
Chapter 8

Appendix

8.1 Hints to exercises

In this appendix we provide hints to the exercises. Please note that these will be brief and

do not suggest a suitable style of writing proofs in mathematics. The complete solutions

to the difficult exercises are given. These have been indicated by [complete solution] at

the beginning of the solution, and suggest a proper way of writing solutions.

Chapter 2

2.1: Let ϕ1(z) = rz+ a and ϕ2(z) = sz+ b. Then, ϕ1 : D → B(a, r) and ϕ2 : D → B(b, s)

are biholomorphisms. It follows that ϕ−1
2 ◦f ◦ϕ1 : D → D is defined and holomorphic, and

maps 0 to 0. By Lemma 2.1, we have |(ϕ−1
2 ◦ f ◦ ϕ1)′(0)| ≤ 1. This implies |f ′(a)| ≤ s/r.

2.2: We have seen that ϕa(z) = (a− z)/(1− az) belongs to Aut(D). Recall that ϕa is the

inverse of ϕa.

(i) Apply Lemma 2.1-(ii) to the map ϕ−1
f(a)◦f◦ϕa, and explicitly calculate the derivatives

of ϕa and ϕf(a).

(ii) Apply Lemma 2.1-(i) to the map ϕ−1
f(a) ◦ f ◦ ϕa at ϕ−1

a (b).

2.3: The map ϕ(z) = Im a
Imh(a)z + (Re a− Im a

Imh(a) Re a) is an automorphism of H that maps

h(a) to a. Let ψ : D → H be a biholomorphic map with ψ(0) = a. Then, apply Lemma 2.1-

(ii) to the map ψ−1 ◦ ϕ ◦ h ◦ ψ. Note that (ψ−1)′(a) = 1/ψ′(0), so |(ϕ ◦ h)′(a)| ≤ 1. You

need to calculate ϕ′(h(a)).

2.4: First note that it is enough to show that every point in D can be mapped to 0. Then

compose such maps to obtain an automorphism that maps z to w.

Chapter 3

3.1: (i) Solve for A and B in f(z) = Az +B.
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(ii) First note that it is enough to show that any three distinct points can be mapped

to 0, 1, and ∞. Then, compose such maps and their inverses to get the desired map.

3.2: Apply the removable singularity theorem to the map z &→ 1/f(1/z).

3.3: [Complete solution]

(i) Since Ω is an opens set, there is r > 0 such that B(z0, r) ⊂ Ω. Then, f has a

convergent power series expansion on B(z0, r), say

f(z) = f(z0) + a1(z − z0) + a2(z − z0)
2 + . . . .

As z0 is a zero of order k, we must have ai = 0 for all 1 ≤ i ≤ k − 1, and ak ̸= 0. Then,

f(z) = ak(z − z0)
k + ak+1(z − z0)

k+1 + · · · = (z − z0)
k
(
ak + ak+1(z − z0) + . . .

)
.

The function h(z) = ak + ak+1(z − z0) + . . . is holomorphic on B(z0, r), and in particular

it is continuous. Then, for ε = |ak|/2 > 0 there is δ > 0 such that if |z − z0| < δ then

|h(z)− h(z0)| < ε. Here we may assume that δ < r, as otherwise we may take min{δ, r}.
The inequality means that h maps B(z0, δ) into B(ak, |ak|/2)). On the other hand, since

B(ak, |ak|/2) does not meet the line segment −akr, for r ∈ [0,∞), there is a holomorphic

branch of the k-th-root function defined on this ball. That is, k
√

h(z) is defined and

holomorphic on B(z0, δ).

We have

f(z) = (z − z0)
k
(
ak + ak+1(z − z0) + . . .

)
=
(
(z − z0)

k
√

h(z)
)k
,

that is, ψ(z) = (z − z0) k
√
h(z).

(ii) For the map ψ obtained in part (i), we have ψ(z0) = 0, and by the product rule,

ψ′(z0) ̸= 0. By the inverse function theorem, ψ has an inverse defined on a neighborhood

of φ(z0) = 0. Let g be this inverse map that is defined on B(0, r), for some r > 0.

For every w ∈ B(0, rk), there are exactly k points w1, w2, . . . , wk in B(0, r) such that

wk
i = w. Then the points zi = g(wi) provide k solutions for the equation f(z) = w. To

see that there are at most k solutions, assume that f(z) = w for some w ∈ B(0, rk). Then

ψ(z)k = w, which implies that ψ(z) is a k-th root of w. Thus, zi are the only solutions.

3.4: (i) Assume that f is not constant. Let U be an open set in Ω. We need to show that

f(U) is open. Fix an arbitrary w0 ∈ f(U). There is z0 ∈ U with f(z0) = w0. Since, f is

not constant, the function z &→ f(z)− w0 has a zero of some finite order k ≥ 1 at z0. By

the previous exercise, f(z) − w0 is locally k to 1 near z0. That is, for every w near w0,

there is z near z0 such that f(z) = w. Since U is open, the points sufficiently close to z0
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are in U . This means that a neighborhood of w0 is contained in f(U). As w0 ∈ f(U) was

arbitrary, we conclude that f(U) is open.

(ii) Assume that f is not a constant map. As f : Ω → C is an open mapping,

f(Ω) is an open set in C. Fix an arbitrary z ∈ Ω. As f(Ω) is open, there is r > 0

such that B(f(z), r) ⊂ f(Ω). Now, choose w′ ∈ B(f(z), r) with |w′| > |f(z)|. Since

B(f(z), r) ⊂ f(Ω), there is z′ ∈ Ω with f(z′) = w′. Hence, |f(z′)| > |f(z)|.
By the above argument, for every z ∈ Ω, there is z′ ∈ Ω such that |f(z′)| > |f(z)|.

This implies the maximum principle.

3.5: First show that the linear map h(z) = az + b and the inversion h(z) = 1/z map

lines and circles to lines and circles. Then show that any Mobius transformation may be

written as composition of these maps.

3.6: First show that there are at most finite number of points a1, a2, . . . ad in D with

g(ai) = 0.

Consider the function

h(z) =
d∏

j=1

z − aj
1− ajz

and show that it maps D into D and maps ∂D to ∂D.
Consider the rational function ϕ(z) = g(z)/h(z). Show that there are no points in

D ∪ ∂D that are mapped to 0.

Show that ϕ maps ∂D to ∂D. Conclude that for all z ∈ Ĉ we have ϕ(z) = 1/ϕ(1/z),

where z denotes the complex conjugate of z.

By the above two paragraphs, there are no points in Ĉ which are mapped to 0 by ϕ.

This implies that ϕ is a constant function, which must belong to ∂D.

Chapter 4

4.1: You need to verify the three conditions for being a metric.

Property (i): This is obvious from the definition of the length of a curve. That is, the

length of a curve is independent of the parametrization and the direction of the curve.

Property (ii): Since the length of any curve is non-negative, the infimum of a set of

non-negative numbers is a non-negative number.

If z = w, then the constant curve from z to w has zero length with respect to ρ. Thus,

dρ(z, z) = 0.

Now assume that z ̸= w and let r = |z − w| > 0. Since Ω is open there is r1 > 0

such that B(z, r1) ⊂ Ω. Also, as the set of zero’s of ρ is discrete, there is a positive
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ε < min{r, r1} such that ρ has at most one zero on B(z, ε) (the only possible zero is z).

Consider the compact set A = {ζ ∈ Ω | ε/4 ≤ |z − ζ| ≤ ε/2}, which is contained in Ω.

The function ρ is continuous and positive on A, and hence its minimum on A is strictly

positive, say m > 0.

Let γ : [a, b] → Ω be a piece-wise C1 curve with γ(a) = z and γ(b) = w. Then,

ℓρ(γ) =

∫

[a,b]
ρ(γ(s))|γ′(s)|ds ≥

∫

{t∈[a,b];γ(t)∈A
ρ(γ(s))|γ′(s)|ds

≥ m ·
∫

{t∈[a,b];γ(t)∈A
|γ′(s)|ds ≥ m · ε

4
.

As mε/4 does not depend on γ, by the definition of infimum, dρ(z, w) ≥ mε/4. Hence,

dρ(z, w) > 0.

By the above paragraphs, dρ(z, w) = 0 iff z = w.

Property (iii): Let η a piece-wise C1 curve connecting x to z, and ξ a piece-wise C1

curve connecting z to y. Then η followed by ξ is a piece-wise C1 curve connecting x to y.

By definition,

dρ(x, y) ≤ ℓρ(η ∪ ξ) = ℓρ(η) + ℓρ(ξ).

Now, take infimum over Γx,z, and then over Γz,y to conclude the triangle inequality.

4.2: First note that ρ ≥ 1, which implies that dρ(z, w) ≥ |z − w|. In particular, if zi

converges to z w.r.t dρ, then, |zi − z| → 0.

On the other hand, if zi converges to z w.r.t Euclidean distance, then, there is r < 1

such that zi ∈ B(0, r), for all i. Now, let M be the supremum of ρ on B(0, r). M is a

finite number. We have dρ(zi, z) ≤ M |zi − z|. Hence, dρ(zi, z) → 0.

4.3: Let zi be a Cauchy sequence in (D, ρ). First show that there is r < 1 such that for

all i ≥ 1, zi ∈ B(0, r). Then conclude that zi is a Cauchy sequence w.r.t the Euclidean

distance.

4.4: Use an isometry of the dist to map z to 0. Then use that the Mobius transformations

map circles to circles in Exercise 3.5.

4.5: Show that there is a one-to-one correspondence between Γz,w and Γf(z),f(w).

4.6: By definition,

(F ∗ρ)(w) = ρ(F (w)) · |F ′(w)| = 1

1− | i−w
i+w |2

· 2

|i+ w|2 =
2

|i+ w|2 − |i− w|2 =
1

2| Imw| .
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Chapter 5

5.1: Write the circle of radius r as reiθ, and note that

f(reiθ) = (r + 1/r) cos θ + i(r − 1/r) sin θ,

and use the identity cos2 θ + sin2 θ ≡ 1.

5.2: From Example 5.6, replace sin and cos in terms of eiz in tan z = sin z/ cos z.

5.3: On can do this by composition of a number of elementary transformations. First

apply the biholomorphism g1(z) = i1−w
1+w (see Equation 2.1) to Ω to obtain H \ [0, 1/3]i.

Then apply g2(z) = −i·z to get B = {w ∈ C | Rew > 0}\(0, 1/3). Next, apply g3(z) = z2,

to obtain C\ (−∞, 1/3), then apply g4(z) = z−1/3 to obtain C\ (−∞, 0), and then apply

g5(z) =
√
z to obtain the right half plane.

5.4: If a family of maps F is not uniformly bounded on compact sets, then there is a

compact set E ⊂ Ω such that the family is not uniformly bounded on E. This means

that for any n ∈ N there is zn ∈ E and fn ∈ F such that |fn(z)| ≥ n. Since E is

compact, {zn} has a sub-sequence, say nk, converging to some z ∈ E. It follows that

the sequence {fnk} has no sub-sequence converging uniformly on compact subsets of Ω.

That is because, if there is a sub-sequence of {fmk} converging to some g : Ω → C, then
g(z) = lim fmk(zmk) = ∞. This is a contradiction as g maps Ω to C.

5.5: Properties (i) and (ii) are easy to see. For property (iii) introduce the function

h(r) = r/(1 + r), for r ≥ 0. Prove h(a+ b) ≤ h(a) + h(b) for all a and b in (0,∞).

5.6: First show that the functions

d′′i (f, g) =
supEi

|f(z)− g(z)|
1 + supEi

|f(z)− g(z)|

satisfy the conditions for a metric on C0(Ei). Then prove that the sum of such metrics

(multiplied by 1/2i to make the sum convergent) is a metric on Ω, provided Ei form an

exhaustion of Ω.

5.8: Use Proposition 5.10. That is, if fn → f uniformly on compact subsets of Ω then

f ′
n → f ′ uniformly on compact subsets of Ω.

5.9: By Theorem 5.15, it is enough to show that the family is uniformly bounded on

compact sets. Let E be a compact subsets of D. There is r < 1 such that E ⊂ B(0, r).

Then, for all z ∈ E we have

|f(z)| ≤ r +
∞∑

n=2

|anzn| ≤ r +
∞∑

i=2

nrn ≤
∞∑

i=1

nrn = Mr < ∞.
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This means that the family is uniformly bounded from above on E.

5.10: See proof of Theorem 5.15

Chapter 6

6.1: [complete solution] By Montel’s theorem from the lecture notes (Theorem 5.15) it is

enough to show that the family S is uniformly bounded on compact subsets of D. Let E

be an arbitrary compact set in D. There is δ < 1 such that E ⊂ B(0, δ). By the growth

theorem, 6.9, for every z ∈ E we have

|f(z)| ≤ |z|
(1− |z|)2 ≤ δ

(1− δ)2
< ∞.

As the upper bound only depends on E, we conclude that the family is uniformly bounded

on E.

6.2: First show that |f ′(0)| ≤ 4c. Then apply Theorem 6.9 to an appropriately normalized

map.

6.3: [complete solution] (i) For every k ≥ 2, the set Λk is uniformly bounded in C. If this
is not true, there is a sequence of maps fn in S such that f (k)

n (0) → ∞. By Exercise 6.1,

S is a normal family and there must be a sub-sequence of fn that converges uniformly on

compact sets to some holomorphic maps g : D → C. In particular, g(k)(0) is defined and

finite. This contradicts the convergence of f (k)
n (0) → g(k)(0) guaranteed in Theorem 5.10.

By the above paragraph, for every k ≥ 2, the set

Ak = {|w| | w ∈ Λk}

is bounded from above. This set is also non-empty as it contains 0; the k-th derivative of

the identity map in S. It follows that the above set has a supremum which is finite. Let

rk denote the supremum of the above set. Therefore,

Λk ⊆ {w ∈ C | |w| ≤ rk}.

Fix an arbitrary k ≥ 2.

By the definition of supremum, either rk belongs to A or there is a sequence of real

numbers ai ∈ Ak, for i ≥ 1, such that ai → rk. In the former case we conclude that

there is f ∈ S such that |f (k)(0)| = rk. In the latter case, let fi ∈ S be such that

|f (k)
i (0)| = ai. There is a sub-sequence of fi that converges to some map g in S. We must

have |g(k)(0)| = rk. So, there is always an f ∈ S such that |f (k)(0)| = rk.
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By the above paragraph there is a point on the circle |w| = rk that belongs to Λk.

The operations of rotation and dilatation discussed in the lecture notes show that Λk is

invariant under rotations about 0 and is invariant under multiplication by r ∈ (0, 1). We

also showed earlier that 0 belongs to Λk. This proves that the above inclusion is equality.

(ii) By the Cauchy integral formula for the derivatives, for every r ∈ (0, 1) we have

f (k)(0) =
k!

2πi

∫

|z|=r

f(z)

zk+1
dz.

Then by the growth theorem, Theorem 6.9, we obtain

|f (k)(0)| = k!

2π

∣∣∣
∫

|z|=r

f(z)

zk+1
dz
∣∣∣ ≤

k!

2π

∫

|z|=r

|f(z)|
rk+1

|dz|

≤ k!

2π

∫ 2π

0

r

(1− r)2rk+1
rdθ ≤ k!r

(1− r)2rk
.

The above bound holds for all r ∈ (0, 1). We may find the minimum of the function
k!r

(1−r)2rk
on (0, 1), by differentiating the function. The minimum occurs at r = 1 − 1/k,

and the minimum value is
k!k2

(1− 1/k)k−1
.

The denominator of the above expression tends to the constant e as k → ∞. Hence, the

denominator is uniformly bounded away from 0, independent of k.

6.5: (i) Let ϕ1 and ϕ2 be two such maps. Apply the Schwarz lemma, 2.1, to the maps

ϕ−1
2 ◦ ϕ1 and ϕ−1

1 ◦ ϕ2.

(ii) The upper bound follows from the 1/4-theorem, the lower bound follows from the

Schwarz lemma.

6.6:[complete solution] Let γ : [0, 1] → C be a smooth simple closed curve. Then, γ

bounds a convex region if the slope of the tangent to γ is increasing. This is equivalent to

saying that
∂

∂t

(
arg γ′(t)

)
> 0, ∀t ∈ [0, 1]. (8.1)

For instance, for the curve γ0(t) = e2πit, for t ∈ [0, 1], we have γ′0(t) = 2πie2πit. Thus,

∂

∂t

(
arg γ′0(t)

)
=

∂

∂t
(π/2 + 2πt) = 2π > 0.

So, for the inequality in Equation (8.1) to hold, it is enough to have

∣∣∣
∂

∂t

(
arg γ′(t)

)
− ∂

∂t

(
arg γ′0(t)

)∣∣∣ ≤ π. (8.2)
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Next we note that ∂
∂t(arg γ

′(t) is given in terms of γ′ and γ′′. This implies that, there is

δ > 0 such that if for all t ∈ [0, 1, if we have

|γ′0(t)− γ′(t)| ≤ δ, |γ′′0 (t)− γ′′(t)| ≤ δ, (8.3)

then Equation (8.2) holds. (In other words, if a closed curve γ, is close enough to γ0 in

C0, C1, and C2 metrics, then it bounds a convex region containing 0.)

For an arbitrary f ∈ S and r ∈ (0, 1) let

fr(z) =
1

r
· f(r · z), ∀z ∈ D.

We have, f(B(0, r)) = r · fr(D). In particular, f(B(0, r)) is a convex region, iff fr(D) is

a convex region. We aim to show that for small enough r, independent of f ∈ S, fr(D)
is convex. As γ0 is the image of the circle |z| = 1 under the identity map, by virtue of

Equation 8.3, it is enough to show that for all z ∈ D, we have

|f ′
r(z)− 1| ≤ δ, |f ′′

r (z)− 0| ≤ δ. (8.4)

However, f ′
r(z) = f ′(rz), and f ′′

r (z) = f ′′(rz) · r. It follows from the distortion theorems

6.7 and 6.6, that for small enough r, independent of f , one may guarantee the above

inequalities. This completes the proof.

Chapter 7

7.2: These may be reduced to the usual derivatives with respect to x and y using the

formulas in Equation (7.5).

7.3: Define the map h(z) = g−1 ◦ f from C to C. Show that ∂h/∂z ≡ 0, that is, h is 1-

quasi-conformal. Then apply Corollary 7.9 to h to conclude that h : C → C is holomorphic

and one-to-one. As h(0) = 0 and h(1) = 1, by 3.15, h must be the identity map.

7.4: Use the definition of absolute continuity with ε = 1 to obtain some δ. Then, [a, b] is

covered by at most N = ⌊|b− a|/δ⌋+ 1 number of intervals of length bounded by δ.

7.5: Assume that a sequence f◦nk converges uniformly on compact subsets of U . By

the open mapping property of f , V = f(U) is open, and one can show that the se-

quence of functions f◦nk−1 converges uniformly on compact subsets of V . This shows that

R(F(R)) ⊆ F(R). The argument in the other direction is similar, and uses the f−1(U) is

open.

7.6: [complete solution]
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(i): Let us define the function g(z) = R◦n(z). Let δ = |g′(z0)| < 1 and choose δ′ ∈ (δ, 1).

By the continuity of z &→ g′(z) there is r > 0 such that for all z ∈ Ĉ with d(z, z0) < r we

have |g′(z)| ≤ δ′. Let U = {z ∈ Ĉ : d(z, z0) < r}. Now, for z ∈ U we have

d(g(z), z0) = d(g(z), g(z0)) ≤ sup
c∈U

|g′(c)| · d(z, z0) ≤ δ′r < r.

This implies that g maps U into U . In particular, for z ∈ U the iterates g◦n(z), for n ≥ 1,

are all defined and belong to U .

For z ∈ U we have

d(g◦k(z), z0) = d(g◦k(z), g◦k(z0)) ≤ sup
c∈U

|(g◦k)′(c)| · d(z, z0) ≤ (δ′)k · r.

Since δ′ < 1, (δ′)k · r tends to zero as n tends to infinity. Hence, the iterates g◦k converge

uniformly on U to the constant map z0. In particular, the iterates g◦k = R◦nk, for k ≥ 1,

converges uniformly on compact sets in U to the constant function z0.

(ii): Let us in the contrary assume that there is an open neighborhood U of z0 and a

sequence of iterates R◦km , for m ≥ 1, which converges on compact subsets of U to some

holomorphic map g : U → Ĉ. Consider the integers km modulo n, and observe that there

must be a sub-sequence of km, denoted by jm, that are the same modulo n. That is, there

are integers tm ∈ N, and an integer r ≥ 0 such that jm = tmn+ r. Then,

(R◦jm)′(z0) = (R◦r ◦ (R◦n)◦tm)′(z0) = (R◦r)′(z0) · δtm

As δ > 1, we conclude that (R◦jm)′(z0) tends to infinity. But, by Theorem 5.10, we

must have g′(z0) = limm→∞(R◦jm)′(z0) = ∞. This contradiction shows that there is no

convergent sub-sequence on any neighborhood of z0.

(iii): Let g = R◦qn(z). We have g(z0) = z0 and g′(z0) = 1. There is a neighborhood of

z0 on which g has a convergent power series g(z) = z0 + (z − z0) + ad(z − z0)d + . . . with

ad ̸= 0. A basic calculation shows that g◦k(z) = z0 + (z − z0) + kad(z − z0)d + . . . . This

implies that the d-th derivatives (g◦k)(d)(z0) tend to ∞. As in part (ii), this implies that

g◦k has no sub-sequence that converges uniformly on compact sets on a neighborhood of

z0.

Assume that there is a sub-sequence R◦km that converges on some open set U contain-

ing z0. Let km = (qn)tm + rm with integers tm and 0 ≤ rm ≤ qn − 1. There is a further

sub-sequence of km such that rm are equal for different values of m. Let r = rm be this

constant. It follows that R◦(qn)tm+1 = R◦(qn−r) ◦ R◦km converges uniformly on compact

subsets of U . This contradicts the above paragraph.
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