

Geometria e Algebra Lineare / I parte — Scritto del 27/6/17 — Quesiti

Nome _____ Cognome ____ Matricola _____

- 1. Dati 3 vettori linearmente indipendenti in $Z = \{z \in \mathbb{C}^8 : (3-i)z_3 = (5+2i)z_7\}$, quanti bisogna aggiungerne per avere una base di Z?
- **2.** Se $f: \mathbb{R}^9 \to \{x \in \mathbb{R}^5: 3x_1 + 4x_3 + x_5 = 0\}$ è lineare e $f(e_6) = e_1 + e_2 e_3 + e_5$, che dimensione può avere Ker(f)?
- **3.** Posto $X = \{x \in \mathbb{R}^3 : 2x_1 x_2 + 3x_3 = 0\}$ e $f : X \to X$ data da $f(x) = \begin{pmatrix} 5 & 1 & -2 \\ 17 & 12 & 2 \\ 1 & 4 & 0 \end{pmatrix} \cdot x$, trovare $[f]_{\mathcal{B}}^{\mathcal{B}}$ dove $\mathcal{B} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.
- **4.** Data $A = \begin{pmatrix} 1+i & 2-i \\ 1+2i & 1-i \end{pmatrix}$ calcolare $(A^{-1})_{1,2}$.
- **5.** Se in una matrice $A \in \mathcal{M}_{5\times 6}(\mathbb{R})$ una sottomatrice 2×2 è invertibile e tutte le sue orlate sono non invertibili, si può stabilire il rango di A? In caso affermativo, quanto vale?
- **6.** Risolvere $4iz^2 2(2+i)z + 3(1+i) = 0$.
- 7. Se $X = \text{Span}(3e_1 + 2e_2 e_3, -e_1 + 5e_2 + 2e_3)$ e $Y_t = \text{Span}(te_1 + e_1 + e_3)$, per quali $t \in \mathbb{R}$ si ha $\mathbb{R}^3 = X \oplus Y_t$?

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Geometria e Algebra Lineare / I parte — Scritto del 27/6/17 — Esercizî

- 1. In \mathbb{R}^4 considerare il sottospazio $Y = \operatorname{Span}(e_1 e_3, e_2 e_4)$ e, al variare di $t \in \mathbb{R}$, il sottospazio X_t di equazioni $\left\{ \begin{array}{l} (t-3)x + (t-1)y + (4-2t)z + (5-t)w = 0 \\ (1-t)x + (2t-23)y + (2t+1)z + (t-4)w = 0. \end{array} \right.$
 - (A) (3 punti) Determinare $n_0, n_1 \in \mathbb{N}$ e t_0 in \mathbb{R} tali che dim $(X_t) = \begin{cases} n_0 & \text{per } t = t_0 \\ n_1 & \text{per } t \neq t_0. \end{cases}$
 - (B) (3 punti) Trovare equazioni parametriche di X_{t_0} .
 - (C) (3 punti) Trovare equazioni parametriche di X_1 .
 - (D) (3 punti) Provare che $Y \oplus X_1 = \mathbb{R}^4$.
 - (E) (3 punti) Determinare la proiezione su X_1 di $17e_1 + 3e_2 + 25e_3 5e_4$ rispetto alla decomposizione precedente.
- 2. Considerare

$$X = \{x \in \mathbb{R}^3 : 2x_1 + 3x_2 - 5x_3 = 0\}, \quad v = -2e_1 + 3e_2 + e_3,$$

$$\mathcal{B} = (e_1 + e_2 + e_3, 7e_1 + 2e_2 + 4e_3), \quad \mathcal{C} = (6e_1 + e_2 + 3e_3, 10e_1 - 5e_2 + e_3).$$

- (A) (3 punti) Provare che v appartiene a X e che \mathcal{B} e \mathcal{C} sono basi di X.
- (B) (3 punti) Trovare le coordinate di v rispetto a \mathcal{B} e a \mathcal{C} .
- (C) (3 punti) Trovare la matrice di cambio di base da \mathcal{B} a \mathcal{C} verificando poi la regola di cambio di coordinate da \mathcal{B} a \mathcal{C} per v.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / I parte — Scritto del 27/6/17 — Quesiti

Risposte ai quesiti

5. \diamondsuit

- **1.** 4
- 2. Tra 5 e 8 compresi
- **3.** $\begin{pmatrix} 3 & 9 \\ -3 & 16 \end{pmatrix}$
- 4. $\frac{1}{13}(1-8i)$
- **5.** Sì, vale 2
- **6.** $z_1 = -\frac{3}{2}i$, $z_2 = \frac{1}{2}(1+i)$
- 7. $t \neq -7$

Geometria e Algebra Lineare / I parte — Scritto del 27/6/17 — Esercizî

Soluzioni degli esercizî

 $5. \diamondsuit$

1.

(A)
$$n_0 = 3$$
, $n_1 = 2$, $t_0 = 7$

(B)
$$s_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} + s_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 3 \end{pmatrix} + s_3 \begin{pmatrix} 5 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

(C)
$$s_1 \begin{pmatrix} 7 \\ 1 \\ 7 \\ 0 \end{pmatrix} + s_2 \begin{pmatrix} 14 \\ -1 \\ 0 \\ 7 \end{pmatrix}$$

- (D) La matrice formata dalla base assegnata di Y e dalla base precedente di X_1 ha determinante 70
- (E) $14e_1 + 5e_2 + 28e_3 7e_4$

2.

(A) Tutti e 5 i vettori dati soddisfano l'equazione che definisce X; inoltre X ha dimensione 2 e sia \mathcal{B} sia \mathcal{C} contengono due vettori linearmente indipendenti

(B)
$$[v]_{\mathcal{B}} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
, $[v]_{\mathcal{C}} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

(C)
$$C = \mathcal{B} \cdot M$$
 con $M = \begin{pmatrix} -1 & -11 \\ 1 & 3 \end{pmatrix}$ e $[v]_{\mathcal{C}} = M^{-1} \cdot [v]_{\mathcal{B}}$