
Chapter 7

Quasi-conformal maps and Beltrami equation

7.1 Linear distortion

Assume that f(x + iy) = u(x + iy) + iv(x + iy) be a (real) linear map from C → C that

is orientation preserving. Let z = x+ iy and w = u+ iv. The map z "→ w = f(z) can be

expressed by a matrix [
x

y

]
"→
[
u

v

]
= T

[
x

y

]
, (7.1)

where T is the 2× 2 matrix

T = Df(z) =

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

]
=

[
a b

c d

]

for some real constants a, b, c, and d. As f is orientation preserving, the determinant of

the matrix T is positive, that is, ad− bc > 0.

The circle |z|2 = x2 + y2 = 1 is mapped by f to an ellipse with equation |T−1w|2 = 1.

The distortion of f , denoted by Kf , is defined as the eccentricity of this ellipse, that is,

Kf is the ratio of the length of the major axis of the ellipse to the length of its minor axis

of the ellipse. Since f is a linear map, the distortion of f is independent of the radius of

the circle |z| = 1 we choose to define the ellipse.

A basic calculation leads to the equation

Kf + 1/Kf =
a2 + b2 + c2 + d2

ad− bc
.

for Kf in terms of a, b, c, and d. The above simple quantity and the forthcoming relations

are rather complicated when viewed in real coordinates, but find simple forms in complex

notations.

Any real-linear map T : C → C can be expressed in the form

w = T (z) = Az +Bz, (7.2)
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for some complex constants A and B. If T is orientation preserving, we have detT =

|A|2 − |B|2 > 0. Then, T can be also represented as

T (z) = A(z + µz),

where

µ = B/A, and |µ| < 1.

That is, T may be decomposed as the stretch map S(z) = z + µz post-composed with

the multiplication by A. The multiplication consists of rotation by the angle arg(A) and

magnification by |A|. Thus, all of the distortion caused by T is expressed in terms of µ.

From µ one can find the angles of the major axis and minor axis of the image ellipse. The

number µ is called the complex dilatation of T .

The maximal magnification occurs in the direction (arg µ)/2 and the magnification

factor is 1+|µ|. The minimal magnification occurs in the orthogonal direction (arg µ−π)/2
and the magnification factor is 1− |µ|. Thus, the distortion of T , which only depends on

µ, is given by the formula

KT =
1 + |µ|
1− |µ| .

A basic calculation implies

|µ| = KT − 1

KT + 1
.

If T1 and T2 are real-linear maps from C to C one can see that

KT2◦T1 ≤ KT2 ·KT1 . (7.3)

The equality in the above equation may occur when the major axis of T1(∂D) is equal to
the direction in which the maximal magnification of T2 occurs and the minor axis of T1(∂D)
is equal to the direction at which the minimal magnification of T2 occurs. Otherwise, one

obtains strict inequality.

7.2 Dilatation quotient

Assume that f : Ω → C is an orientation preserving diffeomorphism. That is, f is

homeomorphism, and both f and f−1 have continuous derivatives. Let z = x + iy and

f(x+ iy) = u(x, y) + iv(x, y). At z0 = x0 + iy0 ∈ Ω and z = x+ iy close to zero we have

f(z0 + z) = f(z0) +

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

][
x

y

]
+ o(z). (7.4)
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In the above equation, the little o notation means any function g(z) which satisfies

limz→0 g(z)/z = 0.

We may write Equation (7.4) in the complex notation

f(z0 + z) = f(z0) +Az +Bz + o(z),

where A and B are complex numbers (which depend on z0). Comparing the above two

equations we may determine A and B in terms of the partial derivatives of f . That is,

setting z = 1 and z = i we obtain (respectively)

A+B =
∂u

∂x
+ i

∂v

∂x
, Ai−Bi =

∂u

∂y
+ i

∂v

∂y
.

These imply that

A =
1

2

(∂u
∂x

+ i
∂v

∂x
− i
(∂u
∂y

+ i
∂v

∂y

))
, B =

1

2

(∂u
∂x

+ i
∂v

∂x
+ i
(∂u
∂y

+ i
∂v

∂y

))
.

If we introduce the notation

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
), (7.5)

then the diffeomorphism f may be written in the complex notation as

f(z0 + z) = f(z0) +
∂f

∂z
(z0) · z +

∂f

∂z
(z0) · z + o(z).

In this notation, the Cauchy-Riemann condition we saw in Equation (1.4) is equivalent

to
∂

∂z
f(z) = 0, ∀z ∈ Ω, (7.6)

and when f is holomorphic,

f ′(z) =
∂

∂z
f(z).

Fix θ ∈ [0, 2π], and define

Dθf(z0) = lim
r→0

f(z0 + reiθ)− f(z)

reiθ
.

This is the partial derivative of f at z0 in the direction eiθ. By comparing to the distortion

of real-linear maps we see that

max
θ∈[0,2π]

|Dθf(z))| = |A|
(
1 +

∣∣∣
B

A

∣∣∣
)
=
∣∣∣
∂f

∂z
(z0)

∣∣∣+
∣∣∣
∂f

∂z
(z0)

∣∣∣

and

min
θ∈[0,2π]

|Dθf(z))| = |A|
(
1−

∣∣∣
B

A

∣∣∣
)
=
∣∣∣
∂f

∂z
(z0)

∣∣∣−
∣∣∣
∂f

∂z
(z0)

∣∣∣
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The quantity µ that determines the local distortion of f at z0 is

µ = µf (z0) =
∂f/∂z(z0)

∂f/∂z(z0)
.

Here, µ is a continuous function of z0 defined on Ω and maps into D. The function µf is

called the complex dilatation of f . The dilatation quotient of f at z0 is defined as

Kf (z0) =
1 + |µf (z0)|
1− |µf (z0)|

=
maxθ∈[0,2π] |Dθf(z0)|
minθ∈[0,2π] |Dθf(z0)|

. (7.7)

7.3 Absolute continuity on lines

Definition 7.1. A function g : R → C is called absolutely continuous if for every ε > 0

there is δ > 0 such that for every finite collection of intervals (a1, b1), (a2, b2), . . . , (an, bn)

in R we have
n∑

i=1

|bi − ai| < δ =⇒
n∑

i=1

|g(bi)− g(ai)| < ε.

A function g : [a, b] → C is called absolutely continuous, if the above condition is satisfied

when all the intervals lie in [a, b].

For example, any C1 function g : [a, b] → C is absolutely continuous. In general,

if g : R → C is differentiable at every x ∈ R and |g′| is uniformly bounded, then g is

absolutely continuous.

On the other hand, any absolutely continuous function is uniformly continuous (use

with n = 1). But, there are uniformly continuous functions that are not absolutely

continuous (for example Cantor’s function).

Definition 7.2. Let A ⊂ Rn, n ≥ 1. We say that a property holds at almost every point

in A if the set of points where the property does not hold forms a set of measure zero. For

example, when we say that a function f : A → R is continuous at almost every point in

A it means that there is a set B ⊂ A of measure zero such that for every x ∈ A \ B the

function f is continuous at x.

Definition 7.3. Let Ω be an open set in C and f : Ω → C be a continuous map. We

say that f : Ω → C is absolutely continuous on lines (ACL) if for each closed rectangle

{z ∈ C : a ≤ Re z ≤ b, c ≤ Im z ≤ d} contained in Ω we have the following two properties:

(i) for almost all y ∈ [c, d], the function x "→ f(x+ iy) is absolutely continuous on [a, b],

(ii) for almost all x ∈ [a, b], the function y "→ f(x+ iy) is absolutely continuous on [c, d].
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For example, if g : Ω → C is C1, then it is ACL. If g is C1 at all points except at a

discrete set of points, it is ACL.

It is clear form the above definitions that a complex valued function is absolutely

continuous iff its real and imaginary parts are absolutely continuous functions. The same

statement is true for ACL property.

It follows from the standard results in real analysis that if g : [a, b] → R is absolutely

continuous, then it (has bounded variation and hence) is differentiable at almost every

point. That is, at almost every t ∈ [a, b], g′(t) exists and is finite.

Proposition 7.4. If f : Ω → C is ACL, then the partial derivatives ∂f/∂x and ∂f/∂y

exist (and are finite) at almost every x+ iy ∈ Ω.

In particular, by the above proposition, at almost every z ∈ Ω, the partial derivatives

∂f/∂z and ∂f/∂z exist and are finite.

The proof of the above proposition may be found in any standard book on real analysis,

see for example, the nice book by G. Folland [Fol99].

7.4 Quasi-conformal mappings

Definition 7.5 (Analytic quasi-conformality). Let Ω be an open set in C and f : Ω → C be

an orientation preserving homeomorphism. We say that f : Ω → C is K-quasi-conformal

if we have

(i) f is absolutely continuous on lines,

(ii) for almost every z ∈ Ω we have Kf (z) ≤ K.

An orientation preserving homeomorphism f : Ω → C is called quasi-conformal, if it

is K-quasi-conformal for some K ≥ 1.

Note that the condition (i) in the above definition guarantees that the partial deriva-

tives ∂f/∂z and ∂f/∂z are defined at almost every point in Ω. Hence, µf (z) is defined at

almost every point and the condition (ii) is meaningful.

Definition 7.6. Let f : Ω → C be a quasi-conformal mapping. The quantity

Kf (z) =
1 + |µf (z)|
1− |µf (z)|

is called the dilatation quotient of f at z. The function

µf (z) =
∂f/∂z

∂f/∂z
(7.8)
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is called the complex dilatation of f . Both of these functions are defined at almost every

point in Ω.

Recall that for a function f : Ω → C, the supremum norm of f is defined as

∥f∥∞ = inf
{
sup
z∈A

|f(z)| | A ⊆ Ω, and Ω \A has zero measure
}
.

This is also called the essential supremum of f on Ω.

Note that the inequality Kf (z) ≤ K corresponds to

|µf (z)| ≤
K − 1

K + 1
.

Thus, for a quasi-conformal map f : Ω → C, we have

∥µf∥∞ < 1.

Theorem 7.7 (Pompeiu formula). Let Ω be a simply connected domain in C and f : Ω →
C be a C1 map which is quasi-conformal. Let γ be a piece-wise C1 simple closed curve in

Ω and B denote the bounded connected component of C \ γ. For every z0 ∈ B we have

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz − 1

2πi

∫∫

B

∂f(z)/∂z

z − z0
dzdz.

Proof. Let D be a bounded domain with a piece-wise C1 boundary, and g be a complex

valued C1 function defined on D ∪ ∂D. With notation z = x+ iy we have

∫

∂D
g(z) dz =

∫

∂D
g(z) dx+

∫

∂D
ig(z)dy

=

∫∫

D

(
i
∂g

∂x
− ∂g

∂y

)
dxdy = 2i

∫∫

D

∂g

∂z
dxdy =

∫∫

D

∂g

∂z
dzdz.

Using dz = dx + idy, we have dzdz = (dx − idy)(dx + idy) = idxdy − idydx = 2idxdy.

This gives us the complex version of the Green’s integral formula
∫

∂D
g(z) dz =

∫∫

D

∂g

∂z
dzdz. (7.9)

Let z0 be an arbitrary point in Ω and δ > 0 small enough so that the closed ball

|z − z0| ≤ δ is contained in Ω. Define the open set

Bδ = B \ {z ∈ B : |z − z0| ≤ δ}.

The function g(z) = f(z)/(z − z0) is C1 on B ∪ ∂B, and at every z ∈ Bδ we have

∂

∂z

( f(z)

z − z0

)
=
∂f

∂z
· 1

z − z0
+ f(z) · ∂

∂z

1

z − z0
=
∂f

∂z
· 1

z − z0
.
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In the above equation we have used the complex version of the Cauchy-Riemann condition

in Equation (7.6).

We applying the complex Green’s formula to g on Bα to obtain

∫

∂Bδ

f(z)

z − z0
dz =

∫∫

Bδ

∂f

∂z
· 1

z − z0
dzdz. (7.10)

Now we want to take limits of the above equation as δ tends to 0 from above.

lim
δ→0

∫

∂Bδ

f(z)

z − z0
dz = lim

δ→0

(∫

γ

f(z)

z − z0
dz −

∫

|z−z0|=δ

f(z)

z − z0
dz
)

=

∫

γ

f(z)

z − z0
dz − lim

δ→0

∫

|z−z0|=δ

f(z)− f(z0) + f(z0)

z − z0
dz

=

∫

γ

f(z)

z − z0
dz − lim

δ→0

∫

|z−z0|=δ

f(z)− f(z0)

z − z0
dz − 2πif(z0)

=

∫

γ

f(z)

z − z0
dz − 2πif(z0).

(7.11)

In the last line of the above equation we have used that |f(z)−f(z0)/(z−z0)| is uniformly

bounded from above.

On the other hand,
∫∫

Bδ

∂f

∂z
· 1

z − z0
dzdz =

(∫∫

B

∂f

∂z
· 1

z − z0
dzdz −

∫∫

|z−z0|≤δ

∂f

∂z
· 1

z − z0
dzdz

)

and since f is C1, and |z − z0| ≤ δ is compact, there is a constant C > 0 such that

∣∣∣
∫∫

|z−z0|≤δ

∂f

∂z
· 1

z − z0
dzdz

∣∣∣ ≤ C

∫∫

|z−z0|≤δ

∣∣∣
1

z − z0

∣∣∣|dzdz|

We can calculate the integral on the right hand side as in
∫∫

|z−z0|≤δ

∣∣∣
1

z − z0

∣∣∣ |dzdz| = 2

∫∫

|z−z0|≤δ

∣∣∣
1

z − z0

∣∣∣ dxdy

= 2

∫ 2π

0

∫ δ

0

∣∣∣
1

z − z0

∣∣∣ rdrdθ = 4πδ.

The above relations imply that

lim
δ→0

∫∫

Bδ

∂f

∂z
· 1

z − z0
dzdz =

∫∫

B

∂f

∂z
· 1

z − z0
dzdz. (7.12)

Combining Equations 7.10, (7.11), and (7.12), we obtain the formula in the theorem.
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Remark 7.8. In Theorem 7.7 it is not required to assume that f is C1. This has an

important consequence we state in Lemma 7.10. Below we give a brief argument how the

statement is proved without assuming C1 condition.

As we saw in Proposition 7.4, the ACL condition in quasi-conformality implies that

the first partial derivatives of f exist and are finite at almost every point. If the first order

partial derivatives are defined almost everywhere, the Jacobian of f , detDf , is defined

almost everywhere. Then, as f maps bounded sets to bounded set (that have bounded

area), we conclude that detDf is locally in L1. On the other hand,

|∂f/∂x|2 ≤ max
θ∈[0,2π]

|Dαf |2 ≤ (Kminθ∈[0,2π]|Dθf |) ·maxθ∈[0,2π]|Dθf | ≤ K detDf(z).

As detDf(z) belongs to L1 locally, we conclude that |∂f/∂x| belongs to L2 locally. By

a similar argument we conclude that |∂f/∂y| also belongs to L2. These imply that the

derivatives ∂f/∂z and ∂f/∂z exist at almost every point and are integrable. So, the

integrals in Theorem 7.7 are meaningful.

Corollary 7.9. Let f : Ω → C be a C1 map which is 1-quasi-conformal. Then, f : Ω → C
is a conformal map.

Proof. The condition 1-quasi-conformal implies that µf (z) = 0 at almost every point in

Ω. Hence, ∂f/∂z = 0 at almost every point. It follows from the formula in Theorem 7.7

that f satisfies the Cauchy integral formula, and therefore it is holomorphic.

As we remarked in Remark 7.8, the C1 condition is not required in Theorem 7.7. This

stronger statement has an important consequence known as the Weyl’s lemma. But the

proof requires some standard real analysis that is not the prerequisite for this course!

Lemma 7.10 (Weyl’s lemma). Any 1-quasi-conformal map f : Ω → C is conformal.

Proposition 7.11. If f : Ω1 → Ω2 is K-quasi-conformal, g : Ω0 → Ω1 is conformal, and

h : Ω2 → Ω3 is conformal, then h ◦ f ◦ g : Ω0 → Ω3 is K-quasi-conformal.

Proof. For the first part of the theorem we need to verify the two condition in Definition 7.5

for the map h◦f ◦g. Let A1 ⊂ Ω1 be the set of points where Kf (z) is defined and bounded

by K. As f is K-quasi-conformal, Ω1 \A1 has zero area. Define A0 = g−1(A1). It is easy

to show that A0 has zero area (use exhaustion of Ω1 by compact sets, and use that |g′| is
bounded from above and below on each compact set).

Note that since g and h are holomorphic functions, by Equation (7.7), Kg ≡ 1 and

Kh ≡ 1. Then, for every w ∈ A0, by the inequality in Equation (7.3), we have

Kh◦f◦g(w) ≤ Kg(w) ·Kf (g(w)) ·Kh(f ◦ g(w)) = Kf (g(w)) ≤ K.
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This proves condition (ii) in the definition of quasi-conformality.

We need to prove that h ◦ f ◦ g is ACL on Ω0. Since g and h are C1, they are ACL.

In fact, for every rectangle bounded by horizontal and vertical sides, in their domain of

definition, these maps are absolutely continuous on every horizontal and every vertical line.

In fact, g and h are absolutely continuous on every piece-wise C1 curves in their domain

of definition. We also know that for every rectangle R ⊂ Ω1 bounded by horizontal and

vertical sides, f is absolutely continuous on almost every horizontal and almost every

every vertical line in R. With these properties, it is easy to see that h ◦ f is ACL. But the

problem with f ◦ g is that g does not map horizontal lines to horizontal or vertical lines.

And we do not a priori know that f is absolutely continuous on almost every analytic

curves (these are images of a horizontal and vertical lines by g). As in Remark 7.8 we

need to use some standard results from real analysis. That is, a homeomorphism f is

ACL iff the first partial derivatives of f exist at almost every point in the domain of f

and are locally in L1. From this criterion it is easy to see that the composition of ACL

homeomorphisms is ACL. (We skip the details as this requires material that are not the

prerequisite for this course.)

Proposition 7.12. If f : Ω1 → Ω2 is K-quasi-conformal, g : Ω0 → Ω1 is conformal, and

h : Ω2 → Ω3 is conformal, then for almost every z ∈ Ω1 and almost every w ∈ Ω0 we have

µh◦f (z) = µf (z), µf◦g(w) =
( |g′(z)|
g′(z)

)2
· µf (g(w)).

Proof. This is easy to see from the definition of µ in terms of the length of major and

minor axis, and their direction. See Exercise 7.1

Remark 7.13. Many theorems in complex analysis are valid, with some modifications, for

quasi-conformal mappings. The Pompeiu formula is an example of such statements. In

general, it is possible to show that the composition of quasi-conformal maps are quasi-

conformal. If a sequence of K-quasi-conformal maps converges uniformly on compact sets

to some function, then the limiting function is either constant or quasi-conformal. The

class of K-quasi-conformal maps f : C → C normalized with f(0) = 0 and f(1) = 1 forms

a normal family.

Quasi-conformal maps, in contrast to conformal maps, enjoy the flexibility that allows

one to build such maps by hand. This makes them a powerful tool in complex analysis.
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7.5 Beltrami equation

Given a diffeomorphism f : Ω → C with µf : Ω → D one may look at f in Equation (7.8)

as the solution of the differential equation

∂f

∂z
(z) = µ(z)

∂f

∂z
(z), ∀z ∈ Ω. (7.13)

That is, given a function µ : Ω → D, is there a diffeomorphism f : Ω → C such that

the above equation holds. The above equation is called the Beltrami equation, and the

function µ is called the Beltrami coefficient of f .

There is a geometric interpretation of the Beltrami equation similar to the solutions

of vector fields in the plane. The function µ specifies a field of ellipses in Ω where at each

z ∈ Ω the major axis of the ellipse has angle (arg µ(z) + π)/2 and size 1/(1− |µ(z)|). The
minor axis of the ellipse at z has angle µ(z)/2 and has size 1/(1 + |µ(z)|). The solution f

of the above equation is a diffeomorphism that infinitesimally maps the field of ellipses to

the field of round circles.

The Beltrami equation has a long history. It was already considered by Gauss in 1820’s

in connection with a seemingly different problem of finding isothermal coordinates on a

surface for real analytic maps. Most of the developments in the study of the Beltrami

equation took place in 1950′s. These mainly focused on reducing the regularity condition

required for f ; see Remark 7.15.

Theorem 7.14. [Measurable Riemann mapping theorem-continuous version] Let µ : C →
D be a continuous map with supz∈C |µ(z)| < 1. Then, there is a quasi-conformal map

f : C → C such that the Beltrami equation (7.13) holds on C.
Moreover, the solution f is unique if we assume that f(0) = 0 and f(1) = 1.

Remark 7.15. The condition of continuity of µ in the above theorem is not necessary. The

sufficient condition is that µ is measurable and ∥µ∥∞ < 1. This result is known as the

measurable Riemann mapping theorem, and has many important consequences.

The relation between the regularity of the solution and the regularity of µ is not simple.

For example, if µ is Hölder continuous, then the solution becomes a diffeomorphism. But,

this condition is far from necessary. There are discontinuous functions µ where the solution

is diffeomorphism.
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7.6 An application of MRMT

In the theory of dynamical systems one wishes to understand the behavior of the sequences

of points generated by consecutively applying a map at a given point. That is, if g : X →
X, and x0 ∈ X, one studies the sequence {xn} defined as xn+1 = g(xn). This is called the

orbit of x0 under g. We shall look at the special case when g : Ĉ → Ĉ.
Recall the homeomorphism π from the unit sphere S ⊂ R3 to the Riemann sphere Ĉ

we discussed in Section 3.1. There is a spherical metric d′ on S which is defined as the

Euclidean length of the shortest curve on S. We may use π and d′ to define a metric on

Ĉ as d(z, w) = d′(π−1(z),π−1(w)).

We may naturally extend the notion of normal families for holomorphic maps of C
we presented in Definition 5.9 to holomorphic maps of Ĉ. Let Ω be an open set in Ĉ
and fn : Ω → Ĉ be a sequence of maps. We say that fn converges uniformly on E to

g : E → Ĉ, if for every ε > 0 there is n0 ≥ 1 such that for all n ≥ n0 and all z ∈ E we

have d(fn(z), g(z)) < ε.

Definition 7.16. Let Ω be an open set in Ĉ and F be a family (set) of maps f : Ω → Ĉ.
We say that the family F is normal, if every sequence of maps in F has a sub-sequence

which converges uniformly on compact subset of Ω to some g : Ω → Ĉ.

Given a holomorphic map R : Ĉ → Ĉ and any integer n ≥ 1 we may compose the map

R with itself n times to obtain a map from Ĉ to Ĉ. We use the notation R◦n to denote

this n-fold composition.

Definition 7.17. Let R : Ĉ → Ĉ be a holomorphic map. We say that z ∈ Ĉ is stable for

the iterates R◦n, n ≥ 1, if there is an open set U ⊂ Ĉ containing z such that the family

{R◦n}∞n=0 restricted to U forms a normal family.

By the above definition, the set of stable points of a rational function forms an open

subset of Ĉ. The set of all stable points of a rational function R is called the Fatou set

of R, and denoted here by F(R). The complement of the Fatou set, Ĉ \ F(R), which is a

closed subset of Ĉ, is called the Julia set of R. This is denoted by J (R). These are named

after the pioneering works of P. Fatou and G. Julia in 1920’s on properties of these sets.

Lemma 7.18. Let R(z) = zd, for some integer d ≥ 2. Then J (R) = ∂D.

Proof. First we show that the open disk D is contained in F(R). To see this, let E be

an arbitrary compact set in D. There is r ∈ (0, 1) such that E ⊂ B(0, r). Then, for
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every w ∈ E we have |R◦n(w)| = |wdn | ≤ rd
n → 0, as n tends to infinity. That is, the

iterates R◦n converges uniformly on E to the constant function 0. As E was an arbitrary

compact set in D, we conclude that R◦n converges uniformly on compact subsets of D to

the constant function 0.

By a similar argument, the iterates R◦n converges uniformly on compact subsets of

Ĉ \ (D ∪ ∂D) to the constant function ∞.

By the above two paragraphs, Ĉ \ ∂D is contained in F(R). On the other hand, let

z ∈ ∂D and U be an arbitrary neighborhood of z. For w in U with |w| > 1 we have

R◦n(w) → ∞ and for w ∈ U with |w| < 1 we have R◦n(w) → 0. Thus, there is no sub-

sequence of R◦n that converges to some continuous function on U . As U was arbitrary,

we conclude that z /∈ F(R). Then, z ∈ J (F ).

The above example is a very special case where the Julia set has a simple structure (is

smooth). For a typical rational map the Julia set has a rather complicated structure, see

some examples of Julia sets in Figure 7.6. The self-similarity of the figures is due to the

invariance of J (R) under R we state below.

Figure 7.1: Two examples of Julia sets.

Lemma 7.19. Let R : Ĉ → Ĉ be a rational map. Then, z ∈ F(R) if and only if

R(z) ∈ F(R).

Proof. See Exercise 7.5.
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By the above lemma R−1(F(R)) = F(R), which implies R−1(J (R)) = J (R).

Assume that the Fatou set of some R : Ĉ → Ĉ is not empty. Let U0 be a connected

component of F(R). There is a sequence Rnk , k ≥ 1, that converges to some g : U0 →
Ĉ. Then the function g describes the limiting behavior of the orbit R◦nk(z). But, to

understand the behavior of the orbit of z one needs to know all limiting functions of

convergent sub-sequences of R◦n.

Let U be a connected components of F(R). It follows from Lemma 7.19 that R(U) is

a components of F(R) which may or may not be distinct from U .

Definition 7.20. A component U of F(R) is called wandering, if R◦i(U) ∩ R◦j(U) = ∅,
for distinct integers i and j. A component U of F(R) is called eventually periodic, if there

are positive integers i ≥ 0 and p ≥ 1 such that R◦(i+p)(U) = R◦i(U).

By definition, if a Fatou component is not wandering, then it is eventually periodic. In

1985, D. Sullivan established the following remarkable property that settled a conjecture

of Fatou from 1920’s.

Theorem 7.21 (No wandering domain). Let U be a connected component of the Fatou

set of a rational function R : Ĉ → Ĉ. Then, U is eventually periodic.

Remark 7.22. Theorem 7.21 is a major step towards characterizing the limiting functions

of the iterates R◦n. When, R◦(i+p)(U) = R◦i(U). The map h = R◦p is a holomorphic map

from V = R◦i(U) to V . This allows one to study all possible limits of the iterates R◦n on

U . For example when V is a simply connected subset of Ĉ one has Exercise 3.6.

The complete proof requires some advanced knowledge of quasi-conformal mappings.

However, we present an sketch of the argument in the class, only emphasizing the use of

the measurable Riemann mapping theorem.

7.7 Exercises

Exercise 7.1. Prove Proposition 7.12.

Exercise 7.2. Let Ω1, Ω2, and Ω3 be open sets in C. Assume that f : Ω1 → Ω2 and

g : Ω2 → Ω3 are C1 maps. With the notations z ∈ Ω1 and w = f(z) ∈ Ω2, prove the

complex chain rules,

∂(g ◦ f)
∂z

= (
∂g

∂w
◦ f) · ∂f

∂z
+ (

∂g

∂w
◦ f) · ∂f

∂z
,

and
∂(g ◦ f)
∂z

= (
∂g

∂w
◦ f) · ∂f

∂z
+ (

∂g

∂w
◦ f) · ∂f

∂z
.
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Exercise 7.3. Assume that µ : C → D is a continuous map with supz∈C |µ(z)| < 1, and

f, g : C → C are diffeomorphisms with f(0) = g(0) = 0 and f(1) = g(1) = 1 that satisfying

the Beltrami equation. Prove that f(z) = g(z) for all z ∈ C. [This is a special case of the

uniqueness part in Theorem 7.14.]

Exercise 7.4. We say that a function f : [a, b] → C has bounded variation, if

sup
{ N∑

i=1

|f(xi+1)− f(xi)|
∣∣∣ a = x1 < x2 < x3 < · · · < xN+1 = b,N ∈ N

}
< ∞.

Prove that if f : [a, b] → C is absolutely continuous, then f has bounded variation on

[a, b].

Exercise 7.5. Let R : Ĉ → Ĉ be a ration map. Prove that R−1(F(R)) = F(R). Then,

conclude that R−1(J (R)) = J (R).

Exercise 7.6. Let R : Ĉ → Ĉ be a holomorphic map. Assume that there is n ∈ N and

z ∈ Ĉ such that R◦n(z) = z. Prove that

(i) if |(R◦n)′(z)| < 1, then z belongs to F(R);

(ii) if |(R◦n)′(z)| > 1, then z belongs to J (R);

(iii) if |(R◦n)′(z)| = e2πip/q for some p/q ∈ Q, then z belongs to J (R). [hint: first

consider the case n = 1 and look at (R◦n)′′(z) as n tends to infinity.

87


