Elementi di Teoria degli Insiemi — Prova scritta del 9 Settembre 2024

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1 (11 punti). Per ogni cardinale κ , sia $\kappa^{<\kappa} = \sup \{ \kappa^{\nu} \mid \nu < \kappa \text{ cardinale} \}.$

- 1. Trovare il valore di $\kappa^{<\kappa}$ quando $\kappa = \aleph_0$ e quando $\kappa = \aleph_1$.
- 2. Dimostrare che se κ è un cardinale singolare allora $\kappa^{<\kappa} > \kappa$.
- 3. Dimostrare che se per ogni cardinale infinito κ regolare si ha $\kappa^{<\kappa}=\kappa$, allora vale l'ipotesi generalizzata del continuo GCH.
- 4. Dimostrare che vale anche l'implicazione inversa nella (4), cioè che se vale l'ipotesi generalizzata del continuo GCH allora per ogni cardinale infinito κ regolare, si ha $\kappa^{<\kappa} = \kappa$.

Esercizio 2 (9 punti). Dimostrare le seguenti proprietà relative all'esponenziazione tra ordinali.

- 1. $n^{\omega} = k^{\omega}$ per tutti gli ordinali finiti $n, k < \omega$ maggiori di 1.
- 2. $2^{(\omega^2)} = \omega \cdot 2^{(\omega^2)}$.
- 3. Se $\omega < \beta \le \omega^2$ allora $2^{\beta} > \beta$.

Esercizio 3 (12 punti). Consideriamo la gerarchia di von Neumann, definita per ricorsione transfinita ponendo

$$\begin{cases} V_0 = \emptyset \\ V_{\alpha+1} = \mathcal{P}(V_{\alpha}) \\ V_{\lambda} = \bigcup_{\gamma < \lambda} V_{\gamma} \text{ se } \lambda \text{ è limite.} \end{cases}$$

- 1. Dimostrare che se $X \in V_{\alpha}$ allora $\bigcup X = \{y \mid \exists x \in X \ y \in x\} \in V_{\alpha}$.
- 2. Dimostrare che se $R \in V_{\alpha}$ è una relazione binaria, allora dom(R), Imm $(R) \in V_{\alpha}$.
- 3. Dimostrare che non esistono ordinali $\alpha > 0$ tali che $V_{\alpha} \subseteq V_{\alpha} \times V_{\alpha}$.
- 4. Esistono ordinali $\alpha > 0$ tali che $V_{\alpha} \times V_{\alpha} \subseteq V_{\alpha}$? [Se la risposta è negativa darne una dimostrazione; se è positiva fornire esempi.]
- 5. Determinare tutti gli ordinali α per i quali vale la seguente proprietà:
 - Fun(ω, α) $\subseteq V_{\alpha}$.
- 6. Determinare tutte le coppie di ordinali (α, β) che soddisfano la seguente proprietà:
 - Ogni funzione f con dom $(f) \subseteq V_{\alpha}$ e Imm $(f) \subseteq \beta$ appartiene a V_{β} .