Elementi di Logica Matematica Prova scritta del 22 Luglio 2014

Cognome e nome:		
E-mail (per eventuali comunicazio	oni):	

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1.

- 1. Determinare quoziente ϑ e resto ρ della divisione euclidea tra gli ordinali $\alpha = \omega^4 \cdot 7 + \omega^2 \cdot 5 + 3$ e $\beta = \omega^2 \cdot 3 + \omega \cdot 2 + 1$.
- 2. Scrivere l'ordinale $(\omega \cdot 7 + 2)^{13}$ in forma normale di Cantor.

Esercizio 2. Ricordiamo che la gerarchia di von Neumann era definita per ricorsione transfinita ponendo $V_0 = \emptyset$, $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$, e $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$ per λ limite.

- 1. Dimostrare che non esistono ordinali α tali che Fun $(\omega, \alpha) \in V_{\alpha}$.
- 2. Determinare la classe degli ordinali α tali che Fun $(\omega, \alpha) \subseteq V_{\alpha}$.

Esercizio 3. Sia $\gamma < \omega_1$ e sia $f: \omega_1 + \gamma \to \omega_1 + \gamma$ crescente e continua ai limiti. Dimostrare che:

- 1. $f(\xi) < \omega_1$ per ogni $\xi < \omega_1$.
- 2. $|\operatorname{Fix}(f)| = \aleph_1$ dove $\operatorname{Fix}(f) = \{\alpha \in \omega_1 + \gamma \mid f(\alpha) = \alpha\}$ è l'insieme dei punti fissi di f.

Esercizio 4.

1. Sia κ un cardinale infinito. Dimostrare che per ogni cardinale $\nu \geq \mathrm{cof}(\kappa)$ si ha

$$\kappa^{\nu} = \left(\sup_{\mu < \kappa} \mu^{\nu}\right)^{\operatorname{cof}(\kappa)}.$$

2. Supponiamo che $(\aleph_{\gamma})^{\aleph_2} \leq \aleph_{\omega_1+1}$ per ogni $\gamma < \omega_1$. Dimostrare che allora $(\aleph_{\omega_1})^{\aleph_2} = (\aleph_{\omega_1})^{\aleph_1}$.