Some new results on bi-skew braces ### Lorenzo Stefanello Joint work with Senne Trappeniers The algebra of the Yang-Baxter equation, 14 July 2022 ### Skew braces # Definition ([Guarnieri and Vendramin, 2017]) A skew brace is a triple (A, \cdot, \circ) , where (A, \cdot) , (A, \circ) are groups and $$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c).$$ Here a^{-1} denotes the inverse of a in (A, \cdot) . Skew braces are connected with - radical rings; - solutions of the set-theoretic Yang-Baxter equation; - regular subgroups of holomorphs of groups; - Hopf–Galois structures. ### Bi-skew braces ### Definition ([Childs, 2019]) A *bi-skew brace* is a skew brace (A, \cdot, \circ) such that also (A, \circ, \cdot) is a skew brace. #### Example Let (A, \circ) be a group. - A *trivial* skew brace (A, \circ, \circ) is a bi-skew brace. - An almost trivial skew brace (A, \circ_{op}, \circ) , where $a \circ_{op} b = b \circ a$, is a bi-skew brace. #### Example $(\mathbb{Z},+,\tilde{\circ})$ is a bi-skew brace, where $a\,\tilde{\circ}\,b=a+(-1)^ab$. # Byott's conjecture and bi-skew braces ### Conjecture (Byott's conjecture Let (A, \cdot, \circ) be a finite skew brace. If (A, \cdot) is soluble, then (A, \circ) is soluble. # Theorem ([LS and Trappeniers, 2022]) Let (A, \cdot, \circ) be a bi-skew brace. Then (A, \cdot) is soluble if and only if (A, \circ) is soluble. # A key player Recall that *ideals* of skew braces are the substructures to consider in order to define quotient skew braces. #### **Fact** Let (A, \cdot, \circ) be a bi-skew brace. Then there exists an ideal I of (A, \cdot, \circ) such that - (I, \cdot, \circ) is a trivial skew brace; - $(A/I, \cdot, \circ)$ is an almost trivial skew brace. (Here $$I = A_{op}^2$$.) # The proof and a generalisation #### Proof Suppose that (A, \cdot) is soluble. Then (I, \cdot) and $(A/I, \cdot)$ are soluble. As $(I, \cdot) = (I, \circ)$ and $(A/I, \cdot) \cong (A/I, \circ)$, also (I, \circ) and $(A/I, \circ)$ are soluble. We conclude that (A, \circ) is soluble. #### Fact This argument works also for skew braces (A, \cdot, \circ) admitting series $1 = A_{n+1} \subseteq A_n \subseteq \cdots \subseteq A_2 \subseteq A_1 = A$ where A_{i+1} is an ideal of A_i with $(A_i/A_{i+1}, \cdot) \cong (A_i/A_{i+1}, \circ)$ for all i. In particular, Byott's conjecture holds for soluble skew braces, so also for skew braces that are right nilpotent, left nilpotent, strongly, central nilpotent, metatrivial, γ -homomorphic, . . . ### A classification problem Recall that $(\mathbb{Z}, +, \tilde{\circ})$ is a bi-skew brace, where $a \tilde{\circ} b = a + (-1)^a b$. # Proposition ([Rump, 2007]) Let $(\mathbb{Z},+,\circ)$ be a skew brace. If $(\mathbb{Z},+,\circ)$ is not trivial, then $(\mathbb{Z},\circ)=(\mathbb{Z},\tilde{\circ}).$ # Problem ([Vendramin, 2019]) Determine the skew braces of the form $(\mathbb{Z},\cdot,+)$. # Theorem ([Cedó et al., 2019]) Let $(\mathbb{Z},\cdot,+)$ be a skew brace such that (\mathbb{Z},\cdot) is abelian. Then $(\mathbb{Z},\cdot,+)$ is trivial. ### The resolution We remark that we always have the skew braces $(\mathbb{Z},+,+)$, $(\mathbb{Z},\tilde{\circ},+)$, and $(\mathbb{Z},\tilde{\circ}_{op},+)$. Theorem ([LS and Trappeniers, 2022]) Let $(\mathbb{Z},\cdot,+)$ be a skew brace. If $(\mathbb{Z},\cdot,+)$ is not trivial, then $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ})$ or $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ}_{op})$. ### Sketch of the proof. - If (\mathbb{Z}, \cdot) is abelian, then $(\mathbb{Z}, \cdot, +)$ is trivial. - If (\mathbb{Z}, \cdot) is not abelian, then we can show that either $(\mathbb{Z}, \cdot, +)$ or $(\mathbb{Z}, \cdot_{op}, +)$ is a bi-skew brace. In particular, either $(\mathbb{Z},+,\cdot)$ or $(\mathbb{Z},+,\cdot_{op})$ is a skew brace. We obtain that either $(\mathbb{Z},\cdot)=(\mathbb{Z},\tilde{\circ})$ or $(\mathbb{Z},\cdot_{\sf op})=(\mathbb{Z},\tilde{\circ})$. \square # The Yang-Baxter equation Let (X, r) be a (nondegenerate bijective) solution (of the set-theoretic Yang-Baxter equation). Write - $r(x,y) = (\sigma_x(y), \tau_y(x));$ - $r^{-1}(x, y) = (\hat{\sigma}_x(y), \hat{\tau}_y(x)).$ Define the structure group of (X, r) to be $$G(X,r) = \langle X \mid x \circ y = \sigma_X(y) \circ \tau_Y(x) \rangle;$$ then (X, r) is *injective* if the natural map $X \to G(X, r)$ is injective. For example, this is the case when (X, r) is *involutive*, that is, when $r^2 = \text{id}$. We remark that G(X, r) has a natural structure of a skew brace. # Bi-skew braces and the Yang-Baxter equation #### Question When is G(X, r) a bi-skew brace? # Theorem ([LS and Trappeniers, 2022]) Let (X, r) be a solution. • If for all $x, y \in X$, $$\sigma_{\hat{\sigma}_{\mathsf{x}}(\mathsf{y})} = \sigma_{\mathsf{y}},$$ then G(X, r) is a bi-skew brace. • If (X, r) is injective, then also the opposite implication holds. #### Fact When (X, r) is involutive, we find solutions studied in [Jedlička et al., 2020]. # Bibliography Cedó, F., Smoktunowicz, A., and Vendramin, L. (2019). Skew left braces of nilpotent type. Proc. Lond. Math. Soc. (3), 118(6):1367-1392. i Childs, L. N. (2019). Bi-skew braces and Hopf Galois structures. New York J. Math., 25:574-588. Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang-Baxter equation. Math. Comp., 86(307):2519-2534. Jedlička, P., Pilitowska, A., and Zamojska-Dzienio, A. (2020). The construction of multipermutation solutions of the Yang-Baxter equation of level 2. J. Combin. Theory Ser. A, 176:105295, 35. # Bibliography LS and Trappeniers, S. (2022). On bi-skew braces and brace blocks. arXiv:2205.15073. Rump, W. (2007). Classification of cyclic braces. J. Pure Appl. Algebra, 209(3):671–685. Vendramin, L. (2019). Problems on skew left braces. Adv. Group Theory Appl., 7:15–37.