

Geometria e Algebra Lineare / II parte — Scritto del 4/6/19 — Quesiti

Nome _____ Cognome _____ Matricola _____

- **1.** Se $A \in \mathcal{M}_{3\times 3}(\mathbb{C})$ e $p_A(t) = (t+3)(t-i)^2$ si può concludere che A è diagonalizzabile oppure che non lo è? Spiegare.
- 2. Se $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ è ortogonale e ha l'autovalore -1, si può concludere che A è diagonalizzabile oppure che non lo è? Spiegare.
- **3.** Per quali $t \in \mathbb{R}$ la retta proiettiva in $\mathbb{P}^2(\mathbb{R})$ passante per [3:2:t-1] e [2:-t:9] contiene il punto [4:-1:9]?
- **4.** Determinare il tipo affine della quadrica di equazione $-8x^2 + 3y^2 + 5z^2 10xy + 18xz 8yz + 6z = 0$. Spiegare.
- **5.** Calcolare $\int_{\alpha} \sin(x) \cos \alpha : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}^2$ data da $\alpha(t) = \begin{pmatrix} 2t \\ \cos(t) \end{pmatrix}$.
- **6.** Calcolare $\int_{\alpha} (3(y+5) dx 2(x+3) dy) \operatorname{con} \alpha : [0,1] \to \mathbb{R}^2 \operatorname{data} \operatorname{da} \alpha(t) = \begin{pmatrix} 2t t^2 \\ t^2 + 3 \end{pmatrix}$.
- 7. Esistono forme chiuse ma non esatte sull'insieme

 $A = \{(x,y) \in \mathbb{R}^2 : 1 < |x-3| < 2, \text{ oppure } 1 < |y+3| < 2\}$? Spiegare.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Geometria e Algebra Lineare / II parte — Scritto del 4/6/19 — Esercizî

- 1. Al variare di t in \mathbb{R} considerare la matrice $A_t = \begin{pmatrix} t+2 & 3 & -t \\ 3 & 2t+1 & -7 \\ -t & -7 & 12 \end{pmatrix}$ e la forma bilineare f_t su \mathbb{R}^3 ad essa associata.
 - (A) (1 punto) Provare che f_t è sempre simmetrica.
 - (B) (6 punti) Al variare di t determinare i segni degli autovalori di A_t . [Un aiuto: per t=2 vale $\det(A_t)=0$.]
 - (C) (5 punti) Verificato che f_t è un prodotto scalare su \mathbb{R}^3 per t=4, determinare tutti i vettori di \mathbb{R}^3 ortogonali rispetto a f_4 sia a $2e_1-e_2+e_3$ sia a $e_1+e_2+2e_3$
- **2.** Considerare $A = \begin{pmatrix} -1 & 1 & -3 \\ 1 & 1 & 1 \\ 2 & -1 & 4 \end{pmatrix}$ e $w = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}$.
 - (A) (5 punti) Trovare autovalori e autovettori di A e dire se essa sia diagonalizzabile.
- (B) (4 punti) Esibire la matrice P della proiezione ortogonale su w^{\perp} verficandone le proprietà caratterizzanti.
- (C) (3 punti) Provare che A + P ha l'autovalore 2. [Suggerimento: non esplicitare A + P.]

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / II parte — Scritto del 4/6/19 — Quesiti

Risposte ai quesiti

5. \diamondsuit

- 1. Non si può concludere nulla: $\begin{pmatrix} -3 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & i \end{pmatrix}$ è diagonalizzabile mentre $\begin{pmatrix} -3 & 0 & 0 \\ 0 & i & 1 \\ 0 & 0 & i \end{pmatrix}$ non lo è
- 2. Sì, è coniugata a $\begin{pmatrix} -1 & 0 \\ 0 & \pm 1 \end{pmatrix}$
- **3.** $t = 5 e t = \frac{13}{4}$
- **4.** Paraboloide iperbolico: $d_2 < 0$, $d_3 = 0$, $d_4 \neq 0$
- **5.** $\frac{2}{3} \left(5\sqrt{5} 8 \right)$
- 6. $\frac{101}{6}$
- **7.** Sì, ad esempio la forma $\frac{(y+3) dx (x-3) dy}{(x-3)^2 + (y+3)^2}$
 - 1. \spadesuit 2. \heartsuit 3. \spadesuit 4. \clubsuit 5. \diamondsuit 6. \spadesuit 7. \clubsuit 8. \heartsuit 9. \clubsuit 10. \diamondsuit

Geometria e Algebra Lineare / II parte — Scritto del 4/6/19 — Esercizî

Soluzioni degli esercizî

5. **\(\(\)**

1.

- (A) A_t è sempre simmetrica.
- (B) Due negativi e uno positivo per $t < -\frac{7}{2}$; uno negativo e due positivi per $-\frac{7}{2} < t < 2$ e per t > 13; tre positivi per 2 < t < 13; uno nullo, uno negativo e uno positivo per $t = -\frac{7}{2}$; uno nullo e due positivi per t = 2 e t = 13
- (C) Gli autovalori di A_4 sono positivi; $\pm \frac{2e_1+e_2}{3\sqrt{5}}$

2.

- (A) Autovalore 1 con autovettori multipli non nulli di $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$; autovalore 2 con autovettori multipli non nulli di $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$; non diagonalizzabile perché 1 ha molteplicità algebrica 2 e geometrica 1
- (B) $P = \frac{1}{38} \begin{pmatrix} 29 & 6 & -15 \\ 6 & 34 & 10 \\ -15 & 10 & 13 \end{pmatrix}$; ${}^{t}P = P \cdot P = P$
- (C) L'autovettore $u=\begin{pmatrix} -1\\1\\1 \end{pmatrix}$ di A relativo all'autovalore 1 è ortogonale a w, dunque Au=Pu=u, da cui (A+P)u=2u