Un criterio metrico di surgettività

(F.Lazzeri; Pisa, giugno 2001)

Siano X uno spazio topologico ed Ω un intorno della diagonale in $X \times X$. Una applicazione $f: X \to Y$ di X in un insieme Y è detta Ω -iniettiva se per ogni $a, b \in X$ con f(a) = f(b) si ha $(a, b) \in \Omega$. Se X è metrico, chiameremo spessore di $f: X \to Y$ l'estremo superiore s(f) dei diametri delle fibre di f ossia:

$$s(f) = \sup\{d(a, b) : a, b \in X, f(a) = f(b)\}\$$

Evidentemente se X è anche compatto, per ogni intorno Ω della diagonale in $X \times X$ esiste una costante r > 0 tale che ogni applicazione $f : X \to Y$ avente spessore inferiore ad r è Ω —iniettiva.

Lemma 1 Sia $f: X \to Y$ una applicazione continua tra spazi metrici con X compatto. Per ogni costante r > s(f) esiste un $\delta > 0$ tale che ogni applicazione $g: X \to Y$ con $d(f,g) < \delta$ ha spessore inferiore ad r.

Dim. Sia $f \times f : X \times X \to Y \times Y$ l'applicazione $(f \times f)(a,b) = (f(a),f(b))$. Scelto $c \in \mathbb{R}$ con s(f) < c < r consideriamo $M = \{(a,b) \in X \times X : d(a,b) \ge c\}$. L'immagine di M in $Y \times Y$ è un compatto ed è disgiunto dalla diagonale che è un chiuso; tali insiemi hanno quindi una distanza h strettamente positiva. Sia $\delta > 0$ inferiore alla metà di h; se $(a,b) \in M$ si ha:

$$d(g(a), g(b)) \ge d(f(a), f(b)) - d(g(a), f(a)) - d(f(b), g(b)) > 0$$

e quindi q ha spessore al più c.

Lemma 2 Sia $f: X \to Y$ una applicazione continua tra spazi metrici con X compatto e siano s e Z rispettivamente lo spessore e l'immagine di tale f. Allora per ogni applicazione $g: Z \to X$ tale che $f \circ g$ sia l'identità su Z e per ogni $\epsilon > 0$ esiste un $\delta > 0$ tale che per $a, b \in Z$ e $d(a, b) < \delta$ si ha $d(g(a), g(b)) < s + \epsilon$.

Dim. Altrimenti esisterebbero succesioni (a_n) e (b_n) in Z con $d(a_n,b_n)$ che tende a zero e $d(g(a_n),g(b_n))>s+\epsilon$. Passando a sottosuccessioni, $g(a_n)$ e $g(b_n)$ convergerebbero rispettivamente a certi $x,y\in X$ ed avremmo $d(x,y)>s+\epsilon$. D'altra parte per la continuità di f si avrebbe che $a_n=f(g(a_n))$ converge ad f(x) e $b_n=f(g(b_n))$ converge ad f(y); necessariamente quindi f(x)=f(y) perché $d(a_n,b_n)$ tende a zero e quindi d(x,y) deve essere al più eguale allo spessore s di f.

Teorema 3 Sia X una varietà differenziabile connessa e compatta su cui sia fissata una una metrica compatibile con la topologia. Esiste un numero reale positivo r(X) tale che ogni applicazione continua $f: X \to Y$ di spessore inferiore ad r(X) in una una varietà differenziabile Y connessa di dimensione al più quella di X sia una equivalenza di omotopia. In particolare una tale Y sarà necessariamente compatta della stessa dimensione di X ed f sarà surgettiva

Dim. Supponiamo che X sia una sottovarietà di \mathbb{R}^N e sia $\epsilon > 0$ il diametro di un suo intorno tubolare. Sia $f: X \to Y$ una applicazione continua di spessore inferiore ad r; possiamo supporre che Y sia chiusa in \mathbb{R}^{M} . Utilizzando un intorno tubolare (eventualmente di raggio non costante) di Y , si dimostra facilmente che esiste un $\delta > 0$ tale che ogni $\tilde{f}: X \to Y$ che ha distanza da fminore di δ è omotopa ad f. Ullizzando il lemma 1 si può supporre quindi che la f iniziale sia simpliciale rispetto a triangolazioni di X ed Y e conseguentemente che l'immagine Z di f sia un sottoisieme simpliciale. Inoltre per il lemma 2, utilizzando eventualmente suddivisioni baricentriche, si può supporre che la triangolazione di Y sia così fine che per $a, b \in X$ tali che f(a) ed f(b) siano contigue si abbia d(a, b) < r. Definiamo allora una $g : Z \to X$ scegliendo una inversa di f sullo 0-scheletro, estendendo a Z linearmente come applicazione in R^N e proiettando quindi su X con la retrazione dell'intorno tubolare. Si avrà che la composizione $g \circ f$ di X in se dista meno di r dall'identità i_X su X ed è quindi ad essa omotopa (una omotopia tra esse si ottiene componendo l'omotopia $\lambda(g \circ f) + (1 - \lambda)i_X$ con la retrazione dell'intorno tubolare di X). Passando agli omomorfismi indotti in omologia a coefficienti in $\mathbb{Z}/2 \cdot \mathbb{Z}$ se ne deduce che $q_*: H(Z) \to H(X)$ è non nullo, quindi che $H(Z) \neq (0)$ e per conseguenza che Y = Zè una varietà compatta ossia f deve essere surgettiva. Per ottenere che fè una equivalenza di omotopia, basta verificare che f o g è omotopa all'identità i_Y su Y. Tale applicazione è l'identità sullo 0—scheletro; se la triangolazione di Y è stata scelta sufficientemente fine, la distanza tra $f \circ g$ e i_Y è piccola e siccome Y è una varietà compatta ciò comporta che esse siano omotope.

Il caso della circonferenza. Possiamo estendere l'analisi ad altre situazioni del tipo del teorema precedente nel caso particolarmente semplice che X sia la circonferenza S^1 di raggio uno; necessariamente dovremo avere anche $Y=S^1$. Una $f:S^1\to S^1$ induce una applicazione tra i rivestimenti universali $\phi:\mathbb{R}\to\mathbb{R}$ tale che per ogni $x\in\mathbb{R}$ sia $\phi(x+1)=\phi(x)+p$ ove p è il grado di f. Supponiamo che non sia mai $\phi(x)-\phi(x+\frac{1}{2}=\chi(x))\in\mathbb{Z}$ ossia che punti diametralmente opposti in S^1 non possano avere la stessa immagine o equivalentemente che lo spessore di f sia inferiore a due. Per un $n\in\mathbb{N}$ e per ogni $x\in\mathbb{R}$ si ha quindi:

$$(*) n < \chi(x) < n+1$$

Si ha inoltre:

$$\chi(x+\frac{1}{2}) = \phi(x+\frac{1}{2}) - \phi(x+1) = \phi(x+\frac{1}{2}) - \phi(x) - p = -\chi(x) - p$$

e quindi:

$$(**)$$
 $n < -\chi(x) - p < n + 1$

che sommata alla (*) da 2n < -p < 2n + 2 e quindi che p è dispari. In particolare f è surgettiva ed anche ϕ lo è.

Sia ora $f: S^1 \to S^1$ tale che se f(x) = f(y) allora x, y stanno entro un terzo di cerchio. Si consideri come sopra $\phi: \mathbb{R} \to \mathbb{R}$ con $\phi(x+1) = \phi(x) + p$ ove p è il grado di f. Allora $\phi(x+t) - \phi(x) \notin \mathbb{Z}$ per $t \in [1/3, 2/3]$. Quindi esiste $n \in \mathbb{Z}$ con $n < \phi(x+1/3) - \phi(x) < n+1$ e $n < \phi(x+2/3) - \phi(x)$ per ogni $x \in \mathbb{R}$ quindi anche calcolando in x+1/3; si ottiene: $n < \phi(x+2/3) - \phi(x+1/3) < n+1$. Posto

 $a=\phi(x)$, $b=\phi(x+1/3)$ e $c=\phi(x+2/3)$ si ha b-a, c-a, $c-b\in[n,n+1]$. Quindi b-c=(b-a)-(c-a) deve avere modulo uno ed appartenendo ad [n,n+1]: se ne deduce n=0 oppure n=-1 e quindi il grado p=2n+1 di f vale 1 o -1 che è un caso particolare del teorema precedente.

Siano ancora $f: S^1 \to S^1$ continua di grado $p \in \phi: \mathbb{R} \to \mathbb{R}$ l'applicazione da essa indotta verificante quindi $\phi(x+1) = \phi(x) + p$ per ogni $x \in \mathbb{R}$.

Supponiamo che per $x \in \mathbb{R}$ e $t \in [m/(2m+1), (m+1)/(2m+1)]$ si abbia $\phi(x+t) \neq \phi(x)$ (quindi per m alto la f può avere spessore molto vicino a due). In particolare si ha quindi $\phi(x+1/2) - \phi(x) \notin \mathbb{Z}$ e quindi esiste $n \in \mathbb{N}$ tale che $n < \phi(x+1/2) - \phi(x) < n+1$ e p = 2n+1. Si ha allora:

$$n < \phi(x + m/(2m + 1)) - \phi(x) < n + 1$$

$$n < \phi(x + (m+1)/(2m+1)) < n+1$$

Ponendo $a_i = \phi(x + m/(2m + 1))$ per i = 0, ..., m - 1 si ha che

$$a_m - a_0$$
, $a_{m+1} - a_1$, ..., $a_{2m} - a_m$ e $a_m + 1 - a_0$, $a_{m+2} - a_1$, ..., $a - 2m - a_{m-1}$

sono 2m+1 punti in [n, n+1] e la somma dei primi m+1 meno la somma dei restanti m è nulla. Ne segue che -(m+1) < n < m e quindi che p=2n+1 ha modulo inferiore a 2m+1.

Il caso di sfere di dimensione superiore. Estenderemo solo in parte i precedenti risultati alle sfere di dimensione superiore. Precisamente si ha:

Teorema 4 Sia $f: S^n \to S^n$ continua e tale che per ogni $x \in S^n$ si abbia $f(x) \neq f(-x)$; equivalentemente supponiamo che f abbia spessore inferiore a 2. Allora f ha grado dispari

Dim. Si può deformare f ad una g che verifica g(-x) = -g(x) per ogni $x \in S^n$ nel modo seguente: sia $\theta(x)$ l'angolo tra f(x) ed f(-x); per ipotesi esso è non nullo. Se $\theta(x) \neq \pi$ e quindi f(x) ed f(-x) generano un piano H, si ruotino tali vettori nel piano H a velocità angolare costante in modo tale che alla fine (ossia per il valore del parametro 1) f(x) sia portato nel normalizzato di f(x) - f(-x) e contemporaneamente f(-x) arrivi nel normalizzato di f(-x) - f(x); se invece f(x) ed f(-x) sono opposti li teniamo fermi.

Tale g ha necessariamente grado dispari; infatti essa induce una applicazione continua tra i proiettivi associati che induce un isomorfismo tra i gruppi fondamentali perchè il suo sollevamento ai rivestimenti universali, che è f, scambia effettivamente i fogli.

Un teorema di surgettività su \mathbb{R}^n

Il teorema precedente nel caso di applicazioni tra due copie di S^n che conservano punti base può essere letto tramite la proiezione stereografica come un teorema per una applicazione tra due copie di R^n :

Teorema 5 Sia ϕ : $\mathbb{R}^n \to \mathbb{R}^n$ propria e tale che esistono $A, B \in \mathbb{R}$ con 0 < A < 1, tali che per $x, y \in \mathbb{R}^n$ si abbia $||x - y|| \le A||x|| + B$ se $\phi(x) = \phi(y)$. Allora ϕ è surgettiva (ha grado dispari)

Dim. Sia S la sfera di centro 0 in $\mathbb{R} \oplus \mathbb{R}^n$ e raggio r e sia $N=(r,0) \in S$. Proiettando dal punto N sul fattore \mathbb{R}^n si ha un diffeomorfismo σ tra $S-\{N\}$ ed \mathbb{R}^n . La mappa antipodale su S, letta tramite σ induce una involuzione τ di $R^n-\{0\}$ in se. Con un facile calcolo si trova:

$$\tau(x) = -\frac{r^2}{||x||^2} \cdot x$$

che viene detta l'inversione sulla sfera di centro 0 e raggio r in \mathbb{R}^n .

Supponiamo ora che x, y siano punti di \mathbb{R}^n con $\phi(x) = \phi(y)$; per ipotesi allora $||x-y|| \le A||x|| + B$. Se r è scelto in modo tale che per $x \in \mathbb{R}^n - \{0\}$ sia:

$$A||x||+B<||x||\cdot(1+\frac{r^2}{||x||^2})$$

allora non potrà essere y=r(x) ossia la ϕ letta sulla sfera S tramite la proiezione stereografica con una applicazione che fissa N, verifica la condizione del precedente teorema e quindi è surgettiva avendo grado dispari e la stessa cosa sarà vera per la ϕ . Un tale r può essere facilmente trovato e ciò conclude la dimostrazione.