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Abstract. We show that the hexagonal honeycomb is optimal among convex periodic tes-
sellations of the plane, provided the cost functional is lower semicontinuous with respect to
the Hausdorff convergence, and decreasing under Steiner symmetrization.

1. Introduction

Finding optimal planar tilings, and in particular investigating the optimality of the honey-
comb structure made by a packing of regular hexagons, is a challenging and widely studied
problem, both for geometric and variational functionals. For the classical De Giorgi perime-
ter, in the seminal paper [13] Hales proved the optimality of the honeycomb in full generality,
namely among all possible coverings of the plane made by cells of equal area (see also [18]).
For the Cheeger constant, the result is proved in [4, 5] (respectively with and without con-
vexity constraint), while the cases of the first Robin Laplacian eigenvalue and of the Robin
torsional rigidity, have been settled in [6] (under convexity constraint). For the first Dirichlet
Laplacian eigenvalue, the optimality of the honeycomb corresponds to a conjecture formulated
by Caffarelli and Lin [7], and remains, to the best of our knowledge, open.

In the recent paper [8], we proved the existence of an optimal periodic tessellation minimiz-
ing quite general nonlocal perimeter functionals defined in terms of interaction kernels, and we
discussed the possible optimality of the honeycomb in the planar case, based on a symmetriza-
tion procedure. Since the description of such procedure, as it was sketched in [8, Lemma 5.1],
contained some inaccuracies (though all the statements in [8] are correct), a first goal of this
note is to fix rigorously its proof; a second goal is to observe that this procedure provides the
optimality of the honeycomb for a much wider class of optimal partition problems.

More precisely, in this note we prove that every centrally symmetric hexagon and every
parallelogram can be transformed into the regular hexagon with equal area by applying iter-
atively appropriate Steiner symmetrizations (see Section 2). Since the only convex polygons
which tessellate the plane by translations are centrally symmetric hexagons and parallelo-
grams, as shown in [10,17], this implies that, for any functional which is lower semicontinuous
with respect to the Hausdorff convergence of convex sets and is decreasing under Steiner
symmetrization, the honeycomb is the optimal periodic convex tiling of the plane. Plenty of
geometric or variational energies fit into this general framework (see Section 3); moreover, for
some of them, the honeycomb turns out to be the unique optimal tiling.

Several challenging related questions remain open. In particular is it natural to ask whether,
for all the energy functionals considered in this note, which include the first Dirichlet Lapla-
cian eigenvalue, the honeycomb is optimal also without the periodicity and the convexity
assumptions, corresponding to a generalized version of the conjecture by Caffarelli and Lin
[7]. A related interesting open question concerns on the other hand the possible existence of
other local minimizers for such energies.
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A first step in the direction of proving the conjecture would be establishing the existence of
an optimal tessellation, by analogy to what was done in [8] for nonlocal perimeters. We recall
that in [9], a weaker version of this conjecture was considered in the case of anisotropic local
perimeters under periodicity constraints: more precisely it is proved that the optimal periodic
planar tilings are given by centrally symmetric convex hexagons (eventually degenerating
to parallelograms) in the case of strictly convex anisotropy, and by nondegenerate convex
hexagons when the anisotropy is also differentiable.

2. Steiner symmetrization for periodic convex tilings

Let H denote the family of convex polygons which tessellate the plane by translations.
Recall that such a convex polygon can only be either a centrally symmetric hexagon or a
parallelogram [10,17]. The following lemma provides a constructive symmetrization procedure
on the class H.

For convenience of the reader, let us recall the classical definition of Steiner symmetrization
of a set E belonging more generally to the class C of compact convex sets in R2 with nonempty
interior, with respect to a straight line π ⊆ R2 passing through the origin. Denoting by v the
normal to π, and setting Lx = {x + tv , t ∈ R} for x ∈ π, the Steiner symmetrization of E
(see [1]) is given by

(1) Sπ(E) =
⋃

x∈π,Lx∩E ̸=∅

{x+ rv, 2|r| ≤ H1(E ∩ Lx)}.

It is straightforward to check that, if E ∈ C, then Sπ(E) ∈ C, with |Sπ(E)| = |E|.

Lemma 2.1. Every H0 ∈ H can be transformed into a regular hexagon, by using at most
countable Steiner symmetrizations.

Proof. Starting from a fixed hexagon H0 ∈ H (possibly degenerated into a parallelogram), let
us construct a sequence of centrally symmetric hexagons Hn (not degenerating into parallel-
ograms), such that Hn converge in Hausdorff distance to a regular hexagon H∗. We proceed
by steps.

Step 1: inizialization of the symmetrization procedure.
Let denote by A0, B0, C0, D0, E0, F0 the vertices of H0, ordered in counterclockwise sense.

We apply to H0 a Steiner symmetrization with respect of the axis of a diagonal joining the
vertices of two consecutive sides, say A0E0. By this way, H0 is transformed into a new
hexagon H1, whose vertices A1, B1, C1, D1, E1, F1 are not aligned three by three, namely H1

is not degenerated into a parallelogram (see Figure 1, where H0 is represented in dotted line,
and H1 in continuous line; notice that H1 is not degenerated into a parallelogram even if this is
the case for H0, see [8, Figure 1]). Precisely, we have: A1 = A0, E1 = E0, the triangle A0E0F0

becomes the isosceles triangle A1E1F1, the sides A0B0 and D0E0 are transformed into the sides
A1B1 and D1E1, which are parallel to the symmetry axis, and finally the triangle B0C0D0

becomes the isosceles triangle B1C1D1. In particular, the pairs (A1B1, D1E1), (A1F1, E1F1)
and (B1C1, C1D1) are congruent and, by symmetry with respect to the origin, also the sides
A1F1 and C1D1 are congruent, as well as the sides B1C1 and E1F1.

Thus, H1 has 4 congruent sides of length a1 = A1F1 = E1F1 = C1D1 = B1C1, and
2 congruent sides of length b1 = A1B1 = D1E1. Moreover, since Steiner symmetrization
perserves the area, we have that |H| = |H0|.
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Figure 1.

Step 2: construction of the sequence of hexagons Hn.
We proceed by applying the same procedure as in Step 1 to H1, by symmetrizing with

respect to the axis of the diagonal connecting a side of length a1 and a side of length b1, say
e.g. the diagonal D1F1. We thus obtain a new hexagon H2, having 4 congruent sides of length
a2 and 2 congruent sides of length b2 (see Figure 2, where H1 is represented in dotted line,
and H2 in continuous line).

We point out that the reason for displaying this second step, is that we aim at comparing
the lengths of the sides of H1 with the lengths of the sides of H2 (comparison that we are
going to extend iteratively to the next hexagons in the construction).
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First of all we observe that, since Steiner symmetrization decreases perimeter, we have that

4a1 + 2b1 ≥ 4a2 + 2b2 .

Next we observe that the triangle D1E1F1 becomes the isosceles triangle D2E2F2, which has
the same basis D2F2 = D1F1, and two congruent sides of length a2. Thus, applying again the
monotonicity of perimeter under Steiner symmetrization, we obtain

a1 + b1 ≥ 2a2 .

Finally we look at the vertices A1, B1, C1: they are turned into the new vertices A2, B2, C2,
which satisfy A2B2 = B2C2 = a2, and A2F2 = C2D2 = b2. Since the diagonal A1C1 is parallel
to the diagonal D1F1, and since we are symmetrizing with respect to the axis of D1F1, the side
A2F2 is the orthogonal projection of the side A1F1 onto the parallel to the symmetrization
axis passing through F1. In particular, due to this fact, we see that

b2 ≤ a1 .
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We now continue by applying recursively the same kind of symmetrization procedure, ob-
taining by this way a sequence of centrally symmetric hexagons Hn, with |Hn| = |H0|, each
one with 2 congruent sides of length bn, 4 congruent sides of length an, and such that the
following conditions hold for every n ≥ 1:

(i) 4an+1 + 2bn+1 ≤ 4an + 2bn,
(ii) 2an+1 ≤ an + bn,
(iii) bn+1 ≤ an.

Step 3: convergence of the sequence.
For every n ≥ 1, we define cn = max(an, bn) and dn = min(an, bn). Note that 0 < dn ≤ cn

for every n ≥ 1. We claim that

(2) lim
n

cn = lim
n

dn > 0 .

Once proved this claim, it is immediate to conclude that Hn is converging in measure (or
equivalently in Hausdorff distance) to the regular hexagon H∗, with sides of length equal to
any of the limits in (2). We are left to prove (2). By properties (ii),(iii) above, and by the
definition of cn, we have that

(3) 2an+1 ≤ an + bn ≤ 2cn bn+1 ≤ an ≤ cn.

From the above inequalities and the definition of cn+1, we infer that

cn+1 ≤ cn,

namely the sequence cn is monotone non increasing, so that

(4) lim
n

cn = inf
n

cn =: c.

Notice that necessarily c > 0, since the area of each Hn is constantly equal to the area of H0.
Let now ε > 0 be fixed, and let nε be such that cn ≤ c+ ε for n > nε.
We are going to show that

(5) max(dn, dn+1) ≥ c− ε ∀n > nε .

In turn, this implies that

c− ε ≤ max(dn, dn+1) ≤ cn ≤ c+ ε ∀n > nε ,

which ensures that lim dn = c (and hence that our claim (2) holds true).
In order to prove (5), we consider any n > nε, and we distinguish two possible situations:

either cn = bn and dn = an, or cn = an and dn = bn.
– Case cn = bn and dn = an. By properties (ii)-(iii) in Step 2, we have

2an+1 ≤ an + bn = cn + dn and bn+1 ≤ an = dn ≤ cn + dn
2

.

Hence

c ≤ cn+1 ≤
cn + dn

2
≤ c+ ε+ dn

2
,

yielding that dn ≥ c− ε.
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– Case cn = an and dn = bn. We distinguish two further sub-cases.
If cn+1 = an+1, by property (ii), we get

2c ≤ 2cn+1 = 2an+1 ≤ cn + dn ≤ c+ ε+ dn ,

yielding that dn ≥ c− ε.
If cn+1 = bn+1, by properties (ii)-(iii) in Step 2, we get{

2an+2 ≤ an+1 + bn+1 = cn+1 + dn+1

bn+2 ≤ an+1 = dn+1 ≤ cn+1+dn+1

2 ,

so that

c ≤ cn+2 ≤
cn+1 + dn+1

2
≤ c+ ε+ dn+1

2
,

yielding that dn+1 ≥ c− ε.
□

3. The optimality of the honeycomb

We now consider the isoperimetric problem

(6) inf
{
F(E) : E ∈ H , |E| = 1

}
,

where H denotes as in the previous section the class of convex polygons which tessellate the
plane by translations, and F belongs to a broad class of cost functionals. Precisely, we assume
that

F : H → R ∪ {+∞},
satisfies the following conditions:

– if Hn is a sequence in H converging to H in Hausdorff distance, then

(7) lim inf
n

F(Hn) ≥ F(H);

– for every line π and every H ∈ H, if Sπ(H) denotes the Steiner symmetrization of H
with respect to the line π (see (1)), it holds

(8) F(Sπ(H)) ≤ F(H).

As a direct consequence of Lemma 2.1, we obtain:

Theorem 3.1. For any functional F satisfying (7) and (8), there holds

min
H∈H

F(H) = F(H∗) ,

where H∗ is the regular hexagon with unit area. Moreover, if (8) holds as a strict inequality
when H ̸= Sπ(H), then H∗ is the unique minimizer.

Proof. For every H ∈ H, we let H0 = H and we construct the sequence Hn as in Lemma
2.1. Then by (8) we get that F(Hn+1) ≤ F(Hn) ≤ F(H) for every n ≥ 1. By (7) we have
F(H∗) ≤ lim infnF(Hn) ≤ F(H), where H∗ is the regular hexagon with area 1. Moreover,
we have the strict inequality F(H∗) < F(H) in case (8) is strict when H ̸= Sπ(H). □
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To conclude, we point out that the class of functionals satisfying assumptions (7)-(8) in-
cludes plenty of geometric or variational energies, other than the classical De Giorgi perimeter
and the Cheeger constant (for which as mentioned in the Introduction the optimality of the
honeycomb is already known in a much broader sense, without the periodicity and convexity
constraints). A non hexaustive list of such functionals is given below.

• Nonlocal perimeter functionals of the kind

PerK(E) =

∫
E

∫
R2\E

K(x− y)dxdy,

for any kernel K which is radial, nonnegative, with min{1, |h|}K(|h|) ∈ L1(R2), and
lim infz→0+

[
K(|z|) − K(|z + x|)

]
> 0 for x ̸= 0, see [8]. Note that if K is strictly

decreasing, then (8) holds as a strict inequality for H ̸= Sπ(H).
• Riesz-type energies of the form

R(E) = −
∫
E

∫
E
K(x− y)dxdy,

for any kernel K which is radial, decreasing, and positive definite, with
∫ 1
0 K(r)dr <

+∞ (see [15] and the related papers [2,3]). Also in this case, if K is strictly decreasing,
(8) holds as a strict inequality for H ̸= Sπ(H).

• The logaritmic capacity:

LogCap(E) = e−W (E) , where W (E) = inf
µ∈PE

∫
E

∫
E
log(|x− y|)dµ(x)dµ(y),

being PE the class of Borel probability measures supported in E, see [1, Theorem
6.29].

• The Riesz-α-capacity for any α ∈ (0, 2):

Iα(E) =
1

Wα(E)
, where Wα(E) = inf

µ∈PE

∫
E

∫
E
|x− y|α−2dµ(x)dµ(y)

where PE is as above, see [15], [1, Theorem 6.29].
• The variational p-capacity for any p ∈ (1, 2):

Capp(E) = inf{
∫
R2

|∇u|p : u ∈ C∞
0 (R2) , u = 1 on E},

see [1, Chapter 6].
• The first Dirichlet Laplacian eigenvalue:

λ1(E) = inf

{∫
E
|∇u|2dx : u ∈ H1

0 (E),

∫
E
|u|2dx = 1

}
see [14, Chapter 3].
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