as separations.
A particular colorant properly constitutes a separation only if the device is generating
physical separations, one of which corresponds to the given colorant. The Separation
color space is so named for historical reasons, but it has evolved to the broader pur-
pose of controlling the application of individual colorants in general, whether or not
they are actually realized as physical separations.

Note also that the operation of a Separation color space itself is independent of the
characteristics of any particular output device. Depending on the device, the space
may or may not correspond to a true, physical separation or to an actual colorant.
For example, a Separation color space could be used to control the application of a
single process colorant (such as cyan) on a composite device that does not produce
physical separations, or could represent a color (such as orange) for which no specific
colorant exists on the device. A Separation color space provides consistent, predict-
able behavior, even on devices that cannot directly generate the requested color.

A Separation color space is defined as follows:

[/Separation name alternateSpace tintTransform]

In other words, it is a four-element array whose first element is the color space
family name Separation. The remaining elements are parameters that a
Separation color space requires; their meanings are discussed below.

A color value in a Separation color space consists of a single tint component in
the range 0.0 to 1.0. The value 0.0 represents the minimum amount of colorant
that can be applied; 1.0 represents the maximum. Tints are always treated as
subtractive colors, even if the device produces output for the designated compo-
nent by an additive method. Thus a tint value of 0.0 denotes the lightest color
that can be achieved with the given colorant, and 1.0 the darkest. (Note that this
is the same as the convention for DeviceCMYK color components, but opposite to
the one for DeviceGray and DeviceRGB.) The SCN and scn operators respectively
set the current stroking and nonstroking color in the graphics state to a tint value;
the initial value in either case is 1.0. A sampled image with single-component
samples can also be used as a source of tint values.

The name parameter in the color space array is a name object specifying the
name of the colorant that this Separation color space is intended to represent (or
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one of the special names All or None; see below). Such colorant names are arbi-
trary, and there can be any number of them, subject to implementation limits.

The special colorant name All refers collectively to all colorants available on an
output device, including those for the standard process colorants. When a
Separation space with this colorant name is the current color space, painting
operators apply tint values to all available colorants at once. This is useful for
purposes such as painting registration targets in the same place on every separa-
tion. Such marks would typically be painted as the last step in composing a page,
to ensure that they are not overwritten by subsequent painting operations.

The special colorant name None will never produce any visible output. Painting
operations in a Separation space with this colorant name have no effect on the
current page.

All devices support Separation color spaces with the colorant names All and
None, even if they do not support any others. Separation spaces with either of
these colorant names ignore the alternateSpace and tintTransform parameters (dis-
cussed below), although valid values must still be provided.

At the moment the color space is set to a Separation space, the viewer application
determines whether the device has an available colorant corresponding to the
name of the requested space. If so, the application ignores the alternateSpace and
tintTransform parameters; subsequent painting operations within the space will
apply the designated colorant directly, according to the tint values supplied.

Note: The preceding paragraph applies only to subtractive output devices such as
printers and imagesetters. For an additive device such as a computer display, a
Separation color space never applies a process colorant directly; it always reverts to
the alternate color space as described below. This is because the model of applying
process colorants independently does not work as intended on an additive device; for
instance, painting tints of the Red component on a white background produces a
result that varies from white to cyan.

Note that this exception applies only to colorants for additive devices, not to the spe-
cific names Red, Green, and Blue. In contrast, a printer might have a (subtractive)
ink named, say, Red, which should work as a Separation color space just the same as
any other supported colorant.
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If the colorant name associated with a Separation color space does not cor-
respond to a colorant available on the device, the viewer application arranges
instead for subsequent painting operations to be performed in an alternate color
space. This enables the intended colors to be approximated by colors in some
device or CIE-based color space, which are then rendered using the usual pri-
mary or process colorants. This works as follows:

* The alternateSpace parameter must be an array or name object that identifies
the alternate color space. This can be any device or CIE-based color space, but
not another special color space (Pattern, Indexed, Separation, or DeviceN).

* The tintTransform parameter must be a function (see Section 3.9, “Functions”).
During subsequent painting operations, a viewer application will call this
function to transform a tint value into color component values in the alternate
color space. The function is called with the tint value and must return the cor-
responding color component values. That is, the number of components and
the interpretation of their values depend on the alternate color space.

Note: Painting in the alternate color space may produce a good approximation of the
intended color when only opaque objects are painted. However, it will not correctly
represent the interactions between an object and its backdrop when the object is
painted with transparency or when overprinting (see Section 4.5.6, “Overprint Con-
trol”) is enabled.

Example 4.11 illustrates the specification of a Separation color space (object 5)
that is intended to produce a color named LogoGreen. If the output device has no
colorant corresponding to this color, DeviceCMYK will be used as the alternate
color space; the tint transformation function provided (object 12) maps tint
values linearly into shades of a CMYK color value approximating the “logo green”
color.

Example 4.11

5 0 obj % Color space
[ /Separation
/LogoGreen
/DeviceCMYK
120R

endobj
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12 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 62
>>
stream
{ dup 0.84 mul
exch 0.00 exch dup 0.44 mul
exch 0.21 mul
}

endstream
endobj

See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of Separation color spaces in the transparent imaging model.

DeviceN Color Spaces

DeviceN color spaces (PDF 1.3) support the use of high-fidelity and multitone
color. High-fidelity color is the use of more than the standard CMYK process
colorants to produce an extended gamut, or range of colors. A popular example is
the PANTONE® Hexachrome™ system, which uses six colorants: the usual cyan,
magenta, yellow, and black, plus orange and green.

Multitone color systems use a single-component image to specify multiple color
components. In a duotone, for example, a single-component image can be used to
specify both the black component and a spot color component. The tone
reproduction is generally different for the different components; for example, the
black component might be painted with the exact sample data from the single-
component image, while the spot color component might be generated as a
nonlinear function of the image data in a manner that emphasizes the shadows.
Plate 6 shows an example using black and magenta color components. In Plate 7,
a single-component grayscale image is used to generate a quadtone result using
four colorants: black and three PANTONE spot colors. See Example 4.17 on page
212 for the code used to generate this image.

DeviceN color spaces allow any subset of the available device colorants to be
treated as a device color space with multiple components. This provides greater
flexibility than is possible with standard device color spaces such as DeviceCMYK
or with individual Separation color spaces. For example, it is possible to create a
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DeviceN color space consisting of only the cyan, magenta, and yellow color com-
ponents, while excluding the black component. If overprinting is enabled (see
Section 4.5.6, “Overprint Control”), painting in this color space will leave the
black component unchanged.

A DeviceN color space is specified as follows:

[/DeviceN names alternateSpace tintTransform]

or

[/DeviceN names alternateSpace tintTransform attributes]

It is a four- or five-element array whose first element is the color space family
name DeviceN. The remaining elements are parameters that a DeviceN color
space requires; their meanings are discussed below.

Color values in the DeviceN color space are tint components in the range 0.0 to
1.0. The value 0.0 represents the minimum amount of colorant; 1.0 represents
the maximum. The SCN and scn operators respectively set the current stroking
and nonstroking color in the graphics state to a set of tint values; the initial value
is 1.0 for each tint. A sampled image can also be treated as a source of tint values.

A DeviceN color space works almost the same as a Separation color space—in
fact, a DeviceN color space with only one component is exactly equivalent to a
Separation color space. The following are the only differences between DeviceN
and Separation:

* Color values in a DeviceN color space consist of multiple tint components,
rather than only one. The number of components is subject to an implementa-
tion limit; see Appendix C.

* The names parameter in the color space array is an array of name objects speci-
fying the individual colorants. (The special colorant name All is not allowed.)
The length of the array determines the number of components, and hence the
number of operands required by the SCN and scn operators when this space is
the current color space. Operand values supplied to SCN or scn are interpreted
as color component values in the order in which the colors are given in the
names array.

* At the moment the color space is set to a DeviceN space, the viewer application
will select the requested set of colorants only if all of them are available on the
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device; otherwise, it will select the alternate color space designated by the
alternateSpace parameter.

* The tint transformation function is called with # tint values and must return
the corresponding m color component values, where 7 is the number of com-
ponents needed to specify a color in the DeviceN color space and m is the num-
ber required by the alternate color space.

In a DeviceN color space, one or more of the colorant names in the names array
may be the name None. This indicates that the corresponding color component is
never painted on the page, as in a Separation color space for the None colorant.
When a DeviceN color space is painting the named device colorants directly,
color components corresponding to None colorants are discarded. However,
when the DeviceN color space reverts to its alternate color space, those com-
ponents are passed to the tint transformation function, which may use them in
any desired manner.

Note: A DeviceN color space whose component colorant names are all None always
discards its output, just the same as a Separation color space for None; it never
reverts to the alternate color space. Reversion occurs only if at least one color com-
ponent (other than None) is specified and is not available on the device.

The optional attributes parameter is a dictionary containing additional informa-
tion about the color space. At the time of publication, only one entry is defined in
this dictionary, as shown in Table 4.20.

TABLE 4.20 Entry in a DeviceN color space attributes dictionary

KEY

TYPE VALUE

Colorants

dictionary (Optional) A dictionary describing the individual colorants used in the DeviceN
color space. For each entry in this dictionary, the key is a colorant name and the
value is an array defining a Separation color space for that colorant (see “Separa-
tion Color Spaces” on page 201). The key must match the colorant name given in
that color space. The dictionary need not list all colorants used in the DeviceN

color space and may list additional colorants.

This dictionary has no effect on the operation of the DeviceN color space itself or
the appearance that it produces. However, it provides information about the indi-
vidual colorants that may be useful to some applications. In particular, the alter-
nate color space and tint transformation function of a Separation color space
describe the appearance of that colorant alone, whereas those of a DeviceN color

space describe only the appearance of its colorants in combination.
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Example 4.12 shows a DeviceN color space consisting of three color components
named Orange, Green, and None. In this example, the DeviceN color space,
object 30, has an attributes dictionary whose Colorants entry is an indirect refer-
ence to object 45 (which might also be referenced by attributes dictionaries of
other DeviceN color spaces). tintTransform1, whose definition is not shown, maps
three color components (tints of the colorants Orange, Green, and None) to four
color components in the alternate color space, DeviceCMYK. tintTransform2 maps
a single color component (an orange tint) to four components in DeviceCMYK.
Likewise, tintTransform3 maps a green tint to DeviceCMYK, and tintTransform4
maps a tint of PANTONE 131 to DeviceCMYK.

Example 4.12

30 0 obj % Color space
[ /DeviceN
[/Orange /Green /None]
/DeviceCMYK
tintTransform1
<< /Colorants 450R >>
]

endobj
45 0 obj % Colorants dictionary
<< /Orange [ /Separation
/Orange
/DeviceCMYK
tintTransform2

1
/Green [ /Separation
/Green
/DeviceCMYK
tintTransform3
1
/PANTONE#20131 [ /Separation
/PANTONE#20131
/DeviceCMYK
tintTransform4

>>
endobj
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See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of DeviceN color spaces in the transparent imaging model.

Multitone Examples

The following examples illustrate various interesting and useful special cases of
the use of Indexed and DeviceN color spaces in combination to produce multi-
tone colors.

Examples 4.13 and 4.14 illustrate the use of DeviceN to create duotone color
spaces. In Example 4.13, an Indexed color space maps index values in the range 0
to 255 to a duotone DeviceN space in cyan and black. In effect, the index values
are treated as if they were tints of the duotone space, which are then mapped into
tints of the two underlying colorants. Only the beginning of the lookup table
string for the Indexed color space is shown; the full table would contain 256 two-
byte entries, each specifying a tint value for cyan and black, for a total of 512
bytes. If the alternate color space of the DeviceN space is selected, the tint trans-
formation function (object 15 in the example) maps the two tint components for
cyan and black to the four components for a DeviceCMYK color space by supply-
ing zero values for the other two components. Example 4.14 shows the definition
of another duotone color space, this time using black and gold colorants (where
gold is a spot colorant) and using a CalRGB space as the alternate color space. This
could be defined in the same way as in the preceding example, with a tint trans-
formation function that converts from the two tint components to colors in the
alternate CalRGB color space.

Example 4.13

10 0 obj % Color space
[ /Indexed
[ /DeviceN
[/Cyan /Black]
/DeviceCMYK
150R
]
255
<6605 6806 6907 6B09 6COA ...>

endobj
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15 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 16
>>
stream
{0 0 3 -1 roll}
endstream
endobj

Example 4.14

30 0 obj % Color space
[ /Indexed
[ /DeviceN

[/Black /Gold]

[ /CalRGB
<< /WhitePoint [1.0 1.0 1.0]

/Gamma [2.2 2.2 2.2]

>>

350R % Tint transformation function
]
255
...Lookup table...

]
endobj

Given a formula for converting any combination of black and gold tints to cali-
brated RGB, a 2-in, 3-out type 4 (PostScript calculator) function could be used
for the tint transformation. Alternatively, a type 0 (sampled) function could be
used, but this would require a large number of sample points to represent the
function accurately; for example, sampling each input variable for 256 tint values
between 0.0 and 1.0 would require 256 = 65,536 samples. But since the DeviceN
color space is being used as the base of an Indexed color space, there are actually
only 256 possible combinations of black and gold tint values. A more compact
way to represent this information is to put the alternate color values directly into
the lookup table alongside the DeviceN color values, as in Example 4.15.
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Example 4.15

10 0 obj % Color space
[ /Indexed
[ /DeviceN
[/Black /Gold /None /None /None]
[ /CalRGB

<< /WhitePoint [1.0 1.0 1.0]
/Gamma [2.2 2.2 2.2]
>>

200R % Tint transformation function
]
255
...Lookup table...
]
endobj

In this example, each entry in the lookup table has five components: two for
the black and gold colorants and three more (specified as None) for the equiva-
lent CalRGB color components. If the black and gold colorants are available on
the output device, the None components will be ignored; if black and gold are
not available, the tint transformation function will be used to convert a five-
component color into a three-component equivalent in the alternate CalRGB
color space. But since, by construction, the third, fourth, and fifth components
are the CalRGB components, the tint transformation function can merely dis-
card the first two components and return the last three. This can be easily ex-
pressed with a type 4 (PostScript calculator) function, as shown in Example
4.16.

Example 4.16

20 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0]

/Length 27
>>
stream
{5 3 roll pop pop}
endstream

endobj
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Finally, Example 4.17 uses an extension of the techniques described above to pro-
duce the quadtone (four-component) image shown in Plate 7.

Example 4.17

5 0 obj % Image XObject
<< /[Type /XObject
/Subtype /Image
/Width 288
/Height 288
/ColorSpace 100R
/BitsPerComponent 8
/Length 105278
/Filter /ASClI85Decode

>>
stream
... Data for grayscale image...
endstream
endobj
10 0 obj % Indexed color space for image
[ /Indexed
150R % Base color space
255 % Table has 256 entries
300R % Lookup table
]
endobj
15 0 obj % Base color space (DeviceN) for Indexed space
[ /DeviceN
[ /Black % Four colorants (black plus three spot colors)
/PANTONE#20216#20CVC
/PANTONE#20409#20CVC
/PANTONE#202985#20CVC
/None % Three components for alternate space
/None
/None
]
160R % Alternate color space
200R % Tint transformation function

endobj
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16 0 obj % Alternate color space for DeviceN space
[ /CalRGB

<< /WhitePoint [1.0 1.0 1.0] >>
]
endobj

20 0 obj % Tint transformation function for DeviceN space
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0]
/Length 44
>>
stream
{7 3 roll % Just discard first four values
pop pop pop pop
}
endstream
endobj

30 0 obj % Lookup table for Indexed color space
<< /Length 1975
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
8;T1BB2"M7*I"psYBt1k\gY 1T<D&tO]r*F7Hga*
...Additional data (seven components for each table entry)...
endstream
endobj

As in the preceding examples, an Indexed color space based on a DeviceN space is
used to paint the grayscale image shown on the left in the plate with four color-
ants: black and three PANTONE spot colors. The alternate color space is a simple
calibrated RGB. Thus the DeviceN color space has seven components: the four
desired colorants plus the three components of the alternate space. The example
shows the image XObject (see Section 4.8.4, “Image Dictionaries”) representing
the quadtone image, followed by the color space used to interpret the image data.
(See implementation note 32 in Appendix H.)

4.5.6 Overprint Control

The graphics state contains an overprint parameter, controlled by the OP and op
entries in a graphics state parameter dictionary. Overprint control is useful main-
ly on devices that produce true physical separations, but it is available on some
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composite devices as well. Although the operation of this parameter is device-
dependent, it is described here, rather than in the chapter on color rendering,
because it pertains to an aspect of painting in device color spaces that is impor-
tant to many applications.

Any painting operation marks some specific set of device colorants, depending
on the color space in which the painting takes place. In a Separation or DeviceN
color space, the colorants to be marked are specified explicitly; in a device or CIE-
based color space, they are implied by the process color model of the output de-
vice (see Chapter 6). The overprint parameter is a boolean flag that determines
how painting operations affect colorants other than those explicitly or implicitly
specified by the current color space.

If the overprint parameter is false (the default value), painting a color in any
color space causes the corresponding areas of unspecified colorants to be erased
(painted with a tint value of 0.0). The effect is that the color at any position on
the page is whatever was painted there last; this is consistent with the normal
painting behavior of the opaque imaging model.

If the overprint parameter is true and the output device supports overprinting,
no such erasing actions are performed; anything previously painted in other
colorants is left undisturbed. Consequently, the color at a given position on the
page may be a combined result of several painting operations in different color-
ants. The effect produced by such overprinting is device-dependent and is not
defined by the PDF language.

Note: Not all devices support overprinting. Furthermore, many PostScript printers
support it only when separations are being produced, and not for composite output.
If overprinting is not supported, the value of the overprint parameter is ignored.

An additional graphics state parameter, the overprint mode (PDF 1.3), affects the
interpretation of a tint value of 0.0 for a color component in a DeviceCMYK color
space when overprinting is enabled. This parameter is controlled by the OPM
entry in a graphics state parameter dictionary; it has an effect only when the
overprint parameter is true, as described above.

When colors are specified in a DeviceCMYK color space and the native color space
of the output device is also DeviceCMYK, each of the source color components
controls the corresponding device colorant directly. Ordinarily, each source color
component value replaces the value previously painted for the corresponding de-
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vice colorant, no matter what the new value is; this is the default behavior, speci-
fied by overprint mode 0.

When the overprint mode is 1 (also called nonzero overprint mode), a tint value of
0.0 for a source color component leaves the corresponding component of the
previously painted color unchanged. The effect is equivalent to painting in a
DeviceN color space that includes only those components whose values are non-
zero. For example, if the overprint parameter is true and the overprint mode is 1,
the operation

0.2 0.3 00 1.0 k

is equivalent to

0.2 0.3 1.0 scn

in the color space shown in Example 4.18.

Example 4.18
10 0 obj % Color space
[ /DeviceN
[/Cyan /Magenta /Black]
/DeviceCMYK
150R
]
endobj
15 0 obj % Tint transformation function

<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 13
>>
stream
{0 exch}
endstream
endobj

Nonzero overprint mode applies only to painting operations that use the current
color in the graphics state when the current color space is DeviceCMYK. It does
not apply to the painting of images or to any colors that are the result of a com-
putation, such as those in a shading pattern or conversions from some other
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4.5.7

color space. It also does not apply if the device’s native color space is not Device-
CMYK; in that case, source colors must be converted to the device’s native color
space, and all components participate in the conversion, whatever their values.
(This is shown explicitly in the alternate color space and tint transformation
function of the DeviceN color space in Example 4.18.)

See Section 7.6.3, “Overprinting and Transparency,” for further discussion of the
role of overprinting in the transparent imaging model.

Color Operators

Table 4.21 lists the PDF operators that control color spaces and color values. (Also
color-related is the graphics state operator ri, listed in Table 4.7 on page 156 and
discussed under “Rendering Intents” on page 197.) Color operators may appear
at the page description level or inside text objects (see Figure 4.1 on page 135).

TABLE 4.21 Color operators

OPERANDS

OPERATOR DESCRIPTION

name

cs (PDF 1.1) Set the current color space to use for stroking operations. The oper-
and name must be a name object. If the color space is one that can be specified
by a name and no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK,
and certain cases of Pattern), the name may be specified directly. Otherwise, it
must be a name defined in the ColorSpace subdictionary of the current resource
dictionary (see Section 3.7.2, “Resource Dictionaries”); the associated value is an
array describing the color space (see Section 4.5.2, “Color Space Families”).

Note: The names DeviceGray, DeviceRGB, DeviceCMYK, and Pattern always iden-
tify the corresponding color spaces directly; they never refer to resources in the Color-

Space subdictionary.

The CS operator also sets the current stroking color to its initial value, which de-

pends on the color space:

® In a DeviceGray, DeviceRGB, CalGray, or CalRGB color space, the initial color

has all components equal to 0.0.

* In a DeviceCMYK color space, the initial color is [0.0 0.0 0.0 1.0].

® In aLab or ICCBased color space, the initial color has all components equal to
0.0 unless that falls outside the intervals specified by the space’s Range entry,

in which case the nearest valid value is substituted.

* In an Indexed color space, the initial color value is 0.
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* In a Separation or DeviceN color space, the initial tint value is 1.0 for all color-
ants.

* In a Pattern color space, the initial color is a pattern object that causes nothing
to be painted.

(PDF 1.1) Same as CS, but for nonstroking operations.

(PDF 1.1) Set the color to use for stroking operations in a device, CIE-based
(other than ICCBased), or Indexed color space. The number of operands re-
quired and their interpretation depends on the current stroking color space:

* For DeviceGray, CalGray, and Indexed color spaces, one operand is required
(n=1).

* For DeviceRGB, CalRGB, and Lab color spaces, three operands are required
(n=3).

® For DeviceCMYK, four operands are required (n = 4).

(PDF 1.2) Same as SC, but also supports Pattern, Separation, DeviceN, and
ICCBased color spaces.

If the current stroking color space is a Separation, DeviceN, or ICCBased color
space, the operands ¢, .. are numbers. The number of operands and their in-
terpretation depends on the color space.

If the current stroking color space is a Pattern color space, name is the name of
an entry in the Pattern subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). For an uncolored tiling pattern
(PatternType = 1 and PaintType = 2), c,...¢, are component values specifying a
color in the pattern’s underlying color space. For other types of pattern, these
operands must not be specified.

(PDF 1.1) Same as SC, but for nonstroking operations.

(PDF 1.2) Same as SCN, but for nonstroking operations.

Set the stroking color space to DeviceGray (or the DefaultGray color space; see
“Default Color Spaces” on page 194) and set the gray level to use for stroking
operations. gray is a number between 0.0 (black) and 1.0 (white).

Same as G, but for nonstroking operations.

Set the stroking color space to DeviceRGB (or the DefaultRGB color space; see
“Default Color Spaces” on page 194) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (minimum intensity) and
1.0 (maximum intensity).

Same as RG, but for nonstroking operations.
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cmyk K Set the stroking color space to DeviceCMYK (or the DefaultCMYK color space; see
“Default Color Spaces” on page 194) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (zero concentration) and 1.0
(maximum concentration). The behavior of this operator is affected by the over-
print mode (see Section 4.5.6, “Overprint Control”).

cmyk k Same as K, but for nonstroking operations.

In certain circumstances, invoking operators that specify colors or other color-
related parameters in the graphics state is not allowed. This restriction occurs
when defining graphical figures whose colors are to be specified separately each
time they are used. Specifically, the restriction applies:

* In any glyph description that uses the d1 operator (see Section 5.5.4, “Type 3
Fonts™)

* In the content stream of an uncolored tiling pattern (see “Uncolored Tiling
Patterns” on page 227)

In these circumstances, the following will cause an error:

* Invoking any of the following operators:

(&) scn

cs G k
SC g ri
SCN RG sh
e rg

* Invoking the gs operator with any of the following entries in the graphics state
parameter dictionary:

TR BG UCR
TR2 BG2 UCR2
HT

* Painting an image. However, painting an image mask (see “Stencil Masking” on
page 276) is permitted, because it does not specify colors, but rather designates
places where the current color is to be painted.
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4.6 Patterns

When operators such as S (stroke), f (fill), and Tj (show text) paint an area of the
page with the current color, they ordinarily apply a single color that covers the
area uniformly. However, it is also possible to apply “paint” that consists of a re-
peating graphical figure or a smoothly varying color gradient instead of a simple
color. Such a repeating figure or smooth gradient is called a pattern. Patterns are
quite general, and have many uses; for example, they can be used to create vari-
ous graphical textures, such as weaves, brick walls, sunbursts, and similar geo-
metrical and chromatic effects. (See implementation note 33 in Appendix H.)

Patterns come in two varieties:

* Tiling patterns consist of a small graphical figure (called a pattern cell) that is
replicated at fixed horizontal and vertical intervals to fill the area to be painted.
The graphics objects to use for tiling are described by a content stream.

* Shading patterns define a gradient fill that produces a smooth transition
between colors across the area. The color to use is specified as a function of
position using any of a variety of methods.

Note: The ability to paint with patterns is a feature of PDF 1.2 (tiling patterns) and
PDF 1.3 (shading patterns). With some effort, it is possible to achieve a limited form
of tiling patterns in PDF 1.1 by defining them as character glyphs in a special font
and painting them repeatedly with the Tj operator. Another technique, defining
patterns as halftone screens, is not recommended, because the effects produced are
device-dependent.

Patterns are specified in a special family of color spaces named Pattern, whose
“color values” are pattern objects instead of the numeric component values used
with other spaces. A pattern object may be a dictionary or a stream, depending
on the type of pattern; the term pattern dictionary is used generically throughout
this section to refer to either a dictionary object or the dictionary portion of a
stream object. (Those pattern objects that are streams are specifically identified as
such in the descriptions of particular pattern types; unless otherwise stated, they
are understood to be simple dictionaries instead.) This section describes Pattern
color spaces and the specification of color values within them; see Section 4.5,
“Color Spaces,” for information about color spaces and color values in general,
and Section 7.5.6, “Patterns and Transparency,” for further discussion of the
treatment of patterns in the transparent imaging model.



220 .
| CHAPTER 4 | Graphics |

4.6.1 General Properties of Patterns

A pattern dictionary contains descriptive information defining the appearance
and properties of a pattern. All pattern dictionaries contain an entry named
PatternType, whose value identifies the kind of pattern the dictionary describes:
type 1 for a tiling pattern or type 2 for a shading pattern. The remaining contents
of the dictionary depend on the pattern type, and are detailed below in the sec-
tions on individual pattern types.

All patterns are treated as colors; a Pattern color space is established with the CS
or ¢s operator just like other color spaces, and a particular pattern is installed as
the current color with the SCN or scn operator (see Table 4.21 on page 216).

A pattern’s appearance is described with respect to its own internal coordinate
system. Every pattern has a pattern matrix, a transformation matrix that maps the
pattern’s internal coordinate system to the default coordinate system of the pat-
tern’s parent content stream (the content stream in which the pattern is defined as
a resource). The concatenation of the pattern matrix with that of the parent con-
tent stream establishes the pattern coordinate space, within which all graphics ob-
jects in the pattern are interpreted.

For example, if a pattern is used on a page, the pattern will appear in the Pattern
subdictionary of that page’s resource dictionary, and the pattern matrix maps
pattern space to the default (initial) coordinate space of the page. Changes to the
page’s transformation matrix that occur within the page’s content stream, such as
rotation and scaling, have no effect on the pattern; it maintains its original rela-
tionship to the page no matter where on the page it is used. Similarly, if a pattern
is used within a form XObject (see Section 4.9, “Form XObjects”), the pattern
matrix maps pattern space to the form’s default user space (that is, the form co-
ordinate space at the time the form is painted with the Do operator). Finally, a
pattern may used within another pattern; the inner pattern’s matrix defines its
relationship to the pattern space of the outer pattern.

Note: PostScript allows a pattern to be defined in one context but used in another.
For example, a pattern might be defined on a page (that is, its pattern matrix maps
the pattern coordinate space to the user space of the page) but be used in a form on
that page, so that its relationship to the page is independent of each individual place-
ment of the form. PDF does not support this feature; in PDF, all patterns are local to
the context in which they are defined.
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4.6.2

Tiling Patterns

A tiling pattern consists of a small graphical figure called a pattern cell. Painting
with the pattern replicates the cell at fixed horizontal and vertical intervals to fill
an area. The effect is as if the figure were painted on the surface of a clear glass
tile, identical copies of which were then laid down in an array covering the area
and trimmed to its boundaries. This is called tiling the area.

The pattern cell can include graphical elements such as filled areas, text, and sam-
pled images. Its shape need not be rectangular, and the spacing of tiles can differ
from the dimensions of the cell itself. When performing painting operations such
as S (stroke) or f (fill), the viewer application paints the cell on the current page
as many times as necessary to fill an area. The order in which individual tiles
(instances of the cell) are painted is unspecified and unpredictable; it is inad-
visable for the figures on adjacent tiles to overlap.

The appearance of the pattern cell is defined by a content stream containing the
painting operators needed to paint one instance of the cell. Besides the usual en-
tries common to all streams (see Table 3.4 on page 38), this stream’s dictionary
has the additional entries listed in Table 4.22.

TABLE 4.22 Additional entries specific to a type 1 pattern dictionary

KEY

TYPE VALUE

Type

name (Optional) The type of PDF object that this dictionary describes; if present,
must be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary de-

PaintType

scribes; must be 1 for a tiling pattern.

integer (Required) A code that determines how the color of the pattern cell is to be
specified:

1 Colored tiling pattern. The pattern’s content stream itself specifies the
colors used to paint the pattern cell. When the content stream begins
execution, the current color is the one that was initially in effect in the
pattern’s parent content stream. (This is similar to the definition of the
pattern matrix; see Section 4.6.1, “General Properties of Patterns.”)

2 Uncolored tiling pattern. The pattern’s content stream does not speci-
fy any color information. Instead, the entire pattern cell is painted
with a separately specified color each time the pattern is used. Essen-
tially, the content stream describes a stencil through which the cur-
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TilingType

BBox

XStep

YStep

Resources

Matrix

integer

rectangle

number

number

dictionary

array

rent color is to be poured. The content stream must not invoke
operators that specify colors or other color-related parameters in the
graphics state; otherwise, an error will occur (see Section 4.5.7,
“Color Operators”). The content stream may paint an image mask,
however, since it does not specify any color information (see “Stencil
Masking” on page 276).

(Required) A code that controls adjustments to the spacing of tiles relative to
the device pixel grid:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a
multiple of a device pixel. To achieve this, the viewer application may
need to distort the pattern cell slightly by making small adjustments
to XStep, YStep, and the transformation matrix. The amount of dis-
tortion does not exceed 1 device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing
between pattern cells may vary by as much as 1 device pixel, both
horizontally and vertically, when the pattern is painted. This achieves
the spacing requested by XStep and YStep on average, but not neces-
sarily for each individual pattern cell.

3 Constant spacing and faster tiling. Pattern cells are spaced consistently
as in tiling type 1, but with additional distortion permitted to enable
a more efficient implementation.

(Required) An array of four numbers in the pattern coordinate system giving
the coordinates of the left, bottom, right, and top edges, respectively, of the
pattern cell’s bounding box. These boundaries are used to clip the pattern
cell.

(Required) The desired horizontal spacing between pattern cells, measured in
the pattern coordinate system.

(Required) The desired vertical spacing between pattern cells, measured in
the pattern coordinate system. Note that XStep and YStep may differ from
the dimensions of the pattern cell implied by the BBox entry. This allows
tiling with irregularly shaped figures. XStep and YStep may be either positive
or negative, but not zero.

(Required) A resource dictionary containing all of the named resources
required by the pattern’s content stream (see Section 3.7.2, “Resource Dic-
tionaries”).

(Optional) An array of six numbers specifying the pattern matrix (see Section
4.6.1, “General Properties of Patterns”). Default value: the identity matrix
[1TO0O0100]
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The pattern dictionary’s BBox, XStep, and YStep values are interpreted in the pat-
tern coordinate system, and the graphics objects in the pattern’s content stream
are defined with respect to that coordinate system. The placement of pattern cells
in the tiling is based on the location of one key pattern cell, which is then dis-
placed by multiples of XStep and YStep to replicate the pattern. The origin of the
key pattern cell coincides with the origin of the pattern coordinate system; the
phase of the tiling can be controlled by the translation components of the Matrix
entry in the pattern dictionary.

The first step in painting with a tiling pattern is to establish the pattern as the cur-
rent color in the graphics state. Subsequent painting operations will tile the
painted areas with the pattern cell described by the pattern’s content stream.
Whenever it needs to obtain the pattern cell, the viewer application does the fol-
lowing:

1. Saves the current graphics state (as if by invoking the q operator)

2. Installs the graphics state that was in effect at the beginning of the pattern’s
parent content stream, with the current transformation matrix altered by the
pattern matrix as described in Section 4.6.1, “General Properties of Patterns”

3. Paints the graphics objects specified in the pattern’s content stream

4. Restores the saved graphics state (as if by invoking the Q operator)

Note: The pattern’s content stream should not set any of the device-dependent
parameters in the graphics state (see Table 4.3 on page 150). Doing so may result in
incorrect output.

Colored Tiling Patterns

A colored tiling pattern is one whose color is self-contained. In the course of
painting the pattern cell, the pattern’s content stream explicitly sets the color of
each graphical element it paints. A single pattern cell can contain elements that
are painted different colors; it can also contain sampled grayscale or color images.
This type of pattern is identified by a pattern type of 1 and a paint type of 1 in the
pattern dictionary.



224 .
| CHAPTER 4 | Graphics |

When the current color space is a Pattern space, a colored tiling pattern can be
selected as the current color by supplying its name as the single operand to the
SCN or scn operator. This name must be the key of an entry in the Pattern sub-
dictionary of the current resource dictionary (see Section 3.7.2, “Resource Dic-
tionaries”), whose value is the stream object representing the pattern. Since the
pattern defines its own color information, no additional operands representing
color components are specified to SCN or scn. For example, if P1 is the name of a
pattern resource in the current resource dictionary, the following code establishes
it as the current nonstroking color:

/Pattern cs
/P1scn

Subsequent executions of nonstroking painting operators, such as f (fill), Tj
(show text), or Do (paint external object) with an image mask, will use the desig-
nated pattern to tile the areas to be painted.

Example 4.19 defines a page (object 5) that paints three circles and a triangle
using a colored tiling pattern (object 15) over a yellow background. The pattern
consists of the symbols for the four suits of playing cards (spades, hearts, dia-
monds, and clubs), which are character glyphs taken from the ZapfDingbats font
(see Section D.4, “ZapfDingbats Set and Encoding”); the pattern’s content stream
specifies the color of each glyph. Plate 8 shows the results.

Example 4.19

5 0 obj % Page object
<< /[Type /Page
/Parent 20R
/Resources 100R
/Contents 300R
/CropBox [0 0 225 225]
>>
endobj

10 0 obj % Resource dictionary for page
<< /Pattern << /P1 150R >>
>>

endobj
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15 0 obj

<<

>>

/Type /Pattern

/PatternType 1

/PaintType 1

/[TilingType 2

/BBox [0 O 100 100]

/XStep 100

/YStep 100

/Resources 16 0R

/Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
/Length 183

stream

BT

ET

/F1 1 Tf

64 0 0 64 7.1771 24414 Tm
0 Tc

0 Tw

1.0 0.0 0.0 rg
(\001) Tj

0.7478 -0.007 TD
0.0 1.0 0.0 rg
(\002) Tj

-0.7323 0.7813 TD
0.0 0.0 1.0 rg
(\003) Tj

0.6913 0.007 TD
0.0 0.0 0.0 rg
(\004) Tj

endstream
endobj

16 0 obj

<<
>>

/Font << /F1 200R >>

endobj

20 0 obj

<<

>>

/Type /Font

/Subtype /Typel
/Encoding 210R
/BaseFont /ZapfDingbats

endobj

% Pattern definition

% Tiling pattern
% Colored

% Begin text object

% Set text font and size

% Set text matrix

% Set character spacing

% Set word spacing

% Set nonstroking color to red
% Show spade glyph

% Move text position

% Set nonstroking color to green
% Show heart glyph

% Move text position

% Set nonstroking color to blue
% Show diamond glyph

% Move text position

% Set nonstroking color to black
% Show club glyph

% End text object

% Resource dictionary for pattern

% Font for pattern
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21 0 obj % Font encoding
<< /Type /Encoding
/Differences [1 /a109 /a110 /a111 /a112]

>>
endobj
30 0 obj % Contents of page
<< /Length 1252 >>
stream
00 G % Set stroking color to black
1.0 1.0 0.0 rg % Set nonstroking color to yellow
25 175 175 -150 re % Construct rectangular path
f % Fill path
/Pattern cs % Set pattern color space
/P1 scn % Set pattern as nonstroking color
99.92 49.92 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 c % Construct lower-left circle

22.32 99.92 -0.08 77.52 -0.08 49.92 c

—0.08 22.32 22.32 -0.08 49.92 -0.08 c

77.52 -0.08 99.92 22.32 99.92 4992 c

B % Fill and stroke path
224,96 49.92 m % Start new path
22496 77.52 202.56 99.92 174.96 99.92 ¢ % Construct lower-right circle
147.36 99.92 12496 77.52 124.96 49.92 c

124.96 22.32 147.36 -0.08 174.96 -0.08 c

202.56 -0.08 224.96 22.32 224.96 49.92 c

B % Fill and stroke path
87.56 201.70 m % Start new path

63.66 187.90 55.46 157.32 69.26 133.40 c % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 ¢

161.46 128.90 169.66 159.50 155.86 183.40 ¢

142.06 207.30 111.46 215.50 87.56 201.70 c

B % Fill and stroke path

50 50 m % Start new path

175 50 | % Construct triangular path

112.5 158.253 |

b % Close, fill, and stroke path
endstream

endobj
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Several features of Example 4.19 are noteworthy:

* The three circles and the triangle are painted with the same pattern. The pat-
tern cells align, even though the circles and triangle are not aligned with respect
to the pattern cell. For example, the position of the blue diamonds varies rela-
tive to the three circles.

* The pattern cell does not completely cover the tile: it leaves the spaces between
the glyphs unpainted. When the tiling pattern is used as a color, the existing
background (the yellow rectangle) shows through these unpainted areas.

Uncolored Tiling Patterns

An uncolored tiling pattern is one that has no inherent color: the color must be
specified separately whenever the pattern is used. This type of pattern is iden-
tified by a pattern type of 1 and a paint type of 2 in the pattern dictionary. The
pattern’s content stream does not explicitly specify any colors; it can paint an
image mask (see “Stencil Masking” on page 276), but no other kind of image.
This provides a way to tile different regions of the page with pattern cells having
the same shape but different colors.

A Pattern color space representing an uncolored tiling pattern requires a parame-
ter: an object identifying the underlying color space in which the actual color of
the pattern is to be specified. The underlying color space is given as the second
element of the array that defines the Pattern color space. For example, the array

[/Pattern /DeviceRGB]
defines a Pattern color space with DeviceRGB as its underlying color space.
Note: The underlying color space cannot be another Pattern color space.

Operands supplied to the SCN or scn operator in such a color space must include
a color value in the underlying color space, specified by one or more numeric
color components, as well as the name of a pattern object representing an un-
colored tiling pattern. For example, if the current resource dictionary (see Sec-
tion 3.7.2, “Resource Dictionaries”) defines Cs3 as the name of a ColorSpace
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resource whose value is the Pattern color space shown above, and P2 as a Pattern
resource denoting an uncolored tiling pattern, then the code

/Cs3 ¢s
0.30 0.75 0.21 /P2 scn

establishes Cs3 as the current nonstroking color space and P2 as the current non-
stroking color, to be painted in the color represented by the specified components
in the DeviceRGB color space. Subsequent executions of nonstroking pa