Some new results on bi-skew braces

Lorenzo Stefanello

Joint work with Senne Trappeniers

The algebra of the Yang-Baxter equation, 14 July 2022

Skew braces

Definition ([Guarnieri and Vendramin, 2017])

A skew brace is a triple (A, \cdot, \circ) , where (A, \cdot) , (A, \circ) are groups and

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c).$$

Here a^{-1} denotes the inverse of a in (A, \cdot) .

Skew braces are connected with

- radical rings;
- solutions of the set-theoretic Yang-Baxter equation;
- regular subgroups of holomorphs of groups;
- Hopf–Galois structures.

Bi-skew braces

Definition ([Childs, 2019])

A *bi-skew brace* is a skew brace (A, \cdot, \circ) such that also (A, \circ, \cdot) is a skew brace.

Example

Let (A, \circ) be a group.

- A *trivial* skew brace (A, \circ, \circ) is a bi-skew brace.
- An almost trivial skew brace (A, \circ_{op}, \circ) , where $a \circ_{op} b = b \circ a$, is a bi-skew brace.

Example

 $(\mathbb{Z},+,\tilde{\circ})$ is a bi-skew brace, where $a\,\tilde{\circ}\,b=a+(-1)^ab$.

Byott's conjecture and bi-skew braces

Conjecture (Byott's conjecture

Let (A, \cdot, \circ) be a finite skew brace. If (A, \cdot) is soluble, then (A, \circ) is soluble.

Theorem ([LS and Trappeniers, 2022])

Let (A, \cdot, \circ) be a bi-skew brace. Then (A, \cdot) is soluble if and only if (A, \circ) is soluble.

A key player

Recall that *ideals* of skew braces are the substructures to consider in order to define quotient skew braces.

Fact

Let (A, \cdot, \circ) be a bi-skew brace. Then there exists an ideal I of (A, \cdot, \circ) such that

- (I, \cdot, \circ) is a trivial skew brace;
- $(A/I, \cdot, \circ)$ is an almost trivial skew brace.

(Here
$$I = A_{op}^2$$
.)

The proof and a generalisation

Proof

Suppose that (A, \cdot) is soluble. Then (I, \cdot) and $(A/I, \cdot)$ are soluble. As $(I, \cdot) = (I, \circ)$ and $(A/I, \cdot) \cong (A/I, \circ)$, also (I, \circ) and $(A/I, \circ)$ are soluble. We conclude that (A, \circ) is soluble.

Fact

This argument works also for skew braces (A, \cdot, \circ) admitting series $1 = A_{n+1} \subseteq A_n \subseteq \cdots \subseteq A_2 \subseteq A_1 = A$ where A_{i+1} is an ideal of A_i with $(A_i/A_{i+1}, \cdot) \cong (A_i/A_{i+1}, \circ)$ for all i.

In particular, Byott's conjecture holds for soluble skew braces, so also for skew braces that are right nilpotent, left nilpotent, strongly, central nilpotent, metatrivial, γ -homomorphic, . . .

A classification problem

Recall that $(\mathbb{Z}, +, \tilde{\circ})$ is a bi-skew brace, where $a \tilde{\circ} b = a + (-1)^a b$.

Proposition ([Rump, 2007])

Let $(\mathbb{Z},+,\circ)$ be a skew brace. If $(\mathbb{Z},+,\circ)$ is not trivial, then $(\mathbb{Z},\circ)=(\mathbb{Z},\tilde{\circ}).$

Problem ([Vendramin, 2019])

Determine the skew braces of the form $(\mathbb{Z},\cdot,+)$.

Theorem ([Cedó et al., 2019])

Let $(\mathbb{Z},\cdot,+)$ be a skew brace such that (\mathbb{Z},\cdot) is abelian. Then $(\mathbb{Z},\cdot,+)$ is trivial.

The resolution

We remark that we always have the skew braces $(\mathbb{Z},+,+)$, $(\mathbb{Z},\tilde{\circ},+)$, and $(\mathbb{Z},\tilde{\circ}_{op},+)$.

Theorem ([LS and Trappeniers, 2022])

Let $(\mathbb{Z},\cdot,+)$ be a skew brace. If $(\mathbb{Z},\cdot,+)$ is not trivial, then $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ})$ or $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ}_{op})$.

Sketch of the proof.

- If (\mathbb{Z}, \cdot) is abelian, then $(\mathbb{Z}, \cdot, +)$ is trivial.
- If (\mathbb{Z}, \cdot) is not abelian, then we can show that either $(\mathbb{Z}, \cdot, +)$ or $(\mathbb{Z}, \cdot_{op}, +)$ is a bi-skew brace.

In particular, either $(\mathbb{Z},+,\cdot)$ or $(\mathbb{Z},+,\cdot_{op})$ is a skew brace.

We obtain that either $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ})$ or $(\mathbb{Z},\cdot_{\sf op})=(\mathbb{Z},\tilde{\circ})$. \square

The Yang-Baxter equation

Let (X, r) be a (nondegenerate bijective) solution (of the set-theoretic Yang-Baxter equation). Write

- $r(x,y) = (\sigma_x(y), \tau_y(x));$
- $r^{-1}(x, y) = (\hat{\sigma}_x(y), \hat{\tau}_y(x)).$

Define the structure group of (X, r) to be

$$G(X,r) = \langle X \mid x \circ y = \sigma_X(y) \circ \tau_Y(x) \rangle;$$

then (X, r) is *injective* if the natural map $X \to G(X, r)$ is injective. For example, this is the case when (X, r) is *involutive*, that is, when $r^2 = \text{id}$.

We remark that G(X, r) has a natural structure of a skew brace.

Bi-skew braces and the Yang-Baxter equation

Question

When is G(X, r) a bi-skew brace?

Theorem ([LS and Trappeniers, 2022])

Let (X, r) be a solution.

• If for all $x, y \in X$,

$$\sigma_{\hat{\sigma}_{\mathsf{x}}(\mathsf{y})} = \sigma_{\mathsf{y}},$$

then G(X, r) is a bi-skew brace.

• If (X, r) is injective, then also the opposite implication holds.

Fact

When (X, r) is involutive, we find solutions studied in [Jedlička et al., 2020].

Bibliography

Cedó, F., Smoktunowicz, A., and Vendramin, L. (2019).

Skew left braces of nilpotent type.

Proc. Lond. Math. Soc. (3), 118(6):1367-1392.

i Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures.

New York J. Math., 25:574-588.

Guarnieri, L. and Vendramin, L. (2017).

Skew braces and the Yang-Baxter equation.

Math. Comp., 86(307):2519-2534.

Jedlička, P., Pilitowska, A., and Zamojska-Dzienio, A. (2020).

The construction of multipermutation solutions of the Yang-Baxter equation of level 2.

J. Combin. Theory Ser. A, 176:105295, 35.

Bibliography

LS and Trappeniers, S. (2022).

On bi-skew braces and brace blocks. arXiv:2205.15073.

Rump, W. (2007).

Classification of cyclic braces.

J. Pure Appl. Algebra, 209(3):671–685.

Vendramin, L. (2019).

Problems on skew left braces.

Adv. Group Theory Appl., 7:15–37.