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Abstract

This is a tutorial on programming in Maple. The aim is to show how you can write simple
programs in Maple for doing numerical calculations, linear algebra, and programs for simplifying
or transforming symbolic expressions or mathematical formulae. It is assumed that the reader
is familiar with using Maple interactively as a calculator.
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1 Introduction

A few words to those who are familiar with other programming languages.

• Maple is a procedural programming language. It also includes a number of functional pro-
gramming constructs. If you have written programs in Basic, Pascal, Algol, C, Lisp, or
Fortran, you should be able to write numerical programs in Maple very quickly.

• Maple is not strongly typed like C and Pascal. No declarations are required. Maple is more
like Basic and Lisp in this respect. However types exist. Type checking is done at run time
and must be programmed explicitly.

• Maple is interactive and the programming language is interpreted. Maple is not suitable
for running numerically intensive programs because of the interpreter overhead. Though it
is suitable for high-precision numerical calculations and as a tool for generating numerical
codes.

This document is based on Maple version V Release 3. Maple development continues. New
versions come out every one or two years which contain not only changes to the mathematical
capabilities of Maple, but also changes to the programming language and user interface. For this
reason, I have tried to steer you away from constructs in the language which are being, or are likely
to be removed, and have mentioned some things that will be in the language in future versions of
Maple.

The Maple V Language Reference Manual is the main reference for programming in Maple.
It is published by Springer-Verlag. The ISBN number is 0-387-87621-3 . Other useful sources
of information include the Release Notes for Maple V Release 3, available from Waterloo Maple
Software, the First Leaves: Tutorial Introduction to Maple, also published by Springer-Verlag, and
the extensive on-line documentation which is accessible with the ? command in Maple. Part of the
reason for writing this document is that some of the important things I have stated here are not
mentioned elsewhere, or they are buried in the documentation.
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1.1 Evaluation

Before I begin, I want to point out the most important difference between Maple and traditional
programming languages. If an identifier has not been assigned a value, then it stands for itself.
It is a symbol. Symbols are used to represent unknowns in equations, variables in polynomials,
summation indices, etc. Consider the Maple assignment statement

> p := x^2+4*x+4;

2
p := x + 4 x + 4

Here the identifier p has been assigned the formula x2 + 4x+ 4. The identifier x has not been
assigned a value, it is just a symbol, an unknown. The identifier p has been assigned a value. It is
now like a programming variable, and its value can be used in subsequent calculations just like a
normal programming variable. What is the value of p?

> p;
2

x + 4 x + 4

It is the formula x2 + 4x+ 4. What is the value of x?

> x;
x

It is the symbol x. Because a variable can be assigned a value which contains symbols, the issue of
evaluation arises. Consider

> x := 3;
x := 3

> p;
25

Here we assigned x the value 3 and asked Maple to print out the value of p. What should Maple
print out? Should it print out the polynomial x2 + 4x + 4 or should it evaluate the polynomial,
i.e. compute 32 + 4 × 3 + 4 and return the result 25? We see that Maple does the latter. This
issue of evaluation will come up from time to time as it may affect the efficiency and semantics of a
program. This difference between Maple and traditional programming languages, where identifiers
can be used for both programming variables and mathematical unknowns is nice. But be careful
not to mix the two. Many problems that users encounter have to do with using identifiers for both
symbols and programming variables. For example, what happens if we now try to compute

∫
pdx?

> int(p,x);
Error, (in int) wrong number (or type) of arguments

An error has occurred in the integration function int. Here we are thinking of x as a symbol, the
integration variable. But x was previously assigned the integer 3. Maple evaluates the arguments
to the int function and tries to integrate 25 with respect to 3. It doesn’t make sense to integrate
with respect to 3! How does one convert x back into a symbol? In Maple one unassigns the variable
x by doing

> x := ’x’;
x := x

> int(p,x);
3 2

1/3 x + 2 x + 4 x
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1.2 Expressions: Sums, Products, Powers, Functions

In Maple, mathematical formulae, e.g. things like sin(x+π/2), and x3y2−2/3 are called expressions.
They are made up of symbols, numbers, arithmetic operators and functions. Symbols are things
like sin, x, y, Pi etc. Numbers include 12, 2

3 , 2.1 etc. The arithmetic operators are + (addition),
- (subtraction), * (multiplication), / (division), and ^ (exponentiation). And examples of functions
include sin(x), f(x,y), min(x1,x2,x3,x4). For example, the formula p = x2y+ 3x3z+ 2, which
is a polynomial, is input in Maple as

> p := x^2*y + 3*x^3*z + 2;
2 3

p := x y + 3 x z + 2

and the formula sin(x+ π/2)e−x is input as

> sin(x+Pi/2)*exp(-x);
cos(x) exp(- x)

Notice that Maple simplified sin(x+ π/2) to cos(x) for us. Formulae in Maple are represented as
expression trees or DAGs (Directed Acyclic Graphs) in computer jargon. When we program Maple
functions to manipulate formulae, we are basically manipulating expression trees. The three basic
routines for examining these expression trees are type, op and nops . The type function

type( f , t )

returns the value true if the expression f is of type t. The basic types are string, integer,
fraction, float, ‘+‘, ‘*‘, ‘^‘, and function. The whattype function is also useful for printing
out the type of an expression. For example, our polynomial p is a sum of 3 terms. Thus

> type( p, integer );
false

> whattype(p);
+

> type( p, ‘+‘ );
true

Note the use of the back quote character ‘ here. Back quotes are used for strings in Maple
which contain funny characters like /,. etc. Back quotes are not the same as forward quotes (the
apostrophe) ’ or double quotes ".
Two other numerical types are rational, and numeric. The type rational refers to the rational
numbers, i.e. integers and fractions. The type float refers to floating point numbers, i.e. numbers
with a decimal point in them. The type numeric refers to any of these kinds of numbers, i.e.
numbers of type rational or float. Maple users will have noticed that Maple distinguishes
between exact rational numbers and approximate numbers. The presence of a decimal point is
significant! Consider

> 2/3;
2/3

# That is a rational number, the following is a floating point number
> 2/3.0;

.6666666667
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ATTENTION Engineers: many of you are used to using and writing Fortran or C software.
In Fortran and C you always use decimal numbers. I.e. you have learned to always write
0.5 for 1/2. In Maple, if you are typing in a formula, you probably mean 1/2. If you are
typing in some data, you probably mean 0.5 . 1/2 is not the same as 0.5 in Maple.

Our example p is a sum of terms. How many terms does it have? The nops function returns the
number of operands of an expression. For a sum, this means the number of terms in the sum. For
a product, it means the number of terms in the product. Hence

> nops(p);
3

The op function is used to extract one of the operands of an expression. It has the syntax

op( i, f )

meaning extract the i’th operand of the expression f where i must be in the range 1 to the nops
of f . In our example, this means extract the i’th term of the sum f .

> op(1,p);
2

x y

> op(2,p);
3

3 x z

> op(3,p);
2

The op function can also be used in the following way

op( i..j, f ).

This returns a sequence of operands of f from i to j. For example

> op(1..3,p);
2 3

x y, 3 x z, 2

A useful abbreviation is rmop(f) which is equivalent to op(1..nops(f), f) which means create a
sequence of all the operands of f . What about the second term of the sum p? It is a product of 3
factors

> type(op(2,p),‘*‘); # It is a product

true

> nops(op(2,p)); # It has 3 factors

3

> op(1,op(2,p)); # Here is the first factor

3

> op(op(2,p)); # Here is a sequence of all 3 factors

3
3, x , z
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Indexed names and Functions

Maple has two kinds of variables or names as Maple calls them. There are strings like x, sin, Pi,
which are of type string and indexed names or subscripted variables like A1, Ai,j , Aij which are
of type indexed. These examples are input A[1], A[i,j], A[i][j] in Maple. Most functions in
Maple accept both kinds of variables. The Maple type name means either a string or a subscript.
Example

> type(a,string);
true

> type(a,name);
true

> whattype(A[1]);
indexed

> type(A[1],indexed);
true

> type(A[1],name);
true

If f is an indexed name, then the nops function returns the number of indices, and the op function
returns the i’th index. Also op(0, f) returns the name of the index. Example

> nops(A[i,j]);
2

> op(1,A[i,j]);
i

> op(0,A[i,j]);
A

> nops(A[i][j]);
1

> op(1,A[i][j]);
j

> op(0,A[i][j]);
A[i]

Functions work very similarly to indexed names. The syntax for a function call is

f(x1, x2, . . . , )

where f is the name of the function, and x1, x2, . . . are the arguments. The nops function returns
the number of arguments, and the op function returns the i’th argument. Also op(0, f) returns the
name of the function. Example

> nops(f(x,y,z));
3

> op(1..3,f(x,y,z));
x, y, z

> op(0,f(x,y,z));
f
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We can now create and pick apart any Maple formula. Exercise 6 asks you to write a Maple program
that picks apart a Maple formula. We conclude here with some examples showing how this can be
done interactively.

> f := sin(x[1])^2*(1-cos(Pi*x[2]));

2
sin(x[1]) (1 - cos(Pi x[2]))

> whattype(f);
*

> op(1,f);
2

sin(x[1])

> op(1,op(1,f));
sin(x[1])

> op(1,op(1,op(1,f)));
x[1]

1.3 Statements: Assignment, Conditional, Loops

The Maple syntax for the assignment, if, for and while statements is taken from Algol 60. The
assignment statement looks like

name := expr

where expr is any expression and name is a variable name. We want to mention here an evaluation
problem that you will sooner or later run into. It arises because variables can be assigned expressions
which contain symbols as well as numbers. Consider the assignment to p earlier.

> p := x^2+4*x+4;

2
p := x + 4 x + 4

Here we assigned the name p to a formula that explicitly contains the symbol x. What happens
now if we use the same name p on both sides of the assignment statement?

> p := p+x;
2

p := x + 5 x + 4

Nothing spectacular. But let us see how the evaluation rules operate here. The name p is assigned
the result of evaluating and also simplifying the right hand side p + x. In evaluating p + x, the
value of p is the polynomial x2 + 4x + 4 and the value of x is just x. The result of evaluation is
therefore the expression (x2 + 4x + 4) + x. Next this is simplified to the final result x2 + 5x + 4.
Now comes the big question. What happens if p was not already assigned a value? Let’s see what
happens. Using q instead of p

> q := q+x;

Warning: Recursive definition of name

q := q + x
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Well, you may say, obviously the user forgot to assign q a value first. Indeed that is probably
the case, but let us continue and see what happens to Maple. Maple certainly allows q to not have
a value just like x in the previous example.

The above statement resulted in a warning from Maple. The name q is now assigned a formula
which involves q. What happens now if we try to evaluate q? We would have to evaluate q + x.
But to evaluate q + x we have to evaluate q again. Therein lies an infinite evaluation loop. On my
system, if I try to evaluate q, Maple dies with a rather spectacular crash

> q := q+x^2;
Segmentation fault

ATTENTION: a recursive definition of a name like q in the above example will when
evaluated typically result in crash as Maple runs out of Stack space. On some systems
Maple will die. On other systems, Maple is able to stop just before it dies and report that
there is a problem. If Maple ever crashes on you, there is a good chance that this is the
reason. Maple will also die of course if there is a true infinite loop in an algorithm.

To recover from such a warning, simply unassign the variable q, i.e. do q := ’q’;. Note that Maple
does not detect all recursive assignments because this would be too expensive to do in general.

In a conventional programming language, this problem of a recursive definition cannot arise
because all variables must have values. If they haven’t been assigned a value, this is really an error.
Depending on the language, variables either get a default value, or they get whatever junk happens
to be present in memory at the time, or in a few cases, the language attempts to detect this and
issue an error.

The conditional statement in Maple has the following syntax.

if expr then statseq

[ elif expr then statseq ]*

[ else statseq ]

fi

where statseq is a sequence of statements separated by semi-colons, [] denotes an optional part, and
* denotes a part which can be repeated zero or more times. A typical if statement would be

if x < 0 then -1 elif x = 0 then 0 else 1 fi

The for statement has two variations. The first one is

[ for name ] [ from expr ] [ by expr ] [ to expr ] [ while expr ]

do statseq od

Thus each of the for, from, by, to, while clauses can be omitted. If omitted, the default values
are a dummy variable, 1, 1, ∞ and true respectively. A typical example of a for loop is

for i to 10 do print(i^2) od;

If one omits the for, from, by and to clauses we have a so called while loop.
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i := 10^10+1;
while not isprime(i) do i := i + 2 od;
print(i);

Combining the for and while loops is sometimes nice, e.g. this example of searching for the first
prime > 1010 could be done as

for i from 10^10+1 by 2 while not isprime(i) do od;
print(i);

The above example illustrates that the value of the loop index can be accessed after the loop has
terminated.

The second variation on the for loop is the so called for-in loop. It is really just a short hand
for this loop which occurs very often

for i to nops(s) do f(op(i,s)) od;

where s may be a sum, but in general, any Maple expression or data structure such as a list or set
– see next section. One can code this as a for-in loop as follows

for i in s do f(i) od;

The syntax for the for-in loop is

[ for name ] [ in expr ] [ while expr ]

do statseq od

2 Data Structures

More complicated programs involve manipulating and storing data. How we represent out data
affects the algorithms that we write, and how fast our programs will run. Maple has a good set
of data structures. The ones we will look at here are sequences, lists (or vectors), sets, tables (or
hash tables), and arrays. Maple does not have records or linked lists. We’ll say how these can be
implemented in Maple at the end of this section.

2.1 Sequences

A sequence is a sequence of expressions separated by commas. For example

> s := 1,4,9,16,25;
s := 1, 4, 9, 16, 25

> t := sin,cos,tan;
t := sin, cos, tan

A sequence of sequences simplifies into one sequence, that is, sequences are associative. For example

> s := 1,(4,9,16),25;
s := 1, 4, 9, 16, 25

> s,s;
1, 4, 9, 16, 25, 1, 4, 9, 16, 25
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The special symbol NULL is used for the empty sequence. Sequences are used for many purposes.
The next section shows how lists and sets are constructed from sequences. Here we note that
function calls are really constructed from sequences. For example, the min and max functions in
Maple take an arbitrary number of values as arguments, i.e. a sequence of arguments

> max(s);

25

> min(s,0,s);

0

ATTENTION: the op and nops functions cannot be applied to sequences. This is be-
cause the sequence itself becomes the arguments to a function. Thus the calls op(s);
and nops(s); are equivalent to op(1,4,9,16,25); and nops(1,4,9,16,25) respectively,
which result in an error. Put a sequence into a list first if you want to use op or nops.

The seq function is extremely useful for creating sequences. It comes in two flavours, corre-
sponding to the two kinds of for loops. The first one is

seq( f(i), i = m..n ).

The way seq works is just as if you had programmed the following loop.

s := NULL;
for i from m by 1 to n do s := s, f(i) od;

For example

> seq( i^2, i=1..5 );
1, 4, 9, 16, 25

> s := NULL; for i from 1 to 5 do s := s, i^2 od;

s :=

s := 1

s := 1, 4

s := 1, 4, 9

s := 1, 4, 9, 16

s := 1, 4, 9, 16, 25

Notice that seq is more efficient than the for loop because it does not create the intermediate
sequences. The other flavour of seq is

seq( f(i), i = a ).

This is equivalent to

seq( f(op(i,a)), i=1..nops(a) )
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Here are a couple of interesting examples. The coeff function computes the coefficient of the term
of degree i of a polynomial in x. The D function in Maple is the derivative operator.

> a := 3*x^3+y*x-11;
3

a := 3 x + y x - 11

> seq( coeff(a,x,i), i=0..degree(a,x) );

-11, y, 0, 3

> seq( D(f), f=[sin,cos,tan,exp,ln] );

2
cos, - sin, 1 + tan , exp, a -> 1/a

2.2 Lists and Sets

Lists, sets and functions are constructed from sequences. A list is a data structure for collecting
objects together. Square brackets are used to create lists, for example

> l := [x,1,1-z,x];
l := [x, 1, 1 - z, x]

> whattype(l);

list

The empty list is denoted by []. Sets can also be used to collect objects together. The difference
between lists and sets is that duplicates are removed from sets. Squiggly brackets are used for sets,
for example

> s := {x,1,1-z,x};
s := {1, 1 - z, x}

> whattype(s);
set

The empty set is denoted by {}. The nops function returns the number of elements of a list or set
and the op function extracts the i’th element. You can also use the subscript notation to access
the i’th element of a sequence, list or set. For example,

> op(1,s);
1

> s[1];
1

> op(1..3,s);
1, 1 - z, x

> s[1..3];

1, 1 - z, x

Here is a loop that prints true if a list or set contains the element x, and false otherwise.

for i to nops(s) while s[i] <> x do od;
if i > nops(s) then print(false) else print(true) fi;

The built in member function does this for you. member(x, s) returns true if the element x is in the
list or set s. You can append a new element to a list l by doing
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l := [op(l),x];

You can remove the i’th element of a list by doing

l := [ l[1..i-1], l[i+1..nops(l)] ];

Or, better, use the subsop function

l := subsop(i=NULL,l);

The subsop function note can be used for any type of expression. The set operators are union,
intersect and minus, e.g.

> t := {u,x,z};
t := {x, z, u}

> s union t;
{x, z, y, u}

The Maple user will probably have noticed that Maple orders the elements of sets in a strange
order which seems to be unpredictable. The algorithms that Maple uses to remove duplicates,
and to do set union, intersection and difference all work by first sorting the elements of the input
sets. Maple sorts by machine address, i.e. in the order that the elements occur in computer
memory. Since this depends on where they are put in memory, this is why the order is strange and
unpredictable. The reason Maple sets are implemented in this way is to make the set operations
very fast.

2.3 Tables

Tables or hash tables are extremely useful for writing efficient programs. A table is a one-to-many
relation between two discrete sets of data. For example, here is a table of colour translations for
English to French and German.

> COLOUR[red] := rouge,rot;

COLOURS[red] := rouge, rot

> COLOUR[blue] := bleu,blau;

COLOURS[blue] := bleu, blau

> COLOUR[yellow] := jaune,gelb;

COLOURS[yellow] := jaune, gelb

The domain of the COLOUR table is the name of the colour in English. The range of the table is
a sequence of the names of the colours in French and German. In general, the domain and range
values can be sequences of zero or more values. The domain values in the table are called the keys
or indices. The Maple indices function returns a sequence of them. The range values in the table
are called the values or entries. The Maple entries function returns a sequence of them. For
example

> indices(COLOUR);

[red], [yellow], [blue]

> entries(COLOUR);

[rouge, rot], [jaune, gelb], [bleu, blau]
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Note, the order that the indices and entries functions return the table indices and entries is not
necessarily the same order as the order in which they were entered into the table. This is because
Maple makes use of hashing to make table searching very fast and as a consequence, the order in
which the entries were made is lost. However, there is a one to one correspondence between the
output of the indices and the entries functions.

What can one do with a table? Given a table key or index, we can look up the corresponding
entry very quickly. That is, the operation

> COLOUR[red];

rouge, rot

returns the French and German names for the colour red quickly. How quickly? Approximately in
constant time, no matter how large the table is. Even if our table contains 1000 different colours,
the time to search the table will be very fast. That is the basic use of a table. Information is
entered into a table by assignment, and table look up is done by table subscript. What else can
one do with a table? We can test if an entry is in the table using the assigned function and we
can remove entries from a table by unassignment. For example

> assigned(COLOUR[blue]);
true

> COLOUR[blue] := ’COLOUR[blue]’;

COLOUR[blue] := COLOUR[blue]

> assigned(COLOUR[blue]);
false

> print(COLOUR);
table([

red = (rouge, rot)
yellow = (jaune, gelb)

])

2.4 Arrays

A one-dimensional array is created using the array command

array( m..n );

This creates an array with indices m,m+ 1, . . . , n. Often m is 1. Entries can be inserted into the
array by assignment as for tables, e.g.

v := array(1..n);
v[1] := a;
for i from 2 to n do v[i] := a*v[i-1] mod n od;

One-dimensional arrays are like tables with one index which is restricted to be in a fixed integer
range. Arrays are more efficient to access than tables and range checking on the indices is done.
Here is an example of a one-dimensional array used to sort a sequence of numbers. For instance,
suppose we are given an array v = array(1..n) as above. The code presented here sorts v into
ascending order using the bubblesort algorithm:
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for i to n-1 do
for j from i+1 to n do

if v[i] > v[j] then temp := v[i]; v[i] := v[j]; v[j] := temp fi
od

od;

Another application of one-dimensional arrays is as an intermediate data structure. For exam-
ple, suppose we represent a polynomial a(x) =

∑m
i=0 as a list [a0, . . . , am] of coefficients. Suppose

we are given also a polynomial b of degree n. We can use an array c to compute the product a× b
as follows

m := nops(a)-1; # degree of a
n := nops(b)-1; # degree of b
c := array(0..m+n); # allocate storage for the product
for i from 0 to m+n do c[i] := 0 od;
for i from 0 to m do

for j from 0 to n do
c[i+j] := c[i+j] + a[i+1]*b[j+1]

od
od:
[seq(c[i],i=0..n+m)]; # put the product in a list

Two-dimensional arrays, and higher dimensional arrays work similarly. A two-dimensional array
is created by the command

array( c..d, m..n );

As an example, suppose we are given the vector v of symmetric polynomials in 3 variables x1, x2, x3.

v := array(1..4):
v[1] := 1:
v[2] := x[1] + x[2] + x[3]:
v[3] := x[1]*x[2] + x[1]*x[3] + x[2]*x[3]:
v[4] := x[1]*x[2]*x[3]:

Let us construct a two-dimensional array M , where Mi,j is the derivative of vi wrt xj .

> M := array(1..4,1..3):
> for i to 4 do for j to 3 do M[i,j] := diff(v[i],x[j]) od od:
> M;

M

> eval(M);
[ 0 0 0 ]
[ ]
[ 1 1 1 ]
[ ]
[ x[2] + x[3] x[1] + x[3] x[1] + x[2] ]
[ ]
[ x[2] x[3] x[1] x[3] x[1] x[2] ]

ATTENTION: Notice that the value of M is just the name of the array M. Evaluation rules
for arrays and tables are special. The reason is so that one can have arrays with unassigned
entries. We will not give details about this here. For the moment, whenever you want to
print an array or table or return an array or table from a procedure, use the eval function.
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For further information on arrays see ?array . Note also that one-dimensional arrays indexed
from 1 are used to represent vectors and two-dimensional arrays indexed from 1 are used to represent
matrices. See the section on Matrices and Vectors.

2.5 Records

Maple doesn’t explicitly have a record data structure like Pascal’s record or C’s struct. By a
record data structure we mean a data structure for keeping together a heterogeneous collection of
objects, i.e. a set of objects not necessarily of the same type.

An example of a place where you would like a record data structure would be in choosing a data
structure to represent a quarternion. A quarternion is a number of the form a+ bi+ cj+ dk where
a, b, c, d are real numbers. To represent a quarternion, we need to store only the four quantities a, b, c
and d. Another example would be a data structure to represent the factorization of a polynomial
in Q[x]. The factorization of a(x) looks like

a(x) = u× fe11 × . . .× f
en
n

where each of the factors fi ∈ Q[x] is monic and irreducible. We need to store the factors fi and
the exponents ei and the unit u ∈ Q.

There are several possibilities for representing records in Maple. The simplest, and most obvious,
is to use a list. I.e. we would represent the quarternion a+ bi+ cj+dk as the list [a, b, c, d], and the
factorization of a(x) as the list [u, f ] where f is a list of lists of the form [fi, ei]. We use subscripts
to refer to a component of the data structure, e.g. the unit part of a factorization would be given
by a[1]. You can use the macro facility to define an identifier to be equal to a constant if you
prefer to use a symbol to reference a component as shown in the following example.

> a := [-1/2,[[x+1,2],[x-1,1]]];

a := [-1/2, [[x + 1, 2], [x - 1, 1]]]

> macro(unit=1,factors=2,base=1,exponent=2);
> a[unit];

-1/2

> a[factors][1][base];
x + 1

> a[unit]*a[factors][1][base]^a[factors][1][exponent]*a[2][2][1]^a[2][2][2];

2
- 1/2 (x + 1) (x - 1)

A second possibility for representing records in Maple is to use a function call. I.e. we could
represent a+ bi+ cj + dk as QUARTERNION(i,j,k,l). An advantage of this representation is that
you we can tell Maple how to do various operations on functions. We will go into details later.
Here we shall only mention that you can define how to pretty print a function. The example below
will show what we mean

> QUARTERNION(2,3,0,1);

QUARTERNION(2, 3, 0, 1)

> ‘print/QUARTERNION‘ := proc(a,b,c,d) a + b*’i’ + c*’j’ + d*’k’ end:
> QUARTERNION(2,3,0,1);
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2 + 3 i + k

Here we have defined a printing procedure or subroutine. This routine is called once for each
different QUARTERNION function in a result from Maple prior to displaying the result. Note the use
of quotes in the procedure, because we want to see the identifiers i, j, and k in the output, and not
the value of the variables i, j, k which we might be using for something else.

A third possibility for representing a record is to think of it as a multivariate polynomial in
the field names, and to store the values in the coefficients. This is quite useful when the fields are
numerical and you wish to be able to do arithmetic on the fields. For example, we could represent
a quarternion as a polynomial in the variables i, j, k as in the output representation above. I.e.

> z1 := 2 + 3*i + k;

z1 := 2 + 3 i + k

> z2 := 2 - 3*i + 2*j + 2*k;

z2 := 2 - 3 i + 2 j + 2 k

> coeff(z1,i); # the coefficient in i

3

> z1 + z2;

4 + 3 k + 2 j

Although this looks nice, we don’t recommend using the names i, j, or k because you will use them
for for loop variables!

2.6 Linked Lists

Maple lists are not linked lists. Maple lists are really arrays of pointers to their entries. Maple
lists differ from Maple arrays in that they are read only, i.e. you can’t assign to a component of
a Maple list. Linked lists are recursive data structures. The difference can be seen by studying a
simple example. Consider representing a polynomial a(x) =

∑n
i=0 aix

i in Maple. One possibility
would be to store the coefficients a0, . . . an in a Maple list. For instance, we could represent the
polynomial p = x4 + 3x2 + 2x+ 11 as follows

[11, 2, 3, 0, 1]

The degree of the polynomial is the number of entries in the list minus one. Alternatively we could
use a linked list

[ 1, [ 0, [ 3, [ 2, [ 11, NIL ]]]]]

We see that the linked list is a recursive data structure. It is either list of two values, traditionally
called the CAR and CDR – terminology from the Lisp programming language, or it is the special
value NIL signifying the empty linked list. The first field contains a data value, in our case, a
coefficient. The second field is a pointer to another linked list which contains the rest of the data
values. Note that in order to compute the degree of a polynomial represented by a linked list, we
have to compute the depth of the linked list. If p is a linked list, you could do this using the loop

for n from 0 while p <> NIL do p := p[2] od;
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Now, why would we represent a polynomial using a linked list instead of a Maple list? The
principle reason is that we can put a new entry onto the front of a linked list in constant time
instead of linear time. For example, suppose we wanted to add the term 5x5 to our polynomial p.
In the Maple list representation we must create a new list with 6 entries by doing

[op(p),5];

This requires at least 6 words of storage for the new Maple list. Don’t be fooled. The op call is
short for op(1..nops(p),p) which creates a sequence of all the entries in the Maple list p. This
takes constant time and uses no storage but now, we have sequence (11, 2, 3, 0, 1), 5 which
results in the new larger sequence 11, 2, 3, 0, 1, 5 being created. This is where 6 words of
storage get allocated. In general, adding an+1x

n+1 to a polynomial of degree n takes O(n) time
and storage. But what about the linked list? To add the term 5x5 we do

[5,p];

which only needs to create a new Maple list of length two, hence constant storage. The time will
also be linear time if p is a global variable, but constant time if p is a local variable or parameter
inside a procedure. This evaluation detail will be explained in the section on procedures. But for
now assume that the running time for this operation is also O(1) for linked lists.

ATTENTION Lisp Programmers: You can’t change the components of a Maple list. There
can be no equivalent of REPLACA and REPLACDR. Maple lists, sets, sequences, and functions
are read only data structures. Only arrays and tables can be changed.

3 Maple Procedures

3.1 Parameters, Local Variables, RETURN, ERROR

A Maple procedure has the following syntax

proc ( nameseq )

[ local nameseq ; ]

[ global nameseq ; ]

[ options nameseq ; ]

statseq

end

where nameseq is a sequence of symbols separated by commas, and statseq is a sequence of state-
ments separated by semicolons. Here is a simple procedure which, given x, y, computes x2 + y2.

proc(x,y) x^2 + y^2 end

This procedure has two parameters x and y. It has no local variables, no global variables,
no options, and only one statement. The value returned by the procedure is x2 + y2. In general
the value returned by a procedure is the last value computed unless there is an explicit return
statement. An example of a procedure with an explicit return statement is the following MEMBER
procedure. MEMBER(x,L) returns true if x is in the list L, false otherwise.
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MEMBER := proc(x,a) local v;
for v in L do if v = x then RETURN(true) fi od;
false

end;

The MEMBER procedure has a local variable v so that it does not interfere with the global user
variable v. Variables that appear in a procedure which are neither parameters nor locals and are
not explicitly declared global are in this new version of Maple given a default declaration local if
either the following is true

• A variable or suscripted variable on the left hand side of an assignment

• A variable or suscripted variable in a for or seq loop index

Part of the reason for this is to catch likely errors. For example,

> proc(x,n) s := 1; for i to n do s := s+x^i od; s end;

proc(x,n) local s,i; s := 1; for i to n do s := s+x^i od; s end

Notice that Maple has declared s and i to be local. If you want variables to really be global, you
should declare them explicitly using the global statement.

The ERROR function can be used to generate an error message from within a procedure. For
example, the MEMBER routine should check that the argument really is a list and issue an appropriate
error message otherwise.

MEMBER := proc(x,L) local v;
if not type(L,list) then ERROR(‘2nd argument must be a list‘) fi;
for v in L do if v = x then RETURN(true) fi od;
false

end;

3.2 Tracing Procedure Execution: printlevel

Here is a Maple procedure which computes the greatest common divisor of two non-negative integers
using the Euclidean algorithm. For example, the greatest common divisor of the integers 21 and
15 is 3 because 3 is the largest integer that divides both 21 and 15. By the way, the Euclidean
algorithm is one of the oldest known algorithms in Mathematics. It dates back to around 300 BC.

GCD := proc(a,b) local c,d,r;
c := a;
d := b;
while d <> 0 do r := irem(c,d); c := d; d := r od;
c

end;

The irem function computes the integer remainder of two integers. How does the GCD routine
really work? The simplest tool for looking at the execution of a procedure is the printlevel
facility. The printlevel variable is a global variable that is initially assigned 1. If you set it to a
higher value, a trace of all assignments, and procedure entries and exits is printed. Let’s see what
happens when we compute GCD(21,15);
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> printlevel := 100;
> GCD(21,15);
{--> enter GCD, args = 21, 15

c := 21

d := 15

r := 6

c := 15

d := 6

r := 3

c := 6

d := 3

r := 0

c := 3

d := 0

3

<-- exit GCD (now at top level) = 3}
3

We see that the input arguments to the GCD procedure are displayed together with the value
returned. The execution of each assignment statement is also displayed.

An interesting point about our Maple GCD procedure is that this routine works for integers
of any size because Maple uses arbitrary precision integer arithmetic. For example, here is the
greatest common divisor between 100! and 2100

> GCD(100!,2^100);
158456325028528675187087900672

Our GCD procedure could also have been been written recursively and should also include type
checking on the input parameters in this way

GCD := proc(a:integer,b:integer)
if b = 0 then a else GCD(b,irem(a,b)) fi

end;

The recursive version is simpler and easier to understand. Let us see a trace of the recursive
version to see how the printlevel facility can show the flow of computation.

> GCD(15,21);
{--> enter GCD, args = 15, 21
{--> enter GCD, args = 21, 15
{--> enter GCD, args = 15, 6
{--> enter GCD, args = 6, 3
{--> enter GCD, args = 3, 0

3

<-- exit GCD (now in GCD) = 3}
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3

<-- exit GCD (now in GCD) = 3}
3

<-- exit GCD (now in GCD) = 3}
3

<-- exit GCD (now in GCD) = 3}

<-- exit GCD (now at top level) = 3}
3

3.3 Arrow Operators

For procedures which compute only a formula, there is an alternative syntax called the arrow
syntax. This mimics the syntax for functions often used in algebra. For functions of one parameter
the syntax is

symbol -> [local nameseq;] expr .

For 0 or more parameters, parameters are put in parentheses i.e.

( nameseq ) -> [local nameseq;] expr

The example which computes x2 + y2 can be written more succinctly as

(x,y) -> x^2+y^2;

In Maple V Release 2, the syntax has been extended to allow the body of the procedure to be
an if statement. So you can define piecewise functions. For example

x -> if x<0 then 0 elif x<1 then x elif x<2 then 2-x else 0 fi;

3.4 Scope Rules: Parameters, Locals, Globals

Maple supports nested procedures. For example, you can write

f1 := proc(x) local g; g := x -> x+1; x*g(x) end;

Procedure f1 has a local variable g which is a procedure. f1 computes x ∗ (x + 1). However,
nested parameters and local variables do not use nested scoping rules. E.g. the above procedure is
not equivalent to this one

f2 := proc(x) local g; g := () -> x+1; x*g() end;

because the reference to x in the g procedure does not refer to the parameter x in f2. It refers to
the global variable x. Consider these examples
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> f1(a);

a (a + 1)

> f2(a);

a (x + 1)

> x := 7;

x := 7

> f2(a);

8 a

One similarly cannot refer to local variables in outer scopes.

ATTENTION Computer Scientists: Although Maple supports nested procedures, which
can be returned as function values, it does not support nested lexical scopes, so you cannot
return closures directly. For example, f -> x -> f(x+1) does NOT define a shift operator.
This is being looked at for a future version of Maple.

3.5 Evaluation Rules: Actual and Formal Parameters, Locals, Globals

Consider the function call f(x1,x2,...,xn). The execution of this function call proceeds as follows.
The function name f is evaluated. Next the arguments x1, x2, ..., xn are evaluated from left to
right. Then if f evaluated to a procedure, the procedure is executed on the evaluated arguments.
There are only 6 exceptions to this, including eval, assigned, and seq. Now, what about the
evaluation of variables inside procedures? Consider the procedure

f := proc() local p; global x; p := x^2+4*x+4; x := 5; p end

Here p is a local variable and there are no parameters. And x is a global variable. What are the
evaluation rules for parameters, locals, and global variables? In the introduction we considered the
problem

> p := x^2+4*x+4;
2

p := x + 4 x + 4

> x := 3;
x := 3

> p;
25

Here p and x are global variables. Global variables are evaluated fully, i.e. recursively, hence
the result is 25. What if p is a local variable as in our procedure f above? I.e. what is the result
of executing

f();

And what if p is a parameter as in the following procedure
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> x := ’x’; # Make x a symbol first

x := x

> g := proc(p) global x; x := 5; p end:
> g(x^2+4*x+4);

2
x + 4 x + 4

For reasons of efficiency and desirability, the Maple designers have decided that local variables
and parameters evaluate one level, i.e. the value of p in the above two examples is the polynomial
x2 + 4x + 4 not the value 49. Full evaluation only occurs for global variables. The eval function
can be used to get full evaluation for local variables and parameters, and one level evaluation of
global variables should you ever need it. For example

> x := ’x’; # Make x a symbol first

x := x

> g := proc(p) global x; x := 5; eval(p) end:
> g(x^2+4*x+4);

49

3.6 Recurrence Equations and Option Remember

The Fibonacci numbers Fn are defined by the linear recurrence F0 = 0, F1 = 1, and Fn = Fn−1 +
Fn−2. This can be coded directly by

F := proc(n)
if n = 0 then 0 elif n = 1 then 1 else F(n-1)+F(n-2) fi

end;

Here are the first few Fibonacci numbers

> seq( F(i), i=0..10 );

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

However this is a not an efficient way to compute the Fibonacci numbers. In fact, you will never
be able to compute F(100) using this procedure even on the fastest computer. If you count the
number of calls to the F procedure, you will see that it is called repeatedly on the same arguments.
It is clear that one should remember the previous two values when computing the next value. This
could be done in a loop in the following way

F := proc(n) local fnm1,fnm2,f;
if n = 0 then RETURN(0) fi;
fnm2 := 0;
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fnm1 := 1;
for i to n do f := fnm1 + fnm2; fnm2 := fnm1; fnm1 := f od;
fnm1

end;

Another way to code this is to use option remember. This option is used to store values as they are
computed so that they can be used when they are needed. Consider

F := proc(n) option remember;
if n = 0 then 0 elif n = 1 then 1 else F(n-1)+F(n-2) fi

end;

This program computes F (100) quite quickly. Each Maple procedure has an associated remember
table. The table index is the arguments and the table entry is the function value. When F is
called with n, Maple first looks up F ’s remember table to see if F (n) has already been computed.
If it has, it returns the result from F ’s remember table. Otherwise, it executes the code for the
procedure F , and automatically stores the pair n, F (n) in F ’s remember table.

We also illustrate the possibility of explicitly saving values in a remember table by using the so
called functional assignment. This is more flexible than the remember option because it allows one
to save only selected values in the remember table.

F := proc(n) F(n) := F(n-1)+F(n-2) end;
F(0) := 0;
F(1) := 1;

3.7 Types and Map

The type function can be used to code a routine that does different things depending on the type
of the input. For example, the DIFF routine below differentiates expressions which are polynomials
in the given variable x.

DIFF := proc(a:algebraic,x:name) local u,v;
if type(a,numeric) then 0
elif type(a,name) then if a = x then 1 else 0 fi
elif type(a,‘+‘) then map( DIFF, a, x )
elif type(a,‘*‘) then u := op(1,a); v := a/u; DIFF(u,x)*v + DIFF(v,x)*u
elif type(a,anything^integer) then

u := op(1,a); v := op(2,a); v*DIFF(u,x)*u^(v-1)
else ERROR(‘don’t know how to differentiate‘,a)
fi

end;

Types are used in the DIFF procedure for two different purposes. The first usage is for type checking.
The inputs must be an algebraic expression or a formula, and a name for the differentiation variable.
The second usage is to examine the type of the input – is it a sum or product – and decide what
differentiation rule is to be used. The DIFF example shows the use of the map function, a very useful
function, which we will now explain. It has the following syntax

map( f , a, x1, ..., xn )
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The meaning is to apply the function f to the operands of the expression a passing the additional
arguments x1, ..., xn to f . In our DIFF procedure, there is one additional argument x. Often, there
are no additional arguments. Formally, this is equivalent to computing the sequence

seq( f( op(1,a), x1, ..., xn ), i=1..nops(a) );

and then creating from this sequence a value of the same type as the type of f . Here are some
examples

> p := x^3+2*x+1;
3

p := x + 2 x + 1

> map( F, p );
3

F(x ) + F(2 x) + F(1)

> map( x -> x^2, p );
6 2

x + 4 x + 1

> map( degree, p, x );
4

The DIFF function also shows the use of a structured type. The types anything, name, ‘+‘ and
‘*‘ are simple types. The type anything^integer is a structured type. It means that the value
must be a power, and the base can be anything, i.e. any type, but the exponent must be an integer.
It is equivalent to writing

if type(a,‘^‘) and type(op(2,a),integer) then

Structured types allow you to replace long type tests with concise tests. Let us illustrate another
common case. Many routines take a set or list of names or equations as arguments. For example,
the solve command allows one to solve a set of equations for a set of unknowns. For example

> solve( {x+y=2, x-y=3}, {x,y} );

{y = -1/2, x = 5/2}

A set of zero or more equations can be tested with the type: set(equation), and as set of zero or
more unknowns with the type set(name). But the solve command also allows a set of algebraic
formulae which are implicitly equated to zero, i.e. the example above could have been input this
way

> solve( {x+y-2, x-y-3}, {x,y} );

{y = -1/2, x = 5/2}

Hence the type should of the first argument should be either a set of equations, or a set of algebraic
expressions, i.e. the type {set(algebraic),set(equation)}. Notice that this is not the same as
set({algebraic,equation}). Why?

Further information about the various different types can be obtained from the on-line help
system under ?type .

3.8 Variable Number of Arguments: args and nargs

It is possible in Maple for a function to take a variable number of parameters. An example of such
a function is the max function. Here is an initial attempt to code up this function
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MAX := proc(x1) local maximum,i;
maximum := x1;
for i from 2 to nargs do

if args[i] > maximum then maximum := args[i] fi
od;
maximum

end;

The special variable nargs is the number of arguments, and the variable args is a sequence of the
arguments, hence args[i] is the i’th argument.

3.9 Returning Unevaluated

The MAX procedure that we have just written works for numerical arguments only. If you try the
Maple function max you will see that it also works for symbolic arguments. Consider

> MAX(1,2,x);
Error, (in MAX) cannot evaluate boolean
> max(1,2,x);

max(2, x)

Maple cannot execute the procedure MAX because it cannot compute whether args[i] < maximum
for a non-numeric value. We want MAX of some numbers to compute the answer, but otherwise,
we want MAX(x,y) to stay as MAX(x,y) so we can compute with MAX(x,y) symbolically just like
sin(x) stays as sin(x).

Also, our MAX procedure that we wrote only works for numbers of type numeric. It would be
nice if MAX knew that π >

√
2 for instance.

To help us write such a MAX function, we will make use of the signum function which provides a
more powerful comparison of two real values. The signum function returns −1 if it can show that
the x < 0, +1 if x ≥ 0, otherwise it returns unevaluated, i.e. it returns signum(x). For example

> signum(sqrt(2)-1);
1

> signum(sqrt(2)-Pi);
-1

> signum(a-b);
signum(a - b)

Let us employ the signum function to make our MAX function smarter and also let our MAX function
handle symbolic arguments.

MAX := proc() local a,i,j,n,s;
n := nargs;
# First, put the arguments in an array
a := array(1..n);
for i to n do a[i] := args[i] od;
# Compare a[i] with a[j] for 1 <= i < j <= n
i := 1;
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while i < n do
j := i+1;
while j <= n do

s := signum(a[i]-a[j]);
if s = 1 then # i.e. a[i] >= a[j]

a[j] := a[n]; n := n-1;
elif s = -1 then # i.e. a[i] < a[j]

a[i] := a[j]; a[j] := a[n]; j := n; n := n-1; i := i-1;
else # cannot determine the sign

j := j+1
fi

od;
i := i+1

od;
if n = 1 then RETURN(a[1]) fi;
’MAX’( seq(a[i], i=1..n) );

end;

What is most interesting about the above code is the last line. The back quotes ’ are used to
prevent the MAX function call from executing as otherwise it would go into an infinite loop. Instead,
the unevaluated function call MAX( ... ) is returned, indicating that the maximum could not be
computed. However, some simplifications may have taken place. For example

> MAX( x, 1, sqrt(2), x+1 );
1/2

MAX(x + 1, 2 )

3.10 Simplifications and Transformation Rules

Often one wants to introduce simplifications which can be described algebraically or by trans-
formation rules. For instance, given a function f , we may know that f is both commutative
and associative. max is in fact such a function, i.e. it is true that max(a, b) = max(b, a) and
max(a,max(b, c)) = max(max(a, b), c) = max(a, b, c). How can we implement these properties in
Maple? What we want is a canonical way for writing expressions involving the max function. We
can implement commutativity by sorting the arguments. For associativity we can unnest any nested
max calls. I.e. we would transform both max(max(a, b), c) and max(a,max(b, c) into max(a, b, c).
Actually this also implements max(max(a)) = max(a), i.e. max is idempotent. Here is a MAX
function to do this

MAX := proc() local a;
a := [args];
a := map( flatten, a, MAX ); # unnest nested MAX calls
’MAX’( op(sort(a)) );

end;
flatten := proc(x,f)

if type(x,function) and op(0,x) = f then op(x) else x fi
end;

For example
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> MAX(a,MAX(c,b),a);

MAX(a, a, b, c)

We see that we should also recognize the property that max(a, a) = a. To do this, instead of
putting the arguments in a list, we will put them in a set so that duplicates are removed. Also,
since sets are sorted automatically, we can remove the call to sort. Hence we have

MAX := proc() local a;
a := {args};
a := map( flatten, a, MAX );
’MAX’( op(a) );

end;

> MAX(a,MAX(c,b),a);

MAX(a, b, c)

The reader may be a little puzzled as to just what our MAX procedure is doing. We have
seen earlier that if we assign a positive integer to the printlevel variable, we get a trace of all
statements executed. However, often the output from this simple tracing facility is too much. In
this case, we would also get the output from the flatten procedure. The trace function can be
used instead to selectively trace procedures. Let’s use it to trace the MAX procedure

> trace(MAX);

MAX

> MAX(a,MAX(b,a),c);
{--> enter MAX, args = b, a

a := {a, b}

a := {a, b}

MAX(a, b)

<-- exit MAX (now at top level) = MAX(a,b)}
{--> enter MAX, args = a, MAX(a,b), c

a := {a, c, MAX(a, b)}

a := {a, c, b}

MAX(a, c, b)

<-- exit MAX (now at top level) = MAX(a,c,b)}

MAX(a, c, b)

3.11 Optional Arguments and Default Values

Many Maple routines accept optional arguments. This is often used to allow the user to use default
values instead of having to specify all parameters. Examples are the functions plot, factor,
collect, and series. Let us consider the degree function. The degree function computes the
degree of a univariate polynomial in one variable, and for multivariate polynomials, the total degree.
For example
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> p := x^3+2*x+1;

3
p := x + 2 x + 1

> degree(p);

3

> q := 3*x^2*y+2*y^2-x*z+7;

2 2
q := 3 x y + 2 y - x z + 7

> degree(q);

3

Sometimes you will want to compute the degree in a specific variable, say x. This can be done by
specifying an optional second argument to the degree function, namely, the variable. For example

> degree(p,x);

3

> degree(q,x);

2

How would we code the degree function? Let us assume that the input is a formula and if an
optional second argument is given, it is a name or set of names for the variables. We would write

DEGREE := proc(a:algebraic,x:{name,set(name)}) local s,t;
if nargs = 1 then # determine the variable(s) for the user

s := indets(a); # the set of all the variables of a
if not type(s,set(name)) then ERROR(‘input not a polynomial‘) fi;
DEGREE(a,s)

elif type(a,constant) then 0
elif type(a,name) then

if type(x,name) then if a = x then 1 else 0 fi
else if member(a,x) then 1 else 0 fi
fi

elif type(a,‘+‘) then max( seq( DEGREE(t,x), t=a ) )
elif type(a,‘*‘) then

s := 0;
for t in a do s := s + DEGREE(t,x) od;
s

elif type(a,algebraic^integer) then DEGREE(op(1,a),x) * op(2,a)
else ERROR(‘cannot compute degree‘)
fi

end;

The indets function used here returns a set of all the indeterminates (or variables) that appear
in the input. We leave it to the reader to study each rule that is being used here, and the order in
which the cases are done.
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3.12 Returning Results Through Parameters

Many functions in Maple return more than one value. Of course, it is always possible to return
more than one value in a sequence or list. However, it is also possible to return values through
parameters like in other programming languages, and often, this is more convenient. For example,
consider the divide function in Maple which does polynomial long division. The call divide(a,b)
returns true if and only if the polynomial b divides the polynomial a with no remainder, e.g.

> divide(x^3-1,x-1);

true

But usually, if b divides a, one wants to do something with the quotient q. In Maple, this can be
done by giving the divide function a third parameter which is a name which will be assigned the
quotient if b divides a, e.g.

> if divide(x^3-1,x-1,’q’) then print(q) fi;

2
x + x + 1

Notice the use of quotes here to pass to the divide function the name q and not the value of q.
Let us consider another example and study how to write a program which assigns a value to an
optional parameter. Consider our MEMBER function which tested to see if a value x appears in a list
L. Let us modify our function such that MEMBER(x,L,’p’) still returns whether x appears in the
list L, and in addition, assigns the name p the position of the first appearance of x in L.

MEMBER := proc(x,L:list,p:name) local i;
for i to nops(L) do

if x = L[i] then
if nargs = 3 then p := i fi;
RETURN(true)

fi
od;
false

end;

Here is an example

> MEMBER(4,[1,3,5],’position’);

false

> position;

position

> MEMBER(3,[1,3,5],’position’);

true

> position;

2

We see that the effect of the assignment to the formal parameter p inside the MEMBER procedure is
that the actual parameter position is assigned.
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4 Programming in Maple

4.1 Matrix and Vector Computation in Maple

A vector in Maple is represented by a one-dimensional array indexed from 1, and a matrix is
represented by a two-dimensional array, with row and column indices starting from 1. Here is one
way to create a 5 by 5 Hilbert matrix. Recall that a Hilbert matrix is a symmetric matrix whose
(i,j)’th entry is 1/(i+ j − 1).

> H := array(1..5,1..5):
> for i to 5 do for j to 5 do H[i,j] := 1/(i+j-1) od od;
> H;

H

> eval(H);
[ 1 1/2 1/3 1/4 1/5 ]
[ ]
[ 1/2 1/3 1/4 1/5 1/6 ]
[ ]
[ 1/3 1/4 1/5 1/6 1/7 ]
[ ]
[ 1/4 1/5 1/6 1/7 1/8 ]
[ ]
[ 1/5 1/6 1/7 1/8 1/9 ]

ATTENTION: Notice that the value of H is just the name of the matrix H. Evaluation rules
for arrays, hence matrices and vectors are special. The reason is technical. For the moment,
whenever you want to print a matrix or vector use the eval function.

The linalg package contains many functions for computing with vectors and matrices in Maple.
This matrix could also have been created in the following way using the matrix command in the
linear algebra package.

linalg[matrix](5,5,(i,j) -> 1/(i+j-1));

Maple can compute the determinant and inverse of the matrix H and many other matrix oper-
ations. See ?linalg for a list of the operations.

Here we show a program for doing a so called row reduction on a matrix using Gaussian
elimination. GaussianElimination(A,’r’) computes the reduced matrix, an upper triangular
matrix. It also has an optional 2nd argument which, if given, is assigned the rank of the matrix.

GaussianElimination := proc(A:matrix(rational),rank:name)
local m,n,i,j,B,r,c,t;

m := linalg[rowdim](A); # the number of rows of the matrix
n := linalg[coldim](A); # the number of columns of the matrix

B := array(1..m,1..n);
for i to m do for j to n do B[i,j] := A[i,j] od od;

r := 1; # r and c are row and column indices
for c to m while r <= n do
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for i from r to n while B[i,c] = 0 do od; # search for a pivot
if i <= n then

if i <> r then # interchange row i with row r
for j from c to m do

t := B[i,j]; B[i,j] := B[r,j]; B[r,j] := t
od

fi;
for i from r+1 to n do

if B[i,c] <> 0 then
t := B[i,c]/B[r,c];
for j from c+1 to m do B[i,j] := B[i,j]-t*B[r,j] od;
B[i,c] := 0

fi
od;
r := r + 1 # go to next row

fi
od; # go to next column

if nargs>1 then rank := r-1 fi;
eval(B)

end:

The type matrix(rational) specifies a matrix (a 2-dimensional array in Maple) whose entries are
all rational numbers.

4.2 Numerical Computation in Maple

Floating point numbers in Maple can be input either as decimal numbers or directly using the
Float function

Float(m,e) = m ∗ 10e

where the mantissa m is an integer of any size, but the exponent e is restricted to be a machine size
integer, typically 31 bits. For example, the number 3.1 and be input as either 3.1 or Float(31,-1).
The op function can be used to extract the mantissa and exponent of a floating point number.
Note: the floating point constant 0.0 is treated specially and is simplified to 0, i.e. the integer 0
automatically.

Here is a uniform random number generator that generates uniform random numbers with
exactly 6 decimal digits precision in the range [0, 1).

> UniformInteger := rand(0..10^6-1):
> UniformFloat := proc() Float(UniformInteger(),-6) end:
> seq( UniformFloat(), i=1..6 );

.669081, .693270, .073697, .143563, .718976, .830538
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Note, the built-in Maple function rand does not return a random number in the given range. It
returns instead a Maple procedure (a random number generator) which when called returns random
integers in the given range.

Floating point arithmetic is done in decimal with rounding. The precision used is controlled by
the global variable Digits which has 10 as its default value. It can be set to any value however. The
evalf function is used to evaluate an exact symbolic constant to a floating point approximation.
For example

> Digits := 25:
> sin(1.0);

.8414709848078965066525023

> sin(1);
sin(1)

> evalf(");
.8414709848078965066525023

Maple knows about the elementary functions and many special functions such as Jv(x), Γ(x),
and ζ(x). In Maple these are BesselJ(v,x) GAMMA(x) and Zeta(x) respectively. They are all
computed to high precision by summing various series.

The model of floating point arithmetic used is that the relative error of the result is less than
101−Digits. This is a stronger model than that used by hardware implementations of floating point
arithmetic and it requires that intermediate calculations to be done at higher precision to obtain
such accurate results. Here is an example of summing a Taylor series. Suppose we want to compute
the error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt

for small x. If you are unfamiliar with the error function, take a moment to plot it in Maple. We
can make use of the Taylor series for erf(x) about x = 0

√
π

2
erf(x) =

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
= x− x3

3
+
x5

10
− x7

42
+

x9

216
+ . . .

for computing erf(x) for small x, −1 < x < 1 (with no error checking) as follows

ErfSmall := proc(a) local x,x2,result,term,sumold,sumnew;
x := evalf(a); # evaluate the input at Digits precision
Digits := Digits + 2; # add some guard digits
sumold := 0;
term := x;
sumnew := x;
x2 := x^2;
for n from 1 while sumold <> sumnew do

sumold := sumnew;
term := - term * x2 / n;
sumnew := sumold + term / (2*n + 1);

od;
result := evalf( 2/sqrt(Pi)*sumnew );
Digits := Digits-2;
evalf(result) # round the result to Digits precision

end;
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For large x, this routine will be inaccurate and inefficient. See the exercises for how to compute
erf(x) for large x .

For a second example, let us consider writing a Newton iteration to compute the square root of
an integer to 50 Digits. Recall that the Newton iteration for solving an equation f(x) = 0 is

xk+1 = xk −
f(xk)
f ′(xk)

In our case, to compute
√
a we want to solve x2 − a = 0. So the iteration is

xk+1 = (xk +
a

xk
)/2

The following routine will do the job.

SqrtNewton := proc(a:integer) local xk, xkm1;
if a < 0 then ERROR(‘square root of a negative integer‘) fi;
Digits := 55; # add some guard digits
xkm1 := 0;
xk := evalf(a/2); # initial floating point approximation
while abs(xk-xkm1) > abs(xk)*10^(-50) do

xkm1 := xk;
print(xk);
xk := (xk + a/xk)/2;

od;
Digits := 50;
evalf(xk); # round the result to 50 Digits

end;

We have put in the print statement to show the result of each iteration. Here is what happens

> SqrtNewton(2);

1.

1.500000000000000000000000000000000000000000000000000000

1.416666666666666666666666666666666666666666666666666667

1.414215686274509803921568627450980392156862745098039216

1.414213562374689910626295578890134910116559622115744045

1.414213562373095048801689623502530243614981925776197429

1.414213562373095048801688724209698078569671875377234002

1.414213562373095048801688724209698078569671875376948073

1.414213562373095048801688724209698078569671875376948073

It is known that a Newton iteration will converge quadratically provided f ′(xk) is not close to
zero and xk is sufficiently close to a root of f , as illustrated in the above example. For very high
precision though, i.e. Digits > 1000, one does not want to do every iteration at full precision as the
early steps are not accurate to full precision. Why do all that work when you are only getting a
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few digits correct? Modify the Newton iteration used in the SqrtNewton procedure appropriately
so that it doubles the number of Digits at each step. How much faster does this make the iteration
run?

Because Maple’s floating point model is implemented in software, it is much slower than hard-
ware floating point arithmetic. Maple also has a function called evalhf for evaluating in hardware
floating point arithmetic. This function uses the builtin C library routines for floating point
arithmetic. Consequently it is much faster than Maples software floats, but it is still slower than
hardware floats because it is not compiled. See ?evalhf for details.

4.3 Computing with Polynomials in Maple

Computing with polynomials and also rational functions is Maple’s forte. Here is a program that
computes the Euclidean norm of a polynomial. I.e. given the polynomial a(x) =

∑n
i=0 aix

i, it
computes the

√∑n
i=0 a

2
i .

EuclideanNorm := proc(a)
sqrt( convert( map( x -> x^2, [coeffs( expand(a) )] ), ‘+‘ ) )

end;

Reading this one liner inside out, the input polynomial is first expanded. The coeffs function
returns a sequence of the coefficients which we have put in a list. Each element of the list is
squared yielding a new list. Then the list of squares is converted to a sum.

Why is the polynomial expanded? The coeff and coeffs functions insist on having the in-
put polynomial expanded because you cannot compute the coefficient(s) otherwise. The following
example should clarify

> p := x^3 - (x-3)*(x^2+x) + 1;

3 2
p := x - (x - 3) (x + x) + 1

> coeffs(p);
Error, invalid arguments to coeffs
> expand(p);

2
2 x + 3 x + 1

> coeffs(expand(p));
1, 3, 2

> EuclideanNorm(p);
1/2

14

ATTENTION: If you want to compute the coefficients of a polynomial in some variable,
you should always expand the polynomial in that variable first. You can use the expand
function but this expands the polynomial in all variables. Alternatively, you can use the
collect function. collect(p,x) expands a polynomial p in x only. See ?collect for other
details and for working with multivariate polynomials.

The EuclideanNorm procedure works for multivariate polynomials in the sense that it computes
the square root of the sum of the squares of the numerical coefficients. E.g. given the polynomial
p = ux2 + y2 + v, the EuclideanNorm procedure returns

√
3. However, you may want to view this
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polynomial as a polynomial in x, y whose coefficients are symbolic coefficients in u, v. We really
want to be able to tell the EuclideanNorm routine what the polynomial variables are. We can do
that by specifying an additional optional parameter, the variables, as follows

EuclideanNorm := proc(a,v:{name,set(name),list(name)})
if nargs = 1 then

sqrt( convert( map( x -> x^2, [coeffs(expand(a))] ), ‘+‘ ) )
else

sqrt( convert( map( x -> x^2, [coeffs(expand(a),v)] ), ‘+‘ ) )
fi

end;

The type {name,set(name),list(name)} means that the 2nd parameter v may be a single variable,
or a set of variables, or a list of variables. Notice that the coeffs function itself accepts this
argument as a 2nd optional argument. Finally, our routine doesn’t ensure that the input is a
polynomial. Let’s add that to

EuclideanNorm := proc(a,v:{name,list(name),set(name)})
if nargs = 1 then

if not type(a,polynom) then
ERROR(‘1st argument is not a polynomial‘,a) fi;

sqrt( convert( map( x -> x^2, [coeffs(expand(a))] ), ‘+‘ ) )
else

if not type(a,polynom(anything,v)) then
ERROR(‘1st argument is not a polynomial in‘,v) fi;

sqrt( convert( map( x -> x^2, [coeffs(expand(a),v)] ), ‘+‘ ) )
fi

end;

The type polynom has the following general syntax

polynom( R, X )

which means a polynomial whose coefficients are of type R in the variables X. An example is
polynom(rational,x) which specifies a univariate polynomial in x with rational coefficients, i.e.
a polynomial in Q[x]. If R and X are not specified, as in the first case above, the expression must
be a polynomial in all its variables.

Basic functions for computing with polynomials are degree, coeff, expand, divide, and
collect. There are many other functions for computing with polynomials in Maple, including
facilities for polynomial division, greatest common divisors, resultants, etc. Maple can also factor
polynomials over different number fields including finite fields. See the on-line help for ?polynom
for a list of facilities.

To illustrate facilities for computing with polynomials over finite fields, we conclude with a
program to compute the first primitive trinomial of degree n over GF (2) if one exists . That is, we
want to find an irreducible polynomial a of the form xn +xm + 1 such that x is a primitive element
in GF (2)[x]/(a). The iquo function computes the integer quotient of two integers.

trinomial := proc(n:integer) local i,t;
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for i to iquo(n+1,2) do
t := x^n+x^i+1;
if Primitive(t) mod 2 then RETURN(t) fi;

od;
FAIL

end;

4.4 Reading and Saving Procedures: read and save

You can write one or two line Maple programs interactively. But for larger programs you will want
to save them in a file. Typically, one would use an editor to write the Maple program and save it
into a file, then read the program into Maple before using it. A program can be read into Maple
using the read command. For example, if we have written a Maple procedure MAX in the file MAX,
in Maple we read this file into Maple by doing

read MAX;

You can save your Maple procedures or any formulae that you have computed in your Maple
session in a file from inside Maple using the save statement, which has the form

save f1, f2, ..., filename;

This saves the values of the variables f1, f2, ... in text format in the file filename. You can
also save Maple data in internal format or the so called “.m” format. This format is more compact
and can be read faster by Maple. One simply appends “.m” to the filename as follows

save f1, f2, ..., ‘filename.m‘;

This saves the values of f1, f2, ... in the file filename.m You can then read them back in to
Maple using the read command:

read ‘filename.m‘;

4.5 Debugging Maple Programs

The simplest debugging tool is the printlevel facility. printlevel is a global variable that is initially
assigned 1. If you set it to a higher value, a trace of all assignments, procedure entry and exits
are printed. The higher the value of printlevel, the more levels of procedure execution that will
be traced. Often, however, the output from the printlevel facility will be too much. The trace
function allows you to trace the execution of the specified functions only. Examples of these two
tools have already been given in this document. We mention here one further tool. If you set the
printlevel variable to 3 or higher, then if a run-time error occurs, Maple will print a stack trace
of the calling sequence at the time the error occurs. Specifically, it will print the arguments to all
procedures currently being executed, and the values of the local variables and the statement being
executed in the procedure where the error occured. This is simplest illustrated by an example.
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> f := proc(x) local y; y := 1; g(x,y); end:
> g := proc(u,v) local s,t; s := 0; t := v/s; s+t end:
> printlevel := 4:
> f(3);
Error, (in g) division by zero

executing statement: t := v/s
locals defined as: s = 0, t = t
g called with arguments: 3, 1
f called with arguments: 3

4.6 Interfacing with other Maple Facilities

We have shown how one can tell Maple properties about a function f by coding them as a procedure.
Suppose instead you wish to teach Maple to differentiate a formula involving f . You may want to
teach Maple how to evaluate f numerically so that f can be plotted, or how to simplify expressions
involving f etc. What do you need to do? Many Maple routines have interfaces that allow you
to teach these routines about your f function. These include diff, evalf, expand, combine,
simplify, series, etc. To teach Maple how to differentiate a function W one writes a routine
called ‘diff/W‘. If the diff routine is called with an expression f(x) which contains W (g) then
the diff routine will invoke ‘diff/W‘(g,x) to compute the derivative of W (g) with respect to x.
Suppose we know that W ′(x) = W (x)/(1 + W (x)). Then we can write the following procedure
which explicitly codes the chain rule.

‘diff/W‘ := proc(g,x) diff(g,x) * W(g)/(1+W(g)) end;

Hence we have

> diff(W(x),x);
W(x)

--------
1 + W(x)

> diff(W(x^2),x);
2

x W(x )
2 ---------

2
1 + W(x )

As a second example, suppose we want to manipulate symbolically the Chebyshev polynomials
of the first kind Tn(x). We can represent these in Maple as T(n,x). Suppose also that for a
particular value of n we want to expand T(n,x) out as a polynomial in x. We can tell Maple’s
expand function how to do this by writing the routine ‘expand/T‘. When expand sees T(n,x), it will
invoke ‘expand/T‘(n,x). Recall that Tn(x) satisfies the linear recurrence Tn(0) = 1, T1(x) = x,
and Tn(x) = 2xTn−1(x)− Tn−2(x). Hence we can write

‘expand/T‘ := proc(n,x) option remember;
if n = 0 then 1
elif n = 1 then x
elif not type(n,integer) then T(n,x) # can’t do anything
else expand(2*x*T(n-1,x) - T(n-2,x))
fi

end;
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This routine is recursive, but because we used the remember option, this routine will compute
T (100, x) quite quickly. Here are some examples

> T(4,x);
T(4, x)

> expand(T(4,x));
4 2

8 x - 8 x + 1

> expand(T(100,x));

2 100
1 - 5000 x ... output deleted ... + 633825300114114700748351602688 x

One can also tell Maple how to evaluate your own function f numerically by defining a Maple
procedure ‘evalf/f‘ such that ‘evalf/f‘(x) computes f(x) numerically. For example, suppose
we wanted to use the Newton iteration shown earlier for computing the square root of a numerical
value. Our function might look like

‘evalf/Sqrt‘ := proc(a) local x,xk,xkm1;
x := evalf(a); # evaluate the argument in floating point
if not type(a,numeric) then RETURN( Sqrt(x) ) fi;
if x<0 then ERROR(‘square root of a negative number‘) fi;
Digits := Digits + 3; # add some guard digits
xkm1 := 0;
xk := evalf(x/2); # initial floating point approximation
while abs(xk-xkm1) > abs(xk)*10^(-Digits) do

xkm1 := xk;
xk := (xk + x/xk)/2;

od;
Digits := Digits - 3;
evalf(xk); # round the result to Digits precision

end;

> x := Sqrt(3);
x := Sqrt(3)

> evalf(x);
1.732050808

> Digits := 50;
Digits := 50

> evalf(Sqrt(3));

1.7320508075688772935274463415058723669428052538104

4.7 Calling External Programs

Often one wants to get Maple to call an external program, which might have been written in C
or Fortran. There are really two reasons we might want to do this. Obviously, if Maple cannot
so something, and another program can, it may make sense to use the other program, instead of
reimplementing an algorithm in Maple. The other reason is efficiency. Although Maple is efficient
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at symbolic computations, it is not generally efficient at machine precision numerical computations.
E.g. you may want to use a Fortran library routine to compute numerical eigenvectors.

Communication of data in Maple must be done via files. The Maple program must write the
data needed by the external program out to an input file. Maple can start running the external
program with the system command. The external program must read the data from the input file
and must write its results into an output file. After the program has finished executing, Maple
reads the results from the output file back into Maple. A sketch of the Maple code to do this would
be

interface(quiet=true);
writeto(input);
... # write any data into the file input
writeto(terminal);
interface(quiet=false);
system(...); # execute the external program
read output;
... # continue processing in Maple

Let us look at this more closely. The first command, interface(quiet=true); turns off all
diagnostics from Maple, i.e. bytes used messages, warnings, etc. so that they will not be written
into the input file. This is reset by interface(quiet=false); after the data has been written to
the input file.

The next command writeto(input); opens the file named input for writing. All Maple output
from this point will go into this file. Output will typically be created by the lprint or the printf
commands. The command writeto overwrites the file. If you want to just append some data to
what is already in the file, use the command appendto instead of writeto.

After the data has been written to the file, the file is closed implicitly by resetting output back
to the terminal with the command writeto(terminal);.

The system command is used to execute the external program. The exact call that the system
command makes will depend on the system. Under Unix, the call might look something like

system(‘foo < in > out‘);

The external program foo is executed on the input file in and its results are written to the
file out. Note that the system command returns a value indicating whether the external program
terminated normally. Under Unix, it returns 0 for normal termination.

Finally, we read the results in the out file back into Maple using the read command if the data
is in Maple’s format, or the readline, sscanf, or readdata commands described below for reading
arbitrary data.

In this mode, Maple calls the external program like a subroutine. After reading the results back
into Maple, Maple continues execution. This is actually a very simple means for calling an external
program, and easy to debug. You can check the files to make sure that they have the data in the
format expected. However, the disadvantage is that communicating data via a file of text is not
the most efficient approach. In many applications this inefficiency will not matter if the work done
by the external program is significant.
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4.8 File Input/Output of Numerical Data

We wish now to discuss in more detail how to output data from Maple into a file suitable for reading
by another program, and how the data should be formatted by the external program so that Maple
can read it in.

In Maple V Release 2 the file I/O facilities now include the the routines printf, sscanf and
readline. The routine printf is used for general formatted printing. It is modelled after the printf
routine from C and is the same except that it also accepts the %a option for algebraic output. Here
is a typical example of using printf to print floating point data.

> printf(‘A float in fixed point: %f and scientific notation: %e\n‘, x, x );
A float in fixed point: 0.577216 and scientific notation: 5.772157e-01

The printf function takes a string as it’s first argument which specifies text to be printed and how
the values, which are given as additional arguments are to be printed using % control sequences.
%e control sequences. The escape sequence \n is used to print a new line. Other useful control
sequences are %d and %s for printing integers and strings, and also the control sequence %a for
printing a Maple algebraic expression. See ?printf for other options.

The readline routine is used to read a single line of text from a text file as a string. The
sscanf routine can be used to scan a string and extract any numbers. It is the inverse of printf.
So to read in some data, one can read each line of a file using readline and for each line use sscanf
to extract data. The utility routine readdata has been written to read files of text which contain
columns of numerical data separated by blanks or tabs. The readdata routine returns a list of the
data, or a list of lists of the data if more than one column is specified. Suppose the file foo looks
like this

2.1 3.2 1.2
2.4 3.1 3.4
3.9 1.1 5.5

Here is the result of reading in the data.

> readlib(readdata): # load the readdata function from the library
> readdata(foo,2); # read the first two columns of the data

[[2.100000000000000, 3.200000000000000],

[2.400000000000000, 3.100000000000000],

[3.900000000000000, 1.100000000000000]]

4.9 Fortran and C output

The fortran and C commands generate output of Maple formulae in a format suitable for a Fortran
or C compiler. This is useful when you have developed a formula in Maple, or perhaps a vector or
matrix of formulae, and you wish to evaluate these formulae in a Fortran or C subroutine. How do
you translate the Maple formulae into Fortran or C? The Maple functions fortran and C are written
for this purpose. Here is an example. Suppose we have created the following polynomial in Maple
which, by the way, is an approximation to the complementary error function erfc(x) = 1 − erf(x)
on the range [2,4] accurate to 5 decimal digits.
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f := - 3.902704411 x + 1.890740683 - 1.714727839 x + 3.465590348 x

7 4 5 6
- .0003861021174 x + .5101467996 x - .09119265524 x + .009063185478 x

It is not important to know what the complementary error function is for the purpose of this
example though. It is in fact related to the Normal distribution in statistics. Neither is it important
here to know how we created the approximation f . We needed a rough approximation to this
function in the given range because our Fortran and C libraries did not have this function built
in. For the interested reader, we used the command chebyshev(erfc(x),x=2..4,10^(-5) to
create a Chebyshev series approximation and used our ‘expand/T‘ routine that we wrote earlier
to convert it to a polynomial. To evaluate the approximation f above efficiently, we want to write
the polynomial in Horner form. Then we want to generate Fortran code. We could do

> h := convert(f,horner);

h := 1.890740683 + ( - 3.902704411 + (3.465590348 + ( - 1.714727839

+ (.5101467996 + ( - .09119265524 + (.009063185478 - .0003861021174 x) x) x) x

) x) x) x

> fortran(h);
t0 = 0.1890741E1+(-0.3902704E1+(0.346559E1+(-0.1714728E1+(0.510146

#8E0+(-0.9119266E-1+(0.9063185E-2-0.3861021E-3*x)*x)*x)*x)*x)*x)*x

Maple has generated two lines of Fortran code complete with continuation character since the
formula is longer than one line. The floating point numbers have automatically been translated to
single precision Fortran E notation and have been truncated to 7 decimal digits. And Maple has
put the result in the variable t0 for us. Let us now output C code into a file temp.c assigned to
the variable r. Note, the C function must first be loaded into Maple.

> readlib(C):
> C([r = h],filename=‘temp.c‘);

If we look at the file ‘temp.c‘ we find that it contains

r = 0.1890740683E1+(-0.3902704411E1+(0.3465590348E1+(-0.1714727839E1+(
0.5101467996+(-0.9119265524E-1+(0.9063185478E-2-0.3861021174E-3*x)*x)*x)*x)*x)*
x)*x;

The reader can study the help pages for ?fortran and ?C for additional information capabilities
and options to these commands.
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5 Exercises

1. Write a Maple procedure called remove1 where remove1(x,L) removes the first occurrence
of the value x from the list L. If x is not in the list L, return FAIL.

2. Write a Maple procedure called variance that computes the variance of a list of numbers.
I.e. variance(x) computes

1
n

n∑
i=1

(xi − µ)2

where n is the number of elements of the list x and µ is the average of the numbers in list x.
Your routine should print an error if the list is empty.

3. Write a Maple procedure that computes the Frobenius norm of an m by n matrix A. The
Frobenius norm is

√∑m
i=1

∑n
j=1 |Ai,j |2.

4. Write a Maple procedure which sorts an array of numbers faster than the bubblesort algorithm
in the section on arrays, e.g. by using shell sort, quick sort, merge sort, or heap sort or some
other sorting algorithm. Modify your Maple procedure to accept an optional 2nd argument
f , a boolean function to be used for comparing two elements of the array.

5. Write a Maple procedure which computes the Fibonacci polynomials Fn(x). These polyno-
mials satisfy the linear recurrence F0(x) = 1, F1(x) = x, and Fn(x) = xFn−1(x) + Fn−2(x).
Compute and factor the first 10 Fibonacci polynomials. Can your program compute F50(x)?

6. Write a Maple procedure called structure that when given a Maple expression returns the
structure of the expression as a tree, namely

• for atomic objects (integers and strings) just return the object

• otherwise, return a list with the type of the object as the first element, and the remaining
elements the structure of the operands of the object.

For example: structure(x^3*sin(x)/cos(x)); should return

[*, [^, x, 3], [function, sin, x], [^, [function, cos, x], -1]]

Your routine should handle the Maple types integer, fraction, float, ‘+‘, ‘*‘, ‘^‘, string, indexed,
function, range, equation, set, list, series and table. Test your function on the following input

Int( exp(-t)*sqrt(t)*ln(t), t=0..infinity ) =
int( exp(-t)*sqrt(t)*ln(t), t=0..infinity );

7. Extend the DIFF procedure to differentiate general powers, the functions ln, exp, sin, cos and
to return unevaluated instead of giving an error when it does not know how to differen-
tiate the given input. Extend DIFF to handle repeated derivatives, i.e. how to DIFF the
function DIFF. For example, DIFF(DIFF(f(x,y),x),y) should output the same result as
DIFF(DIFF(f(x,y),y),x).
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8. Write a routine comb that when given a set of values and a non-negative integer n returns a
list of all combinations of the values of size n. For example

> comb( {a,b,c,d}, 3 );

{ {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d} }

Modify your routine to work for lists which may contain duplicates, e.g.

> comb( [a,b,b,c], 2 );

[[a,b], [a,c], [b,b], [b,c]]

9. The Maple function degree computes the total degree of a polynomial in a given variable(s).
For example, the polynomial

> p := x^3*y^3 + x^4 + y^5:
> degree(p,x); # degree in x

4

> degree(p,{x,y}); # total degree in x and y

6

We showed how one could code the degree function in Maple with our DEGREE function.
However, the degree function and our DEGREE function only work for integer exponents.
Extend the DEGREE so that it computes the degree of a general expression, which may have
rational or even symbolic exponents, e.g.

> f := x^(3/2) + x + x^(1/2);
3/2 1/2

f := x + x + x

> DEGREE(f,x);
3/2

> h := (x^n + x^(n-1) + x^2) * y^m;

n (n - 1) 2 m
h := (x + x + x ) y

> DEGREE(h,x);
max(n, 2)

> DEGREE(h,{x,y});
max(n, 2) + m

10. Write Maple procedures to add and multiply univariate polynomials a(x) =
∑m
i=0 aix

i and
b(x) =

∑n
i=0 bix

i which are represented as

(a) a Maple list of coefficients i.e. [an, an−1, . . . , a1, a0]

(b) a linked list of coefficients i.e. [an, [an−1, . . . , [a1, [a0, NIL]] . . .]].

11. The data structures in the above exercise are inefficient for sparse polynomials because zeros
are represented explicitly. E.g. consider the polynomial x10 + x+ 1. Represented as a Maple
list it would be
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[10,0,0,0,0,0,0,0,1,1]

and as a linked list it is

[10,[0,[0,[0,[0,[0,[0,[0,[0,[1,[1,NIL]]]]]]]]]]].

A more efficient representation for sparse polynomials is to store just the non-zero terms. Let
us store the k’th non-zero term akx

ek as [ak, ek] where ek > ek+1 ≥ 0. Now write procedures
to add and multiply sparse univariate polynomials which are represented as

(a) a Maple list of non-zero terms

(b) a linked list of non-zero terms

12. The Gaussian integers Z[i] are the set of complex numbers with integer coefficients, i.e.
numbers of the form a + bi where a, b ∈ Z and i =

√
−1. What is most interesting about

the Gaussian integers is that they form a Euclidean domain, i.e. they can be factored into
primes, and you can use the Euclidean algorithm to compute the GCD of two Gaussian
integers. Given a Gaussian integer x = a + bi let ||x|| = a2 + b2 be the norm of x. Write a
Maple procedure REM that computes the remainder r of two non-zero Gausian integers x, y
such that x = qy + r where ||r|| < ||y||. Use your remainder routine to compute the GCD of
two Gaussian integers.

13. Write a Maple n-ary procedure GCD that does integer and symbolic simplification of GCD
calculations in Z. E.g. on input of GCD(b,GCD(b,a),-a), your procedure should return
GCD(a,b). For integer inputs, your routine should compute the GCD directly. For symbolic
inputs, your GCD procedure should know the following

(a) GCD(a,b) = GCD(b,a) (GCD’s are commutative)

(b) GCD(GCD(a,b),c) = GCD(a,GCD(b,c)) = GCD(a,b,c) (GCD’s are associative)

(c) GCD(0,a) = GCD(a) (the identity is 0)

(d) GCD(a) = GCD(−a) = abs(a)

14. Write a Maple procedure monomial(v,n) which computes a list of the monomials of total
degree n in the list of variables [v1, v2, . . . , vm]. For example, monomial([u,v],3) would
return the list [u3, u2v, uv2, v3]. Hint: consider the Taylor series expansion of the product

m∏
i=1

1
1− vit

in t to order tn – see Maple’s taylor command.

15. Given a sequence of points (x0, y0), (x1, y1), . . . , (xn, yn) where the xi’s are distinct, the Maple
library function interp computes a polynomial of degree ≤ n which interpolates the points
using the Newton interpolation algorithm. Write a Maple procedure which computes a natural
cubic spline for the points. A natural cubic spline is a piecewise cubic polynomial where each
interval xi ≤ x ≤ xi+1 is defined by the cubic polynomial
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fi(x) = aix
3 + bix

2 + cix+ di 1 ≤ i ≤ n

where the 4n unknown coefficients are uniquely determined by the following 4n conditions

fi(xi−1) = yi−1, fi(xi) = yi, i = 1 . . . n
f ′i(xi) = f ′i+1(xi−1), f ′′i (xi) = f ′′i+1(xi−1), i = 1 . . . n− 1
f ′′1 (x0) = 0, f ′′n(xn) = 0

These conditions mean that the resulting piecewise polynomial is C2 continuous. Write a
Maple procedure which on input of the points as a list of (xi, yi)’s in the form [x0, y0, x1, y1, ..., xn, yn],
and a variable, outputs a list of the segment polynomials [f1, f2, ..., fn]. This requires
that you create the segment polynomials with unknown coefficients, use Maple to compute
the derivatives and solve the resulting equations. For example

> spline([0,1,2,3],[0,1,1,2],x);

3 3 2 3 2
[- 1/3 x + 4/3 x, 2/3 x - 3 x + 13/3 x - 1, - 1/3 x + 3 x - 23/3 x + 7]

16. Design a data structure for representing a piecewise function. The representation for the
piecewise cubic spline above does not interface with other facilities in Maple. Let us represent
a piecewise function as an unevaluated function instead as follows. Let

IF(c1, f1, ..., cn−1, fn−1, fn)

mean

if c1 then f1
if c2 then f2
. . .

else fn

• Write a Maple procedure called IF that simplifies such a piecewise function for conditions
which are purely numerical.

• Write a procedure called ‘evalf/IF‘ which evaluates an IF expression in floating point,
hence allowing IF expressions to be plotted.

• Write a procedure called ‘diff/IF‘ which differentiates an IF expression.

E.g. your procedures should result in the following behaviour.

> IF( x<0, sin(x), cos(x) );

IF(x < 0, sin(x), cos(x))
> diff(",x);

IF(x < 0, cos(x), - sin(x))

> IF( Pi/3<0, sin(Pi/3), cos(Pi/3) );
1/2

IF(1/3 Pi < 0, 1/2 3 , 1/2)
> evalf(");

.5000000000
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Modify your IF procedure to simplify nested IF expressions, and to handle constant conditions
like the example above. E.g. your IF procedure should result in the following behaviour.

> IF( x<0, 0, IF( x<1, x^2, IF(x>2, 0, 1-x^2) ) );

2 2
IF(x < 0, 0, x < 1, x , 2 < x, 0, 1 - x )

> IF( Pi/3<0, sin(Pi/3), cos(Pi/3) );

1/2

17. The following iteration is known as the Halley iteration

xk+1 = xk − f(xk)/f ′(xk)/
(

1− f(xk)f ′′(xk)
2f ′(xk)2

)
.

Program this iteration in Maple and check that it converges cubically. Prove that the con-
vergence is cubic.

18. The command dsolve solves ordinary differential equations analytically, although not all
ODE’s can be solved in closed form. But it is always possible to obtain a series solution
which may be useful. We are given the ODE

y′(x) = f(x, y(x))

and the initial condition y(0) = y0 and we want to find the first few terms in the series

y(x) =
∞∑
k=0

ykx
k .

Write a Maple procedure which on input of f(x, y(x)) and the initial condition y0 constructs
a linear system of equations to solve. I.e. let

y(x) = y0 +
n∑
k=1

yix
i

substitute this finite sum into the ODE, equate coefficients and solve for the unknowns yi.
Note, you will want to use the taylor command to truncate the result to order n. Test your
Maple procedure on the following ODE

y′(x) = 1 + x2 − 2xy(x) + y(x)2, y(0) = 1

You should get the following series

y(x) = 1 + 2x+ x2 + x3 + x4 + x5 +O(x6)

Compute the solution analytically using Maple’s dsolve command and check that your series
solution agrees with Maple’s analytic solution.
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Develop a Newton iteration to solve for the series y(x) which converges quadratically. I.e.
the k’th approximation

xk+1 = xk − f(xk)/f ′(xk)

is accurate to O(x2k). Thus the iteration starts with x0 = y0 and computes x1 = y0 + y1x
then x2 = y0 + y1x+ y2x

2 + y3x
3 and so on. Write a Maple procedure to compute the series.

19. Modify the GaussianElimination procedure so that it does a complete row reduction of a
rectangular matrix of rational numbers reducing the matrix to Reduced Row Echelon Form.
Now modify your procedure to work with a matrix of formulae. Use the simplify function
to simplify the intermediate results.

20. The use of the Taylor series for computing erf(x)
√
π

2
erf(x) =

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)

becomes increasingly inefficient for large x because it converges slowly. It also becomes
increasingly inaccurate because of cancellation of positive and negative terms. Write a Maple
procedure which sums the terms of the asymptotic series for erf(x)

√
π

2
erf(x) = 1− 2

√
π

x
e−2x

∞∑
n=1

(−1)n1× 3× . . .× 2n− 1
2nx2n

for large x until it converges. How large must x be before this series converges at Digits
decimal digits of precision? Combine the use of both the Taylor series and the asymptotic
series to write a procedure that computes erf(x) for all x accurate to Digits decimal digits
of precision.
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