Programma di Topologia Differenziale Modulo 1
Prof. M. Galbiati
Geometria e topologia delle curve algebriche reali.
-
Curve algebriche reali piane affini e proiettive, complessificazione
di una curva reale, curve irriducibili, curve ridotte, punti sigolari.
Poligono di Newton. Spazio delle curve. Discriminante.
-
Topologia di una curva non singolare proiettiva piana reale
e complessa. Classificazione per isotopia e per isotopia rigida. Diseguaglianza
di Harnack. Costruzione delle curve di Harnack e di Hilbert. Costruzione
di Viro. Alcune proibizioni. Tipo di una curva. Formule di Rokhlin e Mishachev.
Introduzione alla topologia delle superfici algebriche reali.
Appendice: Invarianti di Arnold.