Imperial College London

Course: Setter: Cheraghi Checker: Holzegel Editor: Helm External: Carbery Date: April 20, 2017

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May – June 2017

Setter's signature	Checker's signature	Editor's signature

© 2017 Imperial College London

- 1. Let Ω be a non-empty open set in \mathbb{C} .
 - (a) Define the notion of *conformal metric* on Ω . What is the *Poincaré conformal metric* on the open unit disk \mathbb{D} .
 - (b) Define the notion of *automorphism* of Ω . What is the *automorphism group* of the unit disk \mathbb{D} .
 - (c) Prove that every automorphism of \mathbb{D} is an *isometry* with respect to the Poincaré metric.
- 2. (a) Define the notion of *normal family*.
 - (b) State (without proof) Montel's normal family theorem.
 - (c) Let \mathcal{F} be the set of holomorphic maps $f : \mathbb{D} \to \mathbb{C}$ where $f(z) = \sum_{n=1}^{\infty} a_n z^n$ with $|a_n| \leq n$, for all $n \geq 0$. Prove that \mathcal{F} forms a *normal family*.
 - (d) Let \mathcal{F} be the set of holomorphic maps defined on \mathbb{D} with values in $\mathbb{C} \setminus (-\infty, -1/4]$. Prove that \mathcal{F} forms a *normal family*.
- 3. Let $\Omega \subsetneq \mathbb{C}$ be a non-empty and simply connected open set.
 - (a) State (without proof) the *Schwarz lemma*.
 - (b) Let $f: \Omega \to \Omega$ be a holomorphic map. Assume that for some $z \in \Omega$, f(z) = z. Prove that $|f'(z)| \le 1$.
 - (c) Let $f: \Omega \to \mathbb{C}$ be a one-to-one holomorphic map. Assume that $g: \Omega \to \mathbb{C}$ is an arbitrary holomorphic map such that $g(\Omega) \subseteq f(\Omega)$, and f(z) = g(z) for some $z \in \Omega$. Prove that $|g'(z)| \leq |f'(z)|$.
- 4. Let $f : \mathbb{D} \to \mathbb{C}$ be a one-to-one holomorphic map, with f(0) = 0 and f'(0) = 1. Assume that there are $\alpha \in \mathbb{C} \setminus f(\mathbb{D})$ and $\beta \in \mathbb{C} \setminus f(\mathbb{D})$ with $\arg \alpha = \arg \beta + \pi$.
 - (a) State (without proof) the *Koebe* 1/4-*Theorem*.
 - (b) Prove that

$$|\alpha| + |\beta| \ge 1.$$

[hint: compose f with a Mobius transformation]

- 5. (a) State (without proof) the *measurable Riemann mapping theorem* for the Beltrami equation with continuous coefficients.
 - (b) Define the function

$$\mu(z) = \begin{cases} \frac{1}{4} \cdot (e^{iz} + e^{-i\overline{z}}) & \text{ if } \operatorname{Im} z \ge 0\\ \frac{1}{4} \cdot \left(e^{-iz} + e^{i\overline{z}}\right) & \text{ if } \operatorname{Im} z < 0 \end{cases}.$$

Does the Beltrami equation with coefficient μ have a solution?

(c) Let $\phi : \mathbb{C} \to \mathbb{C}$ be the solution of the Beltrami equation with coefficient μ and normalization $\phi(0) = 0$ and $\phi(1) = 1$. Prove that $\phi(\overline{z}) = \overline{\phi(z)}$, for all $z \in \mathbb{C}$. [hint: use $\mu(\overline{z}) = \overline{\mu(z)}$]