$\rm M3/4/5P60$ - GEOMETRIC COMPLEX ANALYSIS - HOME ASSIGNMENT 2

FABRIZIO BIANCHI

Please submit your work by 16:00 on March 15 to the Undergraduate office on floor 6 in the Huxley building.

Recall that the class of maps \mathcal{S} is defined by

 $\mathcal{S} := \{ f \colon \mathbb{D} \to \mathbb{C} \colon f \text{ is univalent on } \mathbb{D}, f(0) = 0, f'(0) = 1 \}.$

The following result may be particularly helpful in the solutions. You can use it without proving it (as everything else covered during the lectures).

Theorem A - (Theorem 6.9 in the Lecture Notes) For each $f \in S$ and every $z \in \mathbb{D}$ such that |z| = r,

$$\frac{r}{(1+r)^2} \le |f(z)| \le \frac{r}{(1-r)^2}.$$

Exercise 1 - (Exercise 5.8 in Lecture notes)

Let Ω be an open subset of \mathbb{C} and $\operatorname{Hol}(\Omega)$ denote the space of holomorphic maps from Ω to \mathbb{C} . Define the map $D: \operatorname{Hol}(\Omega) \to \operatorname{Hol}(\Omega)$ as D(f) = f', that is, D(f)(z) = f'(z). Prove that D is continuous from $\operatorname{Hol}(\Omega)$ to $\operatorname{Hol}(\Omega)$ with respect to the metric d'' ((5.4) in the lecture notes).

Exercise 2 - (Exercise 5.9 in Lecture notes)

Let \mathcal{F} denote the space of all analytic functions $f: \mathbb{D} \to \mathbb{C}$ of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

such that for all $n \ge 2$ we have $|a_n| \le n$. Prove that the family \mathcal{F} is normal.

Exercise 3 - (Exercise 6.1 in Lecture notes)

Prove that \mathcal{S} is a normal family.

Exercise 4^1 - (Exercise 6.3 in Lecture notes)

Let $k \geq 2$ be an integer and define

$$\Lambda_k := \left\{ f^{(k)}(0) \colon f \in \mathcal{S} \right\}.$$

Prove that

- (1) for every $k \ge 2$, there is $r_k > 0$ such that $\Lambda_k = \{w \in \mathbb{C} : |w| \le r_k\};$
- (2) there is a constant C > 0 such that for all $n \ge 1$ we have $r_n \le Cn^2 n!$.

Exercise 5 - (Exercise 6.5 in Lecture notes)

Let Ω be a non-empty, connected, simply connected subset of \mathbb{C} that is not equal to \mathbb{C} . For $z \in \Omega$, the *conformal radius* of Ω at z is defined as

$$\operatorname{rad}_{\operatorname{conf}}(\Omega, z) = |\phi'(0)|,$$

where $\phi \colon \mathbb{D} \to \Omega$ is the Riemann mapping with $\phi(0) = z$.

(1) Prove that the quantity rad_{conf} is independent of the choice of the Riemann map ϕ .

¹This is the most difficult exercise of this homework.

(2) Define

$$r_z = \sup \left\{ r > 0 \colon B(z, r) \subset \Omega \right\}.$$

Prove that

 $r_z \leq \operatorname{rad}_{\operatorname{conf}}(\Omega, z) \leq 4r_z.$

(3) Let $\Omega' \subsetneq \Omega$ be a connected, simply connected open set that contains z. Prove that $\operatorname{rad}_{\operatorname{conf}}(\Omega', z) < \operatorname{rad}_{\operatorname{conf}}(\Omega, z).$