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1 Beginners Guide

The “Beginners Guide” is intended for users who are new to OdePkg and who want to solve
differential equations with the Octave language and the package OdePkg. In this section it will
be explained what OdePkg is about in Section 1.1 [About OdePkg], page 1 and how OdePkg
grew up from the beginning in Section 1.2 [OdePkg history and roadmap], page 1. In Section 1.3
[Installation and deinstallation], page 2 it is explained how OdePkg can be installed in Octave
and how it can later be removed from Octave if it is not needed anymore. If you encounter
problems while using OdePkg then have a look at Section 1.4 [Reporting Bugs], page 2 how
these bugs can be reported. In the Section 1.5 [The "foo" example], page 2 a first example is
explained.

1.1 About OdePkg

OdePkg is part of the Octave Repository (resp. the Octave–Forge project) that was ini-
tiated by Matthew W. Roberts and Paul Kienzle in the year 2000 and that is hosted at
http://octave.sourceforge.net. Since then a lot of contributors joined this project and
added a lot more packages and functions to further extend the capabilities of GNU Octave.

OdePkg includes commands for setting up various options, output functions etc. before
solving a set of differential equations with the solver functions that are included. The package
formerly was initiated in autumn 2006 to solve ordinary differential equations (ODEs) only but
there are already improvements so that differential algebraic equations (DAEs) in explicit form
and in implicit form (IDEs) and delay differential equations (DDEs) can also be solved. The
goal of OdePkg is to have a package for solving differential equations that is mostly compatible
to proprietary solver products.

1.2 OdePkg history and roadmap

OdePkg Version 0.0.1 The initial release was a modification of the old “ode” package that is
hosted at Octave–Forge and that was written by Marc Compere some-
when between 2000 and 2001. The four variable step–size Runge–
Kutta algorithms in three solver files and the three fixed step–size
solvers have been merged. It was possible to set some options for these
solvers. The four output–functions (odeprint, odeplot, odephas2
and odephas3) have been added along with other examples that ini-
tially have not been there.

OdePkg Version 0.1.x The major milestone along versions 0.1.x was that four stable solvers
have been implemented (ie. ode23, ode45, ode54 and ode78) sup-
porting all options that can be set for these kind of solvers and
also all necessary functions for setting their options (eg. odeset,
odepkg_structure_check, odepkg_event_handle). Since version
0.1.3 there is also source code available that interfaces the For-
tran solver ‘dopri5.f’ (that is written by Ernst Hairer and Ger-
hard Wanner, cf. ‘odepkg_mexsolver_dopri5.c’ and the helper files
‘odepkgext.c’ and ‘odepkgmex.c’).

OdePkg Version 0.2.x The main work along version 0.2.x was to make the interface func-
tions for the non–stiff and stiff solvers from Ernst Hairer and Gerhard
Wanner enough stable so that they could be compiled and installed
by default. Wrapper functions have been added to the package con-
taining a help text and test functions (eg. ode2r, ode5r, oders).
Six testsuite functions have been added to check the performance
of the different solvers (eg. odepkg_testsuite_chemakzo, odepkg_
testsuite_oregonator).
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OdePkg Version 0.3.x Fixed some minor bugs along version 0.3.x. Thanks to Jeff Cash, who
released his Fortran mebdfX solvers under the GNU GPL V2 after
some discussion. The first IDE solver odebdi appeared that is an in-
terface function for Cash’s mebdfi Fortran core solver. With version
0.3.5 of OdePkg a first new interface function was created based on
Octave’s C++ DEFUN_DLD interface to achieve the highest performance
available. Added more examples and testsuite functions (eg. odepkg_
equations_ilorenz, odepkg_testsuite_implrober). Porting all at
this time present Mex–file solvers to Octave’s C++ DEFUN_DLD inter-
face. Ongoing work with this manual.

OdePkg Version 0.4.x Added a new solver function odekdi for the direct method (not the
Krylov method) of the ‘daskr.f’ solver from the authors Peter N.
Brown, Alan C. Hindmarsh, Linda R. Petzold and Clement W. Ulrich
that is available under a modified BSD license (without advertising
clause). Ongoing work with this manual.

OdePkg Version 0.5.x Added new solver functions ode23d, ode45d, ode54d and ode78d for
solving non–stiff delay differential equations (non-stiff DDEs). These
solvers are based on the Runge–Kutta solvers ode23..ode78. Tests and
demos have been included for this type of solvers. Added new func-
tions odeexamples, odepkg_examples_ode, odepkg_examples_dae,
odepkg_examples_ide and odepkg_examples_ide. Ongoing work
with this manual.

(current) Version 0.6.x A lot of compatibility tests. Final release before version 1.0.0.
(future) Version 1.0.0 Completed OdePkg release 1.0.0 with M–solvers and DLD–solvers.

1.3 Installation and deinstallation

OdePkg can be installed easily using the pkg command in Octave. To install OdePkg down-
load the latest release of OdePkg from the Octave–Forge download site, then get into that
directory where the downloaded release of OdePkg has been saved, start Octave and type

pkg install odepkg-x.x.x.tar.gz

where ‘x.x.x’ in the name of the ‘*.tar.gz’ file is the current release number of OdePkg
that is available. If you want to deinstall resp. remove OdePkg then simply type

pkg uninstall odepkg

and make sure that OdePkg has been removed completely and does not appear in the list of
installed packages anymore with the following command

pkg list

1.4 Reporting Bugs

If you encounter problems during the installation process of OdePkg with the pkg command
or if you have an OdePkg that seems to be broken or if you encounter problems while using
OdePkg or if you find bugs in the source codes then please report all of that via email at the
Octave–Forge mailing–list using the email address octave-dev@lists.sourceforge.net. Not
only bugs are welcome but also any kind of comments are welcome (eg. if you think that OdePkg
is absolutely useful or even unnecessary).

1.5 The "foo" example

Have a look at the first ordinary differential equation with the name “foo”. The foo equa-
tion of second order may be of the form y′′(t)+C 1y′(t)+C 2y(t) = C 3. With the substitutions

mailto:octave-dev@lists.sourceforge.net
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y 1(t) = y(t) and y 2(t) = y′(t) this differential equation of second order can be split into two dif-
ferential equations of first order, ie. y′ 1(t) = y 2(t) and y′ 2(t) = −C 1y 2(t)−C 2y 1(t)+C 3.
Next the numerical values for the constants need to be defined, ie. C 1 = 2.0, C 2 = 5.0,
C 3 = 10.0. This set of ordinary differential equations can then be written as an Octave M–file
function like

function vdy = foo (vt, vy, varargin)
vdy(1,1) = vy(2);
vdy(2,1) = - 2.0 * vy(2) - 5.0 * vy(1) + 10.0;

endfunction

It can be seen that this ODEs do not depend on time, nevertheless the first input argument of
this function needs to be defined as the time argument vt followed by a solution array argument
vy as the second input argument and a variable size input argument varargin that can be used
to set up user defined constants or control variables.

As it is known that foo is a set of ordinary differential equations we can choose one of the
four Runge–Kutta solvers (cf. Section 2.2 [Solver families], page 6). It is also known that the
time period of interest may be between t 0 = 0.0 and t e = 5.0 as well as that the initial values
of the ODEs are y 1(t = 0) = 0.0 and y 2(t = 0) = 0.0. Solving this set of ODEs can be done
by typing the following commands in Octave

ode45 (@foo, [0 5], [0 0]);

A figure window opens and it can be seen how this ODEs are solved over time. For some
of the solvers that come with OdePkg it is possible to define exact time stamps for which an
solution is required. Then the example can be called eg.

ode45 (@foo, [0:0.1:5], [0 0]);

If it is not wanted that a figure window is opened while solving then output arguments have
to be used to catch the results of the solving process and to not pass the results to the figure
window, eg.

[t, y] = ode45 (@foo, [0 5], [0 0]);

Results can also be obtained in form of an Octave structure if one output argument is used
like in the following example. Then the results are stored in the fields S.x and S.y.

S = ode45 (@foo, [0 5], [0 0]);

As noticed before, a function for the ordinary differential equations must not be rewritten
all the time if some of the parameters are going to change. That’s what the input argument
varargin can be used for. So rewrite the function foo into newfoo the following way

function vdy = newfoo (vt, vy, varargin)
vdy(1,1) = vy(2);
vdy(2,1) = -varargin{1}*vy(2)-varargin{2}*vy(1)+varargin{3};

endfunction

There is nothing said anymore about the constant values but if using the following caller
routine in the Octave window then the same results can be obtained with the new function
newfoo as before with the function foo (ie. the parameters are directly feed through from the
caller routine ode45 to the function newfoo)

ode45 (@newfoo, [0 5], [0 0], 2.0, 5.0, 10.0);

OdePkg can do much more while solving differential equations, eg. setting up other output
functions instead of the function odeplot or setting up other tolerances for the solving process
etc. As a last example in this beginning chapter it is shown how this can be done, ie. with the
command odeset

A = odeset (’OutputFcn’, @odeprint);
ode45 (@newfoo, [0 5], [0 0], A, 2.0, 5.0, 10.0);

or
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A = odeset (’OutputFcn’, @odeprint, ’AbsTol’, 1e-5, \
’RelTol’, 1e-5, ’NormControl’, ’on’);

ode45 (@newfoo, [0 5], [0 0], A, 2.0, 5.0, 10.0);

The options structure A that can be set up with with the command odeset must always be
the fourth input argument when using the ODE solvers and the DAE solvers but if you are using
an IDE solver then A must be the fifth input argument (cf. Section 2.2 [Solver families], page 6).
The various options that can be set with the command odeset are described in Section 2.3
[ODE/DAE/IDE/DDE options], page 10.

Further examples have also been implemented. These example files and functions are of the
form odepkg_examples_*. Different testsuite examples have been added that are stored in files
with filenames odepkg_testsuite_*. Before reading the next chapter note that nearly every
function that comes with OdePkg has its own help text and its own examples. Look for yourself
how the different functions, options and combinations can be used. If you want to have a look
at the help description of a special function then type

help fcnname

in the Octave window where fcnname is the name of the function for the help text to be
viewed. Type

demo fcnname

in the Octave window where fcnname is the name of the function for the demo to run. Finally
write

doc odepkg

for opening this manual in the texinfo reader of the Octave window.
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2 Users Guide

The “Users Guide” is intended for trained users who already know in principal how to solve
differential equations with the Octave language and OdePkg. In this chapter it will be explained
which equations can be solved with OdePkg in Section 2.1 [Differential Equations], page 5. It
will be explained which solvers can be used for the different kind of equations in Section 2.2
[Solver families], page 6 and which options can be set for the optimization of the solving process
in Section 2.3 [ODE/DAE/IDE/DDE options], page 10. The help text of all M–file functions
and all Oct–file functions have been extracted and are displayed in the sections Section 2.4
[M-File Function Reference], page 17 and Section 2.5 [Oct-File Function Reference], page 28.

2.1 Differential Equations

In this section the different kind of differential equations that can be solved with OdePkg are
explained. The formulation of ordinary differential equations is described in section Section 2.1.1
[ODE equations], page 5 followed by the description of explicetly formulated differential algebraic
equations in section Section 2.1.2 [DAE equations], page 5, implicetely formulated differential al-
gebraic equations in section Section 2.1.3 [IDE equations], page 6 and delay differential algebraic
equations in section Section 2.1.4 [DDE equations], page 6.

2.1.1 ODE equations

ODE equations in general are of the form y′(t) = f(t, y) where y′(t) may be a scalar or
vector of derivatives. The variable t always is a scalar describing one point of time and the
variable y(t) is a scalar or vector of solutions from the last time step of the set of ordinary
differential equations. If the equation is non–stiff then the Section 2.2.1 [Runge-Kutta solvers],
page 6 can be used to solve such kind of differential equations but if the equation is stiff then
it is recommended to use the Section 2.2.2 [Hairer-Wanner solvers], page 7. An ODE equation
definition in Octave must look like

function [dy] = ODEequation (t, y, varargin)

2.1.2 DAE equations

DAE equations in general are of the form M(t, y)\cdoty′(t) = f(t, y) where y′(t) may be a
scalar or vector of derivatives. The variable t always is a scalar describing one point of time and
the variable y(t) is a scalar or vector of solutions from the set of differential algebraic equations.
The variable M(t, y) is the squared singular mass matrix that may depend on y and t. If M(t, y)
is not singular then the set of equations from above can normally also be written as an ODE
equation. If it does not depend on time then it can be defined as a constant matrix or a function.
If it does depend on time then it must be defined as a function. Use the command odeset to
pass the mass matrix information to the solver function (cf. Section 2.3 [ODE/DAE/IDE/DDE
options], page 10). If the equation is non–stiff then the Section 2.2.1 [Runge-Kutta solvers],
page 6 can be used to solve such kind of differential equations but if the equation is stiff then
it is recommended to use the Section 2.2.2 [Hairer-Wanner solvers], page 7. A DAE equation
definition in Octave must look like

function [dy] = DAEequation (t, y, varargin)

and the mass matrix definition can either be a constant mass matrix or a valid function
handle to a mass matrix calculation function that can be set with the command odeset (cf.
option Mass of section Section 2.3 [ODE/DAE/IDE/DDE options], page 10).
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2.1.3 IDE equations

IDE equations in general are of the form y′(t)+f(t, y) = 0 where y′(t) may be a scalar or
vector of derivatives. The variable t always is a scalar describing one point of time and the
variable y(t) is a scalar or vector of solutions from the set of implicit differential equations.
Only IDE solvers from section Section 2.2.3 [Cash modified BDF solvers], page 8 or section
Section 2.2.4 [DDaskr direct method solver], page 8 can be used to solve such kind of differential
equations. A DAE equation definition in Octave must look like

function [residual] = IDEequation (t, y, dy, varargin)

2.1.4 DDE equations

DDE equations in general are of the form y′(t) = f(t, y(t), y(t − \tau 1), ..., y(t − \tau n))
where y′(t) may be a scalar or vector of derivatives. The variable t always is a scalar describing
one point of time and the variables y(t−\tau i) are scalars or vectors from the past. Only DDE
solvers from section Section 2.2.5 [Modified Runge-Kutta solvers], page 8 can be used to solve
such kind of differential equations. A DDE equation definition in Octave must look like

function [dy] = DDEequation (t, y, z, varargin)

NOTE: Only DDEs with constant delays y(t− \tau i) can be solved with OdePkg.

2.2 Solver families

In this section the different kind of solvers are introduced that have been implemented in
OdePkg. This section starts with the basic Runge–Kutta solvers in section Section 2.2.1 [Runge-
Kutta solvers], page 6 and is continued with the Mex–file Hairer–Wanner solvers in section
Section 2.2.2 [Hairer-Wanner solvers], page 7. Performance tests have also been added to the
OdePkg. Some of these performance results have been added to section Section 2.2.6 [ODE
solver performances], page 9.

2.2.1 Runge–Kutta solvers

The Runge–Kutta solvers are written in the Octave language and that are saved as ‘m’–files.
There have been implemented four different solvers with a very similiar structure, ie. ode23,
ode45, ode54 and ode781. The Runge–Kutta solvers have been added to the OdePkg to solve
non–stiff ODEs and DAEs, stiff equations of that form cannot be solved with these solvers.

The order of all of the following Runge–Kutta methods is the order of the local truncation
error, which is the principle error term in the portion of the Taylor series expansion that gets
dropped, or intentionally truncated. This is different from the local error which is the difference
between the estimated solution and the actual, or true solution. The local error is used in
stepsize selection and may be approximated by the difference between two estimates of different
order, l(h) = x(O(h+1)) − x(O(h)). With this definition, the local error will be as large as
the error in the lower order method. The local truncation error is within the group of terms
that gets multipled by h when solving for a solution from the general Runge–Kutta method.
Therefore, the order–p solution created by the Runge–Kunge method will be roughly accurate
to O(hˆ(p+1)) since the local truncation error shows up in the solution as e = h\cdotd which is
h–times an O(hˆp)–term, or rather O(hˆ(p+1)).

1 The descriptions for these Runge–Kutta solvers have been taken from the help texts of the initial Runge–
Kutta solvers that were written by Marc Compere, he also pointed out that ”a relevant discussion on step size
choice can be found on page 90ff in U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential
Equations and Differential–Agebraic Equations, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1998”.
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ode23 Integrates a system of non–stiff ordinary differential equations (non–stiff ODEs and
DAEs) using second and third order Runge–Kutta formulas. This particular third
order method reduces to Simpson’s 1/3 rule and uses the third order estimation for the
output solutions. Third order accurate Runge–Kutta methods have local and global
errors of O(hˆ4) and O(hˆ3) respectively and yield exact results when the solution is
a cubic (the variable h is the step size from one integration step to another integration
step). This solver requires three function evaluations per integration step.

ode45 Integrates a system of non–stiff ordinary differential equations (non–stiff ODEs and
DAEs) using fourth and fifth order embedded formulas from Fehlberg. This is a
fourth–order accurate integrator therefore the local error normally expected is O(hˆ5).
However, because this particular implementation uses the fifth–order estimate for x out
(ie. local extrapolation) moving forward with the fifth–order estimate should yield local
error of O(hˆ6). This solver requires six function evaluations per integration step.

ode54 Integrates a system of non–stiff ordinary differential equations (non–stiff ODEs and
DAEs) using fifth and fourth order Runge–Kutta formulas. The Fehlberg 4(5) of the
ode45 pair is established and works well, however, the Dormand–Prince 5(4) pair
minimizes the local truncation error in the fifth–order estimate which is what is used
to step forward (local extrapolation). Generally it produces more accurate results and
costs roughly the same computationally. This solver requires seven function evaluations
per integration step.

ode78 Integrates a system of non–stiff ordinary differential equations (non–stiff ODEs and
DAEs) using seventh and eighth order Runge–Kutta formulas. This is a seventh–order
accurate integrator therefore the local error normally expected is O(hˆ8). However,
because this particular implementation uses the eighth–order estimate for x out moving
forward with the eighth–order estimate will yield errors on the order of O(hˆ9). This
solver requires thirteen function evaluations per integration step.

2.2.2 Hairer–Wanner solvers

The Hairer–Wanner solvers have been written by Ernst Hairer and Gerhard Wanner. They
are written in the Fortran language (hosted at http://www.unige.ch/~hairer) and that have
been added to the OdePkg as a compressed file with the name ‘hairer.tgz’. Papers and other
details about these solvers can be found at the adress given before. The licence of these solvers
is a modified BSD license (without advertising clause and therefore are GPL compatible) and
can be found as ‘licence.txt’ file in the ‘hairer.tgz’ package. The Hairer–Wanner solvers
have been added to the OdePkg to solve non–stiff and stiff ODEs and DAEs that cannot be
solved with any of the Runge–Kutta solvers.

Interface functions for these solvers have been created and have been added to the OdePkg.
Their names are ‘odepkg_octsolver_XXX.cc’ where ‘XXX’ is the name of the Fortran file that is
interfaced. The file ‘dldsolver.oct’ is created automatically when installing OdePkg with the
command pkg, but developers can also build each solver manually with the instructions given
as a preamble of every ‘odepkg_octsolver_XXX.cc’ file.

To provide a short name and to circumvent from the syntax of the original solver function
wrapper functions have been added, eg. the command ode2r calls the solver radau from the
Fortran file ‘radau.f’. The other wrapper functions for the Hairer–Wanner solvers are ode5r
for the radau5 solver, oders for the rodas solver and odesx for the seulex solver. The help
text of all these solver functions can be diaplyed by calling help wrapper where wrapper is one
of ode2r, ode5r, oders or odesx.
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2.2.3 Cash modified BDF solvers

The backward differentiation algorithm solvers have been written by Jeff Cash in the Fortran
language and that are hosted at http://pitagora.dm.uniba.it/~testset. They have been
added to the OdePkg as a compressed file with the name ‘cash.tgz’. The license of these solvers
is a General Public License V2 that can be found as a preamble of each Fortran solver source
file. Papers and other details about these solvers can be found at the host adress given before
and also at Jeff Cash’s homepage at http://www.ma.ic.ac.uk/~jcash. Jeff Cash’s modified
BDF solvers have been added to the OdePkg to solve non–stiff and stiff ODEs and DAEs and
also IDEs that cannot be solved with any of the Runge–Kutta solvers.

Interface functions for these solvers have been created and have been added to the OdePkg.
Their names are ‘odepkg_octsolver_XXX.cc’ where ‘XXX’ is the name of the Fortran file that is
interfaced. The file ‘dldsolver.oct’ is created automatically when installing OdePkg with the
command pkg, but developers can also build each solver manually with the instructions given
as a preamble of every ‘odepkg_octsolver_XXX.cc’ file.

To provide a short name and to circumvent from the syntax of the original solver function
wrapper functions have been added. The command odebda calls the solver mebdfdae from the
Fortran file ‘mebdf.f’ and the odebdi calls the solver mebdfi from the Fortran file ‘mebdfi.f’.

2.2.4 DDaskr direct method solver

The direct method from the Krylov solver file ‘ddaskr.f’ has been written by Peter N. Brown,
Alan C. Hindmarsh, Linda R. Petzold and Clement W. Ulrich in the Fortran language and that
is hosted at http://www.netlib.org. The Krylov method has not been implemented within
OdePkg, only the direct method has been implemented. The solver and further files for the
interface have been added to the OdePkg as a compressed package with the name ‘ddaskr.tgz’.
The license of these solvers is a modfied BSD license (without advertising clause) that can be
found inside of the compressed package. Other details about this solver can be found as a
preamble in the source file ‘ddaskr.f’. The direct method solver of the file ‘ddaskr.f’ has been
added to the OdePkg to solve non–stiff and stiff IDEs.

An interface function for this solver has been created and has been added to the OdePkg. The
source file name is ‘odepkg_octsolver_ddaskr.cc’. The binary function can be found in the
file ‘dldsolver.oct’ that is created automatically when installing OdePkg with the command
pkg, but developers can also build the solver wrapper manually with the instructions given as a
preamble of the ‘odepkg_octsolver_ddaskr.cc’ file.

To provide a short name and to circumvent from the syntax of the original solver function a
wrapper function has been added. The command odekdi calls the direct method of the solver
ddaskr from the Fortran file ‘ddaskr.f’.

2.2.5 Modified Runge–Kutta solvers

The modified Runge–Kutta solvers are written in the Octave language and that are saved
as m–files. There have been implemented four different solvers that do have a very similiar
structure to that solvers found in section Section 2.2.1 [Runge-Kutta solvers], page 6. Their
names are ode23d, ode45d, ode54d and ode78d. The modified Runge–Kutta solvers have been
added to the OdePkg to solve non–stiff DDEs with constant delays only, stiff equations of that
form cannot be solved with these solvers. For further information about the error estimation of
these solvers cf. section Section 2.2.1 [Runge-Kutta solvers], page 6.

Note: The four DDE solvers of OdePkg are not syntax compatible to propietary solvers. The
reason is that the input arguments of the propietary DDE–solvers are completely mixed up in
comparison to ODE, DAE and IDE propietary solvers. The DDE solvers of OdePkg have been
implemented in form of a syntax compatible way to the other family solvers, eg. propietary
solver calls look like
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ode23 (@fode, vt, vy) %# for solving an ODE
ode15i (@fide, vt, vy, vdy) %# for solving an IDE
dde23 (@fdde, vlag, vhist, vt) %# for solving a DDE

whereas in OdePkg the same examples would look like

ode23 (@fode, vt, vy) %# for solving an ODE
odebdi (@fide, vt, vy, vdy) %# for solving an IDE
ode23d (@fdde, vt, vy, vlag, vhist) %# for solving a DDE

Further, the commands ddeset and ddeget have not been implemented in OdePkg. Use the
functions odeset and odeget for setting and returning DDE options instead.

2.2.6 ODE solver performances

The following tables give an overview about the performance of the OdePkg ODE/DAE
solvers in comparison to propietary solvers when running the HIRES function from the OdePkg
testsuite (non–stiff ODE test).

>> odepkg (’odepkg_performance_mathires’);
-----------------------------------------------------------------------------------------
Solver RelTol AbsTol Init Mescd Scd Steps Accept FEval JEval LUdec Time
-----------------------------------------------------------------------------------------
ode113 1e-007 1e-007 1e-009 7.57 5.37 24317 21442 45760 11.697
ode23 1e-007 1e-007 1e-009 7.23 5.03 13876 13862 41629 2.634
ode45 1e-007 1e-007 1e-009 7.91 5.70 11017 10412 66103 2.994

ode15s 1e-007 1e-007 1e-009 7.15 4.95 290 273 534 8 59 0.070
ode23s 1e-007 1e-007 1e-009 6.24 4.03 702 702 2107 702 702 0.161
ode23t 1e-007 1e-007 1e-009 6.00 3.79 892 886 1103 5 72 0.180
ode23tb 1e-007 1e-007 1e-009 5.85 3.65 735 731 2011 5 66 0.230
-----------------------------------------------------------------------------------------

octave:1> odepkg (’odepkg_performance_octavehires’);
-----------------------------------------------------------------------------------------
Solver RelTol AbsTol Init Mescd Scd Steps Accept FEval JEval LUdec Time
-----------------------------------------------------------------------------------------

ode23 1e-07 1e-07 1e-09 7.86 5.44 17112 13369 51333 138.071
ode45 1e-07 1e-07 1e-09 8.05 5.63 9397 9393 56376 92.065
ode54 1e-07 1e-07 1e-09 8.25 5.83 9300 7758 65093 84.319
ode78 1e-07 1e-07 1e-09 8.54 6.12 7290 6615 94757 97.746
ode2r 1e-07 1e-07 1e-09 7.69 5.27 50 50 849 50 59 0.624
ode5r 1e-07 1e-07 1e-09 7.55 5.13 71 71 671 71 81 0.447
oders 1e-07 1e-07 1e-09 7.08 4.66 138 138 828 138 138 0.661
odesx 1e-07 1e-07 1e-09 6.56 4.13 30 26 1808 26 205 1.057

odebda 1e-07 1e-07 1e-09 6.53 4.11 401 400 582 42 42 0.378
-----------------------------------------------------------------------------------------

The following tables give an overview about the performance of the OdePkg ODE/DAE
solvers in comparison to propietary solvers when running the chemical AKZO–NOBEL function
from the OdePkg testsuite (non–stiff ODE test).

>> odepkg (’odepkg_performance_matchemakzo’);
-----------------------------------------------------------------------------------------
Solver RelTol AbsTol Init Mescd Scd Steps Accept FEval JEval LUdec Time
-----------------------------------------------------------------------------------------
ode113 1e-007 1e-007 1e-007 NaN Inf - - - - - -
ode23 1e-007 1e-007 1e-007 NaN Inf 15 15 47 0.431
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ode45 1e-007 1e-007 1e-007 NaN Inf 15 15 92 0.170
ode15s 1e-007 1e-007 1e-007 7.04 6.20 161 154 4 35 0.521
ode23s 1e-007 1e-007 1e-007 7.61 6.77 1676 1676 5029 1676 1677 2.704
ode23t 1e-007 1e-007 1e-007 5.95 5.11 406 404 3 39 0.611
ode23tb 1e-007 1e-007 1e-007 NaN Inf 607 3036 1 608 6.730
-----------------------------------------------------------------------------------------

octave:1> odepkg (’odepkg_performance_octavechemakzo’);
-----------------------------------------------------------------------------------------
Solver RelTol AbsTol Init Mescd Scd Steps Accept FEval JEval LUdec Time
-----------------------------------------------------------------------------------------

ode23 1e-07 1e-07 1e-07 2.95 2.06 424 385 1269 1.270
ode45 1e-07 1e-07 1e-07 2.95 2.06 256 218 1530 1.281
ode54 1e-07 1e-07 1e-07 2.95 2.06 197 195 1372 1.094
ode78 1e-07 1e-07 1e-07 2.95 2.06 184 156 2379 1.933
ode2r 1e-07 1e-07 1e-07 8.50 7.57 39 39 372 39 43 0.280
ode5r 1e-07 1e-07 1e-07 8.50 7.57 39 39 372 39 43 0.238
oders 1e-07 1e-07 1e-07 7.92 7.04 67 66 401 66 67 0.336
odesx 1e-07 1e-07 1e-07 7.19 6.26 19 19 457 19 82 0.248

odebda 1e-07 1e-07 1e-07 7.47 6.54 203 203 307 25 25 0.182
-----------------------------------------------------------------------------------------

Other testsuite functions have been added to the OdePkg that can be taken for further
performance tests and syntax checks on your own hardware. These functions all have a name
‘odepkg_testsuite_XXX.m’ with ‘XXX’ being the name of the testsuite equation that has been
implemented.

2.3 ODE/DAE/IDE/DDE options

The default values of an OdePkg options structure can be displayed with the command
odeset. If odeset is called without any input argument and one output argument then a
OdePkg options structure with default values is created, eg.

A = odeset ();
disp (A);

There also is an command odeget which extracts one or more options from an OdePkg
options structure. Other values than default values can also be set with the command odeset.
The function description of the commands odeset and odeget can be found in the Section 2.4
[M-File Function Reference], page 17. The values that can be set with the odeset command are

‘RelTol’ The option ‘RelTol’ is used to set the relative error tolerance for the error estimation
of the solver that is used while solving. It can either be a positive scalar or a vector
with every element of the vector being a positive scalar (this depends on the solver
that is used if both variants are supported). The definite error estimation equation
also depends on the solver that is used but generalized (eg. for the solvers ode23,
ode45, ode54 and ode78) it may be a form like e(t) = max(r tolˆTy(t), a tol). Run
the following example to illustrate the effect if this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("RelTol", 1, "OutputFcn", @odeplot);
ode78 (@fvanderpol, [0 20], [2 0], A);
B = odeset (A, "RelTol", 1e-10);
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ode78 (@fvanderpol, [0 20], [2 0], B);

‘AbsTol’ The option ‘AbsTol’ is used to set the absolute error tolerance for the error estima-
tion of the solver that is used while solving. It can either be a positive scalar or a vec-
tor with every element of the vector being a positive scalar (it depends on the solver
that is used if both variants are supported). The definite error estimation equation
also depends on the solver that is used but generalized (eg. for the solvers ode23,
ode45, ode54 and ode78) it may be a form like e(t) = max(r tolˆTy(t), a tol). Run
the following example to illustrate the effect if this option is used

## An anonymous implementation of the Van der Pol equation
fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

A = odeset ("AbsTol", 1e-3, "OutputFcn", @odeplot);
ode54 (fvdb, [0 10], [2 0], A);
B = odeset (A, "AbsTol", 1e-10);
ode54 (fvdb, [0 10], [2 0], B);

‘NormControl’
The option ‘NormControl’ is used to set the type of error tolerance calculation of the
solver that is used while solving. It can either be the string "on" or "off". At the
time the solver starts solving a warning message may be displayed if the solver will
ignore the "on" setting of this option because of an unhandled resp. missing imple-
mentation. If set "on" then the definite error estimation equation also depends on
the solver that is used but generalized (eg. for the solvers ode23, ode45, ode54 and
ode78) it may be a form like e(t) = max(r tolˆTmax(norm(y(t), \infty)), a tol).
Run the following example to illustrate the effect if this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("NormControl", "on", "OutputFcn", @odeplot);
ode78 (@fvanderpol, [0 20], [2 0], A);
B = odeset (A, "NormControl", "off");
ode78 (@fvanderpol, [0 20], [2 0], B);

‘MaxStep’ The option ‘MaxStep’ is used to set the maximum step size for the solver that is
used while solving. It can only be a positive scalar. By default this value is set
internally by every solver and also may differ when using different solvers. Run the
following example to illustrate the effect if this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("MaxStep", 10, "OutputFcn", @odeprint);
ode78 (@fvanderpol, [0 20], [2 0], A);
B = odeset (A, "MaxStep", 1e-1);
ode78 (@fvanderpol, [0 20], [2 0], B);

‘InitialStep’
The option ‘InitialStep’ is used to set the initial first step size for the solver. It
can only be a positive scalar. By default this value is set internally by every solver
and also may be different when using different solvers. Run the following example
to illustrate the effect if this option is used
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function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("InitialStep", 1, "OutputFcn", @odeprint);
ode78 (@fvanderpol, [0 1], [2 0], A);
B = odeset (A, "InitialStep", 1e-5);
ode78 (@fvanderpol, [0 1], [2 0], B);

‘InitialSlope’
The option ‘InitialSlope’ is not handled by any of the solvers by now.

‘OutputFcn’
The option ‘OutputFcn’ can be used to set up an output function for displaying the
results of the solver while solving. It must be a function handle to a valid function.
There are four predefined output functions available with OdePkg. odeprint prints
the actual time values and results in the Octave window while solving, odeplot
plots the results over time in a new figure window while solving, odephas2 plots
the first result over the second result as a two–dimensional plot while solving and
odephas3 plots the first result over the second result over the third result as a three–
dimensional plot while solving. Run the following example to illustrate the effect if
this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("OutputFcn", @odeprint);
ode78 (@fvanderpol, [0 2], [2 0], A);

User defined output functions can also be used. A typical framework for a self–made
output function may then be of the form

function [vret] = odeoutput (vt, vy, vdeci, varargin)
switch vdeci
case "init"

## Do everything needed to intialize output function
case "calc"

## Do everything needed to create output
case "done"

## Do everything needed to clean up output function
endswitch

endfunction

The output function odeplot is also set automatically if the solver calculation rou-
tine is called without any output argument. Run the following example to illustrate
the effect if this option is not used and no output argument is given

## An anonymous implementation of the Van der Pol equation
fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

ode78 (fvdb, [0 20], [2 0]);

‘Refine’ The option ‘Refine’ is used to set the interpolation factor that is used to increase
the quality for the output values if an output function is also set with the option
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‘OutputFcn’. It can only be a integer value 0< =‘Refine’< = 5. Run the following
example to illustrate the effect if this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("Refine", 0, "OutputFcn", @odeplot);
ode78 (@fvanderpol, [0 20], [2 0], A);
B = odeset (A, "Refine", 3);
ode78 (@fvanderpol, [0 20], [2 0], B);

‘OutputSel’
The option ‘OutputSel’ is used to set the components for which output has to be
performed if an output function is also set with the option ‘OutputFcn’. It can only
be a vector of integer values. Run the following example to illustrate the effect if
this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("OutputSel", [1, 2], "OutputFcn", @odeplot);
ode78 (@fvanderpol, [0 20], [2 0], A);
B = odeset (A, "OutputSel", [2]);
ode78 (@fvanderpol, [0 20], [2 0], B);

‘Stats’ The option ‘Stats’ is used to print cost statistics about the solving process after
solving has been finished. It can either be the string "on" or "off". Run the
following example to illustrate the effect if this option is used

function yd = fvanderpol (vt, vy, varargin)
mu = 1; ## Set mu > 10 for higher stiffness
yd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

A = odeset ("Stats", "off");
[a, b] = ode78 (@fvanderpol, [0 2], [2 0], A);
B = odeset ("Stats", "on");
[c, d] = ode78 (@fvanderpol, [0 2], [2 0], B);

The cost statistics can also be obtained if the solver calculation routine is called
with one output argument. The cost statistics then are in the field ‘stats’ of the
output arguemnt structure. Run the following example to illustrate the effect if this
option is used

S = ode78 (@fvanderpol, [0 2], [2 0], B);
disp (S);

‘Jacobian’
The option ‘Jacobian’ can be used to set up an external Jacobian function or
Jacobian matrix for DAE solvers to achieve faster and better results (ODE Runge–
Kutta solvers do not need to handle a Jacobian function handle or Jacobian matrix).
It must either be a function handle to a valid function or a full constant matrix of
size squared the dimension of the set of differential equations. User defined Jacobian
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functions must have the form ‘function [vjac] = fjac (vt, vy, varargin)’. Run
the following example to illustrate the effect if this option is used

function vdy = fpol (vt, vy, varargin)
vdy = [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

endfunction

function vr = fjac (vt, vy, varargin)
vr = [0, 1; ...

-1-2*vy(1)*vy(2), 1-vy(1)^2];
endfunction

A = odeset ("Stats", "on");
B = ode5r (@fpol, [0 20], [2 0], A);
C = odeset (A, "Jacobian", @fjac);
D = ode5r (@fpol, [0 20], [2 0], C);

Note: The function definition for Jacobian calculations of IDE equations must have
the form ‘function [vjac, vdjc] = fjac (vt, vy, vyd, varargin)’. Run the fol-
lowing example to illustrate the effect if this option is used

function [vres] = fvanderpol (vt, vy, vyd, varargin)
vres = [vy(2) - vyd(1);

(1 - vy(1)^2) * vy(2) - vy(1) - vyd(2)];
endfunction

function [vjac, vdjc] = fjacobian (vt, vy, vyd, varargin)
vjac = [0, 1; -1 - 2 * vy(1) * vy(2), 1 - vy(1)^2];
vdjc = [-1, 0; 0, -1];

endfunction

vopt = odeset ("Jacobian", @fjacobian, "Stats", "on");
vsol = odebdi (@fvanderpol, [0, 20], [2; 0], [0; -2], vopt, 10);

‘JPattern’
The option ‘JPattern’ is not handled by any of the solvers by now.

‘Vectorized’
The option ‘Vectorized’ is not handled by any of the solvers by now.

‘Mass’ The option ‘Mass’ can be used to set up an external Mass function or Mass ma-
trix for solving DAE equations. It depends on the solver that is used if ‘Mass’ is
supported or not. It must either be a function handle to a valid function or a full
constant matrix of size squared the dimension of the set of differential equations.
User defined Jacobian functions must have the form ‘function vmas = fmas (vt,
vy, varargin)’. Run the following example to illustrate the effect if this option is
used

function vdy = frob (t, y, varargin)
vdy(1,1) = -0.04*y(1)+1e4*y(2)*y(3);
vdy(2,1) = 0.04*y(1)-1e4*y(2)*y(3)-3e7*y(2)^2;
vdy(3,1) = y(1)+y(2)+y(3)-1;

endfunction

function vmas = fmas (vt, vy, varargin)
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vmas = [1, 0, 0; 0, 1, 0; 0, 0, 0];
endfunction

A = odeset ("Mass", @fmas);
B = ode5r (@frob, [0 1e8], [1 0 0], A);

Note: The function definition for Mass calculations of DDE equations must have
the form ‘function vmas = fmas (vt, vy, vz, varargin)’.

‘MStateDependence’
The option ‘MStateDependence’ can be used to set up the type of the external Mass
function for solving DAE equations if a Mass function handle is set with the option
‘Mass’. It depends on the solver that is used if ‘MStateDependence’ is supported or
not. It must be a string of the form "none", "weak" or "strong". Run the following
example to illustrate the effect if this option is used

function vdy = frob (vt, vy, varargin)
vdy(1,1) = -0.04*vy(1)+1e4*vy(2)*vy(3);
vdy(2,1) = 0.04*vy(1)-1e4*vy(2)*vy(3)-3e7*vy(2)^2;
vdy(3,1) = vy(1)+vy(2)+vy(3)-1;

endfunction

function vmas = fmas (vt, varargin)
vmas = [1, 0, 0; 0, 1, 0; 0, 0, 0];

endfunction

A = odeset ("Mass", @fmas, "MStateDependence", "none");
B = ode5r (@frob, [0 1e8], [1 0 0], A);

User defined Mass functions must have the form as described before (ie. ‘function
vmas = fmas (vt, varargin)’ if the option ‘MStateDependence’ was set to "none",
otherwise the user defined Mass function must have the form ‘function vmas = fmas
(vt, vy, varargin)’ if the option ‘MStateDependence’ was set to either "weak" or
"strong".

‘MvPattern’
The option ‘MvPattern’ is not handled by any of the solvers by now.

‘MassSingular’
The option ‘MassSingular’ is not handled by any of the solvers by now.

‘NonNegative’
The option ‘NonNegative’ can be used to set solution variables to zero even if their
real solution would be a negative value. It must be a vector describing the positions
in the solution vector for which the option ‘NonNegative’ should be used. Run the
following example to illustrate the effect if this option is used

vfun = @(vt,vy) -abs(vy);
vopt = odeset ("NonNegative", [1]);

[vt1, vy1] = ode78 (vfun, [0 100], [1]);
[vt2, vy2] = ode78 (vfun, [0 100], [1], vopt);

subplot (2,1,1); plot (vt1, vy1);
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subplot (2,1,2); plot (vt2, vy2);

‘Events’ The option ‘Events’ can be used to set up an Event function, ie. the Event function
can be used to find zero crossings in one of the results. It must either be a function
handle to a valid function. Run the following example to illustrate the effect if this
option is used

function vdy = fbal (vt, vy, varargin)
vdy(1,1) = vy(2);
vdy(2,1) = -9.81; ## m/s

endfunction

function [veve, vterm, vdir] = feve (vt, vy, varargin)
veve = vy(1); ## Which event component should be tread
vterm = 1; ## Terminate if an event is found
vdir = -1; ## In which direction, -1 for falling

endfunction

A = odeset ("Events", @feve);
B = ode78 (@fbal, [0 1.5], [1 3], A);
plot (B.x, B.y(:,1));

Note: The function definition for Events calculations of DDE equations must
have the form ‘function [veve, vterm, vdir] = feve (vt, vy, vz, varargin)’
and the function definition for Events calculations of IDE equations must have the
form ‘function [veve, vterm, vdir] = feve (vt, vy, vyd, varargin)’.

‘MaxOrder’
The option ‘MaxOrder’ can be used to set the maximum order of the backward
differentiation algorithm of the odebdi and odebda solvers. It must be a scalar
integer value between 1 and 7. Run the following example to illustrate the effect if
this option is used

function res = fwei (t, y, yp, varargin)
res = t*y^2*yp^3 - y^3*yp^2 + t*yp*(t^2 + 1) - t^2*y;

endfunction

function [dy, dyp] = fjac (t, y, yp, varargin)
dy = 2*t*y*yp^3 - 3*y^2*yp^2 - t^2;
dyp = 3*t*y^2*yp^2 - 2*y^3*yp + t*(t^2 + 1);

endfunction

A = odeset ("AbsTol", 1e-6, "RelTol", 1e-6, "Jacobian", @fjac, ...
"Stats", "on", "MaxOrder", 1, "BDF", "on")

B = odeset (A, "MaxOrder", 5)
C = odebdi (@fwei, [1 10], 1.2257, 0.8165, A);
D = odebdi (@fwei, [1 10], 1.2257, 0.8165, B);
plot (C.x, C.y, "bo-", D.x, D.y, "rx:");

‘BDF’ The option ‘BDF’ is only supported by the odebdi and odebda solvers. Using these
solvers the option ‘BDF’ will automatically be set "on" (even if it was set "off"
before) because the odebdi and odebda solvers all use the backward differentiation
algorithm to solve the different kind of equations.

‘NewtonTol’
TODO
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‘MaxNewtonIterations’
TODO

2.4 M–File Function Reference

The help texts of this section are autogenerated and refer to commands that all can be found
in the files ‘*.m’. All commands that are listed below are loaded automatically everytime you
launch Octave.

Function File[] = ode23 (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode23 (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode23 (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff ordinary differential equations
(non–stiff ODEs) or non–stiff differential algebraic equations (non–stiff DAEs) with the
well known explicit Runge–Kutta method of order (2,3).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of the Van der Pol equation

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \
"NormControl", "on", "OutputFcn", @odeplot);

ode23 (fvdb, [0 20], [2 0], vopt);

Function File[] = ode23d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[sol] = ode23d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode23d (@fun, slot, init, lags, hist, [opt], [par1,

par2, ...])
This function file can be used to solve a set of non–stiff delay differential equations (non–
stiff DDEs) with a modified version of the well known explicit Runge–Kutta method of
order (2,3).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of DDEs that are defined in a function and specified by
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the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, lags is
a double vector that describes the lags of time, hist is a double matrix and describes the
history of the DDEs, opt can optionally be a structure array that keeps the options created
with the command odeset and par1, par2, . . . can optionally be other input arguments
of any type that have to be passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of DDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of a chaotic behavior

fcao = @(vt, vy, vz) [2 * vz / (1 + vz^9.65) - vy];

vopt = odeset ("NormControl", "on", "RelTol", 1e-3);
vsol = ode23d (fcao, [0, 100], 0.5, 2, 0.5, vopt);

vlag = interp1 (vsol.x, vsol.y, vsol.x - 2);
plot (vsol.y, vlag); legend ("fcao (t,y,z)");

Function File[] = ode45 (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode45 (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode45 (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff ordinary differential equations
(non–stiff ODEs) or non–stiff differential algebraic equations (non–stiff DAEs) with the
well known explicit Runge–Kutta method of order (4,5).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.
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For example, solve an anonymous implementation of the Van der Pol equation

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \
"NormControl", "on", "OutputFcn", @odeplot);

ode45 (fvdb, [0 20], [2 0], vopt);

Function File[] = ode45d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[sol] = ode45d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode45d (@fun, slot, init, lags, hist, [opt], [par1,

par2, ...])
This function file can be used to solve a set of non–stiff delay differential equations (non–
stiff DDEs) with a modified version of the well known explicit Runge–Kutta method of
order (4,5).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of DDEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, lags is
a double vector that describes the lags of time, hist is a double matrix and describes the
history of the DDEs, opt can optionally be a structure array that keeps the options created
with the command odeset and par1, par2, . . . can optionally be other input arguments
of any type that have to be passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of DDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of a chaotic behavior

fcao = @(vt, vy, vz) [2 * vz / (1 + vz^9.65) - vy];

vopt = odeset ("NormControl", "on", "RelTol", 1e-4);
vsol = ode45d (fcao, [0, 100], 0.5, 2, 0.5, vopt);

vlag = interp1 (vsol.x, vsol.y, vsol.x - 2);
plot (vsol.y, vlag); legend ("fcao (t,y,z)");

Function File[] = ode54 (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode54 (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode54 (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff ordinary differential equations
(non–stiff ODEs) or non–stiff differential algebraic equations (non–stiff DAEs) with the
well known explicit Runge–Kutta method of order (5,4).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
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the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of the Van der Pol equation

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \
"NormControl", "on", "OutputFcn", @odeplot);

ode54 (fvdb, [0 20], [2 0], vopt);

Function File[] = ode54d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[sol] = ode54d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode54d (@fun, slot, init, lags, hist, [opt], [par1,

par2, ...])
This function file can be used to solve a set of non–stiff delay differential equations (non–
stiff DDEs) with a modified version of the well known explicit Runge–Kutta method of
order (2,3).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of DDEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, lags is
a double vector that describes the lags of time, hist is a double matrix and describes the
history of the DDEs, opt can optionally be a structure array that keeps the options created
with the command odeset and par1, par2, . . . can optionally be other input arguments
of any type that have to be passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of DDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of a chaotic behavior
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fcao = @(vt, vy, vz) [2 * vz / (1 + vz^9.65) - vy];

vopt = odeset ("NormControl", "on", "RelTol", 1e-3);
vsol = ode54d (fcao, [0, 100], 0.5, 2, 0.5, vopt);

vlag = interp1 (vsol.x, vsol.y, vsol.x - 2);
plot (vsol.y, vlag); legend ("fcao (t,y,z)");

Function File[] = ode78 (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode78 (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode78 (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff ordinary differential equations
(non–stiff ODEs) or non–stiff differential algebraic equations (non–stiff DAEs) with the
well known explicit Runge–Kutta method of order (7,8).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of the Van der Pol equation

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \
"NormControl", "on", "OutputFcn", @odeplot);

ode78 (fvdb, [0 20], [2 0], vopt);

Function File[] = ode78d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[sol] = ode78d (@fun, slot, init, lags, hist, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode78d (@fun, slot, init, lags, hist, [opt], [par1,

par2, ...])
This function file can be used to solve a set of non–stiff delay differential equations (non–
stiff DDEs) with a modified version of the well known explicit Runge–Kutta method of
order (7,8).

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of DDEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, lags is
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a double vector that describes the lags of time, hist is a double matrix and describes the
history of the DDEs, opt can optionally be a structure array that keeps the options created
with the command odeset and par1, par2, . . . can optionally be other input arguments
of any type that have to be passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of DDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of a chaotic behavior

fcao = @(vt, vy, vz) [2 * vz / (1 + vz^9.65) - vy];

vopt = odeset ("NormControl", "on", "RelTol", 1e-3);
vsol = ode78d (fcao, [0, 100], 0.5, 2, 0.5, vopt);

vlag = interp1 (vsol.x, vsol.y, vsol.x - 2);
plot (vsol.y, vlag); legend ("fcao (t,y,z)");

Function File[] = odebwe (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = odebwe (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = odebwe (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of stiff ordinary differential equations (stiff
ODEs) or stiff differential algebraic equations (stiff DAEs) with the Backward Euler
method.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example, solve an anonymous implementation of the Van der Pol equation
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fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];
vjac = @(vt,vy) [0, 1; -1 - 2 * vy(1) * vy(2), 1 - vy(1)^2];
vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \

"NormControl", "on", "OutputFcn", @odeplot, \
"Jacobian",vjac);

odebwe (fvdb, [0 20], [2 0], vopt);

Function File[] = odeexamples ()
Open the differential equations examples menu and allow the user to select a submenu of
ODE, DAE, IDE or DDE examples.

Function File[value] = odeget (odestruct, option, [default])
Command[values] = odeget (odestruct, {opt1, opt2, ...}, [{def1, def2, ...}])

If this function is called with two input arguments and the first input argument odestruct is
of type structure array and the second input argument option is of type string then return
the option value value that is specified by the option name option in the OdePkg option
structure odestruct. Optionally if this function is called with a third input argument then
return the default value default if option is not set in the structure odestruct.

If this function is called with two input arguments and the first input argument odestruct
is of type structure array and the second input argument option is of type cell array of
strings then return the option values values that are specified by the option names opt1,
opt2, . . . in the OdePkg option structure odestruct. Optionally if this function is called
with a third input argument of type cell array then return the default value def1 if opt1
is not set in the structure odestruct, def2 if opt2 is not set in the structure odestruct, . . .

Run examples with the command

demo odeget

Function File[ret] = odephas2 (t, y, flag)
Open a new figure window and plot the first result from the variable y that is of type
double column vector over the second result from the variable y while solving. The types
and the values of the input parameter t and the output parameter ret depend on the input
value flag that is of type string. If flag is

‘"init"’ then t must be a double column vector of length 2 with the first and the last
time step and nothing is returned from this function,

‘""’ then t must be a double scalar specifying the actual time step and the return
value is false (resp. value 0) for ’not stop solving’,

‘"done"’ then t must be a double scalar specifying the last time step and nothing is
returned from this function.

This function is called by a OdePkg solver function if it was specified in an OdePkg options
structure with the odeset. This function is an OdePkg internal helper function therefore
it should never be necessary that this function is called directly by a user. There is only
little error detection implemented in this function file to achieve the highest performance.

For example, solve an anonymous implementation of the "Van der Pol" equation and
display the results while solving in a 2D plane

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset (’OutputFcn’, @odephas2, ’RelTol’, 1e-6);
vsol = ode45 (fvdb, [0 20], [2 0], vopt);



Chapter 2: Users Guide 24

Function File[ret] = odephas3 (t, y, flag)
Open a new figure window and plot the first result from the variable y that is of type
double column vector over the second and the third result from the variable y while
solving. The types and the values of the input parameter t and the output parameter ret
depend on the input value flag that is of type string. If flag is

‘"init"’ then t must be a double column vector of length 2 with the first and the last
time step and nothing is returned from this function,

‘""’ then t must be a double scalar specifying the actual time step and the return
value is false (resp. value 0) for ’not stop solving’,

‘"done"’ then t must be a double scalar specifying the last time step and nothing is
returned from this function.

This function is called by a OdePkg solver function if it was specified in an OdePkg options
structure with the odeset. This function is an OdePkg internal helper function therefore
it should never be necessary that this function is called directly by a user. There is only
little error detection implemented in this function file to achieve the highest performance.

For example, solve the "Lorenz attractor" and display the results while solving in a 3D
plane

function vyd = florenz (vt, vx)
vyd = [10 * (vx(2) - vx(1));

vx(1) * (28 - vx(3));
vx(1) * vx(2) - 8/3 * vx(3)];

endfunction

vopt = odeset (’OutputFcn’, @odephas3);
vsol = ode23 (@florenz, [0:0.01:7.5], [3 15 1], vopt);

Function File[] = odepkg ()
OdePkg is part of the GNU Octave Repository (the Octave–Forge project). The package
includes commands for setting up various options, output functions etc. before solving
a set of differential equations with the solver functions that are also included. At this
time OdePkg is under development with the main target to make a package that is mostly
compatible to proprietary solver products.

If this function is called without any input argument then open the OdePkg tutorial in
the Octave window. The tutorial can also be opened with the following command

doc odepkg

Function File[sol] = odepkg event handle (@fun, time, y, flag, [par1, par2,
...])

Return the solution of the event function that is specified as the first input argument @fun
in form of a function handle. The second input argument time is of type double scalar
and specifies the time of the event evaluation, the third input argument y either is of type
double column vector (for ODEs and DAEs) and specifies the solutions or is of type cell
array (for IDEs and DDEs) and specifies the derivatives or the history values, the third
input argument flag is of type string and can be of the form

‘"init"’ then initialize internal persistent variables of the function odepkg_event_
handle and return an empty cell array of size 4,

‘"calc"’ then do the evaluation of the event function and return the solution sol as
type cell array of size 4,
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‘"done"’ then cleanup internal variables of the function odepkg_event_handle and
return an empty cell array of size 4.

Optionally if further input arguments par1, par2, . . . of any type are given then pass
these parameters through odepkg_event_handle to the event function.

This function is an OdePkg internal helper function therefore it should never be neces-
sary that this function is called directly by a user. There is only little error detection
implemented in this function file to achieve the highest performance.

Function File[] = odepkg examples dae ()
Open the DAE examples menu and allow the user to select a demo that will be evaluated.

Function File[] = odepkg examples dde ()
Open the DDE examples menu and allow the user to select a demo that will be evaluated.

Function File[] = odepkg examples ide ()
Open the IDE examples menu and allow the user to select a demo that will be evaluated.

Function File[] = odepkg examples ode ()
Open the ODE examples menu and allow the user to select a demo that will be evaluated.

Function File[newstruct] = odepkg structure check (oldstruct, ["solver"])
If this function is called with one input argument of type structure array then check the
field names and the field values of the OdePkg structure oldstruct and return the structure
as newstruct if no error is found. Optionally if this function is called with a second input
argument "solver" of type string taht specifies the name of a valid OdePkg solver then a
higher level error detection is performed. The function does not modify any of the field
names or field values but terminates with an error if an invalid option or value is found.

This function is an OdePkg internal helper function therefore it should never be neces-
sary that this function is called directly by a user. There is only little error detection
implemented in this function file to achieve the highest performance.

Run examples with the command

demo odepkg_structure_check

Function File[mescd] = odepkg testsuite calcmescd (solution, reference, abstol,
reltol)

If this function is called with four input arguments of type double scalar or column vector
then return a normalized value for the minimum number of correct digits mescd that is
calculated from the solution at the end of an integration interval solution and a set of
reference values reference. The input arguments abstol and reltol are used to calculate a
reference solution that depends on the relative and absolute error tolerances.

Run examples with the command

demo odepkg_testsuite_calcmescd

Function File[scd] = odepkg testsuite calcscd (solution, reference, abstol, reltol)

If this function is called with four input arguments of type double scalar or column vector
then return a normalized value for the minimum number of correct digits scd that is
calculated from the solution at the end of an integration interval solution and a set of
reference values reference. The input arguments abstol and reltol are unused but present
because of compatibility to the function odepkg_testsuite_calcmescd.

Run examples with the command

demo odepkg_testsuite_calcscd
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Function File[solution] = odepkg testsuite chemakzo (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver
is a function handle describing an OdePkg solver and the second input argument reltol
is a double scalar describing the relative error tolerance then return a cell array solution
with performance informations about the chemical AKZO Nobel testsuite of differential
algebraic equations after solving (DAE–test).

Run examples with the command

demo odepkg_testsuite_chemakzo

Function File[solution] = odepkg testsuite hires (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver is
a function handle describing an OdePkg solver and the second input argument reltol is a
double scalar describing the relative error tolerance then return a cell array solution with
performance informations about the HIRES testsuite of ordinary differential equations
after solving (ODE–test).

Run examples with the command

demo odepkg_testsuite_hires

Function File[solution] = odepkg testsuite implakzo (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver is
a function handle describing an OdePkg solver and the second input argument reltol is a
double scalar describing the relative error tolerance then return a cell array solution with
performance informations about the chemical AKZO Nobel testsuite of implicit differential
algebraic equations after solving (IDE–test).

Run examples with the command

demo odepkg_testsuite_implakzo

Function File[solution] = odepkg testsuite implrober (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver is
a function handle describing an OdePkg solver and the second input argument reltol is a
double scalar describing the relative error tolerance then return a cell array solution with
performance informations about the implicit form of the modified ROBERTSON testsuite
of implicit differential algebraic equations after solving (IDE–test).

Run examples with the command

demo odepkg_testsuite_implrober

Function File[solution] = odepkg testsuite oregonator (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver is
a function handle describing an OdePkg solver and the second input argument reltol is a
double scalar describing the relative error tolerance then return a cell array solution with
performance informations about the OREGONATOR testsuite of ordinary differential
equations after solving (ODE–test).

Run examples with the command

demo odepkg_testsuite_oregonator

Function File[solution] = odepkg testsuite pollution (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver
is a function handle describing an OdePkg solver and the second input argument reltol is
a double scalar describing the relative error tolerance then return the cell array solution
with performance informations about the POLLUTION testsuite of ordinary differential
equations after solving (ODE–test).

Run examples with the command
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demo odepkg_testsuite_pollution

Function File[solution] = odepkg testsuite robertson (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver
is a function handle describing an OdePkg solver and the second input argument reltol
is a double scalar describing the relative error tolerance then return a cell array solution
with performance informations about the modified ROBERTSON testsuite of differential
algebraic equations after solving (DAE–test).

Run examples with the command

demo odepkg_testsuite_robertson

Function File[solution] = odepkg testsuite transistor (@solver, reltol)
If this function is called with two input arguments and the first input argument @solver
is a function handle describing an OdePkg solver and the second input argument reltol is
a double scalar describing the relative error tolerance then return the cell array solution
with performance informations about the TRANSISTOR testsuite of differential algebraic
equations after solving (DAE–test).

Run examples with the command

demo odepkg_testsuite_transistor

Function File[ret] = odeplot (t, y, flag)
Open a new figure window and plot the results from the variable y of type column vector
over time while solving. The types and the values of the input parameter t and the output
parameter ret depend on the input value flag that is of type string. If flag is

‘"init"’ then t must be a double column vector of length 2 with the first and the last
time step and nothing is returned from this function,

‘""’ then t must be a double scalar specifying the actual time step and the return
value is false (resp. value 0) for ’not stop solving’,

‘"done"’ then t must be a double scalar specifying the last time step and nothing is
returned from this function.

This function is called by a OdePkg solver function if it was specified in an OdePkg options
structure with the odeset. This function is an OdePkg internal helper function therefore
it should never be necessary that this function is called directly by a user. There is only
little error detection implemented in this function file to achieve the highest performance.

For example, solve an anonymous implementation of the "Van der Pol" equation and
display the results while solving

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset (’OutputFcn’, @odeplot, ’RelTol’, 1e-6);
vsol = ode45 (fvdb, [0 20], [2 0], vopt);

Function File[ret] = odeprint (t, y, flag)
Display the results of the set of differential equations in the Octave window while solving.
The first column of the screen output shows the actual time stamp that is given with the
input arguemtn t, the following columns show the results from the function evaluation
that are given by the column vector y. The types and the values of the input parameter
t and the output parameter ret depend on the input value flag that is of type string. If
flag is



Chapter 2: Users Guide 28

‘"init"’ then t must be a double column vector of length 2 with the first and the last
time step and nothing is returned from this function,

‘""’ then t must be a double scalar specifying the actual time step and the return
value is false (resp. value 0) for ’not stop solving’,

‘"done"’ then t must be a double scalar specifying the last time step and nothing is
returned from this function.

This function is called by a OdePkg solver function if it was specified in an OdePkg options
structure with the odeset. This function is an OdePkg internal helper function therefore
it should never be necessary that this function is called directly by a user. There is only
little error detection implemented in this function file to achieve the highest performance.

For example, solve an anonymous implementation of the "Van der Pol" equation and print
the results while solving

fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];

vopt = odeset (’OutputFcn’, @odeprint, ’RelTol’, 1e-6);
vsol = ode45 (fvdb, [0 20], [2 0], vopt);

Function File[odestruct] = odeset ()
Command[odestruct] = odeset ("field1", value1, "field2", value2, ...)
Command[odestruct] = odeset (oldstruct, "field1", value1, "field2", value2, ...)
Command[odestruct] = odeset (oldstruct, newstruct)

If this function is called without an input argument then return a new OdePkg options
structure array that contains all the necessary fields and sets the values of all fields to
default values.

If this function is called with string input arguments "field1", "field2", . . . identifying
valid OdePkg options then return a new OdePkg options structure with all necessary
fields and set the values of the fields "field1", "field2", . . . to the values value1, value2,
. . .

If this function is called with a first input argument oldstruct of type structure array then
overwrite all values of the options "field1", "field2", . . . of the structure oldstruct with
new values value1, value2, . . . and return the modified structure array.

If this function is called with two input argumnets oldstruct and newstruct of type struc-
ture array then overwrite all values in the fields from the structure oldstruct with new
values of the fields from the structure newstruct. Empty values of newstruct will not
overwrite values in oldstruct.

For a detailed explanation about valid fields and field values in an OdePkg structure
aaray have a look at the ‘odepkg.pdf’, Section ’ODE/DAE/IDE/DDE options’ or run
the command doc odepkg to open the tutorial.

Run examples with the command

demo odeset

2.5 Oct–File Function Reference

The help texts of this section are autogenerated and refer to commands that all can be found
in the file ‘dldsolver.oct’. The file ‘dldsolver.oct’ is generated automatically if you install
OdePkg with the command pkg. All commands that are listed below are loaded automatically
everytime you launch Octave.
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Command[] = odebda (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = odebda (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = odebda (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff or stiff ordinary differential
equations (ODEs) and non–stiff or stiff differential algebraic equations (DAEs). This
function file is a wrapper file that uses Jeff Cash’s Fortran solver ‘mebdfdae.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function y = odepkg_equations_lorenz (t, x)
y = [10 * (x(2) - x(1));

x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

odebda (@odepkg_equations_lorenz, [0, 25], [3 15 1], vopt);

Command[] = odebdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])
Command[sol] = odebdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])
Command[t, y, [xe, ye, ie]] = odebdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])

This function file can be used to solve a set of non–stiff and stiff implicit differential
equations (IDEs). This function file is a wrapper file that uses Jeff Cash’s Fortran solver
‘mebdfi.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of IDEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, y0 is a double vector that defines the initial values of the states, dy0 is
a double vector that defines the initial values of the derivatives, opt can optionally be a
structure array that keeps the options created with the command odeset and par1, par2,
. . . can optionally be other input arguments of any type that have to be passed to the
function defined by @fun.
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If this function is called with one return argument then return the solution sol of type
structure array after solving the set of IDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function res = odepkg_equations_ilorenz (t, y, yd)
res = [10 * (y(2) - y(1)) - yd(1);

y(1) * (28 - y(3)) - yd(2);
y(1) * y(2) - 8/3 * y(3) - yd(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

odebdi (@odepkg_equations_ilorenz, [0, 25], [3 15 1], \\
[120 81 42.333333], vopt);

Command[] = odekdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])
Command[sol] = odekdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])
Command[t, y, [xe, ye, ie]] = odekdi (@fun, slot, y0, dy0, [opt], [P1, P2, ...])

This function file can be used to solve a set of non–stiff or stiff implicit differential equations
(IDEs). This function file is a wrapper file that uses the direct method (not the Krylov
method) of Petzold’s, Brown’s, Hindmarsh’s and Ulrich’s Fortran solver ‘ddaskr.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of IDEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, y0 is a double vector that defines the initial values of the states, dy0 is
a double vector that defines the initial values of the derivatives, opt can optionally be a
structure array that keeps the options created with the command odeset and par1, par2,
. . . can optionally be other input arguments of any type that have to be passed to the
function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of IDEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,
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function res = odepkg_equations_ilorenz (t, y, yd)
res = [10 * (y(2) - y(1)) - yd(1);

y(1) * (28 - y(3)) - yd(2);
y(1) * y(2) - 8/3 * y(3) - yd(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

odekdi (@odepkg_equations_ilorenz, [0, 25], [3 15 1], \\
[120 81 42.333333], vopt);

Command[] = ode2r (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode2r (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode2r (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff or stiff ordinary differential
equations (ODEs) and non–stiff or stiff differential algebraic equations (DAEs). This
function file is a wrapper to Hairer’s and Wanner’s Fortran solver ‘radau.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function y = odepkg_equations_lorenz (t, x)
y = [10 * (x(2) - x(1));

x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

ode2r (@odepkg_equations_lorenz, [0, 25], [3 15 1], vopt);
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Command[] = ode5r (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = ode5r (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = ode5r (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff or stiff ordinary differential
equations (ODEs) and non–stiff or stiff differential algebraic equations (DAEs). This
function file is a wrapper to Hairer’s and Wanner’s Fortran solver ‘radau5.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function y = odepkg_equations_lorenz (t, x)
y = [10 * (x(2) - x(1));

x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

ode5r (@odepkg_equations_lorenz, [0, 25], [3 15 1], vopt);

Function File[] = oders (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = oders (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = oders (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of non–stiff or stiff ordinary differential
equations (ODEs) and non–stiff or stiff differential algebraic equations (DAEs). This
function file is a wrapper to Hairer’s and Wanner’s Fortran solver ‘rodas.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
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for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function y = odepkg_equations_lorenz (t, x)
y = [10 * (x(2) - x(1));

x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];

endfunction

vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

oders (@odepkg_equations_lorenz, [0, 25], [3 15 1], vopt);

Command[] = odesx (@fun, slot, init, [opt], [par1, par2, ...])
Command[sol] = odesx (@fun, slot, init, [opt], [par1, par2, ...])
Command[t, y, [xe, ye, ie]] = odesx (@fun, slot, init, [opt], [par1, par2, ...])

This function file can be used to solve a set of stiff or non–stiff ordinary differential
equations (ODEs) and non–stiff or stiff differential algebraic equations (DAEs). This
function file is a wrapper to Hairer’s and Wanner’s Fortran solver ‘seulex.f’.

If this function is called with no return argument then plot the solution over time in a
figure window while solving the set of ODEs that are defined in a function and specified by
the function handle @fun. The second input argument slot is a double vector that defines
the time slot, init is a double vector that defines the initial values of the states, opt can
optionally be a structure array that keeps the options created with the command odeset
and par1, par2, . . . can optionally be other input arguments of any type that have to be
passed to the function defined by @fun.

If this function is called with one return argument then return the solution sol of type
structure array after solving the set of ODEs. The solution sol has the fields x of type
double column vector for the steps chosen by the solver, y of type double column vector
for the solutions at each time step of x, solver of type string for the solver name and
optionally the extended time stamp information xe, the extended solution information
ye and the extended index information ie all of type double column vector that keep the
informations of the event function if an event function handle is set in the option argument
opt.

If this function is called with more than one return argument then return the time stamps t,
the solution values y and optionally the extended time stamp information xe, the extended
solution information ye and the extended index information ie all of type double column
vector.

For example,

function y = odepkg_equations_lorenz (t, x)
y = [10 * (x(2) - x(1));

x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];

endfunction
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vopt = odeset ("InitialStep", 1e-3, "MaxStep", 1e-1, \\
"OutputFcn", @odephas3, "Refine", 5);

odesx (@odepkg_equations_lorenz, [0, 25], [3 15 1], vopt);
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3 Programmers Guide

3.1 Missing features

If somebody want to help improving OdePkg then please contact the Octave–Forge developer
team sending your modifications via the mailing–list octave-dev@lists.sourceforge.net.
Here is a TODO–list about missing features:

Partial Derivative equations (PDEs) and Boundary Value Equations (BVPs) cannot be
solved with the solvers of the OdePkg. The wish for solving PDEs and BVPs definitely is
there (maybe you’d like to create another package and call that package PdePkg, which is
just an idea).

Some options that can be set with propietary solver products are not available within
OdePkg. Have a look at section Section 2.3 [ODE/DAE/IDE/DDE options], page 10 about
which options can be set and which options are not supported and help improving the
command odeset, odepkg_structure_check and the solvers that have to deal with these
options.

OdePkg currently is missing the command decic which computes an initial constraint for
IDEs before solving. The command deval also is missing that interpolates the results that
can be obtained from the solvers after solving and then plots the results in a new figure.
However, instead of using deval any of the commands interpX.

If you want to include your own solver within OdePkg then either code in ‘*.m’ or ‘*.cc’.
Solvers in ‘*.m’ are preferred. Choose a GPL compatible license for your solver and send
your solver file to the mailing list.

Before interfacing other solvers make sure that the core solver file is available under a GPL–
compatible license (if you’d like to redistribute your wrapper with OdePkg). There can be
found a lot of solver files at http://www.netlib.org but most of them are not GPL–
compatible. Here is a list about authors and their solvers that do have a GPL compatible
license so that their codes can be redistributed with OdePkg:

Cecilia Magherini and Luigi Brugnano from the Univer-
sity of Bari created the BIMD solver that is available at
http://pitagora.dm.uniba.it/~testset/solvers/bimd.php. This solver
can be used to solve stiff DAE equations. The Fortran77 file has been released under
the GNU GPL V2.

Francesca Mazzia and Felice Iavernaro from the Univer-
sity of Bari created the GAMD solver that is available at
http://pitagora.dm.uniba.it/~testset/solvers/gamd.php. This solver
can be used to solve stiff DAE equations. The Fortran90 file has been released under
the GNU GPL V2 but for OdePkg a Fortran77 implementation would be preferred.

Ernst Hairer and Gerhard Wanner have been written more solvers that are released un-
der a modified BSD license than have been interfaced by OdePkg. Notable solvers that
can be found at http://www.unige.ch/~hairer/software.html are explicit Runge-
Kutta methods dopri5 and dop853 and extrapolation methods odex and odex2 for
solving ODEs, retard and radar5 for solving DDEs.

Jeff Cash has released some more Fortran77 solvers for different kinds of
differential equation problems than are interfaced by OdePkg, check his website at
http://www.ma.ic.ac.uk/~jcash.

mailto:octave-dev@lists.sourceforge.net
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