Solutions to mock exam, 2016-17
Course: M3P16, M4P16, M5P16

Solution to Question 1. [(a) seen 6pts; (b) seen 4pts ; (c) seen 10pts]

Part a) A conformal metric on 2 is a continuously differentiable (C') function
p:—[0,00),

where p(z) # 0 except on a discrete subset of 2. [4pts]
The Poincaré metric on D is defined as

p(z) 2pt]

TR

Part b) A one-to-one and onto holomorphic map f : Q@ — Q is called an automor-
phism of ). The set of all automorphisms of U is called the automorphism group of
Q. [2pt]

By a theorem in the lectures, every automorphism of I is of the form

eig. Z—Qa

Z
1—az’

for some 6 € R and a € D. [2pt]

Part c) Let » : D — D be an automorphism of D. First assume that h(z) = ¢ - 2.
We have

-
1 —[n(z)”

1

et = =
|6 | 1—|Z|2

(h*p)(2) = p(h(2)) - [N ()] = = p(2).

Thus, h is an isometry of (D, p). [3pt]
Now assume that h(z) = (2 —a)/(1 —az). we have

(h"p)(2) = p(h(2)) - [ (2)|
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1—|af?
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122 Ja + a2

= p(2).

That is, h is an isometry of (D, p) [5pt]. Since the composition of isometries is an
isometry, we conclude that any member of Aut(D) is an isometry of (D, p) [2pt].



Solution to Question 2. [(a) seen 4pts ; (b) seen 4pts ; (c) unseen 6pts ;
(d) unseen 6pts|

Part a) Let {2 be an open set in C and F be a family (set) of maps that are defined
on ). We say that the family F is normal it every sequence of maps f,, n > 1, in
F has a sub-sequence that converges uniformly on every compact subset of Q. [4pt]

Part b) Theorem: Let F be a family of holomorphic maps defined on an open set
Q C C. If F is uniformly bounded on every compact subset of €2, then

(i) F is equicontinuous on every compact subset of €);

(ii) F is a normal family.

Part c) By Montel’s theorem, it is enough to prove that the family is uniformly
bounded on every compact subset of . Let K C D be an arbitrary compact set.
There is r < 1 such that for all z € K, |z| < r. For every f € F, and every z € K
we have

oo [e.e] oo oo r
1f(z)| =] Zanz"’ < Z la,2"| < Zanz” < an" = —— < +oo.
n=1 n=1 n=1 n=1 (1 - T')

This shows that the family is uniformly bounded on K. [6pt]

It is not necessary to find the precise value of the above series, but any finite
upper bound on the series suffices. However, the above sum have been calculated as
follows. Set S, = r + 2r? + 3r3 + ... + nr", for n > 5. Then,

Sp(l—=7r)=8, —rSy=r+r+r3+r"=r(1—r")/(1—7).

As n — +oo, r" — 0, and hence S, — r/(1 —r)>.

Part d) Let £k : D — C\ (—o0,—1/4] be the Koebe function. That is, k is a
one-to-one and onto holomorphic map. Define the new class of maps

G={k"of|feF}

Every element of G is a holomorphic map defined on D with vales in ID. In particular,
the family G is uniformly bounded on compact sets. By Montel’s theorem, G forms
a normal family.

Let f,, n > 1, be an arbitrary sequence in F. By the above paragraph, the
sequence of maps k~!o f,, for n > 1, has a convergence sub-sequence, say, k' o f,,.,
for 2 > 1, which converges uniformly on compact subsets of . Since k is a continuous
function, it follows that the sequence f,, = ko (k™! o f,.) converges uniformly on
compact subsets of D. [6pt]



Solution to Question 3. [(a) seen 4pts ; (b) seen similar 6pts ; (c) unseen
10pts]

Part a) Let f: D — D be holomorphic with f(0) = 0. Then,

(i) for all z € D we have |f(2)| < |z|;

(i) [fO)] <15

(iii) if either f(z) = z for some non-zero z € D, or |f'(0)| = 1, then f is a rotation
about 0.

[4pt]

Part b) By the Riemann mapping theorem, there is a one-to-one and onto holomor-
phic map ¢ : 2 — D. Moreover, by composition the Riemann map with a Mobius
transformation, we may assume that ¢(z) = 0. [3pt]

The map g = o f oy ! is holomorphic and sends D into I, with g(0) = 0. By
the Schwarz lemma, we must have |¢’(0)| < 1. Thus,

1F(2) =16'(2) - f'(2) - |=1g'(0)] < 1.

[3pt]

Part c) Since, f is one-to-one, its inverse is define and holomorphic on f(2). Since
g(f2) C f(2), the map h = f~! o g is defined an holomorphic on € with values in 2.
Moreover, since f(z) = g(z), we have h(z) = z.

By part (b) of the problem, we must have |h’(z)| < 1. This implies that |¢'(z)] <
£l

[10pt for this. There may be other ways to reduce the problem to the Schwarz
lemma)

Remark: Part (c) introduces a method known as “subordination”: it allows one to
give an upper bound on the derivative of an arbitrary holomorphic function by finding
a conformal map which covers the image of that function.



Solution to Question 4. [(a) seen 6pts; (b) unseen and difficult 14pts]

Part a) Theorem: Let f: D — C be a one-to-one holomorphic map with f(0) =0
and f’(0) = 1. The set f(DD) contains the open ball B(0,1/4). [6pts]

Part b) The plan is to compose the map f with a suitable Mobius transformation
M, and apply the 1/4-theorem to the map M o f. But, for the 1/4-theorem, we
need that M o f(0) = 0 and (M o f)(0) = 1. This is guaranteed by requiring
M (0) = 0 and M'(0) = 1. [3pt, for the idea to post-compose with a suitable Mobius
transformation]

The set of Mébius transformations M (z) = (az +b)/(cz +d) satisfying M (0) =0
and M'(0) = 1 are of the form z/(cz + 1), for an arbitrary complex constant c. [2pt]

Let us first assume that |5] > |a|. We choose ¢ = —1/a so that M(a) = co. We
have M (8) = B/(—=5/a+1). The map h = M o f : D — C is defined, holomorphic,
one-to-one, h(0) = 0, and A'(0) = 1. The map h omits M(F) since f omits 5. By
the 1/4-theorem, we must have |M(S)| > 1/4. Hence

6l = (=B/a+1)/4=2/4=1/2. [5pt]

By a similar argument (replace a with ), we note that if |a| > |3|, then |« >
1/2.

We choose the parameter ¢ = (—f — «) /2 so that M («) = —M (). Apply the
Koebe 1/4-theorem to the map h = M o f, which omits two values M («) and M (p)
of the same size. So, we must have |M(a)| > 1/2, which gives us

8 —al >1/4.
Finally since for all z and y, xy < (z + y)?/4, we conclude that |5 — «| > 1. [4pt]

Remark: Note that the biholomorphic map f: D — C\ ((—o0, —1/2] U [1/2,+00)),

z

& =1ra

we studied in the lectures shows that the above inequality is sharp.



Solution to Question 5. [(a) seen 5pts ; (b) unseen 7pts ; (c) unseen and
difficult 8pts]

Part a) Theorem: Let p : C — D be a continuous map with sup,c¢|p(z)] < 1.
Then, there is a quasi-conformal map f : C — C such that fz(z) = p(z)f.(z) holds
on C. [3pts]

Moreover, the solution f is unique if we assume that f(0) = 0 and f(1) = 1.
[2pts]

Part b) By MRMT, we need to verify that p is continuous and supe |u| < 1. [2pt]

Continuity: On Im z > 0 and Im z < 0 p is continuous since it is given by a linear
combination of the exponential maps. We need to show that the two formulas match
on Im z = 0. The first formula becomes

u(z) = i(ez’z b e ) = i(eiz Femi),
The second one becomes
1, _. _ 1 . .
plz) = (7 4 €)= (e + e,

This shows that p is continuous on C. [2pt]
Size of p: Let z = x 4+ 1y. When Im z = y > 0, we have

1, . _ 1 1 1
1)) < (e +1e77) = 7]+ le]) < 1+ 1) = 5.
When, Imz =y <0,
1 , _ 1 1 1
p()] < (e ]+ 1) = F(] + 1el) < 70+ 1) = 3.

Hence, supg |p| < 1/2 < 1. [3pt]

Part c) First we show that p(z) = p(z). When Im 2z > 0,

1— — 1 .
wlz) = e +em) = 2(e7 + ),

and (as Imz < 0)

When Im 2z <0,

1— — 1, . ,
W) = e T e = e ),

and (as Imz > 0)



These show that u(z) = p(z) on C. [2pt]
For the remaining part we present two solutions.

Solution 1: Define G(z) = ¢(Z). We claim that G is also the solution of the Beltrami
equation with coefficient p. Since, G(0) = 0 and G(1) = 1, by the uniqueness in the
MRMT, we conclude that G(z) = ¢(z), which gives the desired functional equation.

By MRMT, ¢ is a diffeomorphism from C to C. Thus, G : C — C is a diffeomor-
phism. So, to prove that G is the solution of the Beltrami equation, it is enough to
show that G sends the field of ellipses generated by u(z) to the field of circles on C.
The map z — Z sends the infinitesimal ellipse given by u(z) at z to the ellipse
1(z) at Z. This implies that z — % sends the infinitesimal ellipse given by u(Z) at
Z to the ellipse p(z) at z. Then, ¢ sends the infinitesimal ellipse given by pu(z) at z
to the infinitesimal circle at ¢(z). Combining these together, we conclude that the
map z — (Z), sends the ellipse given by u(Z) at Z to the infinitesimal circle at p(Z).
Finally, since z +— Z preserves the field of circles (this is the second conjugation in

(), the map G sends the field of ellipses generated by p(Z) to the field of circles.

However, we already showed that u(z) = u(z). [6pt]

Solution 2: By MRMT, ¢ is a diffeomorphism from C to C. This implies that
the map H(z) = ¢(¢ (%)) is a well-defined diffeomorphism of C. We aim to show
that H is biholomorphic from C to C. Evidently, being the composition of the
diffeomorphisms ¢, !, and the complex conjugation, H is one-to-one and onto. It
remains to show that H is holomorphic.

To prove that H is holomorphic, by the Weyl’s lemma, it is enough to show that
H> = 0. But, since H is a diffeomorphism, this is equivalent to showing that H maps
the field of circles to the field of circles.

By MRMT, ¢ sends the field of ellipses generated by p(z) to the field of circles on
C. Thus, ¢! sends the field of circles to the field of ellipses generated by pu(z). The
complex conjugation sends the field of circles to the field of circles. Hence, ¢ !(2)
sends the field of circles to the field of ellipses generated by p(z). This implies that
¢~ 1(Z) sends the field of circles to the field of ellipses generated by u(z) = p(z). As
v sends those ellipses to the field of circles, H sends the field of circles to the field
of circles.

By a theorem in the lectures, the biholomorphic map H : C — C must be of the
form Az + B, for some complex constants A and B. On the other hand, as ¢(0) =0
and (1) = 1, we have H(0) = 0 and H(1) = 1. These imply that B =0 and A = 1.
That is, H(z) = ¢(¢~1(Z)) = 2. This implies that ¢(w) = ¢(w), for all w € C. [6pt]




