

Quesito 1. Dire per quali $k \in \mathbb{R}$ è diagonalizzabile la matrice $\begin{pmatrix} 2k^2 + 7k + 1 & -k^2 - 3k \\ 2k^2 + 14k + 24 & -k^2 - 6k - 11 \end{pmatrix}$.

Quesito 2. Se P è il piano in \mathbb{R}^3 generato da $\begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$ e $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, dire qual è il punto di P più vicino a $\begin{pmatrix} 7 \\ 6 \\ 2 \end{pmatrix}$.

Quesito 3. Dire per quali $k \in \mathbb{R}$ l'applicazione bilineare associata alla matrice $\begin{pmatrix} 20 & k^2 + 3 \\ 5k - 1 & k \end{pmatrix}$ è un prodotto scalare.

Quesito 4. Trovare gli autovalori della matrice $\begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$ e una base ortogonale di \mathbb{R}^2 che la diagonalizza.

Quesito 5. Dire per quali $k \in \mathbb{R}$ esiste M matrice ortogonale 3×3 tale che

$$M^{-1} \cdot \begin{pmatrix} 0 & \sqrt{2} & -3 \\ -\sqrt{2} & 0 & \sqrt{5} \\ 3 & -\sqrt{5} & 0 \end{pmatrix} \cdot M = \begin{pmatrix} 0 & k & 0 \\ -k & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Quesito 6. Stabilire per quali $t \in \mathbb{R}$ la conica di equazione

$$(t+3)x^2 - 4xy + y^2 - 2x + 2y + 2 = 0$$

è degenere, e negli altri casi descriverne il tipo affine.

UNIVERSITÀ DI PISA

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / II parte — Scritto del 8/1/21 — Quesiti

Quesito 7. Determinare il tipo affine della quadrica di equazione $8x^2 + 4xy + 4xz - 2yz - 4z = 0$.

Quesito 8. Determinare i punti all'infinito del luogo di \mathbb{R}^2 di equazione

$$8x^3 - 6x^2y - 11xy^2 + 3y^3 + 7x^2 + 3xy - 2y^2 + 8x + 7y - 1 = 0.$$

Quesito 9. Per la curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ data da $\alpha(t) = \begin{pmatrix} t \cdot e^t \\ 3t - t^2 \end{pmatrix}$ calcolare la curvatura nel punto t = 0 e i valori di t per cui tale curvatura è negativa.

Quesito 10. Calcolare $\int_{\alpha} (\cos(x^2) + y) dx + (-2x + \sin(y^2)) dy$ dove $\alpha : [0, 2\pi] \to \mathbb{R}^2$ è data da $\alpha(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$.

Risposte ai quesiti

1.
$$k \neq 4$$

2.
$$\begin{pmatrix} 5 \\ 5 \\ -3 \end{pmatrix}$$

3.
$$k = 1$$

4.
$$\lambda_1 = 2\sqrt{2} - 1$$
, $v_1 = \begin{pmatrix} 1 \\ \sqrt{2} - 1 \end{pmatrix}$, $\lambda_2 = -2\sqrt{2} - 1$, $v_2 = \begin{pmatrix} 1 \\ -\sqrt{2} - 1 \end{pmatrix}$

5.
$$k = \pm 4$$

6. Degenere per t=2; parabola per t=1; iperbole per t<1; ellisse per 1 < t < 2; vuota per t>2

7. Iperboloide iperbolico (a una falda)

8.
$$[3:2], [1:-1], [1:4]$$

9.
$$-\frac{2}{25}\sqrt{10}$$
; $\frac{1}{4}\left(1-\sqrt{65}\right) < t < \frac{1}{4}\left(1-\sqrt{65}\right)$

10.
$$-3\pi$$