Chapter 8

Appendix

8.1 Hints to exercises

In this appendix we provide hints to the exercises. Please note that these will be brief and
do not suggest a suitable style of writing proofs in mathematics. The complete solutions
to the difficult exercises are given. These have been indicated by [complete solution] at

the beginning of the solution, and suggest a proper way of writing solutions.

Chapter 2

2.1: Let v1(2) =rz+a and p2(z) = sz+b. Then, p1 : D — B(a,r) and @3 : D — B(b, s)
are biholomorphisms. It follows that ¢5 L5 fopr : D — D is defined and holomorphic, and
maps 0 to 0. By Lemma 2.1, we have |(¢; ' o f 0 ¢1)/(0)] < 1. This implies |f"(a)| < s/7.

2.2: We have seen that ¢,(z) = (a — 2)/(1 —az) belongs to Aut(D). Recall that ¢, is the
inverse of .

(i) Apply Lemma 2.1-(ii) to the map <p]7(1a)o fowa, and explicitly calculate the derivatives
of ¢, and @y (4).

(ii) Apply Lemma 2.1-(i) to the map gp)j(la) o f o, at o t(b).

2.3: The map ¢(z) = Iéﬁi&)z + (Rea — IHIIH;L&) Rea) is an automorphism of H that maps
h(a) to a. Let ¢ : D — H be a biholomorphic map with ¢(0) = a. Then, apply Lemma 2.1-
(ii) to the map ¥~ o p o h o). Note that (»~1)'(a) = 1/9'(0), so |(¢ o h)'(a)| < 1. You
need to calculate ¢'(h(a)).

2.4: First note that it is enough to show that every point in ID can be mapped to 0. Then

compose such maps to obtain an automorphism that maps z to w.

Chapter 3

3.1: (i) Solve for A and B in f(z) = Az + B.
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(ii) First note that it is enough to show that any three distinct points can be mapped

to 0, 1, and co. Then, compose such maps and their inverses to get the desired map.
3.2: Apply the removable singularity theorem to the map z + 1/f(1/z).

3.3: [Complete solution]
(i) Since €2 is an opens set, there is r > 0 such that B(zp,7) C Q. Then, f has a

convergent power series expansion on B(zg,r), say

f(2) = f(z0) + a1(z — 20) + as(z — 20)* + . ...

As zg is a zero of order k, we must have a; =0 for all 1 <i <k — 1, and ag # 0. Then,
f(z) — ak(z — Zo)k —+ ak_,’_l(z — zo)kJrl + o= (2,’ — Zo)k(ak =+ ak+1(z — ZO) + .. )

The function h(z) = ar + ag+1(z — 2z0) + ... is holomorphic on B(z,r), and in particular
it is continuous. Then, for € = |ag|/2 > 0 there is § > 0 such that if |z — 29| < & then
|h(2) — h(20)| < €. Here we may assume that § < r, as otherwise we may take min{d,r}.
The inequality means that h maps B(zp,d) into B(ag, |ag|/2)). On the other hand, since
B(ag, |ak|/2) does not meet the line segment —ayr, for r € [0, 00), there is a holomorphic
branch of the k-th-root function defined on this ball. That is, {/h(z) is defined and
holomorphic on B(zy, 9).
We have

F(2) = (2 = 20)*(ar + ars1 (2 — 20) + ... ) = ((z — 20) /R(2))",

that is, ¥(z) = (z — 20) /h(2).

(ii) For the map 1 obtained in part (i), we have ¢ (z9) = 0, and by the product rule,
Y'(2z9) # 0. By the inverse function theorem, ¢ has an inverse defined on a neighborhood
of ¢(z9) = 0. Let g be this inverse map that is defined on B(0,r), for some r > 0.

For every w € B(0,7F), there are exactly k points wy,ws, ..., wy in B(0,r) such that
w? = w. Then the points z; = g(w;) provide k solutions for the equation f(z) = w. To

see that there are at most k solutions, assume that f(z) = w for some w € B(0, 7). Then

Y(2)* = w, which implies that 1(z) is a k-th root of w. Thus, z; are the only solutions.

3.4: (i) Assume that f is not constant. Let U be an open set in 2. We need to show that
f(U) is open. Fix an arbitrary wg € f(U). There is zo € U with f(z9) = wp. Since, f is
not constant, the function z — f(2) — wp has a zero of some finite order k > 1 at zy. By
the previous exercise, f(z) — wy is locally k to 1 near zy. That is, for every w near wy,

there is z near zg such that f(z) = w. Since U is open, the points sufficiently close to zg
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are in U. This means that a neighborhood of wy is contained in f(U). As wg € f(U) was
arbitrary, we conclude that f(U) is open.

(ii) Assume that f is not a constant map. As f : Q@ — C is an open mapping,
f(£2) is an open set in C. Fix an arbitrary z € Q. As f(Q) is open, there is 7 > 0
such that B(f(z),r) C f(f2). Now, choose w' € B(f(z),r) with |w'| > |f(z)|. Since
B(f(2),r) C f(2), there is 2’ € Q with f(2') = w'. Hence, |f(2")| > |f(2)]-

By the above argument, for every z € , there is 2/ € Q such that |f(2')| > |f(2)].

This implies the maximum principle.

3.5: First show that the linear map h(z) = az + b and the inversion h(z) = 1/z map
lines and circles to lines and circles. Then show that any Mobius transformation may be

written as composition of these maps.

3.6: First show that there are at most finite number of points a1, as, ...aq in D with

Consider the function

d
z—aj
h(z) = E - @JZ
and show that it maps D into D and maps 9D to JD.
Consider the rational function ¢(z) = ¢(z)/h(z). Show that there are no points in
D U 0D that are mapped to 0.

Show that ¢ maps D to D. Conclude that for all z € C we have o(z) = 1/¢(1/7),

where Z denotes the complex conjugate of z.
By the above two paragraphs, there are no points in C which are mapped to 0 by .

This implies that ¢ is a constant function, which must belong to 0D.

Chapter 4

4.1: You need to verify the three conditions for being a metric.

Property (i): This is obvious from the definition of the length of a curve. That is, the
length of a curve is independent of the parametrization and the direction of the curve.

Property (ii): Since the length of any curve is non-negative, the infimum of a set of
non-negative numbers is a non-negative number.

If z = w, then the constant curve from z to w has zero length with respect to p. Thus,
dy(z,2) =0.

Now assume that z # w and let r = |z — w| > 0. Since Q is open there is 7 > 0

such that B(z,r1) C Q. Also, as the set of zero’s of p is discrete, there is a positive
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e < min{r,r;} such that p has at most one zero on B(z,¢) (the only possible zero is z).
Consider the compact set A = {( € Q | ¢/4 < |z — (| < ¢/2}, which is contained in .
The function p is continuous and positive on A, and hence its minimum on A is strictly
positive, say m > 0.

Let v : [a,b] — € be a piece-wise C! curve with vy(a) = z and y(b) = w. Then,
lo(v) = / p(v()1'(s)|ds > / p(y(s)1'(s)|ds
[a,b] {tela,b];y(t)eA
>m-/ ]'y'(s)]dSZm-S
{tela,b];y(t)eA 4

As me/4 does not depend on v, by the definition of infimum, d,(z,w) > me/4. Hence,
d,(z,w) > 0.

By the above paragraphs, d,(z,w) = 0 iff z = w.

Property (iii): Let  a piece-wise C! curve connecting x to z, and ¢ a piece-wise C*
curve connecting z to y. Then 7 followed by ¢ is a piece-wise C! curve connecting x to 7.
By definition,

dp(z,y) < Lp(nUE) = Lo(n) + £,(8).

Now, take infimum over I'; ., and then over I', , to conclude the triangle inequality.

4.2: First note that p > 1, which implies that d,(z,w) > |z — w|. In particular, if z;
converges to z w.r.t d,, then, |z — z| = 0.

On the other hand, if z; converges to z w.r.t Euclidean distance, then, there is r < 1
such that z; € B(0,r), for all i. Now, let M be the supremum of p on B(0,7). M is a
finite number. We have d,(2;,2) < M|z — z|. Hence, d,(2, z) — 0.

4.3: Let z; be a Cauchy sequence in (D, p). First show that there is » < 1 such that for
all i > 1, z; € B(0,r). Then conclude that z; is a Cauchy sequence w.r.t the Euclidean

distance.

4.4: Use an isometry of the dist to map 2z to 0. Then use that the Mobius transformations

map circles to circles in Exercise 3.5.
4.5: Show that there is a one-to-one correspondence between I'; ., and I'¢(;) ().

4.6: By definition,

1 2 2 |
F*p)(w) = p(F(w)) - |F'(w)] = ——— - - = -
(Ep)(w) = p(F(w) - [F(w)] 122 JitwP it el —fi-w?  2[Imuw|
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Chapter 5

5.1: Write the circle of radius 7 as re??, and note that
f(re??y = (r+1/r)cos® + i(r —1/r)sinb,
and use the identity cos?6 + sin?6 = 1.
5.2: From Example 5.6, replace sin and cos in terms of ¢%* in tan z = sin z/ cos z.

5.3: On can do this by composition of a number of elementary transformations. First
apply the biholomorphism g;(z) = zijﬁ (see Equation 2.1) to Q to obtain H \ [0, 1/3]s.
Then apply g2(2) = —i-ztoget B = {w € C | Rew > 0}\(0,1/3). Next, apply g3(z) = 22,
to obtain C\ (—o0,1/3), then apply g4(z) = z—1/3 to obtain C\ (—o0,0), and then apply

g5(z) = \/z to obtain the right half plane.

5.4: If a family of maps F is not uniformly bounded on compact sets, then there is a
compact set E C Q such that the family is not uniformly bounded on E. This means
that for any n € N there is z, € E and f, € F such that |f,(z)] > n. Since E is
compact, {z,} has a sub-sequence, say ny, converging to some z € E. It follows that
the sequence {fp, } has no sub-sequence converging uniformly on compact subsets of 2.
That is because, if there is a sub-sequence of {fp,, } converging to some g : Q@ — C, then

g(z) = lim fp,, (2, ) = co. This is a contradiction as g maps € to C.

5.5: Properties (i) and (ii) are easy to see. For property (iii) introduce the function
h(r) =r/(1+r), for r > 0. Prove h(a+b) < h(a) + h(b) for all a and b in (0, c0).
5.6: First show that the functions
supg, | £(2) — 9(2)|
d;(f,9) = =
1 +supg, |f(z) —g(2)|

satisfy the conditions for a metric on C°(E;). Then prove that the sum of such metrics

(multiplied by 1/2! to make the sum convergent) is a metric on €, provided FE; form an

exhaustion of €.

5.8: Use Proposition 5.10. That is, if f, — f uniformly on compact subsets of {2 then

f, — f’ uniformly on compact subsets of Q.

5.9: By Theorem 5.15, it is enough to show that the family is uniformly bounded on
compact sets. Let E be a compact subsets of D. There is r < 1 such that E C B(0,r).
Then, for all z € E we have

o0 (o9} o
1f(2)] < T+Z|anz"| < 7“—1—2717“” < an” = M, < occ.
n=2 =2 i=1
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This means that the family is uniformly bounded from above on FE.

5.10: See proof of Theorem 5.15

Chapter 6

6.1: [complete solution] By Montel’s theorem from the lecture notes (Theorem 5.15) it is
enough to show that the family S is uniformly bounded on compact subsets of D. Let E
be an arbitrary compact set in D. There is § < 1 such that £ C B(0,d). By the growth

theorem, 6.9, for every z € E we have

z o
16 < o < g <

As the upper bound only depends on F, we conclude that the family is uniformly bounded
on FE.

6.2: First show that |f/(0)| < 4c. Then apply Theorem 6.9 to an appropriately normalized

map.

6.3: [complete solution] (i) For every k > 2, the set Ay is uniformly bounded in C. If this

is not true, there is a sequence of maps f, in S such that f,gk)(O) — 0o. By Exercise 6.1,

S is a normal family and there must be a sub-sequence of f,, that converges uniformly on

compact sets to some holomorphic maps g : D — C. In particular, g(k)(O) is defined and

finite. This contradicts the convergence of f,(lk)(O) — ¢¥)(0) guaranteed in Theorem 5.10.
By the above paragraph, for every k£ > 2, the set

Ap = {lw[ | w e Ay}

is bounded from above. This set is also non-empty as it contains 0; the k-th derivative of
the identity map in S. It follows that the above set has a supremum which is finite. Let

r;. denote the supremum of the above set. Therefore,
A C{w e C||w| < ri}-

Fix an arbitrary k£ > 2.

By the definition of supremum, either r; belongs to A or there is a sequence of real
numbers a; € Ay, for ¢ > 1, such that a; — 7. In the former case we conclude that
there is f € S such that [f*)(0)] = 7. In the latter case, let f; € S be such that
| fi(k) (0)| = a;. There is a sub-sequence of f; that converges to some map g in S. We must

have |¢¥)(0)| = 7. So, there is always an f € S such that [f*)(0)| = ry.
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By the above paragraph there is a point on the circle |w| = r; that belongs to Ag.
The operations of rotation and dilatation discussed in the lecture notes show that Aj is
invariant under rotations about 0 and is invariant under multiplication by r € (0,1). We

also showed earlier that 0 belongs to Ag. This proves that the above inclusion is equality.

(ii) By the Cauchy integral formula for the derivatives, for every r € (0,1) we have

k! f(2)
pom) dz.

k) (o) = 2
OE =

Then by the growth theorem, Theorem 6.9, we obtain

k! f k! f
190 = 2] /| . I | < 2 /| B LEI

<k1/27r7~ d< M
21 Jo (1 —r)2pktl rav= (1 —r)2rk’

The above bound holds for all » € (0,1). We may find the minimum of the function

% on (0,1), by differentiating the function. The minimum occurs at r = 1 — 1/,

and the minimum value is

kK2
(1—1/k)=1
The denominator of the above expression tends to the constant e as k — oo. Hence, the

denominator is uniformly bounded away from 0, independent of k.

6.5: (i) Let 1 and ¢y be two such maps. Apply the Schwarz lemma, 2.1, to the maps
3! opr and 7! o o,
(ii) The upper bound follows from the 1/4-theorem, the lower bound follows from the

Schwarz lemma.

6.6:[complete solution] Let v : [0,1] — C be a smooth simple closed curve. Then, vy
bounds a convex region if the slope of the tangent to = is increasing. This is equivalent to
saying that

0

&(arg*y’(t)) > 0,Vt € [0,1]. (8.1)

For instance, for the curve v(t) = €™, for t € [0, 1], we have ~}(t) = 2mie*™*. Thus,
g(arg’y' (t) = Q(Tr/2 +27t) =27 >0
ot 0 ot ‘

So, for the inequality in Equation (8.1) to hold, it is enough to have

)%(Mg v(#) = %(arg vé(t))‘ < (8:2)
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Next we note that %(arg 7/(t) is given in terms of 4/ and +”. This implies that, there is
0 > 0 such that if for all ¢ € [0, 1, if we have

o) =2 <0, () =" (B)] <4, (8.3)

then Equation (8.2) holds. (In other words, if a closed curve v, is close enough to 7o in
CY, C', and C? metrics, then it bounds a convex region containing 0.)

For an arbitrary f € S and r € (0,1) let

fr(z) = L f(r-z),Vz eD.

r
We have, f(B(0,7)) = - fr(D). In particular, f(B(0,r)) is a convex region, iff f,(D) is
a convex region. We aim to show that for small enough r, independent of f € S, f.(D)
is convex. As 7 is the image of the circle |z| = 1 under the identity map, by virtue of

Equation 8.3, it is enough to show that for all z € D, we have
[fr(2) =1 <6, [f(2) —0] <. (8.4)

However, f/(z) = f'(rz), and f/(z) = f"(rz) - r. Tt follows from the distortion theorems
6.7 and 6.6, that for small enough r, independent of f, one may guarantee the above

inequalities. This completes the proof.

Chapter 7

7.2: These may be reduced to the usual derivatives with respect to x and y using the

formulas in Equation (7.5).

7.3: Define the map h(z) = g~ ' o f from C to C. Show that 0h/9z = 0, that is, h is 1-
quasi-conformal. Then apply Corollary 7.9 to h to conclude that h : C — C is holomorphic
and one-to-one. As h(0) =0 and h(1) =1, by 3.15, h must be the identity map.

7.4: Use the definition of absolute continuity with ¢ = 1 to obtain some 0. Then, [a,b] is
covered by at most N = ||b — a|/d| + 1 number of intervals of length bounded by 4.

7.5: Assume that a sequence f°" converges uniformly on compact subsets of U. By
the open mapping property of f, V = f(U) is open, and one can show that the se-
quence of functions f°™~1 converges uniformly on compact subsets of V. This shows that
R(F(R)) C F(R). The argument in the other direction is similar, and uses the f~1(U) is

open.

7.6: [complete solution]
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(i): Let us define the function g(z) = R°"(z). Let 6 = |¢'(20)| < 1 and choose ¢’ € (4, 1).
By the continuity of z — ¢’(z) there is r > 0 such that for all z € C with d(z,z0) <1 we
have |¢/(2)] < ¢'. Let U = {z € C: d(z, 20) < r}. Now, for z € U we have

d(g(2), 20) = d(g(2), 9(20)) < sup 9'(c)| - d(z, 20) < 0'r <.

This implies that ¢ maps U into U. In particular, for z € U the iterates ¢°"(z), for n > 1,
are all defined and belong to U.
For z € U we have

d(g°*(2), 20) = d(9°"(2), g°* (20)) < sup (9% (€)] - d(z, 20) < (8)F -

Since §' < 1, (6')% - r tends to zero as n tends to infinity. Hence, the iterates g°* converge
uniformly on U to the constant map zp. In particular, the iterates ¢°* = R°™ for k > 1,

converges uniformly on compact sets in U to the constant function zg.

(ii): Let us in the contrary assume that there is an open neighborhood U of zp and a
sequence of iterates R°*m for m > 1, which converges on compact subsets of U to some
holomorphic map g : U — C. Consider the integers k,,, modulo n, and observe that there
must be a sub-sequence of k,,, denoted by j.,,, that are the same modulo n. That is, there

are integers t,,, € N, and an integer » > 0 such that j,, = t;,n + r. Then,
(R (20) = (R o (R™)°"™)'(20) = (R (20) -

As § > 1, we conclude that (R%™)'(z) tends to infinity. But, by Theorem 5.10, we
must have ¢'(z0) = limy, 00 (R%™)(29) = oo. This contradiction shows that there is no

convergent sub-sequence on any neighborhood of zj.

(iii): Let g = R°?"(z). We have g(z9) = 29 and ¢'(z9) = 1. There is a neighborhood of
2o on which ¢ has a convergent power series g(z) = zo + (2 — 20) + ag(z — 20) + ... with
aqg # 0. A basic calculation shows that g°%(2) = 2o + (2 — 20) + kaa(z — 20)® +.... This
implies that the d-th derivatives (g°%)(®(zg) tend to co. As in part (ii), this implies that
¢°% has no sub-sequence that converges uniformly on compact sets on a neighborhood of
20.

Assume that there is a sub-sequence R°*m that converges on some open set U contain-
ing z9. Let ky, = (qn)ty, + rp with integers ¢, and 0 < r,, < gn — 1. There is a further
sub-sequence of k,;, such that r,, are equal for different values of m. Let r = r,, be this
constant. It follows that R°(@im+1 = Ro(an=7) o R%m converges uniformly on compact

subsets of U. This contradicts the above paragraph.
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