Solutions to mock exam, 2016-17 Course: M3P16, M4P16, M5P16

Solution to Question 1. [(a) seen 6pts; (b) seen 4pts ; (c) seen 10pts]

Part a) A conformal metric on Ω is a continuously differentiable (C^1) function

$$
\rho : \Omega \to [0, \infty),
$$

where $\rho(z) \neq 0$ except on a discrete subset of Ω . [4pts]

The Poincaré metric on $\mathbb D$ is defined as

$$
\rho(z) = \frac{1}{1 - |z|^2}.
$$
 [2pt]

Part b) A one-to-one and onto holomorphic map $f : \Omega \to \Omega$ is called an *automorphism* of Ω. The set of all automorphisms of *U* is called the automorphism group of Ω . [2pt]

By a theorem in the lectures, every automorphism of $\mathbb D$ is of the form

$$
z \mapsto e^{i\theta} \cdot \frac{z-a}{1-\overline{a}z},
$$

for some $\theta \in \mathbb{R}$ and $a \in \mathbb{D}$. [2pt]

Part c) Let $h : \mathbb{D} \to \mathbb{D}$ be an automorphism of \mathbb{D} . First assume that $h(z) = e^{i\theta} \cdot z$. We have

$$
(h^*\rho)(z) = \rho(h(z)) \cdot |h'(z)| = \frac{1}{1 - |h(z)|^2} \cdot |e^{i\theta}| = \frac{1}{1 - |z|^2} = \rho(z).
$$

Thus, *h* is an isometry of (\mathbb{D}, ρ) . [3pt]

Now assume that $h(z) = (z - a)/(1 - \overline{a}z)$. we have

$$
(h^*\rho)(z) = \rho(h(z)) \cdot |h'(z)|
$$

=
$$
\frac{1}{1 - \left|\frac{z-a}{1 - \overline{a}z}\right|^2} \cdot \frac{1 - |a|^2}{|1 - \overline{a}z|^2}
$$

=
$$
\frac{1 - |a|^2}{|1 - \overline{a}z|^2 - |z - a|^2}
$$

=
$$
\frac{1 - |a|^2}{1 - |z|^2 - |a|^2 + |a|^2|z|^2}
$$

=
$$
\rho(z).
$$

That is, *h* is an isometry of (\mathbb{D}, ρ) [5pt]. Since the composition of isometries is an isometry, we conclude that any member of $Aut(\mathbb{D})$ is an isometry of (\mathbb{D}, ρ) [2pt].

Solution to Question 2. [(a) seen 4pts ; (b) seen 4pts ; (c) unseen 6pts ; (d) unseen 6pts]

Part a) Let Ω be an open set in $\mathbb C$ and $\mathcal F$ be a family (set) of maps that are defined on Ω . We say that the family *F* is *normal* if every sequence of maps f_n , $n \geq 1$, in *F* has a sub-sequence that converges uniformly on every compact subset of Ω . [4pt]

Part b) Theorem: Let F be a family of holomorphic maps defined on an open set $\Omega \subseteq \mathbb{C}$. If *F* is uniformly bounded on every compact subset of Ω , then

- (i) $\mathcal F$ is equicontinuous on every compact subset of Ω ;
- (ii) $\mathcal F$ is a normal family.

Part c) By Montel's theorem, it is enough to prove that the family is uniformly bounded on every compact subset of \mathbb{D} . Let $K \subset \mathbb{D}$ be an arbitrary compact set. There is $r < 1$ such that for all $z \in K$, $|z| < r$. For every $f \in \mathcal{F}$, and every $z \in K$ we have

$$
|f(z)| = \left|\sum_{n=1}^{\infty} a_n z^n\right| \le \sum_{n=1}^{\infty} |a_n z^n| \le \sum_{n=1}^{\infty} a_n z^n \le \sum_{n=1}^{\infty} n r^n = \frac{r}{(1-r)^2} < +\infty.
$$

This shows that the family is uniformly bounded on *K*. [6pt]

It is not necessary to find the precise value of the above series, but any finite upper bound on the series suffices. However, the above sum have been calculated as follows. Set $S_n = r + 2r^2 + 3r^3 + \cdots + nr^n$, for $n \ge 5$. Then,

$$
S_n(1 - r) = S_n - rS_n = r + r^2 + r^3 + r^n = r(1 - r^n)/(1 - r).
$$

As $n \to +\infty$, $r^n \to 0$, and hence $S_n \to r/(1-r)^2$.

Part d) Let $k : \mathbb{D} \to \mathbb{C} \setminus (-\infty, -1/4]$ be the Koebe function. That is, k is a one-to-one and onto holomorphic map. Define the new class of maps

$$
\mathcal{G} = \{k^{-1} \circ f \mid f \in \mathcal{F}\}.
$$

Every element of $\mathcal G$ is a holomorphic map defined on $\mathbb D$ with vales in $\mathbb D$. In particular, the family *G* is uniformly bounded on compact sets. By Montel's theorem, *G* forms a normal family.

Let f_n , $n \geq 1$, be an arbitrary sequence in *F*. By the above paragraph, the sequence of maps $k^{-1} \circ f_n$, for $n \geq 1$, has a convergence sub-sequence, say, $k^{-1} \circ f_{n_i}$, for $i \geq 1$, which converges uniformly on compact subsets of D . Since k is a continuous function, it follows that the sequence $f_{n_i} = k \circ (k^{-1} \circ f_{n_i})$ converges uniformly on compact subsets of D. [6pt]

Solution to Question 3. [(a) seen 4pts ; (b) seen similar 6pts ; (c) unseen 10pts]

Part a) Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with $f(0) = 0$. Then,

- (i) for all $z \in \mathbb{D}$ we have $|f(z)| \leq |z|$;
- $|f'(0)| \leq 1;$
- (iii) if either $f(z) = z$ for some non-zero $z \in \mathbb{D}$, or $|f'(0)| = 1$, then f is a rotation about 0.

[4pt]

Part b) By the Riemann mapping theorem, there is a one-to-one and onto holomorphic map $\varphi : \Omega \to \mathbb{D}$. Moreover, by composition the Riemann map with a Möbius transformation, we may assume that $\varphi(z) = 0$. [3pt]

The map $g = \varphi \circ f \circ \varphi^{-1}$ is holomorphic and sends \mathbb{D} into \mathbb{D} , with $g(0) = 0$. By the Schwarz lemma, we must have $|g'(0)| \leq 1$. Thus,

$$
|f'(z)| = |\varphi'(z) \cdot f'(z) \cdot \frac{1}{\varphi'(z)}| = |g'(0)| \le 1.
$$

[3pt]

Part c) Since, *f* is one-to-one, its inverse is define and holomorphic on $f(\Omega)$. Since $g(\Omega) \subset f(\Omega)$, the map $h = f^{-1} \circ g$ is defined an holomorphic on Ω with values in Ω . Moreover, since $f(z) = g(z)$, we have $h(z) = z$.

By part (b) of the problem, we must have $|h'(z)| \leq 1$. This implies that $|g'(z)| \leq$ $|f'(z)|$.

[10pt for this. There may be other ways to reduce the problem to the Schwarz lemma]

Remark: Part (c) introduces a method known as "subordination": it allows one to give an upper bound on the derivative of an arbitrary holomorphic function by finding a conformal map which covers the image of that function.

Solution to Question 4. [(a) seen 6pts; (b) unseen and difficult 14pts]

Part a) Theorem: Let $f : \mathbb{D} \to \mathbb{C}$ be a one-to-one holomorphic map with $f(0) = 0$ and $f'(0) = 1$. The set $f(\mathbb{D})$ contains the open ball $B(0, 1/4)$. [6pts]

Part b) The plan is to compose the map f with a suitable Möbius transformation *M*, and apply the 1/4-theorem to the map $M \circ f$. But, for the 1/4-theorem, we need that $M \circ f(0) = 0$ and $(M \circ f)'(0) = 1$. This is guaranteed by requiring $M(0) = 0$ and $M'(0) = 1$. [3pt, for the idea to post-compose with a suitable Möbius transformation]

The set of Möbius transformations $M(z) = (az + b)/(cz + d)$ satisfying $M(0) = 0$ and $M'(0) = 1$ are of the form $z/(cz+1)$, for an arbitrary complex constant *c*. [2pt]

Let us first assume that $|\beta| \geq |\alpha|$. We choose $c = -1/\alpha$ so that $M(\alpha) = \infty$. We have $M(\beta) = \beta/(-\beta/\alpha + 1)$. The map $h = M \circ f : \mathbb{D} \to \mathbb{C}$ is defined, holomorphic, one-to-one, $h(0) = 0$, and $h'(0) = 1$. The map *h* omits $M(\beta)$ since *f* omits β . By the 1/4-theorem, we must have $|M(\beta)| \geq 1/4$. Hence

$$
|\beta| \ge (-\beta/\alpha + 1)/4 \ge 2/4 = 1/2.
$$
 [5pt]

By a similar argument (replace *α* with *β*), we note that if $|α| \geq |β|$, then $|α| \geq$ 1*/*2.

We choose the parameter $c = (-\beta - \alpha)/2\alpha\beta$ so that $M(\alpha) = -M(\beta)$. Apply the Koebe 1/4-theorem to the map $h = M \circ f$, which omits two values $M(\alpha)$ and $M(\beta)$ of the same size. So, we must have $|M(\alpha)| \geq 1/2$, which gives us

$$
|\beta - \alpha| \ge 1/4.
$$

Finally since for all *x* and *y*, $xy \leq (x + y)^2/4$, we conclude that $|\beta - \alpha| \geq 1$. [4pt]

Remark: Note that the biholomorphic map $f : \mathbb{D} \to \mathbb{C} \setminus ((-\infty, -1/2] \cup [1/2, +\infty))$,

$$
f(z) = \frac{z}{1 + z^2}
$$

we studied in the lectures shows that the above inequality is sharp.

Solution to Question 5. [(a) seen 5pts ; (b) unseen 7pts ; (c) unseen and difficult 8pts]

Part a) Theorem: Let $\mu : \mathbb{C} \to \mathbb{D}$ be a continuous map with $\sup_{z \in \mathbb{C}} |\mu(z)| < 1$. Then, there is a quasi-conformal map $f: \mathbb{C} \to \mathbb{C}$ such that $f_{\overline{z}}(z) = \mu(z) f_z(z)$ holds on C. [3pts]

Moreover, the solution f is unique if we assume that $f(0) = 0$ and $f(1) = 1$. $|2pts|$

Part b) By MRMT, we need to verify that μ is continuous and sup_C $|\mu|$ < 1. [2pt]

Continuity: On $\text{Im } z > 0$ and $\text{Im } z < 0$ μ is continuous since it is given by a linear combination of the exponential maps. We need to show that the two formulas match on $\text{Im } z = 0$. The first formula becomes

$$
\mu(z) = \frac{1}{4}(e^{iz} + e^{-i\overline{z}}) = \frac{1}{4}(e^{iz} + e^{-iz}).
$$

The second one becomes

$$
\mu(z) = \frac{1}{4}(e^{-iz} + e^{i\overline{z}}) = \frac{1}{4}(e^{-iz} + e^{iz}).
$$

This shows that μ is continuous on \mathbb{C} . [2pt]

Size of μ : Let $z = x + iy$. When Im $z = y \ge 0$, we have

$$
|\mu(z)| \le \frac{1}{4} (|e^{iz}| + |e^{-i\overline{z}}|) = \frac{1}{4} (|e^{-y}| + |e^{-y}|) \le \frac{1}{4} (1+1) = \frac{1}{2}.
$$

When, $\text{Im } z = y \leq 0$,

$$
|\mu(z)| \le \frac{1}{4} (|e^{-iz}| + |e^{i\overline{z}}|) = \frac{1}{4} (|e^y| + |e^y|) \le \frac{1}{4} (1+1) = \frac{1}{2}.
$$

Hence, $\sup_{\mathbb{C}} |\mu| \leq 1/2 < 1$. [3pt]

Part c) First we show that $\mu(\overline{z}) = \overline{\mu(z)}$. When Im $z \geq 0$,

$$
\overline{\mu(z)} = \frac{1}{4} \overline{(e^{iz} + e^{-i\overline{z}})} = \frac{1}{4} (e^{-i\overline{z}} + e^{iz}),
$$

and (as $\text{Im } \overline{z} \leq 0$)

$$
\mu(\overline{z}) = \frac{1}{4}(e^{-i\overline{z}} + e^{iz}).
$$

When $\text{Im } z \leq 0$,

$$
\overline{\mu(z)} = \frac{1}{4} \overline{(e^{-iz} + e^{i\overline{z}})} = \frac{1}{4} (e^{-i\overline{z}} + e^{-iz}),
$$

and (as $\text{Im } \overline{z} \geq 0$)

$$
\mu(\overline{z}) = \frac{1}{4}(e^{-i\overline{z}} + e^{-iz}).
$$

These show that $\mu(\overline{z}) = \overline{\mu(z)}$ on \mathbb{C} . [2pt]

For the remaining part we present two solutions.

Solution 1: Define $G(z) = \varphi(\overline{z})$. We claim that *G* is also the solution of the Beltrami equation with coefficient μ . Since, $G(0) = 0$ and $G(1) = 1$, by the uniqueness in the MRMT, we conclude that $G(z) \equiv \varphi(z)$, which gives the desired functional equation.

By MRMT, φ is a diffeomorphism from $\mathbb C$ to $\mathbb C$. Thus, $G : \mathbb C \to \mathbb C$ is a diffeomorphism. So, to prove that *G* is the solution of the Beltrami equation, it is enough to show that *G* sends the field of ellipses generated by $\mu(z)$ to the field of circles on C.

The map $z \to \overline{z}$ sends the infinitesimal ellipse given by $\mu(z)$ at z to the ellipse $\mu(z)$ at \overline{z} . This implies that $z \to \overline{z}$ sends the infinitesimal ellipse given by $\mu(\overline{z})$ at \overline{z} to the ellipse $\mu(z)$ at *z*. Then, φ sends the infinitesimal ellipse given by $\mu(z)$ at *z* to the infinitesimal circle at $\varphi(z)$. Combining these together, we conclude that the map $z \mapsto \varphi(\overline{z})$, sends the ellipse given by $\mu(\overline{z})$ at \overline{z} to the infinitesimal circle at $\varphi(\overline{z})$. Finally, since $z \mapsto \overline{z}$ preserves the field of circles (this is the second conjugation in *G*), the map *G* sends the field of ellipses generated by $\mu(\bar{z})$ to the field of circles. However, we already showed that $\mu(\overline{z}) = \mu(z)$. [6pt]

Solution 2: By MRMT, φ is a diffeomorphism from $\mathbb C$ to $\mathbb C$. This implies that the map $H(z) = \varphi(\overline{\varphi^{-1}(\overline{z})})$ is a well-defined diffeomorphism of \mathbb{C} . We aim to show that *H* is biholomorphic from $\mathbb C$ to $\mathbb C$. Evidently, being the composition of the diffeomorphisms φ , φ^{-1} , and the complex conjugation, *H* is one-to-one and onto. It remains to show that *H* is holomorphic.

To prove that *H* is holomorphic, by the Weyl's lemma, it is enough to show that $H_{\overline{z}} \equiv 0$. But, since *H* is a diffeomorphism, this is equivalent to showing that *H* maps the field of circles to the field of circles.

By MRMT, φ sends the field of ellipses generated by $\mu(z)$ to the field of circles on C. Thus, *φ −*1 sends the field of circles to the field of ellipses generated by *µ*(*z*). The complex conjugation sends the field of circles to the field of circles. Hence, $\varphi^{-1}(\overline{z})$ sends the field of circles to the field of ellipses generated by $\mu(z)$. This implies that $\varphi^{-1}(\overline{z})$ sends the field of circles to the field of ellipses generated by $\mu(\overline{z}) = \mu(z)$. As φ sends those ellipses to the field of circles, *H* sends the field of circles to the field of circles.

By a theorem in the lectures, the biholomorphic map $H: \mathbb{C} \to \mathbb{C}$ must be of the form $Az + B$, for some complex constants A and B. On the other hand, as $\varphi(0) = 0$ and $\varphi(1) = 1$, we have $H(0) = 0$ and $H(1) = 1$. These imply that $B = 0$ and $A = 1$. That is, $H(z) = \varphi(\varphi^{-1}(\overline{z})) \equiv z$. This implies that $\varphi(\overline{w}) = \varphi(w)$, for all $w \in \mathbb{C}$. [6pt]