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Abstract. Motivated by applications in quantum chemistry and solid state physics, we apply general
results from approximation theory and matrix analysis to the study of the decay properties
of spectral projectors associated with large and sparse Hermitian matrices. Our theory
leads to a rigorous proof of the exponential off-diagonal decay (“nearsightedness”) for the
density matrix of gapped systems at zero electronic temperature in both orthogonal and
nonorthogonal representations, thus providing a firm theoretical basis for the possibility
of linear scaling methods in electronic structure calculations for nonmetallic systems. We
further discuss the case of density matrices for metallic systems at positive electronic
temperature. A few other possible applications are also discussed.
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I. Introduction. The physical and chemical properties of materials are largely
determined by the electronic structure of the atoms and molecules found within them.
In all but the simplest cases, the electronic structure can only be determined approx-
imately, and since the late 1920s a huge amount of work has been devoted to finding
suitable approximations and numerical methods for solving this fundamental problem.
Traditional methods for electronic structure computations are based on the solution
of generalized eigenvalue problems (“diagonalization”) for a sequence of large Hermi-
tian matrices, known as one-particle Hamiltonians. The computational cost of this
approach scales cubically in the size n of the problem, which is in turn determined by
the number of electrons in the system. For large systems, the costs become prohibitive;
this is often referred to as “the O(n?) bottleneck” in the literature.
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In the last two decades, a number of researchers have developed approaches that
are capable in many cases of achieving “optimal” computational complexity: the
computational effort scales linearly in the number of electrons, leading to better per-
formance for sufficiently large systems and making the electronic structure problem
tractable for large-scale systems. These methods, often referred to as “O(n) meth-
ods,” apply mostly to insulators. They avoid diagonalization by computing instead
the density matriz, a matrix which encodes all the important physical properties of
the system. For insulators at zero temperature, this is the spectral projector onto the
invariant subspace associated with the eigenvalues of the Hamiltonian falling below
a certain value. For systems at positive temperatures, the density matrix can be
expressed as a smooth function of the Hamiltonian.

The possibility of developing such methods rests on a deep property of electronic
matter, called “nearsightedness” by W. Kohn [75]. Kohn’s “Nearsightedness Princi-
ple” expresses the fact that for a large class of systems the effects of disturbances, or
perturbations, remain localized and thus do not propagate beyond a certain (finite)
range; in other words, far away parts of the system do not “see” each other. Mathe-
matically, this property translates into rapid off-diagonal decay in the density matrix.
This fast fall-off in the density matrix entries has been often assumed without proof,
or proved only in special cases. Moreover, the precise dependence of the rate of decay
on properties of the system (such as the band gap in insulators or the temperature in
metallic systems) has been the subject of much discussion.

The main goal of this paper is to provide a rigorous mathematical foundation for
linear scaling methods in electronic structure computations. We do this by deriving
estimates, in the form of decay bounds, for the entries of general density matrices for
insulators and for metallic systems at positive electronic temperatures. We also ad-
dress the question of the dependence of the rate of decay on the band gap and on the
temperature. Although immediately susceptible to physical interpretation, our treat-
ment is purely mathematical. By stripping the problem down to its essential features
and working at the discrete level, we are able to develop an abstract theory cover-
ing nearly all types of systems and discretizations encountered in actual electronic
structure problems.

Our results are based on a general theory of decay for the entries in analytic
functions of sparse matrices, initially proposed in [12, 14, 106] and further developed
here. The theory is based on classical approximation theory and matrix analysis.
A bit of functional analysis is used when considering a simple model of “metallic
behavior,” for which the decay in the density matrix is very slow.

The approach described in this paper has a number of potential applications be-
yond electronic structure computations, and can be applied to any problem involving
functions of large matrices where “locality of interaction” plays a role. Toward the
end of the paper we briefly review the possible use of decay bounds in the study of
correlations in quantum statistical mechanics and information theory, in the analysis
of complex networks, and in some classical problems in numerical linear algebra, like
the computation of invariant subspaces of symmetric tridiagonal matrices. The dis-
cussion of these topics will be necessarily brief, but we hope it will stimulate further
work in these areas.

In this paper we are mostly concerned with the theory behind O(n) methods
rather than with specific algorithms. Readers who are interested in the compu-
tational aspects should consult any of the many recent surveys on algorithms for
electronic structure computations; among them, [20, 97, 113, 116] are especially rec-
ommended.
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The remainder of the paper is organized as follows. Section 2 provides some
background on electronic structure theory. The formulation of the electronic struc-
ture problem in terms of spectral projectors is reviewed in section 3. A survey of
previous, related work on decay estimates for density matrices is given in section 4.
In section 5 we formulate our basic assumptions on the matrices (discrete Hamil-
tonians) considered in this paper, particularly their normalization and asymptotic
behavior for increasing system size (n — o0). The approximation (truncation) of
matrices with decay properties is discussed in section 6. A few general properties of
orthogonal projectors are established in section 7. The core of the paper is represented
by section 8, where various types of decay bounds for spectral projectors are stated
and proved. In section 9 we discuss the transformation to an orthonormal basis set.
The case of vanishing gap is discussed in section 10. Other applications of our results
and methods are mentioned in section 11. Finally, concluding remarks and some open
problems are given in section 12.

2. Background on Electronic Structure Theories. In this section we briefly
discuss the basic principles underlying electronic structure theory. For additional
details the reader is referred to, e.g., [22, 77, 88, 89, 116, 125].

Consider a physical system formed by a number of nuclei and n. electrons in
three-dimensional (3D) space. The time-independent Schrodinger equation for the
system is the eigenvalue problem

(2.1) Hiot Wiot = Etot Vtot,

where Hiot is the many-body Hamiltonian operator, Eiq is the total energy, and the
functions Wy, are the eigenstates of the system.

The Born—Oppenheimer approximation allows us to separate the nuclear and elec-
tronic coordinates. As a consequence, we only seek to solve the quantum mechanical
problem for the electrons, considering the nuclei as sources of external potential. Then
the electronic part of (2.1) can be written as

(2.2) HY = BV,

where F is the electronic energy and the eigenstates W are functions of 3n. spatial
coordinates and n, (discrete) spin coordinates.

We denote spatial coordinates as r and the spin coordinate as o; each electron
is then defined by 3 + 1 coordinates x; = (5! ), and wavefunctions are denoted as

U(x1,...,Xy, ). Then the electronic Hamiltonian operator in (2.2) can be written as

H:T‘f‘%xt‘f'v;eea

where T' = —%VQ is the kinetic energy, Veoyt is the external potential (i.e., the potential
due to the nuclei), and Ve = %ZZZ; ‘r+r7| is the potential due to the electron-

electron repulsion.! Moreover, the ground-state energy is given by
Ey = ngn (HU, W),

where the minimum is taken over all the normalized antisymmetric wavefunctions
(electrons being Fermions, their wavefunction is antisymmetric). The electronic den-

1As is customary in physics, we use here atomic units, that is, €2 = A = m = 1, with e =
electronic charge, i = reduced Planck’s constant, and m = electronic mass.
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sity is defined as

p(r) :neZ/de~~/dxne|\I/(r,a,xQ,...,xne)|2.

In this expression, the sum over ¢ is the sum over the spin values of the first electron,
while integration with respect to x;, with 2 < i < n., denotes the integral over R?
and sums over both possible spin values for the ith electron.

Observe that (2.2) is a many-particle equation that cannot be separated into
several one-particle equations because of the term V.. Of course, being able to turn
(2.2) into a separable equation would simplify the problem considerably, since the
number of unknowns per equation would drop from 3n. + n. to 3 + 1. This is the
motivation for one-electron methods.

For noninteracting particles, the many-body eigenstates ¥(xy,...,X,,) can be
written as Slater determinants of occupied orbitals ¢1(x1), ..., Pn. (Xn. ),

1 ¢1(.Xl) ¢ne(X1)

7Xne):—' : )
VR | ) e b ()

where each orbital satisfies a single-particle eigenstate equation H;¢; = E;¢;. In gen-
eral, the name “one-particle method” is used also when self-consistent terms (e.g.,
involving the density) are present in H;; in this case, the equations are solved iter-
atively, computing at each step the solution to a single-particle problem and then
filling the lowest eigenstates with one electron each, to form a Slater determinant.
However, some of the properties of a true noninteracting system (such as the fact
that the energy is the sum of the eigenvalues of occupied states) are lost.

A fundamental example of the one-particle method is density functional theory
(DFT). The main idea behind DFT consists in rewriting the ground-state energy as a
density functional rather than a wavefunction functional. Indeed, the first Hohenberg—
Kohn theorem [66] states that the potential is uniquely (up to a constant) determined
by the ground-state density p(r). In other words, the system can be seen as character-
ized by the density rather than by the potential. Moreover, the ground-state density
of a system with given external potential can be computed by minimizing a suitable
energy functional of p (second Hohenberg-Kohn theorem).

While of crucial theoretical importance, though, these results do not give a recipe
for computing electronic structures. The next important step comes with the Kohn—
Sham construction [76]: roughly speaking, one replaces the original, nonseparable
system with a fictitious system of noninteracting electrons that have exactly the same
density as the original system. The single-particle equations for the Kohn—Sham
system are (neglecting spin)

\I/(Xl,. ..

(=572 V®) tslr) = wsto),

where the 1;’s are the Kohn—Sham orbitals and V(r) is the single-electron potential.
The associated density is

o) =3 )l
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The single-particle potential V(r) can be written as

V(r) = Vexe(r) + /]R AL e+ Valpl o),

s v —1/|

where the term V,.[p](r) is called the exchange-correlation potential and depends on
the density. It is important to point out that the Kohn—Sham construction is not
an approximation, in that the Kohn—Sham equations are exact and yield the exact
density.

On the other hand, the exchange-correlation energy is not known in practice and
needs to be approximated. In the local density approximation (LDA) framework,
for instance, the exchange energy is based on the energy of a uniform electron gas.
Introducing spin allows for a more refined approximation (LSDA, or local spin-density
approximation). One may also include gradient corrections, thus obtaining the so-
called generalized gradient approximation (GGA).

The solution of the Kohn—Sham equations is usually computed via self-consistent
iterations. The iterative process begins with an approximation of the density; the as-
sociated approximate exchange-correlation potential is injected into the Kohn—Sham
equations. The output density is then used to form a new approximation of the
potential. The process continues until the update term for the density or the poten-
tial becomes negligible. Observe that the basic building block of this computational
technique is the solution of an eigenvalue problem for noninteracting particles.

Electrons at the lowest atomic-like levels (“core” electrons) do not change their
state much within chemical processes. For this reason, many computational tech-
niques do not consider them explicitly, and instead replace the Coulomb attraction
of the nucleus with a potential (called pseudopotential) that includes the effect of the
core electrons on the valence electrons. This approach is always employed when using
plane waves as a basis for wavefunctions, since the number of plane waves required to
represent core electrons is prohibitive.

3. Density Matrices. As mentioned earlier, conventional methods for electronic
structure calculations require the repeated solution of linear eigenvalue problems for
a one-electron Hamiltonian operator of the form H = —%VQ + V(r). In practice,
operators are discretized by grid methods or via Galerkin projection onto the finite-
dimensional subspace spanned by a set of basis functions {¢; }7 ;. When linear combi-
nations of atom-centered Slater- or Gaussian-type functions (see below) are employed,
the total number of basis functions is n & ny - n., where n. is the number of (valence)
electrons in the system and ny is a small or moderate integer related to the number of
basis functions per atom. Traditional electronic structure algorithms diagonalize the
discrete Hamiltonian, resulting in algorithms with O(n?) (equivalently, O(n?)) opera-
tion count [77, 89, 116]. In these approaches, a sequence of generalized eigenproblems
of the form

(31) le = €iS,¢)iv 1 é 1 S Ne,

is solved, where H and S are, respectively, the discrete Hamiltonian and the overlap
matrix relative to the basis set {¢; }7_;. The eigenvectors 1); in (3.1) are known as the
occupied states and correspond to the n. lowest generalized eigenvaluese; < --- < ¢,
the occupied levels. The overlap matrix S is just the Gram matrix associated with the
basis set, S;; = (¢, ¢;) for all 4, j, where (-, -) denotes the standard L2-inner product.

In Dirac’s bra-ket notation, which is the preferred one in the physics and chemistry
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literature, one writes S;; = (¢;|¢;). For an orthonormal basis set, S = I,, (the n x n
identity matrix) and the eigenvalue problem (3.1) is a standard one.

Instead of explicitly diagonalizing the discretized Hamiltonian H, one may refor-
mulate the problem in terms of the density operator P, which is the S-orthogonal
projector? onto the H-invariant subspace corresponding to the occupied states, that
is, the subspace spanned by the n. eigenvectors 1; in (3.1). Virtually all quantities of
interest in electronic structure theory can be computed as functionals of the density
matrix P; see, e.g., [24, 95, 97]. It is this reformulation of the problem that allows for
the development of potentially more efficient algorithms for electronic structure, in-
cluding algorithms that asymptotically require only O(n.) (equivalently, O(n)) arith-
metic operations and storage. Most current methodologies, including Hartree—Fock,
DFT (e.g., Kohn—Sham), and hybrid schemes (like BLYP), involve self-consistent field
(SCF) iterations, in which the density matrix P must be computed at each SCF step,
typically with increasing accuracy as the outer iteration converges; see, e.g., [77, 137].

As stated in section 1, in this paper we use some classical results from polynomial
approximation theory and matrix analysis to provide a mathematical foundation for
linear scaling electronic structure calculations for a very broad class of systems. We
assume that the basis functions ¢; are localized, i.e., decay rapidly outside of a small
region. Many of the most popular basis sets used in quantum chemistry, such as
Gaussian-type orbitals, which are functions of the form

¢ (337?% J)) = Cmnxynyznzefarﬂ )

where C' is a normalization constant, satisfy this requirement [77]. For systems with
sufficient separation between atoms, this property implies a fast off-diagonal decay
of the entries of the Hamiltonian matrix; moreover, a larger distance between atoms
corresponds to a faster decay of matrix entries [77, p. 381]. If the entries that fall
below a given (small) truncation tolerance are set to zero, the Hamiltonian turns out
to be a sparse matrix.

Decay results are especially easy to state in the banded case,® but more general
sparsity patterns will be taken into account as well.

We can also assume from the outset that the basis functions form an orthonormal
set. If this is not the case, we perform a congruence transformation to an orthogonal
basis and replace the original Hamiltonian H with H = ZTHZ, where S~ = ZZ7
is either the Lowdin (Z = S~'/2, [85]) or the inverse Cholesky (Z = L~7T, with
S = LLT) factor of the overlap matrix S; see, e.g., [24]. Here ZT denotes the transpose
of Z; for the Lowdin factorization, Z is symmetric (Z = Z7T). Up to truncation, the
transformed matrix H is still a banded (or sparse) matrix, albeit not as sparse as
H. Hence, in our decay results we can replace H with H. The entries in S, and
therefore those in Z, decay at a rate which depends on the conditioning of S. This,
in turn, will depend on the particular basis set used, on the total number of basis
functions, and on the interatomic distances, with larger separations leading to faster
decay. This is discussed further in section 9. We note that the case of tight-binding
Hamiltonians is covered by our theory. Indeed, the tight-binding method consists in
expanding the states of the physical system (e.g., a crystal) in linear combinations of
atomic orbitals of the composing atoms; such an approximation is successful if the

2That is, orthogonal with respect to the inner product associated with S.
3A square matrix A = (A;;) is said to be m-banded if A;; = 0 whenever |i — j| > m; for instance,
a tridiagonal matrix is 1-banded according to this definition.
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atomic orbitals have little overlap, which translates to a sparse Hamiltonian. The
same applies to “real space” finite difference (or finite element) approximations [116].

For a given sparse discrete Hamiltonian H in an orthonormal basis, we consider
the problem of approximating the zero-temperature density matrix associated with
H, that is, the spectral projector P onto the occupied subspace spanned by the
eigenvectors corresponding to the smallest n. eigenvalues of H:

)

P=tp1 @1+ +¥n, @tn, = [P1){1] + - + [Un,) (n,

where Hi; = ¢;4; for i = 1,...,n.. Clearly, P is Hermitian and idempotent: P =
P* = P?. Consider now the Heaviside (step) function

1 it <,
h(z) =14 3 if z=uy,
0 it > u,

where the number p (sometimes called the Fermi level or chemical potential [53]) is
such that e,, < p < ey, 41. If the spectral gap v = €,,41 — €n,, also known as the
HOMO-LUMO gap,* is not too small, the step function & is well approximated by
the Fermi-Dirac function® frp(x) = 1/(1 + e#*=#) for suitable values of 5 > 0:

P = h(H) % frp(H) = [I, + exp(8(H — pl,))) "

The smaller v, the larger S must be in order to have a good approximation: see
Figure 8.8. The parameter [ can be interpreted as an (artificial) inverse temperature;
the zero-temperature limit is quickly approached as 8 — co. A major advantage of
the Fermi—Dirac function is that it is analytic; hence, we can replace h with frp and
apply to it a wealth of results from approximation theory for analytic functions.

We emphasize that the study of the zero-temperature limit—that is, the ground
state of the system—is of fundamental importance in electronic structure theory. In
the words of [89, Chapter 2, pp. 11-12],

...the lowest energy ground state of the electrons determines the structure
and low-energy motions of the nuclei. The vast array of forms of matter—
from the hardest material known, diamond carbon, to the soft lubricant,
graphite carbon, to the many complex crystals and molecules formed by
the elements of the periodic table—are largely manifestations of the ground
state of the electrons.

The Fermi-Dirac distribution is also used when dealing with systems at positive
electronic temperatures (7' > 0) with a small or null gap (e.g., metallic systems); in
this case 3 = (kgT)~!, where kp is Boltzmann’s constant. In particular, use of the
Fermi—Dirac function allows one to compute thermodynamical properties (such as the
specific heat) and the T-dependence of quantities from first principles. In this case,

4HOMO = highest occupied molecular orbital; LUMO = lowest unoccupied molecular orbital.

5Several other analytic approximations to the step function are known, some of which are prefer-
able to the Fermi-Dirac function from the computational point of view; see, e.g., [80] for a compar-
ative study. For theoretical analysis, however, we find it convenient to work with the Fermi—Dirac
function.
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of course, the matrix P = fpp(H) is no longer an orthogonal projector, not even
approximately.

We mention in passing that it is sometimes advantageous to impose the nor-
malization condition Tr(P) = 1 on the density matrix; indeed, such a condition is
standard and part of the definition of a density matrix in the quantum mechanics
literature, beginning with von Neumann [131, 133]. At zero temperature we have
Tr(P) = rank(P) = ne, and P is replaced by n%P. With this normalization P is no
longer idempotent, except when n. = 1. In this paper we do not make use of such
normalization.

The localization (“pseudosparsity”) of the density matrix for insulators has been
long known to physicists and chemists; see the literature review in the following sec-
tion. A number of authors have exploited this property to develop a host of linear
scaling algorithms for electronic structure computations; see, e.g., [4, 5, 20, 23, 24, 53,
54, 75, 79, 80, 89, 97, 98, 99, 113, 123, 135]. In this paper we derive explicitly com-
putable decay bounds which can be used, at least in principle, to determine a priori
the bandwidth or sparsity pattern of the truncation of the density matrix correspond-
ing to a prescribed error. As we shall see, however, our decay estimates tend to be
conservative and may be pessimistic in practice. Hence, we regard our results primar-
ily as a theoretical contribution, providing a rigorous (yet elementary) mathematical
justification for some important localization phenomena observed by physicists. An
important aspect of our work is that our bounds are universal, in the sense that they
only depend on the bandwidth (or sparsity pattern) of the discrete Hamiltonian H,
on the smallest and largest eigenvalues of H, on the gap -y, and, when relevant, on
the temperature T'. In particular, our results are valid for a wide range of basis sets
and indeed for different discretizations and representations of the Hamiltonian.

4. Related Work. The localization properties of spectral projectors (more gener-
ally, density matrices) associated with electronic structure computations in quantum
chemistry and solid state physics have been the subject of a large number of papers.
Roughly speaking, the results found in the literature fall into three broad categories:

1. Fully rigorous mathematical results for model systems (some quite general).

2. “Semirigorous” results for specific systems; these results are often character-
ized as “exact”or “analytical” by the authors (usually physicists), but would
not be recognized as mathematically rigorous by mathematicians.

3. Nonrigorous results based on a mixture of heuristics, physical reasoning, and
numerics.

Contributions in the first group are typically due to researchers working in solid
state and mathematical physics. These include the pioneering works of Kohn [74] and
des Cloizeaux [36], and the more recent papers by Nenciu [96], Brouder et al. [21],
and a group of papers by Prodan, Kohn, and collaborators [103, 104, 105].

Before summarizing the content of these contributions, we should mention that
nearly all the results found in the literature are expressed at the continuous level,
that is, in terms of decay in functions rather than decay in matrices. The functions
are typically functions of (real) space; results are often formulated in terms of the
density kernel, but sometimes in terms of the Wannier functions. The latter form an
orthonormal basis set associated with a broad class of Hamiltonians and are widely
used in solid state physics. Since the Wannier functions span the occupied subspace,
localization results for the Wannier functions immediately imply similar localization
results for the corresponding spectral projector. Note, however, that the spectral
projector may be exponentially localized even when the Wannier functions are not.
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At the continuous level, the density matrix p : R? x R — C is the kernel of the
density operator P defined by

(P)(x) = / oo, E (e

R4

regarded as an integral operator on L?(R9); here d = 1,2,3. The vectors r and r’
represent any two points in R%, and |r — r’| is their (Euclidean) distance. The density
kernel can be expressed as

plrr) = 3 () ()"
=1

where now ; is the (normalized) eigenfunction of the Hamiltonian operator H corre-
sponding to the ith lowest eigenvalue, i = 1,..., n., and the asterisk denotes complex
conjugation; see, e.g., [88]. The density operator P admits the Dunford integral
representation

1 -1
(4.1) P = o 1“(ZI H)" dz,
where I is a simple closed contour in C surrounding the eigenvalues of H corresponding
to the occupied states, with the remaining eigenvalues on the outside.

In [74], Kohn proved the rapid decay of the Wannier functions for one-dimensional
(1D), one-particle Schrodinger operators with periodic and symmetric potentials with
nonintersecting energy bands. This type of Hamiltonian describes 1D, centrosymmet-
ric crystals. Kohn’s main result takes the form

(4.2) lim w(z)e® =0,

Tr—r00
where w(x) denotes a Wannier function (here z is the distance from the center of
symmetry) and ¢ is a suitable positive constant. In the same paper (p. 820) Kohn
also points out that for free electrons (not covered by his theory, which deals only
with insulators) the decay is very slow, like z71.

A few observations are in order: First, the decay result (4.2) is asymptotic, that is,
it implies fast decay at sufficiently large distances |z| only. Second, (4.2) is consistent
not only with strict exponential decay, but also with decay of the form xpe_q/’”, where
p is arbitrary (positive or negative) and ¢’ > ¢. Hence, the actual decay could be
faster, but also slower, than exponential. Since the result in (4.2) provides only an
estimate (rather than an upper bound) for the density matrix in real space, it is not
easy to use in actual calculations. To be fair, such practical aspects were not discussed
by Kohn until much later (see, e.g., [75]). Also, later work showed that the asymptotic
regime is already achieved for distances of the order of 1-2 lattice constants, and it
helped clarify the form of the power-law prefactor, as discussed below.

The techniques used by Kohn, mostly the theory of analytic functions in one
complex variable and some classical asymptotics for linear second-order differential
operators with variable coefficients, did not lend themselves naturally to the treat-
ment of higher-dimensional cases or more complicated potentials. The problem of
the validity of Kohn’s results in two and three dimensions has remained open for a
very long time, and has been long regarded as one of the last outstanding problems of
one-particle condensed-matter physics. Partial results were obtained by des Cloizeaux
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[36] and much later by Nenciu [96]. Des Cloizeaux, who studied both the decay of the
Wannier functions and that of the associated spectral projectors, extended Kohn’s
localization results to 3D insulators with a center of inversion (a specific symmetry
requirement) in the special case of simple, isolated (i.e., nondegenerate) energy bands;
he also treated the tight-binding limit for arbitrary crystals. Nenciu further general-
ized Kohn’s results to arbitrary d-dimensional insulators, again limited to the case of
simple bands.

The next breakthrough came much more recently, when Brouder et al. [21] man-
aged to prove localization of the Wannier functions for a broad class of insulators
in arbitrary dimensions. The potentials considered by these authors are sufficiently
general for the results to be directly applicable to DFT, within both the LDA and the
GGA frameworks. The results in [21], however, also prove that for Chern insulators
(i.e., insulators for which the Chern invariants, which characterize the band structure,
are nonvanishing) the Wannier functions do not decay exponentially, therefore leaving
open the question of proving the decay of the density matrix in this case [129]. It
should be mentioned that the mathematics in [21] is fairly sophisticated and requires
some knowledge of modern differential geometry and topology.

Further papers of interest include the work by Prodan, Kohn, and collaborators
[103, 104, 105]. From the mathematical standpoint, the most satisfactory results
are perhaps those presented in [104]. In this paper, the authors use norm estimates
for complex symmetric operators in Hilbert space to obtain sharp exponential decay
estimates for the resolvents of rather general Hamiltonians with spectral gap. Using
the contour integral representation formula (4.1), these estimates yield (for sufficiently
large separations) exponential spatial decay bounds of the form

(4.3) lp(r,r')| < Ce @l (C>0, a>0, const.)

for a broad class of insulators. A lower bound on the decay rate « (also known as
the decay length or inverse correlation length) is derived, and the behavior of « as a
function of the spectral gap ~ is examined.

Among the papers in the second group, we mention [52, 64, 70, 73, 90, 127, 128].
These papers provide quantitative decay estimates for the density matrix, based on
either fairly rigorous analyses of special cases or not fully rigorous discussions of
general situations. Significant use is made of approximations, asymptotics, heuristics,
and physically motivated assumptions, and the results are often validated by numerical
calculations. Also, it is occasionally stated that while the results were derived in the
case of simplified models, the conclusions should be valid in general. Several of these
authors emphasize the difficulty of obtaining rigorous results for general systems in
arbitrary dimension. Despite not being fully rigorous from a mathematical point of
view, these contributions are certainly very valuable and seem to have been broadly
accepted by physicists and chemists. We note, however, that the results in these
papers usually take the form of order-of-magnitude estimates for the density matrix
p(r,r’) in real space, valid for sufficiently large separations |r — r’|, rather than strict
upper bounds. As said before of Kohn’s results, this type of estimate may be difficult
to use for computational purposes.

In the case of insulators, the asymptotic decay estimates in these papers take the
form

—alr—r’|
(4.4) p(r,r'):CTr_ir,P, r—r'| 200 (a@>0,0>0, const.),
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where higher-order terms have been neglected. Many of these papers concern the
precise form of the power-law factor (i.e., the value of o) in both insulators and
metallic systems. The actual functional dependence of « on the gap and of o on the
dimensionality of the problem have been the subject of intense discussion, with some
authors claiming that « is proportional to 7, and others finding it to be proportional
to \/7; see, e.g., [63, 70, 73, 90, 127, 128] and section 8.6. It appears that both
types of behavior can occur in practice. For instance, in [73] the authors provide a
tight-binding model of an insulator for which the density falls off exponentially with
decay length o = O(7) in the diagonal direction of the lattice, and o = O(,/7) in
nondiagonal directions, as v — 04. We also note that in [73], the decay behavior of
the density matrix for an insulator is found to be given (up to higher-order terms) by

—alr—r’|
e

P(rar/)zcma v —r'| = oo,

where d is the dimensionality of the problem. In practice, the power-law factor in the
denominator is often ignored, since the exponential decay dominates.

In [52], Goedecker argued that the density matrix for d-dimensional (d = 1,2, 3)
metallic systems at electronic temperature T' > 0 behaves to leading order like

cos(Jlr —1'|) b pie_r
(45) p(r,r') =C W € ksT| |, |I' — I'/l — Q.

Note that in the zero-temperature limit, a power-law decay (with oscillations) is ob-
served. An analogous result was also obtained in [70]. Note that the decay length in
the exponential goes to zero like the temperature T rather than like v/T, as claimed,
for instance, in [3]. We will return on this topic in section 8.7.

Finally, as representatives of the third group of papers we select [3] and [140].
The authors of [3] use the Fermi-Dirac approximation of the density matrix and
consider its expansion in the Chebyshev basis. From an estimate of the rate of decay
of the coeflicients of the Chebyshev expansion of frp(x), they obtain estimates for
the number of terms needed to satisfy a prescribed error in the approximation of the
density matrix. In turn, this yields estimates for the rate of decay as a function of the
extreme eigenvalues and spectral gap of the discrete Hamiltonian. Because of some
ad hoc assumptions and the many approximations used, the arguments in this paper
cannot be considered mathematically rigorous, and the estimates thus obtained are
not always accurate. Nevertheless, the idea of using a polynomial approximation for
the Fermi—Dirac function and the observation that exponential decay of the expansion
coefficients implies exponential decay in the (approximate) density matrix is quite
valuable and, as we show in this paper, can be made fully rigorous.

Finally, in [140] the authors present the results of numerical calculations for vari-
ous insulators in order to gain some insight into the dependence of the decay length on
the gap. Their experiments confirm that the decay behavior of p(r, r’) can be strongly
anisotropic and that different rates of decay may occur in different directions; this is
consistent with the analytical results in [73].

Despite this considerable body of work, the localization question for density ma-
trices cannot be regarded as completely settled from the mathematical standpoint.
We are not aware of any completely general and rigorous mathematical treatment of
the decay properties in density matrices associated with general (localized) Hamiltoni-
ans, covering all systems with gap as well as metallic systems at positive temperature.
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Moreover, rather than order-of-magnitude estimates, actual upper bounds would be
more satisfactory.

Almost all the abovementioned results concern the continuous, infinite-dimensional
case. In practice, of course, calculations are performed on discrete, n-dimensional
approximations H and P to the operators H and P. The replacement of density op-
erators with finite density matrices can be obtained via the introduction of a system
of n basis functions {¢;}}-,, leading to the density matrix P = (P;;) with

@6 Py= (0,200 = lPlo) = [ [ pteoutey o6

As long as the basis functions are localized in space, the decay behavior of the density
function p(r,r’) for increasing spatial separation |r — r’| is reflected in the decay
behavior of the matrix elements P;; away from the main diagonal (i.e., for |i — j|
increasing) or, more generally, for increasing distance d(i,j) in the graph associated
with the discrete Hamiltonian; see section 6 for details.

In developing and analyzing O(n) methods for electronic structure computations,
it is important to rigorously establish decay bounds for the entries of the density
matrices that take into account properties of the discrete Hamiltonians. It is in
principle possible to obtain decay estimates for finite-dimensional approximations
using localized basis functions from the spatial decay estimates for the density kernel.
Note, however, that any estimates obtained inserting (4.3) or (4.5) into (4.6) would
depend on the particular set of basis functions used.

In this paper we take a different approach. Instead of starting with the contin-
uous problem and discretizing it, we establish our estimates directly for sequences
of matrices of finite, but increasing order. We believe that this approach is closer
to the practice of electronic structure calculations, where matrices are the primary
computational objects.

We impose a minimal set of assumptions on our matrix sequences so as to re-
produce the main features of problems encountered in actual electronic structure
computations, while at the same time ensuring a high degree of generality. Since our
aim is to provide a rigorous and general mathematical justification to the possibility
of O(n) methods, this approach seems to be quite natural.®

To put our work further into perspective, we quote from two prominent researchers
in the field of electronic structure, one a mathematician, the other a physicist. In his
excellent survey [77], Claude Le Bris, discussing the basis for linear scaling algorithms,
i.e., the assumed sparsity of the density matrix, wrote (pp. 402 and 404):

The latter assumption is in some sense an a posteriori assumption, and not
easy to analyse .... It is to be emphasized that the numerical analysis of
the linear scaling methods overviewed above that would account for cut-off
rules and locality assumptions, is not yet available.

It is interesting to compare these statements with two earlier ones made by Stefan
Goedecker. In [51] he wrote (p. 261):

To obtain a linear scaling, the extended orbitals [i.e., the eigenfunctions of
the one-particle Hamiltonian corresponding to occupied states] have to be

6We refer the historically-minded reader to the interesting discussion given by John von Neumann
in [132] on the benefits that can be expected from a study of the asymptotic properties of large
matrices, in contrast to the study of the infinite-dimensional (Hilbert space) case.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/11/13 to 170.140.150.38. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

DECAY PROPERTIES OF SPECTRAL PROJECTORS 15

replaced by the density matrix, whose physical behavior can be exploited
to obtain a fast algorithm. This last point is essential. Mathematical and
numerical analyses alone are not sufficient to construct a linear algorithm.
They have to be combined with physical intuition.

A similar statement can be found in [53, p. 1086]:

Even though O(N) algorithms contain many aspects of mathematics and
computer science they have, nevertheless, deep roots in physics. Linear
scaling is not obtainable by purely mathematical tricks, but it is based on
an understanding of the concept of locality in quantum mechanics.

In the following we provide a general treatment of the question of decay in spectral
projectors that is as a priori as possible, in the sense that it relies on a minimal
set of assumptions on the discrete Hamiltonians; furthermore, our theory is purely
mathematical and therefore completely independent of any physical interpretation.
Nevertheless, our theory allows us to shed light on questions like the dependence of
the decay length on the temperature in the density matrix for metals at T' > 0; see
section 8.7. We do this using for the most part fairly simple mathematical tools from
classical approximation theory and linear algebra.

Of course, in the development of practical linear scaling algorithms a deep knowl-
edge of the physics involved is extremely important; we think, however, that locality
is as much a mathematical phenomenon as a physical one.

We hope that the increased level of generality attained in this paper (relative
to previous treatments in the physics literature) will also help in the development
of O(n) methods for other types of problems where spectral projectors and related
matrix functions play a central role. A few examples are discussed in section 11.

5. Normalizations and Scalings. We will be dealing with sequences of matrices
{H,} of increasing size. We assume that each matrix H,, is an Hermitian n x n matrix,
where n = ny, - ne; here ny is fixed, while n, is increasing. As explained in section 3,
the motivation for this assumption is that in most electronic structure codes, once a
basis set has been selected the number n; of basis functions per particle is fixed, and
one is interested in the scaling as n., the number of particles, increases. Hence, the
parameter that controls the system size is n.. We also assume that the system is con-
tained in a d-dimensional box of volume V = L% and that I — oo as n. — oo in such
a way that the average density n./L¢ remains constant (thermodynamic limit). This
is very different from the case of finite element or finite difference approximations to
partial differential equations (PDEs), where the system (or domain) size is considered
fixed while the number of basis functions increases or, equivalently, the mesh size h
goes to zero.

Our scaling assumption has very important consequences on the structural and
spectral properties of the matrix sequence { H, }; namely, the following properties hold:

1. The bandwidth of H,,, which reflects the interaction range of the discrete
Hamiltonians, remains bounded as the system size increases [89, p. 454].
More generally, the entries of H, decay away from the main diagonal at a
rate independent of n. (hence, of n). See section 6 for precise definitions and
generalizations.

2. The eigenvalue spectra o(H,) are also uniformly bounded as n, — oco. In
view of the previous property, this is equivalent to saying that the entries
in H, are uniformly bounded in magnitude; this is just a consequence of
Gersgorin’s theorem (see, e.g., [67, p. 344]).
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3. For the case of Hamiltonians modeling insulators or semiconductors, the spec-

tral (HOMO-LUMO) gap does not vanish as n. — co. More precisely, if Egn)
denotes the ith eigenvalue of H, and =, := 65::)+1 — 65::), then inf, v, > 0.
This assumption does not hold for Hamiltonians modeling metallic systems;

in this case, inf, v, = 0, i.e., the spectral gap goes to zero as n, — oc.

We emphasize that these properties hold for very general classes of physical sys-
tems and discretization methods for electronic structure, with few exceptions (i.e.,
nonlocalized basis functions, such as plane waves). It is instructive to contrast these
properties with those of matrix sequences arising in finite element or finite difference
approximations of PDEs, where the matrix size increases as h — 0, with h a dis-
cretization parameter. Considering the case of a scalar, second-order elliptic PDE, we
see that the first property only holds in the 1D case, or in higher-dimensional cases
when the discretization is refined in only one dimension. (As we will see, this condition
is rather restrictive and can be relaxed.) Furthermore, it is generally impossible to
satisfy the second assumption and that on the nonvanishing gap (inf,, v, > 0) simul-
taneously. Indeed, normalizing the matrices so that their spectra remain uniformly
bounded will generally cause the eigenvalues to completely fill the spectral interval as
n — oo. That is, in general, given any two points inside this interval and for n large
enough, at least one eigenvalue of the corresponding n X n matrix falls between these
two points.

Our assumptions allow us to refer to the spectral gap of the matrix sequence { H,}
without having to specify whether we are talking about an absolute or a relative gap.
As we shall see, it is convenient to assume that all the matrices in the sequence
{H,} have spectrum contained in the interval [—1, 1]; therefore, the absolute gap and
the relative gap of any matrix H, are the same, up to the factor 2. The spectral
gap (more precisely, its reciprocal) is a natural measure of the conditioning of the
problem of computing the spectral projector onto the occupied subspace, i.e., the
subspace spanned by the eigenvectors of H,, corresponding to eigenvalues Egn) < W
see, e.g., [109, p. B4] for a recent discussion. The assumption inf,, vy, > 0 then simply
means that the electronic structure problem is uniformly well-conditioned; note that
this assumption is also very important for the convergence of the outer SCF iteration
[77, 137]. This hypothesis is satisfied for insulators and semiconductors, but not in
the case of metals.

6. Approximation of Matrices by Numerical Truncation. Discretization of H,
the Hamiltonian operator, by means of basis sets consisting of linear combinations
of Slater- or Gaussian-type orbitals leads to matrix representations that are, strictly
speaking, full. Indeed, since these basis functions are globally supported, almost
all matrix elements H;; = (¢;, Hoi) = (¢i|H|p;) are nonzero. The same is true
for the entries of the overlap matrix S;; = (¢;,¢;). However, owing to the rapid
decay of the basis functions outside of a localized region, and due to the local nature
of the interactions encoded by the Hamiltonian operator, the entries of H decay
exponentially fast with the spatial separation of the basis functions. (For the overlap
matrix corresponding to Gaussian-type orbitals, the decay is actually even faster than
exponential.)

More formally, we say that a sequence of n x n matrices 4, = ([Ay];;) has
the exponential off-diagonal decay property if there are constants ¢ > 0 and a > 0
independent of n such that

(6.1) [An)i] < ce™@=l forall d,j=1,...,n.
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Fig. 6.1 Logarithmic plot of the first row of a density matriz and an exponential bound.

Corresponding to each matrix A, we then define for a nonnegative integer m the
matrix AT = ([AS[’”]U) as follows:

. _ ) [Anlyy i i) <m,
[Ay" )iy = .
0 otherwise.

Clearly, each matrix A%m) is m-banded and can be thought of as an approximation,
or truncation, of A,,. Note that the set of m-banded matrices forms a vector subspace
Vi € C™*™ and that A%m) is just the orthogonal projection of A, onto V,, with
respect to the Frobenius inner product (4, B)p := Tr(B*A). Hence, AU™ s the best
approximation of A,, in V,, with respect to the Frobenius norm.

Note that we do not require the matrices to be Hermitian or symmetric here; we
only assume (for simplicity) that the same pattern of nonzero off-diagonals is present
on either side of the main diagonal. The following simple result from [14] provides an
estimate of the rate at which the truncation error decreases as the bandwidth m of the
approximation increases. In addition, it establishes n-independence of the truncation
error for n — oo for matrix sequences satisfying (6.1).

PROPOSITION 6.1 (see [14]). Let A be a matriz with entries A;; satisfying (6.1)
and let A"™) be the corresponding m-banded approzimation. Then for any € > 0 there
is an m such that || A — A(m)Hl < e form > m.

The integer m in the foregoing proposition is easily found to be given by

= Fln <27>J |
« 1l —e @

Clearly, this result is of interest only for m < n (in fact, for m < n).

EXAMPLE 6.2. Let us consider a tridiagonal matriz H of size 200 x 200, with
eigenvalues randomly chosen in [—1,—0.5]U[0.5, 1], and let P be the associated density
matriz with p = 0. Numerical computation shows that P satisfies the bound (6.1) with
a = 0.6 and ¢ = 10 (as long as its entries are larger than the machine precision,).
Figure 6.1 depicts the absolute value of the entries in the first row of P and the bound
(6.1), in a logarithmic scale. Choose, for instance, a tolerance ¢ = 1075 then it follows
from the previous formula that the truncated matriz P satisfies |P — P(™||; < e
for any bandwidth m > 29.

What is important about this simple result is that when applied to a sequence
{A4,} = ([An]ij) of n x n matrices having the off-diagonal decay property (6.1) with c
and « independent of n, the bandwidth m is itself independent of n. For convenience,
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we have stated Proposition 6.1 in the 1-norm; when A = A* the same conclusion
holds for the 2-norm, owing to the inequality

(6.2) [All2 < VAl All

(see [57, Corollary 2.3.2]). Moreover, a similar result also applies to other types of
decay, such as algebraic (power-law) decay of the form

c

forall ¢,7=1,...,n,
with ¢ and p independent of n, as long as p > 1.

REMARK 6.3. [t is worth emphasizing that the above considerations do not re-
quire that the matriz entries [A,]i; themselves actually decay exponentially away from
the main diagonal, but only that they are bounded above in an exponentially decaying
manner. In particular, the decay behavior of the matriz entries need not be mono-
tonic.

Although we have limited ourselves to absolute approximation errors in various
norms, it is easy to accommodate relative errors by normalizing the matrices. Indeed,
upon normalization all the Hamiltonians satisty ||H,||2 = 1; furthermore, for density
matrices this property is automatically satisfied, since they are orthogonal projectors.
In the next section we also consider using the Frobenius norm for projectors.

The foregoing considerations can be extended to matrices with more general decay
patterns, i.e., with exponential decay away from a subset of selected positions (4, 5)
in the matrix; see, e.g., [14] as well as [31]. In order to formalize this notion, we first
recall the definition of geodetic distance d(i, j) in a graph [37]: it is the number of edges
in the shortest path connecting two nodes ¢ and j, possibly infinite if there is no such
path. Next, given a (sparse) matrix sequence {A,}, we associate with each matrix
A, a graph G, with n nodes and m = O(n) edges. In order to obtain meaningful
results, however, we need to impose some restrictions on the types of sparsity allowed.
Recall that the degree of node i in a graph is just the number of neighbors of i, i.e.,
the number of nodes at distance 1 from i. We denote by deg,, (i) the degree of node
i in the graph G,,. We shall assume that the maximum degree of any node in G,
remains bounded as n — oo; that is, there exists a positive integer D independent of
n such that max;<;<p deg, (i) < D for all n. Note that when A, = H,, (discretized
Hamiltonian), this property is a mathematical restatement of the physical notion of
locality, or finite range, of interactions.

Now let us assume that we have a sequence of n x n matrices A, = ([An]i;)
with associated graphs G,, and graph distances d,, (i, 7). We will say that A4,, has the
exponential decay property relative to the graph G, if there are constants ¢ > 0 and
a > 0 independent of n such that

(6.3) [An)ij| < ce™@®(9) forall 4,j=1,...,n.

PROPOSITION 6.4. Let {A,} be a sequence of n X n matrices satisfying the
exponential decay property (6.3) relative to a sequence of graphs {G,} having uniformly
bounded mazimal degree. Then, for any given 0 < € < ¢, each A, contains at most
O(n) entries greater than € in magnitude.

Proof. For a fixed node i, the condition |[A,];j| > € together with (6.3) immedi-
ately implies

(6.4) dn(i, ) < ~1n (f) .

(0% €
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Since ¢ and « are independent of n, inequality (6.4), together with the assumption that
the graphs G,, have bounded maximal degree, implies that for any row of the matrix
(indexed by i), there is at most a constant number of entries that have magnitude
greater than e. Hence, only O(n) entries in A, can satisfy |[Ay]i;| > €. O

REMARK 6.5. Note that the hypothesis of uniformly bounded maximal degrees is
certainly satisfied if the graphs G,, have uniformly bounded bandwidths (recall that the
bandwidth of a graph is just the bandwidth of the corresponding adjacency matriz).
This special case corresponds to the matriz sequence {A,} having the off-diagonal
exponential decay property.

Under the same assumptions as Proposition 6.4, we can show that it is possible
to approximate each A, to within an arbitrarily small error ¢ > 0 in norm with a
sparse matrix A" (i.e., a matrix containing only O(n) nonzero entries).

PROPOSITION 6.6. Assume the hypotheses of Proposition 6.4 are satisfied. Define
the matriz AT™ = ([ASW]M), where

[A™]ij = :
0 otherwise.

Then, for any given € > 0, there exists m independent of n such that HAn—A&[”)Hl <e€
for all m > m. Moreover, if A = A*, then also |A, — A%m)Hg < e for all m > m.
Furthermore, each Al contains only O(n) nonzeros.

Proof. For each n and m and for 1 < j <mn, let

K'(j) ={i|1 <i<mnanddy(i,j) >m}.

n

We have

oAM= . —ady (4,5)
40 = A = max 3" Ayl Semax 3o et
€K (4)

Letting A = e™“, we obtain

>\m+1
1—X

n o0
_ A(m) dn (3,5) k k _
A, — A, ngclgljagxn E A <c E AT < E AN =c¢
1€K™ (4) k=m+1 k=m+1

Since 0 < A < 1, for any given € > 0 we can always find m such that

>\m+1
‘T2

<e forall m>m.

If A, = A%, then || A, — AS™ |2 < |4, — AS™ ||y < € for all m > m. The last assertion
follows from the bounded maximal degree assumption. a0

Hence, when forming the overlap matrices and discrete Hamiltonians, only matrix
elements corresponding to “sufficiently nearby” basis functions (i.e., basis functions
having sufficient overlap) need to be computed, the others being negligibly small.
The resulting matrices are therefore sparse, and indeed banded for 1D problems,
with a number of nonzeros that grows linearly in the matrix dimension. The actual
bandwidth, or sparsity pattern, may depend on the choice and numbering (ordering) of
basis functions and (for the discrete Hamiltonians) on the strength of the interactions,
i.e., on the form of the potential function V in the Hamiltonian operator.
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It should be kept in mind that while the number of nonzeros in the Hamiltonians
discretized using (say) Gaussian-type orbitals is O(n), the actual number of nonzeros
per row can be quite high, indeed much higher than when finite differences or finite
elements are used to discretize the same operators. It is not unusual to have hundreds
or even thousands of nonzeros per row. On the other hand, the matrices are very
often not huge in size. As already mentioned, the size n of the matrix is the total
number of basis functions, which is a small or moderate multiple (between 2 and
25, say) of the number n. of electrons. For example, if n; ~ 10 and n. =~ 2000,
the size of H will be n = 20,000 and H could easily contain several millions of
nonzeros. This should be compared with “real space” discretizations based on finite
elements or high-order finite difference schemes [116]. The resulting Hamiltonians
are usually very sparse, with a number of nonzero entries per row averaging a few
tens at most [7]. However, these matrices are of much larger dimension than the
matrices obtained using basis sets consisting of atom-centered orbitals. In this case,
methodologies based on approximating the density matrix are currently not feasible,
except for 1D problems. The same remark applies to discretizations based on plane
waves, which tend to produce matrices of an intermediate size between those obtained
using localized basis sets and those resulting from the use of real space discretizations.
These matrices are actually dense and are never formed explicitly. Instead, they are
only used in the form of matrix-vector products, which can be implemented efficiently
by means of FFTs; see, e.g., [116].

The possibility of developing linear scaling methods for electronic structure largely
depends on the localization properties of the density matrix P. It is therefore critical
to understand the decay behavior of the density matrix. Since at zero temperature the
density matrix is just a particular spectral projector, we consider next some general
properties of such projectors.

7. General Properties of Orthogonal Projectors. While our main goal in this
paper is to study decay properties in orthogonal projectors associated with certain
sequences of sparse matrices of increasing size, it is useful to first establish some a
priori estimates for the entries of general projectors. Indeed, the intrinsic properties
of a projector, like idempotency, positive semidefiniteness, and the relations between
their trace, rank, and Frobenius norm, tend to impose rather severe constraints on
the magnitude of its entries, particularly for increasing dimension and rank.

We begin by observing that in an orthogonal projector P, all entries P;; satisfy
|P;;| <1 and, since P is positive semidefinite, its largest entry is on the main diagonal.
Also, the trace and rank coincide: Tr(P) = rank(P). Moreover, |Plls = 1 and
|Plls = /TR (P).

In the context of electronic structure computations, we deal with a sequence of
n x n orthogonal projectors {P,} of rank n., where n = n; - n. with n. increasing
and n; fixed. Hence,

(7.1) Te(P,) = rank(P,) = ne and || Py |[r = V.

For convenience, we will call a sequence of orthogonal projectors { P, } satisfying (7.1)
a density matric sequence; the entries of P, will be denoted by [P,];;. We have the
following lemma.

LEMMA 7.1. Let {P,} be a density matriz sequence. Then

2
2oizgPaligl”™ 1
”PnH% B n
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Proof. Just observe that Tr(P,) = Y., [Py]ii = n. together with |[P,];;] < 1
for all 4 imply that the minimum of the sum » ., |[P]si|? is achieved when [P,];; =
Re — an for all i. Hence, .1, |[Pn]ii|2 > o5 = 2. Therefore,

' =
- 1
72 D IPisl* = IPallf = 3 I[Paliil” < (1 B n_) Ne
7 i=1 b
and the result follows dividing through by || P,[|% = ne. 0

REMARK 7.2. From the proof one can trivially see that the bound (7.2) is sharp.
In section 10 we give a nontrivial example where the bound is attained.

THEOREM 7.3. Let {P,} be a density matriz sequence. Then, for any € > 0, the
number of entries of P, greater than or equal to € in magnitude grows at most linearly
with n.

Proof. Clearly, it suffices to show that the number of off-diagonal entries [P,];;
with |[P,]i;| > € can grow at most linearly with n. Let

IT={(7)|1<i,j<nandi#j} and Z.={(¢,7) € I||[Pnlij| > €}.

Then obviously
MPJsP= >0 PP+ D Pyl
i#] (i,5)€Ze (1,5) €T\ Le

and, if |Z.| = K, then

SRyl K Ken,
D T
oy nliF fte "
Hence, by Lemma 7.1,
2
Kelny _ iz |[Pz]ij| <1 L
n [ Pnll% ny

from which we obtain the bound

(7.3) Kg%(l—i>,

€“Ny np

which shows that the number K of entries of P, with |[P,];;| > € can grow at most
as O(n) for n — oo. O

REMARK 7.4. Due to the presence of the factor € in the denominator of the
bound (7.3), for small € the proportion of entries of P, that are not smaller than e
can actually be quite large unless n is huge. Nevertheless, the result is interesting
because it shows that in any density matriz sequence, the proportion of entries larger
than a prescribed threshold must vanish as n — oo. In practice, for demsity ma-
trices corresponding to sparse Hamiltonians with gap, localization occurs already for
moderate values of n.

We pointed out in the previous section that if the entries in a matrix sequence
{A,} decay at least algebraically with exponent p > 1 away from the main diagonal,
with rates independent of n, then for any prescribed ¢ > 0 it is possible to find a
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sequence of approximants {Aﬁlm)} with a fixed bandwidth m (or sparsity pattern)
such that ||A, — A%m)H < €. This applies in particular to density matrix sequences.
The next result shows that, in principle, a linear rate of decay is enough to allow
for banded (or sparse) approximation to within any prescribed relative error in the
Frobenius norm.

THEOREM 7.5. Let {P,} be a density matriz sequence and assume that there
exists ¢ > 0 independent of n such that |[P,)i;| < c¢/(|li —j|+1) foralli,j=1,...,n
Then, for all € > 0, there exists a positive integer m independent of n such that

12 — P\ ||

<e€ forall m>m,
| Pnl| 7

where P,(lm) is the m-banded approximation obtained by setting to zero all the entries
of P, outside the band.
Proof. We subtract P{"™ from P, and compute | P — Pr(lm)H% by adding the

squares of the nonzero entries in the upper triangular part of P, — Pr(lm) diagonal by

diagonal and multiplying the result by 2 (since the matrices are Hermitian). Using
the decay assumption we obtain

n—m-—1 n 1
k

m—
P, Pm)2<2 —_—
| I < 2 2; (n—Fk+1)2 ; n+1)]

To obtain an upper bound for the right-hand side, we observe that the function

f(x):(a:—%)w a=n+1,

is strictly increasing and convex on the interval [1,n — m]. Hence, the sum can be
bounded above by the integral of f(z) taken over the same interval:

n—m—1 n—m
x
—d = 1.
Z n—k—|—1 / (x —a)? T a=nt

k=1

Evaluating the integral and substituting a = n + 1 in the result, we obtain

1 1 1
| P, — P{™ |2 < 2¢2 [m (%) +(n+1) (— - —ﬂ .

m+1 n

Dividing by || P.||% = ne, we find

(m) 2 2 2
P, — P, 2 1 1 1 2 1
M< ¢ In m+1 +(n+1) | —— = < cnt .
| Pl Ne n m+1 n ne m—+1

Recalling that n = ny - n., we can rewrite the last inequality as

|\Pn—P£:>|\%< 22 n41_ 2 L) < 22
| Pnl| 7 m+1 ne m+1 Ne

1(nb+1),

a quantity which can be made arbitrarily small by taking m sufficiently large. O
REMARK 7.6. In practice, linear decay (or even algebraic decay with a small ex-
ponent p > 1) is too slow to be useful in the development of practical O(n) algorithms.
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For example, from the above estimates we obtain m = O(e~2), which is clearly not a
very encouraging result, even allowing for the fact that the above bound may be pes-
simistic in general. To date, practical linear scaling algorithms have been developed
only for density matrixz sequences exhibiting exponential off-diagonal decay.

In the case of exponential decay, one can prove the following result.

THEOREM 7.7. Let {P,} be a density matriz sequence with |[P,];;| < ce=*1"=il,
where ¢ > 0 and o > 0 are independent of n. Let {P,(lm)} be the corresponding
sequence of m-banded approzimations. Then there exists ko > 0 independent of n and
m such that

1Po = PUR ) 2am
AR

Proof. The proof is similar to that of Theorem 7.5, except that it is now easy to
evaluate the upper bound and the constants exactly. We omit the details. o

REMARK 7.8. It is immediate to see that the foregoing bound implies the much
more favorable estimate m = O(lne~1).

Again, similar results hold for arbitrary sparsity patterns, replacing |i — j| with
the graph distance. More precisely, the following result holds.

THEOREM 7.9. Let {P,} be a density matriz sequence with the exponential decay
property with respect to a sequence of graphs {G,} having uniformly bounded mazimal
degree. Then, for all € > 0, there exists a positive integer m independent of n such
that

| — P™ |

<e forall m>m,
1Pl

where Py(bm) is sparse, i.e., it contains only O(n) nonzeros.

We consider now some of the consequences of approximating full, but localized
matrices with sparse ones. The following quantity plays an important role in many
electronic structure codes:

(E) =Tr(PH) =¢1 + e+ -+ n,,

where ¢; denotes the ith eigenvalue of the discrete Hamiltonian H. Minimization
of Tr(PH), subject to the constraints P = P* = P? and Tr(P) = n., is the basis
of several linear scaling algorithms; see, e.g., [24, 53, 77, 79, 93, 95, 97]. Note that
in the tight-binding model, and also within the independent electron approximation,
the quantity (F) represents the single-particle energy [6, 53, 97, 128]. Now, assume
that H ~ H and P ~ P and define the corresponding approximation of (E) as
(£) = Tr(PH). (We note in passing that in order to compute (£) = Tr(PH), only
the entries of P corresponding to nonzero entries in H need to be computed.) Let
Ap=P—Pand Ay = H— H. We have
(E) = Te[(P + Ap)(H + Ag)] = Tr(PH) 4+ Tr(PAg) + Tr(ApH) 4+ Tr(ApAg).
Neglecting the last term, we obtain for 6z = |(E) — (E)| the bound
5 < [Te(PAR)| + | Te(ApH)).

Recalling that the Frobenius norm is the matrix norm induced by the inner product
(A, B) = Tr(B*A), using the Cauchy—Schwarz inequality and ||P| p = \/ne we find

op < Ve [Aullr + |AP|FIH F
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Now, since the orthogonal projector P is invariant with respect to scalings of the
Hamiltonian, we can assume ||H || = 1, so that 0g < \/n¢ [|An||r+[|Ap|/F holds. In
practice, a bound on the relative error would be more meaningful. Unfortunately, it is
not easy to obtain a rigorous bound in terms of the relative error in the approximate
projector P. If, however, we replace the relative error in <E> with the normalized error
obtained by dividing the absolute error by the number n. of electrons, we obtain

o _ NAnlr  [IArlr
ne = /e ne

A similar bound for dg/n. that involves matrix 2-norms can be obtained as fol-
lows. Recall that n = np - ne, and that ||Al|lr < /n||A]|2 for any n x n ma-

trix A. Observing that the von Neumann trace inequality [68, pp. 182-183] implies
|Tr(PAR)| < Tr(P)||Amll2 = ne||Am||2, we obtain

é n
(7.4) L < Aulz+ /= [Ap]2
Ne Ne

Since n; is constant, an interesting consequence of (7.4) is that for large system sizes
(i.e., in the limit as n, — oc), the bound on the normalized error in (E) is essentially
determined by the truncation error in the Hamiltonian H rather than by the error in
the density matrix P.

On the other hand, scaling H so that ||H||r = 1 may not be advisable in practice.
Indeed, since the Frobenius norm of the Hamiltonian grows unboundedly for n. — oo,
rescaling H so that |H||r = 1 would lead to a loss of significant information when
truncation is applied in the case of large systems. A more sensible scaling, which is
often used in algorithms for electronic structure computations, is to divide || H|| by its
largest eigenvalue in magnitude, so that || H||2 = 1. This is consistent with the assump-
tion, usually satisfied in practice, that the spectra of the Hamiltonians remain bounded
as ne — 00. (Note that this is the same normalization used to establish the decay
bounds in section 8.) With this scaling we readily obtain, to first order, the bound

(75) % < Aull + mall Al
€

showing that errors in Ay and Ap enter the estimate for the normalized error in the
objective function Tr(PH) with approximately the same weight, since ny, is a moder-
ate constant. We also note that since both error matrices Ay and Ap are Hermitian,
(6.2) implies that the bounds (7.4) and (7.5) remain true if the 2-norm is replaced by
the 1-norm. We mention that the problem of the choice of norm in the measurement
of truncation errors has been discussed in [111, 114]. These authors emphasize the
use of the 2-norm, which is related to the distance between the exact and inexact
(perturbed) occupied subspaces X := Range(P) and X := Range(P) as measured by
the sine of the principal angle between X and X; see [111].

One important practical aspect, which we do not address here, is that in many
quantum chemistry codes the matrices have a natural block structure (where each
block corresponds, for instance, to the basis functions centered at a given atom);
hence, dropping is usually applied to submatrices rather than to individual entries.
Exploitation of the block structure is also desirable in order to achieve high perfor-
mance in matrix-matrix products and other operations; see, e.g., [24, 25, 112].

We conclude this section with a few remarks on the infinite-dimensional case.
Recall that any separable, complex Hilbert space ¢ is isometrically isomorphic to
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the sequence space

& € CVneN and i|£n|2<oo}.

n=1

2= {(gn)

Moreover, if {e,} is an orthonormal basis in 4%, to any bounded linear operator .4
on 7 there corresponds the infinite matrix A = (4;;) acting on ¢2, uniquely defined
by Ai; = (ej, Ae;). Note that each column of A must be in ¢2, hence the entries A;;
in each column of A must go to zero for ¢ — co. The same is true for the entries in
each row (for j — oo) since A* = (A};), the adjoint of A, is also a (bounded) operator
defined everywhere on ¢2. More precisely, for any bounded linear operator A = (4;;)
on /2 the following bounds hold:

(7.6) D _|Ai P <A} forall i and Y |Ay|* <|[|A[3 forall j,

j=1 i=1
since ||All2 = || A% |2
An orthogonal projector P on 47 is a self-adjoint (P = P*), idempotent (P = P?)
linear operator. Such an operator is necessarily bounded, with norm ||P|| = 1. Hence,

(7.6) implies
(o)

(7.7) > IP,IP <1,
j=1

where P = (P;;) denotes the matrix representation of P. The idempotency condition
implies

o0
P, :ZPikij forall i,j=1,2,....
k=1

In particular, for i = j we get, using the hermiticity property P;; = Py,

o0 (o)
(7.8) Pi =Y PyPu=Y |Pxl> forall i=12,. ...
k=1 k=1

Now, since P is a projector its entries satisfy |P;;| < 1; therefore, (7.8) is a strength-
ening of inequality (7.7). Note in particular that the off-diagonal entries in the first
row (or column) of P must satisfy

Yo IPyP <1 |Puf,
i>1
those in the second row (or column) must satisfy
Do IPoP < 1= |Poaf® — [Praf?,
5>2

and in general the entries P;; with j > 4 must satisfy

(7.9) S IPP<1=> [Pyl forall i=1,2,....
k=1

Jj>i
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Hence, decay in the off-diagonal entries in the ith row of P must be fast enough for the
bounds (7.9) to hold. In general, however, it is not easy to quantify the asymptotic
rate of decay to zero of the off-diagonal entries in an arbitrary orthogonal projector
on /2. In general, the rate of decay can be rather slow. In section 10 we will see an
example of a spectral projector associated with a very simple tridiagonal Hamiltonian
for which the off-diagonal entries decay linearly to zero.

8. Decay Results. In this section we present and discuss some results on the
decay of entries for the Fermi—Dirac function applied to Hamiltonians and for the
density matrix (spectral projector corresponding to occupied states). We consider
both the banded case and the case of more general sparsity patterns. The proofs,
which require some basic tools from polynomial approximation theory, will be given
in section 8.3.

8.1. Bounds for the Fermi-Dirac Function. We begin with the following result
for the banded case. As usual in this paper, in the following one should think of the
positive integer n as being of the form n = ny - n, with n; constant and n, — oco.

THEOREM 8.1. Let m be a fized positive integer and consider a sequence of
matrices {H,} such that

(i) H, is an n x n Hermitian, m-banded matriz for all n;

(ii) for every n, all the eigenvalues of Hy, lie in the interval [—1,1].

For a given Fermi level p and inverse temperature 3, define for each n the n x n
Hermitian matriz F,, := frp(Hy) = [In + eﬁ(H"_”I")] 71. Then there exist constants
¢ >0 and a > 0, independent of n, such that the following decay bound holds:

(8.1) |[Fnlijl < cem@l=l i35

The constants ¢ and a can be chosen as
2xM (x)

(82) =1 (x) gé@flfFD(Z)L
1

8.3 = —1

(8.3) a=—lny

for any 1 < x <X, where

I e il et et WO B
%

W) P A0 + 0+ ) +
Vas

and &, is the unique ellipse with foci in —1 and 1, with semiazes k1 > 1 and kg > 0,
and X = K1 + Ka.

REMARK 8.2. The ellipse & in the previous theorem is unique because the identity
VK2 — K3 =1, valid for any ellipse with foci in 1 and —1, implies k1 — ko = 1/(k1 +
K2), hence the parameter x = k1 + k2 alone completely characterizes the ellipse.

REMARK 8.3. Theorem 8.1 can be immediately generalized to the case where the
spectra of the sequence {Hy,} are contained in an interval [a,b] for any a < b e R. It
suffices to shift and scale each Hamiltonian,

(8.4)

~ 2
A= u a+b

_—Inv
b—a b—a
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Fig. 8.1 Bounds (8.1) with u =0 and B = 10 for three different values of x.
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Fig. 8.2 Logarithmic plot of the bounds (8.1) with p =0 and 8 = 10.

so that ﬁn has spectrum in [—1,1]. For the decay bounds to be independent of n,
however, a and b must be independent of n.

It is important to note that there is a certain amount of arbitrariness in the choice
of x, and therefore of ¢ and «. If one is mainly interested in a fast asymptotic decay
behavior (i.e., for sufficiently large |i — j|), it is desirable to choose x as large as
possible. On the other hand, if x is very close to , then the constant c¢ is likely to
be quite large and the bounds might be too pessimistic. Let us look at an example.
Take p = 0; in this case we have

x2—1
2x

X:(ﬂ—i— B2+7r2)/ﬂ and M(X):‘l/(1+e6<)|, where (=1

Note that, in agreement with experience, decay is faster for smaller 8 (i.e., higher
electronic temperatures); see sections 8.3 and 8.7 for additional details and discussion.
Figures 8.1 and 8.2 show the behavior of the bound given by (8.1) on the first row
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Fig. 8.3 Plot of ¢ as a function of x with u =0 and 8 = 10.
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Fig. 8.4 Logarithmic plot of the bounds (8.1) with p =0 and 8 = 10 for several values of x.

of a 200 x 200 tridiagonal matrix (m = 1) for § = 10 and for three values of x. It
is easy to see from the plots that the asymptotic behavior of the bounds improves as
X increases; however, the bound given by y = 1.362346 is less useful than the bound
given by xy = 1.3. Figure 8.3 is a plot of ¢ as a function of x and it shows that ¢
grows very large when x is close to . This is expected, since frp(z) has two poles
given by z = +i7/f on the regularity ellipse &. It is clear from Figures 8.1 and 8.2
that xy = 1.3 is the best choice among the three proposed values if one is interested in
determining a bandwidth outside of which the entries of F;, can be safely neglected.
As already observed in [14, 106], improved bounds can be obtained by adaptively
choosing different (typically increasing) values of x as |i — j| grows, and by using as
a bound the (lower) envelope of the curves plotted in Figure 8.4, which shows the
behavior of the decay bounds for several values of x € (1.1,%), with ¥ ~ 1.3623463.

The results of Theorem 8.1 can be generalized to the case of Hamiltonians with
rather general sparsity patterns; see [14, 31, 106]. To this end, we make use of the
notion of geodetic distance in a graph already used in section 6. The following result
holds.
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THEOREM 8.4. Consider a sequence of matrices {Hy} such that

(i) Hy, is an n x n Hermitian matriz for all n;

(ii) the spectra o(Hy) are uniformly bounded and contained in [—1,1] for all n.
Let d,,(i,7) be the graph distance associated with H,,. Then the following decay bound
holds:

(8.5) [Fnlij] < ce0dnlid) ot g,

where 8 = In x and the remaining notation and choice of constants are as in Theorem
8.1.

We remark that in order for the bound (8.5) to be meaningful from the point of
view of linear scaling, we need to impose some restrictions on the asymptotic sparsity
of the graph sequence {G,}. As discussed in section 6, O(n) approximations of F,
are possible if the graphs G,, have maximum degree uniformly bounded with respect
to n. This guarantees that the distance d,, (i, j) grows unboundedly with |i — j|, at a
rate independent of n for n — oo.

8.2. Density Matrix Decay for Systems with Gap. The previous results es-
tablish exponential decay bounds for the Fermi-Dirac function of general localized
Hamiltonians and thus for density matrices of arbitrary systems at positive electronic
temperature. In this subsection we consider the case of gapped systems (like insula-
tors) at zero temperature. In this case, as we know, the density matrix is the spectral
projector onto the occupied subspace. As an example, we consider the density ma-
trix corresponding to the linear alkane n-Dopentacontane CsoHigg composed of 52
carbon and 106 hydrogen atoms, discretized in a Gaussian-type orbital basis. The
number of occupied states is 209, or half the total number of electrons in the system.”
The corresponding Hamiltonian in the original nonorthogonal basis is displayed in
Figure 9.1 (top) and the “orthogonalized” Hamiltonian H is shown in Figure 9.1
(bottom). Figure 8.5 displays the zero-temperature density matrix, which is seen to
decay exponentially away from the main diagonal. Comparing Figure 8.5 and Fig-
ure 9.1, we can see that for a truncation level of 10~%, the bandwidth of the density
matrix is only slightly larger than that of the Hamiltonian. The eigenvalue spectrum
of the Hamiltonian, scaled and shifted so that its spectrum is contained in the interval
[—1,1], is shown in Figure 8.6. One can clearly see a large gap (= 1.4) between the 52
low-lying eigenvalues corresponding to the core electrons in the system, as well as the
smaller HOMO-LUMO gap (= 0.1) separating the 209 occupied states from the virtual
(unoccupied) ones. It is worth emphasizing that the exponential decay of the density
matrix is independent of the size of the system; that is, if the alkane chain was made
arbitrarily long by adding C and H atoms to it, the density matrix would be of course
much larger in size, but its bandwidth would remain virtually unchanged for the same
truncation level, due to the fact that the bandwidth and the HOMO-LUMO gap of
the Hamiltonian do not appreciably change as the number of particles increases. It is
precisely this independence of the rate of decay (hence, of the bandwidth) to system
size that makes O(n) approximations possible (and competitive) for large n.

Let us now see how Theorem 8.1 can be used to prove decay bounds on the entries
of density matrices. Let H be the discrete Hamiltonian associated with a certain
physical system and let p be the Fermi level of interest for this system. We assume
that the spectrum of H has a gap 7 around p, that is, we have v = et —&~ > 0, where

"Here spin is being taken into account, so that the density kernel is given by p(r,r’) =
e 2 *
230512 i (r)i (') see, e.g., [88, p. 10].
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200 400
nz=20448

Fig. 8.5 Magnitude of the entries in the density matriz for the linear alkane Cs2H106 chain, with
209 occupied states. White: < 10~8; yellow: 10~8 — 1076; green: 1076 — 10~4; blue:
10~% — 1072, black: > 10~2. Note: nz refers to the number of “black” entries.
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Fig. 8.6 Spectrum of the Hamiltonian for CsaH1o6.-

€™ is the smallest eigenvalue of H to the right of x and £~ is the largest eigenvalue of
H to the left of . In the particular case of the HOMO-LUMO gap, we have e~ = ¢,
and €T =&, 41.

The Fermi—Dirac function can be used to approximate the Heaviside function; the
larger 3, the better the approximation. More precisely, the following result is easy to
prove (see [106]).

PROPOSITION 8.5. Let 6 > 0 be given. If 8 is such that

(8.6) B> %m (1(%5)

then 1 — fFD(cf_) <46 and fFD(E+) <4.
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Fig. 8.7 Approzimations of the Heaviside function by the Fermi—Dirac function (= 0) for different
values of v and § = 1076.
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Fig. 8.8 Behavior of the minimum acceptable value of B as a function of vy for different values of §.

In Figure 8.7 we show Fermi-Dirac approximations to the Heaviside function
(with a jump at p = 0) for different values of v between 0.1 and 1, where 3 has been
chosen so as to reduce the error in Proposition 8.5 above the value 6 = 1076, The
behavior of 8 as a function of v according to (8.6) is plotted in Figure 8.8.

As a consequence of Theorem 8.1 and Proposition 8.5 we have the following
corollary.

COROLLARY 8.6. Let ny be a fized positive integer and n = ny - ne, where the
integers n. form a monotonically increasing sequence. Let {H,} be a sequence of
Hermitian n x n matrices with the following properties:

1. Fach H, has bandwidth m independent of n.
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2. There exist two fized intervals I = [-1,a],lo = [b,1] CR, withy=b—a >
0, such that for all n = ny - ne, I1 contains the smallest ne eigenvalues of
H,, (counted with their multiplicities) and I contains the remaining n — ne
etgenvalues.
Let P, denote the nxn spectral projector onto the subspace spanned by the eigenvectors
associated with the ne smallest eigenvalues of H, for each n. Let § > 0 be arbitrary.
Then there exist constants ¢ > 0, > 0 independent of n such that

(8.7) |[Pa]ij| < min {1, ce—a”—ﬂ} v forall i#j

The constants ¢ and o can be computed from (8.2) and (8.3), where x is chosen in
the interval (1,%), with Y given by (8.4) and B such that (8.6) holds.

Corollary 8.6 allows us to determine a priori a bandwidth m independent of n
outside of which the entries of P, are smaller than a prescribed tolerance 7 > 0.
Observe that it is not possible to incorporate d in the exponential bound, but, at least
in principle, one may always choose § smaller than a certain threshold. For instance,
one may take 6 < 7/2 and define m as the smallest integer value of m such that the
relation ce™ " < 7/2 holds.

In the case of Hamiltonians with a general sparsity pattern one may apply The-
orem 8.4 to obtain a more general version of Corollary 8.6. If the fixed bandwidth
hypothesis is removed, the following bound holds:

(8.8) [Pl < min {1,ce” @Y 6 forall i,

with # = Inx. Once again, for the result to be meaningful some restriction on the
sparsity patterns, like the uniformly bounded maximum degree assumption already
discussed, must be imposed.

8.3. Proof of Decay Bounds. Theorem 8.1 is a consequence of results proved in
[12, Theorem 2.2] and [106, Theorem 2.2]; its proof relies on a fundamental result
in polynomial approximation theory known as Bernstein’s theorem [92]. Given a
function f continuous on [—1,1] and a positive integer &, the kth best approximation
error for f is the quantity

Buf) =t { s 11(0) - plo)lsp € ).
where Py is the set of all polynomials with real coefficients and degree less than
or equal to k. Bernstein’s theorem describes the asymptotic behavior of the best
approximation error for a function f analytic on a domain containing the interval
[—1,1].

Consider the family of ellipses in the complex plane with foci in —1 and 1. As
already mentioned, an ellipse in this family is completely determined by the sum y > 1
of its half-axes and will be denoted as &, .

THEOREM 8.7 (Bernstein). Let the function f be analytic in the interior of the
ellipse &£ and continuous on &,. Moreover, assume that f(z) is real for real z. Then

2M (x)

B

where M(x) = max.ce, |f(2)|.
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Let us now consider the special case where f(2) := frp(2) = 1/(1 4?1 is
the Fermi-Dirac function of parameters 8 and p. Observe that frp(z) has poles in
== i%, so the admissible values for x with respect to frp(z) are given by 1 < x <,
where the parameter Y is such that p 4+ i% € & (the regularity ellipse for f = frp).
Also observe that smaller values of 8 correspond to a greater distance between the
poles of frp(z) and the real axis, which in turn yields a larger value of . In other
words, the smaller g, the faster the decay in Theorem 8.1. Explicit computation of
yields (8.4).

Now, let H, be as in Theorem 8.1. We have

| frp(Hn) — pr(Hn)ll2 = L \frp(x) = pr(2)] < Er(frp) < e,
where ¢ = 2yM (x)/(x — 1) and ¢ = 1/x. The Bernstein approximation of degree k
gives a bound on |[frp(Hy)]ij| when [pi(Hy)li; = 0, that is, when |¢ — j| > mk. We
may also assume |i — j| < m(k + 1). Therefore, we have

|[fFD(Hn)]z]| < Cem(kJrl)ln(ql/M) _ Cefam(kJrl) < Ce*a‘i*ﬂ.

As for Theorem 8.4, note that for a general sparsity pattern we have [(H,,)*];; = 0,
and therefore [py(Hy)]i; = 0, whenever d,, (¢, ) > k. Writing d,, (4, j) = k+1 we obtain

\[frp(Hn)ij] < c¢(1/x)**! = cem 040,

Let us now prove Corollary 8.6. Assume that § satisfies the inequality (8.6)
for given values of § and ~. If we approximate the Heaviside function with step
at u by means of the Fermi-Dirac function frp(z) = 1/(1 + e#®=#)  the pointwise
approximation error is given by g(z) = e®@=#) /(1 +eP(*~1) for x < p and by frp(x)
for > p. It is easily seen that g(z) is a monotonically increasing function, whereas
frp is monotonically decreasing. As a consequence, for each Hamiltonian H,, we have
that 1 — frp(A\) < 6 for all eigenvalues A € I1 and frp(A) <6 for all A € I. In other
words, the pointwise approximation error on the spectrum of H,, is always bounded
by §. Therefore, we have

[P0 = fro(Hn)lij| < [|Pn = fro(Hn)ll2 < 6.

We may then conclude using Theorem 8.1 that
|[Palisl < |[fro(Ha)lij| +6 < el 4 6.

Finally, recall that in an orthogonal projector no entry can exceed unity in absolute
value. With this in mind, (8.7) and (8.8) readily follow.

8.4. Additional Bounds. Theorems 8.1 and 8.4 rely on Bernstein’s result on
best polynomial approximation. Following the same argument, one may derive decay
bounds for the density matrix from any other estimate on the best polynomial ap-
proximation error for classes of functions that include the Fermi—Dirac function. For
instance, consider the following result of Achieser (see [92, Theorem 78] and [1]).

THEOREM 8.8. Let the function f be analytic in the interior of the ellipse &, .
Suppose that |Re f(z)| < 1 holds in &, and that f(z) is real for real z. Then the
following bound holds:

i (=D"

(8.9) Ei(f) < (2v +1)cosh((2v +1)(k+1)Inx)"

v=0
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The series in (8.9) converges quite fast; therefore, it suffices to compute a few
terms explicitly to obtain a good approximation of the bound. A rough estimate
shows that, in order to approximate the right-hand side of (8.9) within a tolerance 7,
one may truncate the series after vy terms, where r° < 7(1 —r) and r = X’%.

Observe that, as in Bernstein’s results, there is again a degree of arbitrariness in
the choice of x. However, the admissible range for y is smaller here because of the
hypothesis |[Re f(z)| < 1.

The resulting matrix decay bounds have the form

S (-1

4
(8.10) \[frp(Hn)lij| < - IZ:O (2v 4+ 1) cosh((2v + 1)(d(i,7) + 1) Inx)

for the case of general sparsity patterns. While these bounds are less transparent than
those derived from Bernstein’s theorem, they are computable. We have found that
the bounds (8.10) improve on (8.1) for entries close to the main diagonal, but do not
seem to have a better asymptotic behavior. A possibility would be to combine the
two bounds by taking the smaller of the two values.

So far we have only considered bounds based on best approximation of analytic
functions defined on a single interval. In [61], Hasson obtained an interesting result on
polynomial approximation of a step function defined on the union of two symmetric
intervals. Let a,b € R with 0 < a < b and let sgn(z) be the sign function defined
on [—b,—a] U [a,b], i.e., sgn(x) = —1 on [—b, —a] and sgn(xz) = 1 on [a,b]. Notice
that the sign function is closely related to the Heaviside function h(x), since we have
h(z) = 1(1+ sgn(a)).

PROPOSITION 8.9. There exists a positive constant K such that

(8.11) Ex(sgn; [-b,—a] U [a,b]) < K@.

Given a sequence of Hamiltonians {H,} with gapped spectra, one may choose
a and b and shift H,, if necessary, so that the spectrum of each H, is contained
in [-b,—a] U [a,b] and the eigenvalues corresponding to occupied states belong to
[-b, —a]. Then we obtain the following decay bound for the density matrix:

—&d(i.d) 1
(8.12) (Pulig S K-,  where ¢=- hllb)iz .

24/d(i, )
Under the bounded maximal degree condition, the rate of decay is independent of n.
A few remarks on (8.12) are in order:

e Since (8.12) relies directly on a polynomial approximation of the step function,
we do not need here the extra term § found in (8.8).

e Unfortunately, it is not possible to assess whether (8.12) may be useful in
practice without an explicit formula—or at least an estimate—for the con-
stant K. The asymptotic decay rate, however, is faster than exponential and
indeed faster than for other bounds; a comparison is shown in Figure 8.9
(top). Notice that this logarithmic plot is only meant to show the slope of
the bound (which is computed for K = 1).

e A disadvantage of (8.12) is the requirement that the intervals containing the
spectra o(H,) should be symmetric with respect to 0. Of course one may
always choose a and b so that this hypothesis is satisfied, but the quality of
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Fig. 8.9 Top: Logarithmic plot of Hasson (dashed line) and Bernstein-type (dotted line) decay

bounds for a 100 x 100 t¢ridiagonal matriz with spectrum in [—1,—0.25] U [0.25,1]. The
solid line plots the first row of the “exact” density matriz. Bottom: Logarithmic plot
of Hasson decay bounds (dashed line) and first rows of density matrices associated with
matrices with different eigenvalue distributions (solid and dotted lines).

the decay bound deteriorates if b (or —b) is not close to the maximum (resp.,
minimum) eigenvalue; see Figure 8.9 (bottom). The dashed line shows the
slope of the decay bound for a = 0.25 and b = 1, in a logarithmic scale.
The dotted line displays the behavior of the first row of the density matrix
associated with a tridiagonal 100 x 100 matrix with spectrum in [—1, —0.25]U
[0.25,1]. The solid line refers to the first row of the density matrix associated
with a matrix with spectrum in [—0.4375, —0.25] U [0.25, 1]. The first matrix
is clearly better approximated by the decay bound than the second one.

As one can see from the two plots in Figure 8.9, even for ¢ = K = 1 both types
of decay bounds are rather conservative, and estimating the truncation bandwidth m
needed to achieve a prescribed error from these bounds would lead to an overly large
band. Hence, the bounds may not be very useful in practice. For further discussion

of these issues, see section 8.9.
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8.5. Further Results. Let us assume again that we have a sequence {H,} of
Hermitian n x n Hamiltonians (with n = ny, - ne, np fixed, n, — co) such that
e the matrices H, are banded with uniformly bounded bandwidth, or sparse
with graphs having uniformly bounded maximum degree;
e the spectra o(H,,) are uniformly bounded;
e the sequence {H,} has a “stable” spectral gap; i.e., there exist real numbers
g1 < g2 such that [g1, g2] N o(H,) = @ for sufficiently large n.
In this subsection we let
e 1 :=(g2+ ¢g1)/2 (Fermi level);
e v:=gs— u=p— g1 (absolute spectral gap).
Note that because of the uniformly bounded spectra assumption, the absolute spectral
gap is within a constant of the relative gap previously defined.

Chui and Hasson study in [29] the asymptotic behavior of the error of best
polynomial approximation for a sufficiently smooth function f defined on the set
I = [-b,—a] U a,b], with 0 < a < b. Denote as C(I) the space of real-valued con-
tinuous functions on I, with the uniform convergence norm. Then we have (see [29,
Theorem 1] and [84]) the following theorem.

THEOREM 8.10. Let f € C(I) be such that f|[_y _q) is the restriction of a function
f1 analytic on the left half-plane Rez < 0 and f|(4y) is the restriction of a function
fo analytic on the right half-plane Rez > 0. Then

b—a
limsup [Ex(f, Wk < —_
msup (B4 (1. 1)]/* <\ [

where Ey(f,I) is the error of best polynomial approximation for f on I.

The authors of [29] observe that the above result cannot be obtained by extending
f(x) to a continuous function on [—b,b] and applying known bounds for polynomial
approximation over a single interval. Theorem 8.10 looks potentially useful for our
purposes, except that it provides an asymptotic result, rather than an explicit bound
for each value of k. Therefore, we need to reformulate the argument in [29]. To this
end, we prove a variant of Bernstein’s theorem (cf. Theorem 8.7) adapted to our goals.
Instead of working on the interval [—1, 1], we want to bound the approximation error
on the interval [a?, b?].

THEOREM 8.11. Let f € C([a?,b%]) be the restriction of a function f analytic in
the interior of the ellipse ;2 12 with foci in a?,b® and a vertex at the origin. Then,
for all & with

a+b
a—1>b’

l<é<é=

there exists a constant K such that

k

Eu(f, [0, 0%]) < K (%) .

Proof. The proof closely parallels the argument given in [92] for the proof of
Theorem 8.7. First of all, observe that the ellipse £, in Bernstein’s theorem has foci
in +1 and vertices in +(x+1/x)/2 and +(x —1/x)/2. The parameter x is the sum of
the lengths of the semiaxes. Similarly, the ellipse £,2 ;2 has foci in a?,b? and vertices
in 0, a® +b2, and (a®+b?)/2+1iab. Also observe that £ is the sum of the lengths of the
semiaxes of £,2 52, normalized with respect to the semifocal length, so that it plays
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exactly the same role as x for £,. Now we look for a conformal map that sends an
annulus in the complex plane to the ellipse where f is analytic. When this ellipse is
&y, a suitable map is u = ¢(v) = (v + 1/v)/2, which sends the annulus x ! < |v| < x
to €. When the desired ellipse has foci in a?,b?, we compose c(v) with the change
of variable

a? + b2\ b? — a2
—a

o=t = (ut 5 ) 5

thus obtaining a function that maps the annulus A = {{7! < |v| < £} to an ellipse.
Denote this ellipse as &,2 2 ¢ and observe that it is contained in the interior of £,z 42.
Therefore we have that the function

sweon =1 ([5 (+3) + 5| 5

is analytic on A and continuous on |v| = £. The proof now proceeds as in the original
Bernstein theorem. The Laurent expansion

Fle@)) = D an”

v=—00

converges in A with a_, = «,. Moreover, we have the bound

|| =

L[S,
o

2mi pvtl

where M () is the maximum value (in modulus) taken by f on the ellipse 2 42 ¢.
Now observe that u = ¢(v) describes the real interval [—1, 1] for |v| = 1, so for
u € [—1,1] we have

f(w(u)) =ao + 22 avTv(u)a

where T, (u) is the vth Chebyshev polynomial. Since % (u) is a linear transforma-
tion, we have Ex(f(2),[a?,b%]) = Ex(f(u),[-1,1]), so from the theory of Chebyshev
approximation [92] we obtain

o~ ., 2M(&) .
Bu(f, [0 1) = By(f(w), [-1,1) < 2M() S v = 2L ek
£E-1
v=k+1
hence the thesis. Note that the explicit value of K is computable. ad

The following result is based on [29, Theorem 1].
THEOREM 8.12. Let f € C(I) be as in Theorem 8.10. Then, for all & with

- a+b
1<€<§Z:m,

there exists C > 0 independent of k such that

Ex(f, 1) < CE 5.
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Proof. Let P, and @} be polynomials of best uniform approximation of degree k
on the interval [a?,b?] for the functions fo(y/x) and f2(\/7)/\/¥, respectively. Then
by Theorem 8.11 there are constants K7 and K5 such that

(8.13) Jdnax, [Py(2) = f2(Va)l < K"
and
(3.14) e, [Qula) ~ fa(y/)/VE| < Kot .

We use the polynomials P and Qy to define a third polynomial Rox1(7) := [Py (2?)+
2Qr(2?)]/2, of degree < 2k + 1, which approximates f(z) on [a, b] and has small norm
on [—b, —a]. Indeed, from (8.13) and (8.14) we have

(8.15)
1 1
xrg[%]IRzkH( z) = f(z)] < 5 ax |Pr(2?) — f(x )I+§mm[3>§ |2Q(2?) — f(x)|
< §K1§7k + §bK2§7k = @5%
and
©16)  wax [Raa(o)] < 5 max [Pa®) = f(@) + £la) — 2Qula?)|
8.07) < 5 max [Pu(a?) - f(o)] + 5 max [0Qu(a?) - f(o)] < SRR,

Similarly, we can find another polynomial Saxy1(x) such that

Ks +bKy

(8.18) max |[Sapq1(z) — fz)] < &*
z€[—b,—al 2
and
K3 +bKy,_
(8.19) e |Sar+1 ()| < %5 .

Then from the inequalities (8.15)—(8.19) we have

rggf|32k+1($)+52k+1($) f(z)] <Ifél[a>§ |Rogr1(x) — f(x)] + Jmax |S2k41 ()]

+ max |[Sopy1(z) — f(2)|+ max [Ropir(z)]
r€[—b,—a] r€[—b,—al
< (K14 K3 +b(Ky 4+ Kq))67F,

and therefore

k

Ee(f,1) < VE(K1 + K3 +b(Ky + Ky)) €2

for odd values of k and
Ek(fal) < E(Kl + K3 +b(K2 +K4))€_§

for even values of k. This completes the proof. O
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In the following we assume, without loss of generality, that k is odd. In order to
obtain bounds on the density matrix, we apply Theorem 8.12 to the step function f
defined on I as

i.e., f is the restriction of fi(z) = 1 on [-b,—a] and the restriction of f2(z) = 0 on

[a,b]. Here the polynomial approximation of fo(y/z), fo(v/Z)/v/Z, and f1(v/—z) is
exact, so we have K; = Ky = K3 = 0. As for K4, observe that |1/4/z| achieves its
maximum on the vertex of £,2 42 ¢ with smallest abscissa; therefore we have

_2M(©)

K
4 §—17

where

1 1 1

M) =— with 2= {—— (E—I——

2 £

Moreover, we find Rojy1(x) =0 and Sax11(z) = (1 + 2Vi(2?))/2, where Vi (z) is the

polynomial of best uniform approximation for 1//z on [a?,b?]. Thus, we obtain the
bound

a? 4+ b%] b2 —a?
b2 — a? 2

Ei(f.1) < CE 3,
where C'is given by
C = \/EK,b.

Let us now apply this result to our sequence of Hamiltonians. We will assume
that the matrices are shifted so that u = 0, that is, we replace each H,, by H,, — ul,,.
Under this hypothesis, the natural choice for a is a = -y, whereas b is the smallest
number such that o(H,) C [-b, —a] U [a, b] for every n.

Using the same argument used in section 8.3 for the derivation of matrix decay
bounds (see also [12] and [14]), we can obtain bounds on the off-diagonal entries of
f(Hy). If H, is banded with bandwidth m independent of n, we have

2M(§) , —lizal
(3.20) [Pl = 1 (o)l < VE =05
whereas if H, has a more general sparsity pattern, we obtain

2M (& _dn (i)
(8.21) (Pl = )] < VERTS be 5,

where d,, (1, j) is the distance between nodes ¢ and j in the graph G,, associated with
H,.

Next, we compare the bounds derived in this section with those for the Fermi—
Dirac approximation of the step function obtained in section 8.1, using a suitable
choice of the inverse temperature 5. Recall that if £, denotes the regularity ellipse
for the Fermi—Dirac function, the earlier bounds for the banded case are

[i—4l

2M(x) (1) ™
(5.22) Rl < 228 ()
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Fig. 8.10 Comparison of parameters 1/€ and 1/X for several values of the spectral gap. Here
§=10"5.

For ease of computation, we assume in this section that g = 0 and that the spectrum of
each matrix H, is contained in [—1, 1]. As explained in section 8.1, once 7 is known,
we pick a tolerance § and compute [ so that the Fermi—Dirac function provides a
uniform approximation of the step function with error < ¢ outside the gap:

= 2n(150),

Then the supremum of the set of admissible values of y, which ensures optimal asymp-
totic decay in this framework, is

X = <7r+ 62+7r2)/[3.

Figures 8.10 and 8.11 compare the values of 1/¢ and 1/% (which characterize
the behavior of the bounds (8.20) and (8.22), respectively). Note that in general we
find 1/ € < 1/; this means that the asymptotic decay rate is higher for the bound
based on disjoint interval approximation. Moreover, the disjoint interval method
directly approximates the step function and therefore does not require one to choose
a tolerance for “intermediate” approximation. As a result, the bounds based on
disjoint interval approximation prescribe a smaller truncation bandwidth m in the
approximation to the spectral projector in order to achieve a given level of error. For
instance, in the tridiagonal case (m = 1) we observed a factor of three reduction in
m compared to the previous bounds, independent of the size of the gap.

8.6. Dependence of the Rate of Decay on the Spectral Gap. As already men-
tioned in section 4, the functional dependence of the decay length (governing the rate
of decay in the density matrix) on the spectral gap has been the subject of some
discussion; see, for instance, [3, 70, 73, 104, 127, 140]. Some of these authors have
argued that the decay length decreases like the square root of the gap if the Fermi
level is located near one of the gap edges (i.e., close to either &, or &, 41) and like
the gap itself if the Fermi level falls in the middle of the gap. These estimates hold
for the small gap limit.
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Fig. 8.11 Logarithmic plot of parameters 1/ € and 1/ X with respect to several values of the spectral
gap. Here 6§ = 1072,

In this section we address this problem by studying how the decay described by
the bounds (8.20) and (8.21) behaves asymptotically with respect to 7y or, equivalently,
with respect to a (see the notation introduced in the previous section). Note that we
are assuming here that the Fermi level falls exactly in the middle of the gap.

Let us rewrite (8.20) in the form

[Palij] < Cemelizil/m,

where

For a fixed m, the decay behavior is essentially described by the parameter o. Let us
assume for simplicity of notation that b = 1, so that the spectral gap is normalized
and the expression for a becomes

11 1+a
= —1n .
R Tl

The Taylor expansion of « for a small yields

a’ ;
a:a—i—?—i—o(a‘S).

Therefore, for small values of 7y, the decay behavior is described at first order by the
gap itself, rather than by a more complicated function of . This result is consistent
with similar ones found in the literature [70, 73, 140]. The fact that some systems
exhibit density matrix decay lengths proportional to the square root of the gap (see,
e.g., [73]) does not contradict our result: since we are dealing here with upper bounds,
a square root dependence, which corresponds to faster decay for small a, is still consis-
tent with our bounds. Given that our bounds are completely general, it does not come
as a surprise that we obtain the more conservative estimate among the alternatives
discussed in the literature.
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8.7. Dependence of the Rate of Decay on the Temperature. Another issue
that has stirred up some controversy in the literature concerns the precise rate of
decay in the density matrix for metals at positive temperature; see, e.g., the results
and discussion in [3, 52, 70]. Recall that in metals at positive temperatures 7', the
density matrix F,, = frp(H,) decays exponentially. The question is whether the
decay length is proportional to T or to v/T for small T. Our approach shows that the
decay length is proportional to T.

Indeed, from the analysis in section 8.1, in particular Theorems 8.1 and 8.4,
we find that the decay length « in the exponential decay bound (8.1) (or, more
generally, the decay length € in the bound (8.5)) behaves like In x, where—assuming
for simplicity that p = 0, as before—the parameter x is any number satisfying

1<x <X, y:<7r+ /32+7r2)/6.
Letting x = 7/ = wkgT and observing that for small x
ln(a:—i— 1+x2):m+0(x2),

we conclude that, at low temperatures, the decay length is proportional to kgT. This
conclusion is in complete agreement with the results in [52, 70]. To the best of our
knowledge, this is the first time this result has been established in a fully rigorous
and completely general manner.

8.8. Other Approaches. Decay bounds on the entries of spectral projectors can
also be obtained from the contour integral representation

1 _
(8.23) P, = 5 F(zln — H,) 'dz,
where T is a simple closed curve (counterclockwise oriented) in C surrounding a por-
tion of the real axis containing those eigenvalues of H,, that correspond to the occupied
states, and only those. Componentwise, (8.23) becomes

[Pn]” = Qiﬂ'l . [(ZIn — Hn)—l],

from which we obtain

1 _ ..
(Pl < 3= [ 1161~ )7 1z, 1< <,

Assume the matrices H,, are banded, with uniformly bounded spectra and bandwidths
as n — oo. By [34, Proposition 2.3] there exist, for all z € T', explicitly computable
constants ¢(z) > 0 and 0 < A(z) < 1 (independent of n) such that

(8.24) | (2L, = Ha) 7Y, | < e(2)[M(2)]1 !

il

for all 4,5 = 1,...,n. Moreover, ¢ and A depend continuously on z € I'. Since I is
compact we can set

(8.25) ¢ = max c(z) and A= max A(2).
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Now let us assume that the matrices H,, have spectral gaps =, satisfying inf,, v, > 0.
It is then clear that ¢ is finite and that A € (0,1). Hence, we obtain the following
bound:

o(T) o
(8.26) I[Pn]ij| < (c- ?) Ali—il
for alli,5 =1,...,n, where {(I") denotes the length of I. Finally, letting C = c- %
and o = —In A\, we obtain the exponential decay bounds
(8.27) [Pa]ij| < C-e@li=il 1 <4, j<n,

with both C' > 0 and o > 0 independent of n. As usual, the bounds can be easily
extended to the case of general sparsity patterns. One disadvantage of this approach
is that explicit evaluation of the constants C' and « is rather complicated.

The integral representation (8.23) is useful not only as a theoretical tool, but also
increasingly as a computational tool. Indeed, quadrature rules with suitably chosen

nodes 21, ..., 2, € I' can be used to approximate the integral in (8.23), leading to
k
(8.28) Py~ wilzil, — Hy) ™'
i=1
for suitable quadrature weights wq,...,wg. Note that this amounts to a rational

approximation of P, = h(H,). In practice, using the trapezoidal rule with a small
number of nodes suffices to achieve high accuracy, due to the exponential convergence
of this quadrature rule for analytic functions [33]. Note that if P, is real, then it is
sufficient to use just the z; in the upper half-plane and then take the real part of the
result [65, p. 307]. If the spectral gap 7, for H, is not too small, all the resolvents
(2i, — H,)™! decay rapidly away from the main diagonal, with exponential rate
independent of n.. Hence, O(n) approximation is possible, at least in principle.
Rational approximations of the type (8.28) are especially useful in those situations
where only selected entries of P, are required. Then only the corresponding entries
of the resolvents (z;I, — Hn)’1 need to be computed. For instance, in some cases
only the diagonal entries of P,, are needed [116]. In others, only entries in positions
corresponding to the nonzero entries in the Hamiltonian H,, must be computed; this
is the case, for instance, when computing the objective function (E) = Tr(P, H,) in
density matrix minimization algorithms. Computing selected entries of a resolvent is
not an easy problem. However, progress has been made on this front in several recent
papers; see, e.g., [78, 82, 83, 124, 126].

8.9. Computational Considerations. In the preceding sections we have rigor-
ously established exponential decay bounds for zero-temperature density matrices
corresponding to finite-range Hamiltonians with nonvanishing spectral gap (“insula-
tors”), as well as for density matrices corresponding to arbitrary finite-range Hamil-
tonians at positive electronic temperatures. Our results are very general and apply to
a wide variety of physical systems and discretizations. Hence, a mathematical justi-
fication of the physical phenomenon of “nearsightedness” has been obtained, and the
possibility of O(n) methods firmly established.®

8Heuristics relating the “nearsightedness range of electronic matter” and the linear complexity of
the divide-and-conquer method of Yang [138], essentially a domain decomposition approach to DFT,
were given by Kohn himself; see, e.g., [75, 105].
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Having thus achieved our main purpose, the question remains whether our esti-
mates can be of practical use in the design of O(n) algorithms. As shown in section
6, having estimated the rate of decay in the density matrix P allows one to prescribe
a priori a sparsity pattern for the computed approximation P to P. Estimating an
“envelope” for the nonnegligible entries in P means that one can estimate beforehand
the storage requirements and set up static data structures for the computation of the
approximate density matrix P. An added advantage is the possibility of using the
prescribed sparsity pattern to develop efficient parallel algorithms; it is well known
that adaptive computations, in which the sparsity pattern is determined “on the fly,”
may lead to load imbalances and loss of parallel efficiency due to the need for large
amounts of communication and unpredictable memory accesses. This is completely
analogous to prescribing a sparsity pattern vs. using an adaptive one when computing
sparse approximate inverses for use as preconditioners when solving linear systems;
see [10].

Most of the O(n) algorithms currently in use consist of iterative schemes produc-
ing increasingly accurate approximations to the density matrix. These approximations
may correspond to successive terms in an expansion of P with respect to a prescribed
basis [54, 80, 81], or they may be the result of a gradient or descent method in den-
sity matrix minimization approaches [23, 24, 79, 93]. Closely related methods include
purification and algorithms based on approximating the sign function [95]; we refer
the reader again to [20, 97, 113] for recent surveys on state-of-the-art linear scaling
methods for electronic structure. Most of these algorithms construct a sequence of
approximations

pO) pM) Pk

geeey geeey

which, under appropriate conditions, converge to P. Each iterate is obtained from
the preceding one by some matrix-matrix multiplication, or powering, scheme; each
step introduces new nonzeros (fill-in), and the matrices P®) become increasingly
dense. The exponential decay property, however, implies that most of these nonzeros
will be negligible, with only O(n) of them being above any prescribed threshold § >
0. Clearly, knowing a priori the location of the nonnegligible entries in P can be
used to drastically reduce the computational burden and to achieve linear scaling,
since only those entries need to be computed. Negligible entries that fall within the
prescribed sparsity pattern may be removed using a drop tolerance; this strategy
further decreases storage and arithmetic complexity, but its implementation demands
the use of dynamic data structures.

An illustration of this use of the decay estimates can be found, for instance, in
[14], where a Chebyshev expansion of the Fermi-Dirac function frp(H) was used
to approximate the density matrix at finite temperatures. Given a prescribed er-
ror tolerance, exponential decay bounds were applied to the Fermi-Dirac function
to determine the truncation bandwidth needed to satisfy the required approximation
error. When computing the polynomial py(H) ~ fpp(H) using the Chebyshev ex-
pansion, only entries within the prescribed bandwidth were retained. Combined with
an estimate of the approximation error obtained by monitoring the magnitude of the
coefficients in the Chebyshev expansion, this approach worked well for some simple 1D
model problems resulting in linear scaling computations. A related approach, based
on qualitative decay estimates for the density matrix, was used in [4], whose authors
present computational results for a variety of 1D and 2D systems including insulators
at zero temperature and metals at finite temperature; see further [80].
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Unfortunately, the practical usefulness of our bounds for more realistic calcula-
tions is limited. The bounds are generally pessimistic and tend to be overly conserva-
tive, especially for the case of zero or low temperatures. This is to be expected, since
the bounds were obtained by estimating the degree of a polynomial approximation
to the Fermi—Dirac matrix function needed to satisfy a prescribed error tolerance.
These bounds tend to be rather pessimistic because they do not take into account
the possibility of numerical cancellation when evaluating the matrix polynomial. For
instance, the bounds must apply in the worst-case scenario where the Hamiltonian has
nonnegative entries and the approximating polynomial has nonnegative coefficients.
Moreover, the bounds do not take into account the size of the entries in the Hamilto-
nian, particularly the fact that the nonzeros within the band (or sparsity pattern) are
not of uniform size but may be spread out over several orders of magnitude. It should
be emphasized that the presence of a gap is only a sufficient condition for localization
of the density matrix, not a necessary one: it has been pointed out, for example, in
[90], that disordered systems may exhibit strong localization even in the absence of a
well-defined gap. This is the case, for instance, of the Anderson model of localization
in condensed matter physics [2]. Obviously, our approach is unable to account for
such phenomena in the zero-temperature case. The theory reviewed in this paper is
primarily a qualitative one; nevertheless, it captures many of the features of actual
physical systems, like the asymptotic dependence of the decay rate on the gap size or
on the electronic temperature.

A natural question is whether the bounds can be improved to the point where
they can be used to obtain practical estimates of the entries in the density matrix. In
order to achieve this, additional assumptions on the Hamiltonians would be needed,
making the theory less general. In other words, the price we pay for the generality of
our theory is that we get pessimistic bounds. Recall that for a given sparsity pattern
in the normalized Hamiltonians H, our decay bounds depend on just one essential
parameter, the gap . Our bounds are the same no matter what the eigenvalue
distribution is to the left of the highest occupied level, ¢,,_, and to the right of the
lowest unoccupied one, €, +1. If more spectral information were at hand, the bounds
could be improved. The situation is very similar to that arising in the derivation of
error bounds for the convergence of Krylov methods, such as the conjugate gradient
(CG) method for solving symmetric positive definite (SPD) linear systems Az = b;
see, e.g., [67, Theorem 10.2.6]. Bounds based on the spectral condition number k2 (A)
alone, while sharp, do not in general capture the actual convergence behavior of CG.
They represent the worst-case behavior, which is rarely observed in practice. Much
more accurate bounds can be obtained by making assumptions on the distribution
of the eigenvalues of A. For instance, if A has only k distinct eigenvalues, then the
CG method converges (in exact arithmetic) to the solution z, = A~!b in at most
k steps. Similarly, suppose the Hamiltonian H,, has only k < n distinct eigenvalues
(with & not one of them), and that the multiplicities of the eigenvalues to the left
of u add up to n., the number of electrons. Then there is a polynomial pg(\) of
degree at most k — 1 such that px(H,) = P,, the density matrix. This is just the
interpolation polynomial that takes the value 1 on the eigenvalues to the left of u,
and zero on the eigenvalues to the right of p. This polynomial “approximation” is
actually exact. If k < n and is independent of n, then P, will be a matrix with O(n)
nonzero entries; moreover, the sparsity pattern of P, can be determined a priori from
the graph structure of H,. Another situation is that in which the eigenvalues of H,,
fall in a small number k of narrow bands, or tight clusters, with the rightmost band
to the left of u well separated from the leftmost band to the right of u. In this case
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we can find again a low-degree polynomial py(A\) with py(H,) ~ P,, and improved
bounds can be obtained.

The problem, of course, is that these are rather special eigenvalue distributions,
and it is difficult to know a priori whether or not such conditions hold.

Another practical issue that should be at least briefly mentioned is the fact that
our bounds assume knowledge of lower and upper bounds on the spectra of the Hamil-
tonians H,,, as well as estimates for the size and location of the spectral gap (this is also
needed in order to determine the Fermi level ). These issues have received a great deal
of attention in the literature, and here we limit ourselves to observing that O(n) proce-
dures exist to obtain sufficiently accurate estimates of these quantities; see, e.g., [53].

9. Transformation to an Orthonormal Basis. In this section we discuss the
transformation of a Hamiltonian from a nonorthogonal to an orthogonal basis. The
main point is that while this transformation results in matrices with less sparsity,
the transformed matrices retain the decay properties of the original matrices, only
with (possibly) different constants. What is important, from the point of view of
asymptotic complexity, is that the rate of decay remains independent of system size.

We begin with a discussion of decay in the inverse of the overlap matrix. To this
end, consider a sequence {5, } of overlap matrices of size n = ny - ne, with n; constant
and n. increasing to infinity. We make the following assumptions:

1. Each S,, is a banded SPD matrix with unit diagonal entries and with band-
width uniformly bounded with respect to n.

2. The spectral condition number (ratio of the largest to the smallest eigenvalue)
of each S, k2(Sp), is uniformly bounded with respect to n. Because of
assumption 1, this is equivalent to requiring that the smallest eigenvalue of
S, remain bounded away from zero for all n.

As always in this paper, the bandedness assumption in item 1 is not essential
and can be replaced by the weaker hypothesis that each S,, is sparse and that the
corresponding graphs {G,,} have bounded maximal degree with respect to n. Actually,
it would be enough to require that the sequence {S,} have the exponential decay
property relative to a sequence of graphs {G,} of bounded maximal degree. In order
to simplify the discussion, and also in view of the fact that overlap matrices usually
exhibit exponential or even superexponential decay, we assume from the outset that
each S, has already been truncated to a sparse (or banded) matrix. Again, this
is for notational convenience only, and it is straightforward to modify the following
arguments to account for the more general case. On the other hand, the assumption
on condition numbers in item 2 is essential and cannot be weakened.

REMARK 9.1. We note that assumption 2 above is analogous to the condition
that the sequence of Hamiltonians {H,} have spectral gap bounded below uniformly in
n; while this condition ensures (as we have shown) the exponential decay property in
the associated spectral projectors P, , assumption 2 above ensures exponential decay
in the inverses (or inverse factors) of the overlap matrices. Both conditions amount
to requiring that the corresponding problems be uniformly well-conditioned in n. The
difference is that the decay on the spectral projectors depends on the spectral gap of
the Hamiltonians and therefore on the nature of the system under study (i.e., insu-
lator vs. metallic system), whereas the sparsity and spectral properties of the overlap
matrices depend on other features of the system, mainly the interatomic distances.

In the following we shall need some basic results on the decay of the inverses [34],
inverse Cholesky factors [15], and inverse square roots (Léwdin factors) [12] of banded
SPD matrices; see also [71].
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Let A be SPD and m-banded, and let a and b denote the smallest and largest
eigenvalues of A, respectively. Write  for the spectral condition number x3(A4) of A
(hence, k = b/a). Define

= g;i and A :=¢"/™.

Furthermore, let Ko := (1 + /x)?/(2b). In [34], Demko, Moss, and Smith obtained
the following bound on the entries of A71:

(9.1) (A7 Yyl < KA 1< j <o,

where K := max{a~!, Ky}. Note that the bound (9.1) “blows up” as k — oo, as one
would expect.

As shown in [15], the decay bound (9.1) and the bandedness assumption on A
imply a similar decay bound on the inverse Cholesky factor Z = R~! = L=7, where
A= RTR = LLT with R upper triangular (L lower triangular). Assuming that A has
been scaled so that maxi<ij<n A;; = 1 (which is automatically true if A is an overlap
matrix corresponding to a set of normalized basis functions), we have

(92) |Zij| < K Ajiia Jj=>i,

with K7 = K%; here K, A are the same as before. We further note that while
K; > K, for some classes of matrices it is possible to show that the actual magnitude
of the (i,7) entry of Z (as opposed to the bound (9.2)) is actually less than the
magnitude of the corresponding entry of A~!. This is true, for instance, for an
irreducible M-matrix; see [15].

Finally, let us consider the inverse square root, A=1/2. In [12] the following bound

is established:

(9.3) ‘[A*W]ij‘ <K\ 1<ij<n.

Here K> depends again on the extreme eigenvalues a and b of A, whereas A\ = g,
where now ¢ is any number satisfying the inequalities

VE—1
VE+1

As before, the bound (9.3) blows up as £ — o0, as one would expect.
Introducing the positive scalar o = —In A, we can rewrite all these bounds in the
form

<g<l1.

|By| < Ke @73l 1 <4, j<n,

for the appropriate matrix B and suitable constants K and a > 0.

Now let {S,} be a sequence of n x n overlap matrices, where n = n;, - n. with n,
fixed and n, — oco. Assuming that the matrices S,, satisfy assumptions 1-2 above,
then their inverses satisfy the uniform exponential decay bounds (9.1), with K and
A constant and independent of n. Hence, as discussed in section 6, for any given
€ > 0 there exists an integer m independent of n such that each matrix S,, in the
sequence can be approximated, in norm, by an m-banded matrix with an error less
than e. As usual, this result can be extended from the banded case to the sparse case,
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assuming that the corresponding graphs G, have bounded maximal degree as n — oc.
Moreover, given assumptions 1-2 above, the inverse Cholesky factors Z,, satisfy a
uniform (in n) exponential decay bound of the type (9.2), and therefore uniform
approximation with banded triangular matrices is possible. Again, generalization
to more general sparsity patterns is possible, provided the usual assumption on the
maximum degree of the corresponding graphs G,, holds. Similarly, under the same
conditions we obtain a uniform rate of exponential decay for the entries of the inverse
square roots Sp 1 2, with a corresponding result on the existence of a banded (or
sparse) approximation.

Let us now consider the sequence of transformed Hamiltonians, H,, = ZYH,Z,.
Here Z,, denotes either the inverse Cholesky factor or the inverse square root of the
corresponding overlap matrix S,,. Assuming that the sequence {H,,} satisfies the off-
diagonal exponential decay property and that {.S,,} satisfies assumptions 1-2 above, it
follows from the decay properties of the matrix sequence {Z,,} that the sequence { H,,}
also enjoys off-diagonal exponential decay. This is a straightforward consequence of
the following result, which is adapted from a similar one for infinite matrices due to
Jaffard [71, Proposition 1].

THEOREM 9.2. Consider two sequences { A} and {By} of n X n matrices (where
n — 00) whose entries satisfy

[Anlij| < cre™®l =l and  |[Buliy| < coe™®l Il 1< j <m,

where ¢1, ca, and o > 0 are independent of n. Then the sequence {C,}, where
C, = A, B, satisfies a similar bound:

(9.4) [Clij| < ce™@ =il 1<, <n,

for any 0 < o < a, with ¢ independent of n.
Proof. First note that the entries of each A,, clearly satisfy

I[An)ij| < a1 e @il forany o < a.
Let w = a — ¢/. Then w > 0 and the entries [Cy];; of C,, = A, B,, satisfy

mJ|<Z| (A )ik | |[Balkj| < 1 (Ze wlk— J|> o—ali=jl

k=1

To complete the proof just observe that for any j,

— n—j _
Ze—w|k ]|_Ze—wk+;e g}e—wk_’_ge—wk_itiz.

Since the last term is independent of n, the entries of C, satisfy (9.4) with a constant
¢ that is also independent of n. a

The foregoing result can obviously be extended to the product of three matrices.
Thus, the entries of the matrix sequence {Hn}, where H, = ZI'H,Z,, enjoy the
exponential off-diagonal decay property

‘[Hn]ij _a‘i_jlv 1<i,j<n,

for suitable constants ¢ and a > 0.
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Fig. 9.1 Magnitude of the entries in the Hamiltonian for the CsaHios linear alkane. Top:
Nonorthogonal (Gaussian-type orbital) basis. Bottom: Orthogonal basis. White: < 1078;
yellow: 1078 — 1076 green: 1076 — 10~%; blue: 10=% — 10~2; black: > 10~2. Note: nz
refers to the number of “black” entries.

Alternatively, one could first approximate H,, and Z, with banded matrices
H, and Z, and then define the (approximate) transformed Hamiltonian as H, =
ZT'H, Z,, possibly subject to further truncation. Using the fact that both H,, and
Z,, have 2-norm bounded independently of n, it is easy to show that the final approx-
imation error can be reduced below any prescribed tolerance by reducing the error
in H, and Z,. Hence, with either approach, the transformed Hamiltonians H,, can
be approximated uniformly in n within a prescribed error by banded matrices of con-
stant bandwidth, just like the original (“nonorthogonal”) Hamiltonians. While the
bandwidth of the approximations will be larger than for the original Hamiltonians,
the truncated matrices retain a good deal of sparsity and asymptotically contain O(n)
nonzeros. Hence, we have a justification of the statement (see section 1) that in our
theory we can assume from the outset that the basis set {¢;}7 ; is orthonormal.

In Figure 9.1 we show the Hamiltonian H for the already mentioned linear alkane
Cs2Hi6 (see section 8.2) discretized in a Gaussian-type orbital basis (top) and the
“orthogonalized” Hamiltonian H = ZTHZ (bottom). This figure shows that while
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the transformation to the orthogonal basis alters the magnitude of the entries in the
Hamiltonian, the bandwidth of H (truncated to a tolerance of 107%) is only slightly
wider than that of H. In this case the overlap matrix S is well-conditioned, hence the
entries of Z exhibit fast decay. An ill-conditioned overlap matrix would lead to a less
sparse transformed Hamiltonian H.

As usual, the bandedness assumption was made for simplicity of exposition only;
similar bounds can be obtained for more general sparsity patterns, assuming the
matrices H,, and S,, have the exponential decay property relative to a sequence {G,,}
of graphs having maximal degree uniformly bounded with respect to n.

It is important to emphasize that, in practice, the explicit formation of H,, from
H, and Z, is not needed and is never carried out. Indeed, in all algorithms for
electronic structure computation the basic matrix operations are matrix-matrix and
matrix-vector products, which can be performed without explicit transformation of
the Hamiltonian to an orthonormal basis. On the other hand, for the study of the
decay properties it is convenient to assume that all the relevant matrices are explicitly
given in an orthogonal representation.

One last issue to be addressed is whether the transformation to an orthonormal
basis should be effected via the inverse Cholesky factor or via the Lowdin (inverse
square root) factor of the overlap matrix. Comparing the decay bounds for the two
factors suggests that the inverse Cholesky factor should be preferred (smaller «). Also
note that the inverse Cholesky factor is triangular, and its sparsity can be increased
by suitable reorderings of the overlap matrix. The choice of ordering may also be
influenced by the computer architecture used. We refer the reader to [30] for the use
of bandwidth-reducing orderings like reverse Cuthill-McKee, and to [25] for the use of
space-filling curve orderings like the 3D Hilbert curve to improve load balancing and
data locality on parallel architectures. In contrast, the Lowdin factor is a full symmet-
ric matrix, regardless of the ordering. On the other hand, the multiplicative constant
c is generally smaller for the Lowdin factor. Closer examination of a few examples
suggests that in practice there is no great difference in the actual decay behavior of
these two factors. However, approximating S, 12 g generally more expensive and
considerably more involved than approximating the inverse Cholesky factor. For the
latter, the AINV algorithm [13] and its variants [24, 110, 136] are quite efficient and
have been successfully used in various quantum chemistry codes. For other O(n) al-
gorithms for transformation to an orthonormal basis, see [72, 100, 122]. In all these
algorithms, sparsity is preserved by dropping small entries in the course of the com-
putation. Explicit decay bounds for the Z,, factors could be used, in principle, to
establish a priori which matrix elements not to compute, thus reducing the amount of
overhead. Notice, however, that even if asymptotically bounded, the condition num-
bers k2(Sy) can be fairly large, leading to rather pessimistic decay estimates. This
is again perfectly analogous to the situation with the condition-number-based error
bounds for the CG method applied to a linear system Ax = b. Indeed, both the
CG error bounds and the estimates (9.1) are obtained using Chebyshev polynomial
approximation for the function f(A) = A%

10. The Vanishing Gap Case. In this section we discuss the case of a sequence
{H,} of bounded, finite-range Hamiltonians for which the spectral gap around the
Fermi level p vanishes as n — oo. Recall that this means that inf,, v, = 0, where
Yn 1= 652)“ - 552) is the HOMO-LUMO gap for the nth Hamiltonian; it is assumed
here that 552) <p< 65::)+1 for all n = ny - n.. The reciprocal v, ! of the gap can
be interpreted as the condition number of the problem [109], so a vanishing spectral

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/11/13 to 170.140.150.38. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

DECAY PROPERTIES OF SPECTRAL PROJECTORS 51

gap means that the conditioning deteriorates as n. — oo and the problem becomes
increasingly difficult.

As already mentioned, in the zero-temperature limit our decay bounds blow up
and therefore lose all meaning as 7, — 0. On the other hand, we know a priori that
some type of decay should be present, in view of the results in section 7. A general
treatment of the vanishing gap case appears to be rather difficult, for the main reason
that in the limit as 8 — oo the Fermi-Dirac approximation to the Heaviside function
becomes discontinuous, and therefore we can no longer make use of tools from classical
approximation theory for analytic functions. Similarly, in the vanishing gap case the
decay bounds (8.27) based on the resolvent estimates (8.24) break down since ¢ — oo
and A — 1 in (8.26).

Rather than attacking the problem in general, in this section we give a complete
analysis of what is perhaps the simplest nontrivial example of a sequence {H,} with
vanishing gap. While this is only a special case, this example captures some of the
essential features of the “metallic” case, such as the rather slow off-diagonal decay
of the entries of the density matrix. The simple model studied in this section may
appear at first sight to be too simple and unrealistic to yield any useful information
about actual physical systems. However, calculation of the density matrix at zero
temperature on a system composed of 500 Al atoms reported in [140] reveals a decay
behavior which is essentially identical to that obtained analytically for a free electron
gas, a model very close to ours (which is essentially a discrete variant of the one in
[140]). We believe that our analysis will shed some light on more general situations
in which a slowly decaying density matrix occurs.

We begin by considering the infinite tridiagonal Toeplitz matrix

0 3
1 1
3 0 3
(10.1) H= 7
1 1
2 0 3

which defines a bounded, banded, self-adjoint operator on ¢2. The graph of this
matrix is just a (semi-infinite) path. The operator can be interpreted as an averaging
operator or as a centered second-difference operator with a zero Dirichlet condition
at one end, shifted and scaled so as to have spectrum contained in [—1,1]. From a
physical standpoint, H is the shifted and scaled discrete one-electron Hamiltonian,
where the electron is constrained to the half-line [0, co).

For n even (n =2 - n, with n. € N) consider the n-dimensional approximation

V= O
ol
e

(10.2) H, =

N[ =
= o .
Ol

This corresponds to truncating the semi-infinite path and imposing zero Dirichlet con-
ditions at both ends. Now let {ey, es, ...} denote the standard basis of £2, and let I de-
note the identity operator restricted to the subspace of £? spanned by €,41,€n42,. ...
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Letting

H, 0
H(n)i—( 0 j>’

the sequence {H )} is now a sequence of bounded self-adjoint linear operators on 02
that converges strongly to H. Note that o(H,) C [—1,1] for all n; also, 0 ¢ o(H,)
for all even n. It is easy to see that half of the eigenvalues of H,, lie in [—1,0) and the

other half in (0, 1]. We set ;» = 0 and we label as “occupied” the states corresponding

(n) (n)

n/24+1 ~ Enjo:

The eigenvalues and eigenvectors of H,, are known explicitly [35, Lemma 6.1].
(n)

Indeed, the eigenvalues, in descending order, are given by €, = cos (nk—]:l) (with 1 <

k < n) and the corresponding normalized eigenvectors are given by v,i") = (v,i") (7))

with entries
(n) /o _ 2 jkm .
Vg (J)_VTL—HSIH<TL+]_>7 I1<j<n.

Note that the eigenvalues are symmetric with respect to the origin, and that the
spectral gap at 0 vanishes, since 65:72 = —65:;)2 — 0 as n — oo. We also point
to the well-known fact that the eigenvectors of this operator are strongly delocalized.
Nevertheless, as we will see, some localization (decay) is present in the density matrix,
owing to cancellation (i.e., destructive interference).

Now let P, be the zero-temperature density matrix associated with H,, i.e.,
the spectral projector onto the subspace of C™ spanned by the eigenvectors of H,
associated with the lowest n. eigenvalues (the occupied subspace). We extend P, to
a projector acting on ¢ by embedding P, into an infinite matrix Py as follows:

P, 0
Note that P, is just the orthogonal projector onto the subspace of 22 spanned by
the eigenvectors of H,) associated with eigenvalues in the interval [~1,0). Moreover,
Tr(Py) = Tr(P,) = rank(P,) = § = n.. The limiting behavior of the sequence
{P)} (hence, of {P,}) is completely described by the following result.
THEOREM 10.1. Let H, Hy, and P, be as described above. Then the following
hold:
(i) H has purely absolutely continuous spectrum,’ given by the interval [—1,1].
In particular, H has no eigenvalues.
(ii) The union of the spectra of the n-dimensional sections H,, of H is everywhere
dense in o(H) = [—1,1]. In other words, every point in [—1,1] is the limit of
a sequence of the form {El(cn)} for n — oo, where El(cn) € o(Hy) and k = k(n).
(iii) The sequence {Hy,} has vanishing gap: inf,, v, = 0.
(iv) The spectral projectors P, converge strongly to P = h(H), where h(z) =
X[-1,0)(x), the characteristic function of the interval [-1,0).
(v) P is the orthogonal projector onto an infinite-dimensional subspace of (2.

to negative eigenvalues. The spectral gap of each H,, is then e

9The absolutely continuous spectrum of a self-adjoint linear operator H on a Hilbert space J#
is the spectrum of the restriction of H to the subspace . C % of vectors ¢ whose spectral
measures [i,, are absolutely continuous with respect to the Lebesgue measure. For details, see [107,
pp. 224-231].
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Proof. Statements (i)—(ii) are straightforward consequences of classical results on
the asymptotic eigenvalue distribution of Toeplitz matrices, while (iv)—(v) follow from
general results in spectral theory. Statement (iii) was already noted (the eigenvalues
of H,, are explicitly known) and it also follows from (i)—(ii). In more detail, statement
(i) is a special case of Rosenblum’s theorem on the spectra of banded infinite Toeplitz
matrices; see [108] or [17, Theorem 1.31]. For the facts that the spectrum of H
coincides with the interval [—1,1] and that the finite section eigenvalues El(cn) are
dense in o(H) = [—1, 1] (statement (ii)), see the paper by Hartman and Wintner [60]
or the book by Grenander and Szegd [58, Chapter 5]. Statement (iv) can be proved as
follows. For a linear operator A on 2, write Rx(A) = (A — AI)~!, with A ¢ o(A). A
sequence {4,} of self-adjoint (Hermitian) operators is said to converge in the strong
resolvent senseto A if Ry(A,) — Rx(A) strongly for all A € C with Re A # 0, that is,

lim ||Rx(A,)z — Ryx(A)z|| =0 forall z € 2.
n—oo

It is easy to check, using, for instance, the results in [18, Chapter 2|, that the sequence
{H,} converges in the strong resolvent sense to H. Statement (iv) (as well as (ii)) now
follows from [107, Theorem VIII.24]. The fact (v) that P = h(H) is an orthogonal
projector onto an infinite-dimensional subspace of £2 follows from the fact that j = 0
is not an eigenvalue of H (because of (i)) and from the spectral theorem for self-adjoint
operators in Hilbert space; see, e.g., [107, Chapter VII] or [115, Chapter 12]. d

The foregoing result implies that the Toeplitz matrix sequence {H,} given by
(10.2) exhibits some of the key features of the discrete Hamiltonians describing metal-
lic systems, in particular, the vanishing gap property and the fact that the eigenvalues
tend to fill the entire energy spectrum. The sequence {H,} can be thought of as a
1D “toy model” that can be solved analytically to gain some insight into the decay
properties of the density matrix of such systems. Indeed, from the knowledge of the
eigenvectors of H, we can write down the spectral projector corresponding to the
lowest n, = n/2 eigenvalues explicitly. Recalling that the eigenvalues 5,(;1) are given in
descending order, it is convenient to compute P, as the projector onto the orthogonal
complement of the subspace spanned by the eigenvectors corresponding to the n/2
largest eigenvalues:

Po=I, =Y v ().
k=1
The (i,7) entry of P, is therefore given by

[Pn]i'ZeTPnelzéi-—Lisin ik sin Jhm .
O n+1 n+ 1

For i = j, we find

2 &, ([ ikm 1 ,
(10.3) [Pn]u‘:l—n_i_l;sm (n+1):§ foralli =1,...,n and for all n.

Hence, for this system the charge density P;; is constant and the system essentially
behaves like a noninteracting electron gas; see, for example, [50]. We note in passing
that this example confirms that the bound (7.2) is sharp, since equality is attained
for this particular projector. Moreover, the trigonometric identity

(10.4) sinf sin ¢ = —% [cos(0 4+ ¢) — cos(f — )]
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implies for all 4,5 = 1,...,n that

105 = 3 o () s (Y]

k=1

From (10.5) it immediately follows, for all ¢ and for all n, that
(106) [Pn]i,iJrQl =0, l= L2,....

Since (10.3) and (10.6) hold for all n, they also hold in the limit as n — co. Hence,
the strong limit P of the sequence of projectors { P, } satisfies P;; = 1/2 and P; ; = 0
for all j = i+2[, where ¢,l = 1,2,.... To determine the remaining off-diagonal entries
P;; (with j # i and j # i + 21) we directly compute the limit of [P,];; as n — 00, as
follows. Observe that using the substitution = k/(n + 1) and taking the limit as
n — oo in (10.5), we obtain for all 4 > 1 and for all j #¢+2] (I =0,1,...)

P = /0% cos[(i + j)mx] dx — /0% cos[(i — j)mx] dx

(10.7) (_1)7:+;2'—1 . (_1)1—£-¢-1‘| |

1

™

i+j i—j

It follows from (10.7) that |P;;| is bounded by a quantity that decays only linearly in
the distance from the main diagonal. As a result, O(n) approximation of P, for large
n involves a huge prefactor. Therefore, from this very simple example we can gain
some insight into the vanishing gap case. The analytical results obtained show that
the density matrix can exhibit rather slow decay, confirming the well-known fact that
O(n) approximations pose a formidable challenge in the vanishing gap case.

The 2D case is easily handled as follows. We consider for simplicity the case of a
square lattice consisting of n? points in the plane. The 2D Hamiltonian is given by

1
H,» = E(Hn®ln+ln®Hn)7

where the scaling factor % is needed so as to have o(H,2) C [—1,1]. The eigenvalues
and eigenvectors of H,2 can be explicitly written in terms of those of H,; see, e.g.,
[35]. Assuming again that n is even, exactly half of the n? eigenvalues of H,> are
negative (counting multiplicities), the other half positive. As before, we are interested
in finding the spectral projector associated with the eigenvectors corresponding to
negative eigenvalues. Note again that the spectral gap tends to zero as n — oo. If
P2 denotes the spectral projector onto the occupied states, it is not difficult to show

that
(10.8) P2 =P, ® (I — Po) + (In — Pa) ® Py

It follows from (10.8) that the spectral projector P,2 has a natural n x n block
structure, where the following hold:

e Each diagonal block is equal to %In; note that this gives the correct trace,
2

TI'(Pnz) = %

e The (k,l) off-diagonal block IIy; is given by Iy = [Pp]ki (I, — 2P,). Hence,
each off-diagonal block has a “striped” structure, with the main diagonal as
well as the third, fifth, etc., off-diagonals identically zero. Moreover, every
block IIj; with I =k + 2m (m > 1) is zero.
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This shows that in the 2D case, the rate of decay in the spectral projector is
essentially the same as in the 1D case. The 3D case can be handled in a similar
manner, leading to the same conclusion.

For this simple example we can also compute the entries of the density matrix at
positive electronic temperature T' > 0. Recalling that the density matrix in this case
is given by the Fermi-Dirac function with parameter 8 = 1/(kpT), we have in the
1D case (assuming p = 0)

: ikm : Jkm
2 n Sln<n+1) Sin <_’n+1)

n+1 =1 1+ exp [,Bcos (n’“—_:l)]

(10.9) Py =

Making use again of the trigonometric identity (10.4) and using the same substitution
x =k/(n+ 1), we can reduce the computation of the density matrix element P;; for
n — 0o to the evaluation of the integral

(10.10) P, = /1 cos [(i — j)mx] — cos [(i + j)mz] "
0

1+ exp (B cosmx)

Unfortunately, this integral cannot be evaluated explicitly in terms of elementary
functions. Note, however, that the integral

I - /1 cos (kmx)
0

1+ exp (Bcosmx)

(where k is an integer) becomes, under the change of variable ma = arccost,

I - 1 /1 cos (k arccost)  dt
b ~1 1+ eft \/1—152.

7r
Hence, up to a constant factor, I}, is just the kth coefficient in the Chebyshev expansion
of the Fermi-Dirac function 1/(1+¢?*). Since the Fermi-Dirac function is analytic on
the interior of an ellipse containing the interval [—1, 1] and continuous on the boundary
of such an ellipse, it follows from the general theory of Chebyshev approximation that
the coefficients I), decay at least exponentially fast as k — oo; see, e.g, [92]. This
in turn implies that the entries P;; given by (10.10) decay at least exponentially fast
away from the main diagonal, the faster the larger the temperature is, as already
discussed in section 8.7. Hence, for this special case we have established in a more
direct way the exponential decay behavior already proved in general in section 8.1.
In the present case, however, for any value of 3 the decay rate of the entries P;; given
by (10.10) can be determined to arbitrary accuracy by numerically computing the
Chebyshev coefficients of the Fermi—Dirac function.

We mention that a simple, 1D model of a system with arbitrarily small gap was
described in [49]. The (continuous) Hamiltonian in [49] consists of the kinetic term
plus a potential given by a sum of Gaussian wells located at the nuclei sites X;:

2 0 a
M= st V), V) =- 3 T 5P (—(r — X,)?/20°).

i=—00

with @ > 0 and o > 0 tunable parameters. The spectra of this family of Hamiltonians
present a band structure with band gap proportional to v/a/o. Note that the model
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essentially reduces to ours for ¢ — 0 and/or for ¢ — oco. On the other hand, while
the gap can be made arbitrarily small by tuning the parameters in the model, for any
choice of @ > 0 and o > 0 the gap does not vanish; therefore, no approximation of the
infinite-size system with a sequence of finite-size ones can lead to a vanishing gap in
the thermodynamic limit. This means that our bounds, when applied to this model,
will yield exponential decay, albeit very slow (since the correlation lengths will be
quite large for small a — 0 and/or for large o). The model in [49], on the other hand,
can be useful for testing purposes when developing algorithms for metal-like systems
with slowly decaying density matrices.

I1. Other Applications. In this section we sketch a few possible applications of
our decay results to areas other than electronic structure computations.

11.1. Density Matrices for Thermal States. In quantum statistical mechanics,
the equilibrium density matrix for a system of particles subject to a heat bath at
absolute temperature T is defined as

—BH

Z Y

e

(11.1) P= where Z = Tr (e PH).

As usual, 8 = (kgT)~!, where kg denotes the Boltzmann constant; see [102]. The
matrix P is the quantum analogue of the canonical Gibbs state. The Hamiltonian
H is usually assumed to have been shifted so that the smallest eigenvalue is zero
[87, p. 112]. Note that P as defined in (11.1) is not an orthogonal projector. It is,
however, Hermitian and positive semidefinite. Normalization by the partition function
Z ensures that o(P) C [0,1] and that Tr(P) = 1.

It is clear that for increasing temperature, ie., for T — oo (equivalently, for
B — 0), the canonical density matrix P approaches the identity matrix, normalized
by the matrix size n. In particular, the off-diagonal entries tend to zero. The physical
interpretation of this is that in the limit of large temperatures the system states
become totally uncorrelated. For temperatures approaching absolute zero, on the
other hand, the canonical matrix P tends to the orthogonal projector associated with
the zero eigenvalue (ground state). In this limit, the correlation between state i and
state j is given by the (i,7) entry of the orthogonal projector onto the eigenspace
corresponding to the zero eigenvalue, normalized by n.

For finite, positive values of T', the canonical density matrix P is full but decays
away from the main diagonal (or, more generally, away from the sparsity pattern of
H). The rate of decay depends on (: the smaller it is, the faster the decay. Application
of the bounds developed in section 8 to the matrix exponential is straightforward. For
instance, the bounds based on Bernstein’s theorem take the form

(11.2) le™PH]i5] < C(B)e 0D g o g,
where

cB) = % ANz (mi=1)/2 and o =2Iny.
In these expressions, x > 1 and k1 > 1 are the parameters associated with the
Bernstein ellipse with foci in —1 and 1 and major semiaxis k1, as described in section
8. Choosing x large makes the exponential term decay e~ (%) very fast, but causes
C(p) to grow larger. Clearly, a smaller 8 makes the upper bound (11.2) smaller.
Bounds on the entries of the canonical density matrix P can be obtained by dividing
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through the upper bounds by Z. Techniques for estimating Z can be developed using
the techniques described in [56]; see also [11].

Although the bound (11.2) is an exponentially decaying one, it can be shown that
the decay in the entries of a banded or sparse matrix is actually superexponential. This
can be shown by expanding the exponential in a series of Chebyshev polynomials and
using the fact that the coefficients in the expansion, which can be expressed in terms
of Bessel functions, decay to zero superexponentially; see [92] and also [69]. The decay
bounds obtained in this way are, however, less transparent and more complicated to
evaluate than (11.2).

Finally, exponential decay bounds for spectral projectors and other matrix func-
tions might provide a rigorous justification for O(n) algorithms recently developed for
disordered systems; see, e.g., [117, 118].

11.2. Quantum Information Theory. A related area of research where our de-
cay bounds for matrix functions have proven useful is the study of quantum many-
body systems in information theory; see, e.g., [31, 32, 38, 120, 121]. In particular,
relationships between spectral gaps and rates of decay for functions of finite-range
Hamiltonians have been established in [31] using the techniques introduced in [12].
The exponential decay of correlations and its relation to the spectral gap have also
been studied in [62, 63].

As shown in [32], exponential decay bounds for matrix functions play a crucial
role in establishing so-called area laws for the entanglement entropy of ground states
associated with bosonic systems. These area laws essentially state that the entangle-
ment entropy associated with a 3D bosonic lattice is proportional to the surface area,
rather than to the volume, of the lattice. Intriguingly, such area laws are analogous to
those governing the Beckenstein—-Hawking black hole entropy. We refer the interested
reader to the recent, comprehensive survey paper [38] for additional information.

11.3. Complex Networks. The study of complex networks is an emerging field
of science currently undergoing vigorous development. Researchers in this highly in-
terdisciplinary field include mathematicians, computer scientists, physicists, chemists,
engineers, neuroscientists, biologists, social scientists, etc. Among the mathematical
tools used in this field, linear algebra and graph theory, in particular spectral graph
theory, play a major role. Also, statistical mechanics concepts and techniques have
been found to be ideally suited to the study of large-scale networks.

In recent years, quantitative methods of network analysis have increasingly made
use of matrix functions. This approach has been spearheaded in the works of Estrada,
Rodriguez-Veldzquez, D. Higham, and Hatano; see, e.g., [39, 40, 41, 42, 43, 46], as
well as the recent surveys [45, 44] and the references therein. Functions naturally
arising in the context of network analysis include the exponential, the resolvent, and
hyperbolic functions, among others. Physics-based justifications for the use of these
matrix functions in the analysis of complex networks are thoroughly discussed in [44].

For example, the exponential of the adjacency matrix A associated with a simple,
undirected graph G = (V, E) can be used to give natural definitions of important
measures associated with nodes in G, such as the subgraph centrality associated with
node 4, defined as C(i) = [e?];;, and the communicability associated with two dis-
tinct nodes i and j, defined as C(4,5) = [e!];;. Other network quantities that can
be expressed in terms of the entries in appropriate matrix functions of A include be-
tweenness, returnability, vulnerability, and so forth. The graph Laplacian L = D — A,
where D = diag(ds,...,d,) with d; denoting the degree of node 4, is sometimes used
instead of the adjacency matrix, as well as weighted analogues of both A and L.
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Most networks arising in real-world applications are sparse, often with degree
distributions closely approximated by power laws. Because the maximum degree in
such “scale-free” networks increases as the number of nodes tends to infinity, one
cannot expect uniform exponential decay rates to hold asymptotically for the matrix
functions associated with such graphs unless additional structure is imposed, for in-
stance, in the form of weights. Nevertheless, our bounds for the entries of functions
of sparse matrices can be used to obtain estimates on quantities such as the commu-
nicability between two nodes. A discussion of locality (or the lack thereof) in matrix
functions used in the analysis of complex networks can be found in [44]. We also refer
the reader to [11] for a description of quadrature-rule-based bounds for the entries of
matrix functions associated with complex networks.

11.4. Tridiagonal Eigensolvers. The solution of symmetric tridiagonal eigen-
value problems plays an important role in many fields of computational science. As
noted, for example, in [130], solving such problems is key for most dense real symmet-
ric (and complex Hermitian) eigenvalue computations and therefore plays a central
role in standard linear algebra libraries such as LAPACK and ScaLAPACK. Even in
the sparse case, the symmetric tridiagonal eigenvalue problem appears as a step in
the Lanczos algorithm.

The efficiency of symmetric tridiagonal eigensolvers can be significantly increased
by exploiting localization in the eigenvectors (more generally, invariant subspaces)
associated with an isolated cluster of eigenvalues. It would be highly desirable to
identify beforehand any localization in the eigenspace in a cost-effective manner, as
this would lead to reduced computational costs [101, 130]. It is clear that this prob-
lem is essentially the same as the one considered in this paper, with the additional
assumption that the matrix H is tridiagonal. Given estimates on the location of the
cluster of eigenvalues and on the size of the gaps separating it from the remainder of
the spectrum, the techniques described in this paper can be used to bound the entries
in the spectral projector associated to the cluster of interest; in turn, the bounds can
be used to identify banded approximations to the spectral projectors with guaranteed
prescribed error. Whether the estimates obtained in this manner are accurate enough
to lead to practical algorithms with run times and storage demands substantially
improved over current ones remains an open question for further research.

Finally, in the recent paper [139] the exponential decay results in [12] are used
to derive error bounds and stopping criteria for the Lanczos method applied to the
computation of e"*4v, where A is a large SPD matrix, v is a vector, and ¢t > 0. The
bounds are applied to the exponential of the tridiagonal matrix T} generated after k
steps by the Lanczos process in order to obtain the approximation error after k steps.

11.5. Non-Hermitian Extensions. Although the main focus of the paper has
been the study of functions of sparse Hermitian matrices, many of our results can be
extended, under appropriate conditions, to non-Hermitian matrices. The generaliza-
tions of our decay bounds to normal matrices, including, for example, skew-Hermitian
matrices, is relatively straightforward; see, e.g., the results in [14] and [106]. Further
generalizations to diagonalizable matrices were given in [14], although the bounds now
contain additional terms taking into account the departure from normality. These
bounds may be difficult to use in practice, as knowledge of the eigenvectors or of the
field of values of the matrix is needed. Bounds for functions of general sparse matrices
can also be obtained using contour integration; see, e.g., [106] and [91]. Tt is quite pos-
sible that these bounds will prove useful in applications involving functions of sparse,
nonnormal matrices. Examples include functions of digraphs in network analysis,
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like returnability, or functions of the Hamiltonians occurring in the emerging field of
non-Hermitian quantum mechanics; see, respectively, [42] and [8, 9, 94].

12. Conclusions and Open Problems. In this paper we have described a gen-
eral theory of localization for the density matrices associated with certain sequences
of banded or sparse discrete Hamiltonians of increasing size. We have obtained, un-
der very general conditions, exponential decay bounds for the off-diagonal entries
of zero-temperature density matrices for gapped systems (“insulators”) and for den-
sity matrices associated with systems at positive electronic temperature. The theory,
while purely mathematical, recovers well-known physical phenomena such as the fact
that the rate of decay is faster at higher temperatures and for larger gaps, and even
captures the correct asymptotics for small gaps and low temperatures. Thus, we have
provided a theoretical justification for the development of O(n) methods for electronic
structure computations. As an integral part of this theory, we have also surveyed the
approximation of rapidly decaying matrices by banded or sparse ones, the effects of
transforming a Hamiltonian from a nonorthogonal to an orthogonal basis, and some
general properties of orthogonal projectors.

In the case of zero-temperature and vanishing gaps, our bounds deteriorate for
increasing n. In the limit as n — oo we no longer have exponentially decaying bounds,
which is entirely consistent with the physics. For metallic systems at zero temperature
the decay in the spectral projector follows a power law, and we have exhibited a simple
model Hamiltonian for which the decay in the corresponding density matrix is only
linear in the distance from the main diagonal.

Because of the slow decay, the development of O(n) methods in the metallic
case at zero temperature is problematic. We refer the reader to [5, 19, 81, 134] for
some attempts in this direction, but the problem remains essentially open. In the
metallic case it may be preferable to keep P in the factorized form P = X X*  where
X € C"*™e is any matrix whose columns span the occupied subspace, and to seek a
maximally localized X. Note that

P=XX*=(XU)(XU)*

for any unitary n. X n. matrix U, so the question is whether the occupied subspace
admits a set of basis vectors that can be rotated so as to become as localized as
possible. Another possibility is to research the use of rank-structured approximations
(such as hierarchical matrix techniques [59]) to the spectral projector. Combinations
of tensor product approximations and wavelets appear to be promising. We refer here
to [55] for a study of the decay properties of density matrices in a wavelet basis (see also
[119]), and to [16] for an early attempt to exploit near low-rank properties of spectral
projectors. See also the more recent works by W. Hackbusch and collaborators [26,
27, 28, 47, 48, 86).

Besides the motivating application of electronic structure, our theory is also ap-
plicable to other problems where localization plays a prominent role. We hope that
this paper will stimulate further research in this fascinating and important area at
the crossroads of mathematics, physics, and computing.
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