
Chapter 4

Conformal geometry on the disk

4.1 Poincare metric

Let X be a set. Recall that a metric on X is a function d : X ×X → R such that for all

x, y, and z in X we have

(i) d(x, y) = d(y, x),

(ii) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

(iii) d(x, y) ≤ d(x, z) + d(z, y).

A metric on a spaceX allows us to talk about distances onX. The most familiar example is

probably the Euclidean distance on R given by the absolute value. That is, d(x, y) = |x−y|,
for x and y in R. This notion of distance respects the underlying operation of addition

that is described by the relation d(x, y) = d(x + c, y + c), for all c ∈ R. That is, d is

invariant under translations.

Another example of a metric on R is given by the function

d(x, y) =

⎧
⎨

⎩
1 if x ̸= y

0 if x = y.

The above notion of metric is rather general for our purpose. There is a more restrictive

notion of metric that is suitable in the world of complex analysis. Before we define that,

recall that a set A ⊂ C is called a discrete set, if for every z ∈ A there is an open set U in

C with A ∩ U = {z}.

Definition 4.1. Let Ω be a domain in C. A conformal metric on Ω is a continuously

differentiable (C1) function

ρ : Ω → [0,∞),

where ρ(z) ̸= 0 except on a discrete subset of Ω. If z ∈ Ω and ξ ∈ C is a vector, we define

the length of ξ at z with respect to the metric ρ as

∥ ξ ∥ρ,z= ρ(z) · |ξ|.
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Here, |ξ| denotes the Euclidean norm of ξ, i.e.
√
ξξ.

Remark 4.2. In contrast to what we learn in a calculus course that a vector has only direc-

tion and magnitude, in the above notion of the metric, a vector has direction, magnitude,

and position. That is the length of a vector also depends on its position.

Definition 4.3. Assume that γ : [a, b] → Ω is a C1 curve. The length of γ with respect to

the metric ρ is defined as

ℓρ(γ) =

∫ b

a

∥∥∥
∂γ(t)

∂t

∥∥∥
ρ,γ(t)

dt =

∫ b

a
ρ(γ(t)) ·

∣∣∣
∂γ(t)

∂t

∣∣∣ dt.

The length of a piece-wise C1 curve is defined as the sum of the lengths of its C1 parts.

As in the definition of the integration along a curve in complex analysis, the above

notion of length is independent of the parameterization of the curve.

It is convenient to think of the tangent vector to γ′(t) at γ(t) as a vector based at γ(t).

See Figure 4.1

γ(t)

γ′(t)

Figure 4.1: The tangent vectors to a C1 curve γ in the calculation of the length of γ with

respect to a conformal metric.

For every c ∈ C with |c| = 1 we have

∥ c · ξ ∥ρ,z=∥ ξ ∥ρ,z .

By the above relation, the length of a vector ξ at some z ∈ Ω is independent of its direction.

This feature makes conformal metrics natural in complex analysis, as we shall see in this

section.

In the classical literature in analysis, sometimes you find the notation

ℓρ(γ) =

∫

γ
ρ(z) |dz|,

for the length of γ with respect to the metric ρ. This is consistent with the definition of

integration along curves you learn in complex analysis.
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Definition 4.4. A set A in C is called path connected if for every two points z and w in

A there is a continuous map γ : [0, 1] → A with γ(0) = z and γ(1) = w.

It follows that any path connected subset of C is connected, but there are connected

subsets of C that are not path connected.

Definition 4.5. Let ρ be a conformal metric defined on an open and path connected set

Ω ⊆ C. Given z and w in Ω let Γz,w denote the set of all piece-wise C1 curves γ : [0, 1] → Ω

with γ(0) = z and γ(1) = w. Define

dρ(z, w) = inf{ℓρ(γ) : γ ∈ Γz,w}.

It follows (Exercise 4.1) that dρ defines a metric on Ω, that is, dρ : Ω × Ω → [0,∞)

satisfies the required properties listed at the beginning of this chapter.

Remark 4.6. One should not confuse the notion of dρ(z, w) with the notion of the length

of the vector w − z at z with respect to ρ. In general, these are different values and not

related.

Example 4.7. When ρ(z) ≡ 1 on Ω, the length of a piece-wise C1 curve γ with respect

to ρ, ℓρ(γ), becomes the Euclidean length of γ (which we learn in calculus). When Ω = C,
dρ becomes the Euclidean distance. In general, when Ω is a convex set, that is, the line

segment connecting any two points in Ω lies in Ω, then dρ is the restriction of the Euclidean

metric to Ω. But in general, there may not be a curve of shortest length between two points

in Ω. See Figure 4.2.

Figure 4.2: Examples of non-convex domains; one with a point omitted, and the other

with a special shape.

Definition 4.8. The Poincaré metric on D is defined as

ρ(z) =
1

1− |z|2 .
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The Poincaré metric has been used to gain deep understanding into the complex anal-

ysis on the disk and beyond. We shall study this metric in details.

For any vector ξ ∈ C we have

∥ ξ ∥ρ,0= ρ(0) · |ξ| = |ξ|,

∥ ξ ∥ρ,(1/2+0i)= ρ(1/2 + 0i) · |ξ| = 4

3
· |ξ|,

∥ ξ ∥ρ,(0+i/2)= ρ(0 + i/2) · |ξ| = 4

3
· |ξ|,

∥ ξ ∥ρ,(0.99+0i)= ρ(0.99 + 0i) · |ξ| = (50.251256 . . . ) · |ξ|.

The metric ρ has a rotational symmetry about 0, i.e. ρ(c · z) = ρ(z) for all c ∈ C with

|c| = 1. Also, ρ(z) → ∞ as |z| tends to +1 from below. There are many conformal metrics

on D with rotational symmetry and diverging to +∞ near the boundary, but the speed of

divergence in the Poincaré metric is chosen to guarantee some significant properties.

Example 4.9. Let us calculate the length of the curve [0, 1 − ε] with respect to the

Pioncaré metric ρ on D. Define γ(t) = t+ 0i, for t ∈ [0, 1− ε]. Then,

ℓρ(γ) =

∫ 1−ε

0
ρ(γ(t)) · |γ′(t)| dt =

∫ 1−ε

0

1

1− t2
dt =

1

2
log
(1 + t

1− t

)∣∣∣
t=1−ε

t=0
=

1

2
log
(2− ε

ε

)
.

We note that the above quantity tends to +∞ as ε tends to 0. This means that the point

+1 is at distance ∞ from the point 0 along the curve γ, with respect to the Poincaré

metric on D.

Proposition 4.10. Let ρ be the Poincaré metric on D. We have

dρ(0, 1− ε) =
1

2
log
(2− ε

ε

)
.

Proof. Let η : [a, b] → D be a C1 curve with η(a) = 0 and η(b) = 1−ε+0i. In coordinates,

let η(t) = η1(t)+iη2(t), for t ∈ [a, b]. Both η1 and η2 are C1 and moreover, for all t ∈ [a, b],

|η′(t)| = |η′1(t) + iη′2(t)| ≥ |η′1(t)|.

Also, since |η(t)| ≥ |η1(t)|, for all t ∈ [a, b] we have

ρ(η(t)) ≥ ρ(η1(t)).

Note that η1 : [a, b] → (−1, 1) is a C1 curve with η1(a) = 0 and η1(b) = 1 − ε. However,

η1 may not a monotone function of t ∈ [a, b]. Its image may cover some parts of [0, 1− ε]

several times. If necessary, we may throw away parts of this curve and keep a piece-wise
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C1 and monotone part of η1 that maps a subset of [a, b] to [0, 1− ε]. Let A ⊆ [a, b] be that

set. Using the above inequalities,

ℓρ(η) =

∫ b

a
ρ(η(t)) · |η′(t)| dt

≥
∫ b

a
ρ(η1(t)) · |η′1(t)| dt

≥
∫

A
ρ(η(t)) · |η′(t)| dt

=
1

2
log(

2− ε

ε
).

Figure 4.3 shows the graph of the function r .→ dρ(0, r), on (0, 1). Note how on a large

interval (0, r) (with r close to 1) the distance of the points from 0 is less than 5.

0 1

10

Figure 4.3: The graph of the function r .→ dρ(0, r), for r ∈ (0, 1).

4.2 Isometries

Definition 4.11. Assume that Ω1 and Ω2 are open sets in C and

f : Ω1 → Ω2

is a holomorphic map. Let ρ2 be a conformal metric on Ω2. The pull-back of ρ2 by f is

defined as

(f∗ρ2)(z) = ρ2(f(z)) · |f ′(z)|.
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It is clear that if ρ2 is C1 then f∗ρ2 is also C1. On the other hand, f∗ρ2(z) = 0 if

and only if either ρ(f(z)) = 0 or f ′(z) = 0. Since, f ′ is a holomorphic function on Ω1,

the set of points where it becomes 0 is a discrete set. These imply that the pull-back

of a conformal metric under a holomorphic map is a conformal metric. Indeed, this is

the reason for the name conformal metric. These are metrics that behave well under

holomorphic transformations.

By the above definition, if ξ is a vector in C and z ∈ Ω1, then

∥ ξ ∥f∗ρ2,z= ρ2(f(z)) · |f ′(z)| · |ξ| = ρ2(f(z)) · |f ′(z) · ξ|.

Let us denote the metric f∗ρ2 on Ω1 by ρ1. If γ1 is a C1 curve in Ω1, and γ2 = f ◦ γ1,
then it follows that ℓρ1(γ1) = ℓρ2(γ2).

ℓρ2(γ2) =

∫ b

a
ρ2(γ2(t)) · |γ′2(t)| dt =

∫ b

a
ρ2(f(γ1(t))) · |(f ◦ γ1)′(t)| dt =

∫ b

a
ρ2(f(γ1(t))) · |f ′(γ1(t))| · |γ′1(t)| dt =

∫ b

a
ρ1(γ1(t))|γ′1(t)| dt = ℓρ1(γ1)

Definition 4.12. Let Ω1 and Ω2 be open sets in C and f : Ω1 → Ω2 be an onto holomor-

phic map. Let ρi be a conformal metric on Ωi, for i = 1, 2. Then, f is called an isometry

from (Ω1, ρ1) to (Ω2, ρ2) if for all z ∈ Ω1 we have

f∗ρ2(z) = ρ1(z).

Proposition 4.13. Let Ω1 and Ω2 be open sets in C with conformal metrics ρ1 and ρ2,

respectively. Assume that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2). Then for every C1

curve γ : [0, 1] → Ω1 we have

ℓρ1(γ) = ℓρ2(f ◦ γ).

The curve f ◦ γ is often called the push-forward of the curve γ by f , and is denoted

by f∗γ. That is,

f∗γ(t) = f ◦ γ(t), for t ∈ [0, 1].

Proof. By Definition 4.3 we have

ℓρ1(γ) =

∫ 1

0
∥ γ′(t) ∥ρ1,γ(t) dt, ℓρ2(f ◦ γ) =

∫ 1

0
∥ (f ◦ γ)′(t) ∥ρ2,f◦γ(t) dt.
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To prove that the above integrals give the same value, it is enough to show that the

integrands are equal on [0, 1]. That is,

∥ (f ◦ γ)′(t) ∥ρ2,f◦γ(t) = ρ2(f ◦ γ(t)) · |(f ◦ γ)′(t)|

= ρ2(f ◦ γ(t)) · |f ′(γ(t)) · γ′(t)|

= ρ2(f ◦ γ(t)) · |f ′(γ(t))| · |γ′(t)|

= (f∗ρ2)(γ(t)) · |γ′(t)|

=∥ γ′(t) ∥ρ1,γ(t) .

Note that if f is an isometry from (Ω1, ρ1) to (Ω2, ρ2) we may not conclude that for

every z and w in Ω1 we have

dρ1(z, w) = dρ2(f(z), f(w)). (4.1)

That is because not every curve in Ω2 from f(z) to f(w) is obtained from push-forward

of a curve in Ω1 from z to w. We illustrate this by an example.

Example 4.14. Let

Ω1 = {z ∈ C : e−1 < |z| < e}, Ω2 = {z ∈ C : e−2 < |z| < e2}

and define

f : Ω1 → Ω2, f(z) = z2.

Consider the conformal metrics

ρ1(z) =
π

2
· 1

|z| · cos(π log |z|
2 )

,

ρ2(z) =
π

4
· 1

|z| · cos(π log |z|
4 )

.

We have

f∗ρ2(z) = ρ2(f(z)) · |f ′(z)|

=
π

4
· 1

|z|2 · cos(π log |z|2
4 )

· 2|z|

=
π

2
· 1

|z| · cos(π log |z|
2 )

= ρ1(z).
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That means that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2).

Note that f is not one-to-one, for example, f(+1) = f(−1) = +1. If γ is a curve in Ω1

connecting +1 to −1, f ◦ γ is a curve in Ω2 that connects +1 to itself and wraps around

in Ω2 at least once. But, there is a constant curve with zero length from +1 to +1 in

Ω2. The constant curve is not the image of any continuous curve from +1 to −1 in Ω1.

This is the only issue that prevents us from having Equation (4.1). As you will show in

Exercise 4.5, if f : Ω1 → Ω2 is one-to-one, then Equation (4.1) holds for all z and w in Ω1.

Let Ω1, Ω2, and Ω3 be open sets in C with conformal metrics ρ1, ρ2, and ρ3, respectively.

Assume that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2), and g is an isometry from (Ω2, ρ2)

to (Ω3, ρ3). You can show that g ◦ f is an isometry from (Ω1, ρ1) to (Ω3, ρ3).

Theorem 4.15. Every automorphism of D is an isometry from (D, ρ) to (D, ρ), where ρ
is the Poincaré metric on D.

Proof. By Theorem 2.5 every automorphism of D is of the form

z .→ eiθ · z − a

1− az
,

for some θ ∈ R and a ∈ D. We shall prove the theorem in two steps.

First assume that h(z) = eiθ · z. We have

(h∗ρ)(z) = ρ(h(z)) · |h′(z)| = 1

1− |h(z)|2 · |eiθ| = 1

1− |z|2 = ρ(z).

Thus, h is an isometry of (D, ρ).
Now assume that h(z) = (z − a)/(1− az). we have

(h∗ρ)(z) = ρ(h(z)) · |h′(z)|

=
1

1−
∣∣ z−a
1−az

∣∣2 · 1− |a|2

|1− az|2

=
1− |a|2

|1− az|2 − |z − a|2

=
1− |a|2

1− |z|2 − |a|2 + |a|2|z|2

= ρ(z).

That is, h is an isometry of (D, ρ). Since the composition of isometries is an isometry, see

Exercise 4.4, we conclude that any member of Aut(D) is an isometry of (D, ρ).

As a corollary of the above theorem, and Proposition 4.10, we are able to calculate the

Poincaré distant between any two points on D.
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Proposition 4.16. Let p and q be two points in D equipped with Poincaré metric ρ. We

have

dρ(p, q) =
1

2
log

⎛

⎝1 +
∣∣ p−q
1−pq

∣∣

1−
∣∣∣ p−q
1−pq

∣∣∣

⎞

⎠ .

Proof. When p = 0 and q is a positive real number the formula in the proposition reduces

to the one in Proposition 4.10. Now, define

ϕ1(z) =
z − p

1− pz
,

and

ϕ2(z) =
|ϕ1(q)|
ϕ1(q)

· z.

Note that both of ϕ1 and ϕ2 belong to Aut(D). Then, by Theorem 4.15 and Exercise 4.5,

we must have

dρ(p, q) = dρ(ϕ1(p),ϕ1(q)) = dρ(0,ϕ1(q)) = dρ(ϕ2(0),ϕ2(ϕ1(q))) = dρ(0, |ϕ1(q)|).

Using Proposition 4.10 with 1− ε = |ϕ1(q)| we obtain

dρ(0, |ϕ1(q)|) =
1

2
log

(
1 + |ϕ1(q)|
1− |ϕ1(q)|

)
.

This finishes the proof of the proposition.

The proof of the above proposition also provides us with the shortest curve connecting

the two points p and q. We state this in a separate proposition.

Proposition 4.17. Let p and q be two distinct points in D. The shortest curve with

respect to ρ connecting p to q is given by the formula

γp,q(t) =
t q−p
1−qp + p

1 + tp q−p
1−qp

, 0 ≤ t ≤ 1.

Proof. In Proposition 4.10 and its preceding example, the shortest curve connecting 0 to

a point z on (0, 1) ⊂ D is given by the interval [0, z]. As the rotation z .→ eiθ · z, for each
fixed θ ∈ R, is an isometry of (D, ρ), we conclude that the shortest curve connecting 0 to

a given point z ∈ D is the curve t .→ t · z, 0 ≤ t ≤ 1.

Consider the automorphism

ϕ1(z) =
z − p

1− pz
.

We have ϕ1(p) = 0 and ϕ1(q) ∈ D. The inverse of this map is given by the formula

ϕ−1
1 (z) =

z + p

1 + pz
.

36



By the above paragraph, the shortest curve connecting 0 to ϕ1(q) is given by the formula

θ(t) = t · ϕ1(q). Since ϕ
−1
1 is an isometry of the pair (D, ρ), the image of this curve under

ϕ−1 is the shortest curve connecting p to q. The formula for this curve is

t .→ ϕ−1
1 (t · ϕ1(q)) =

t · ϕ−1
1 (q) + p

1 + pt · ϕ−1(q)
.

This finishes the proof of the proposition.

Definition 4.18. Let Ω be an open set in C and ρ be a conformal metric on Ω. A

continuous curve γ : [a, b] → Ω is called geodesic if for every t ∈ [a, b] there is εt > 0 such

that for all x and y in [a, b] ∩ [t− εt, t+ εt] we have

dρ(γ(x), γ(y)) = ℓρ(γ : [x, y] → Ω).

In other words, the curve γ is locally the shortest curve connecting points together.

For example, straight lines on C are geodesics with respect to the conformal metric ρ ≡ 1.

The curves γp,q in the above proposition provide examples of geodesics with respect to the

Poincaré metric on D.
There is an intuitive way to visualize the curve γp,q. To present this, we need to recall

a basic property of holomorphic maps.

Definition 4.19. A holomorphic map f : Ω → C is called conformal at z ∈ Ω if f ′(z) ̸= 0.

A holomorphic map f : Ω → C is called conformal, if it is conformal at every point in Ω.

If U ⊆ C is open and f : U → C is one-to-one, it follows that f is conformal at every

point in U ; see Exercise 3.3. In particular, biholomorphic maps are conformal at every

point in their domain of definition. However, note that a map that is conformal at every

point in its domain of definition is not necessarily one-to-one from its domain to its range.

For example, the map z .→ z2 is conformal on the set

{w ∈ C | arg(w) ∈ (−3π/4, 3π/4), |w| ∈ (1, 2)}

but is not one-to-one on this set.

Recall from complex analysis that conformal maps preserve angles. We state this below

for future reference.

Proposition 4.20. Let U and V be two open subsets of C and f : U → V be a holomorphic

map that is conformal at some z ∈ U . Then f preserves angles at z.
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The curve t .→ t · ϕ1(q) is part of a straight line segment in D. By Exercise 3.5, the

image of any line segment in D under ϕ−1
1 is either a line segment or part of a circle. The

image may be a line segment only if the three points p, q, and 0 lie on a straight line

segment, and other wise the curve is part of a circle. Moreover, since the line segment

passing through 0 is orthogonal to the boundary of D, and conformal maps preserve angles,

the circle passing through p and q is orthogonal to the circle |z| = 1. See Figure 4.4.

Figure 4.4: Some examples of geodesics with respect to the Poincaré metric ρ on D.

4.3 Hyperbolic contractions

Theorem 4.21 (Schwarz-Pick Lemma). Let f : D → D be a holomorphic map and ρ

denote the Poincaré metric on D. Then, f is distance decreasing with respect to ρ, that

is, for every z ∈ D we have

f∗ρ(z) ≤ ρ(z).

In particular, if γ : [0, 1] → D is a C1 curve then

ℓρ(f∗γ) ≤ ℓρ(γ).

Therefore, if z and w belong to D, then

dρ(f(z), f(w)) ≤ dρ(z, w).

Proof. Recall that

f∗ρ(z) = ρ(f(z)) · |f ′(z)| = 1

1− |f(z)|2 · |f ′(z)|,
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and

ρ(z) =
1

1− |z|2 .

Hence, the inequality in the theorem reduces to the Schwarz-Pick lemma we saw earlier

in Exercise 2.2.

The latter parts of the theorem follow directly from the definitions.

Theorem 4.22 (Farkas-Ritt). Let f : D → D be a holomorphic map and assume that f(D)
has a compact closure in D, that is, every sequence in f(D) has a sub-sequence converging

to some point in D. Then,

i) there is a unique point p ∈ D such that f(p) = p;

ii) for every w0 in D the sequence of points wi defined as wi+1 = f(wi), for i ≥ 0,

converges to p in the Euclidean metric.

Proof. Define

A = {f(z) : z ∈ D}.

By the hypothesis, the closure of A is contained in D. This implies that there is δ > 0

such that for every z ∈ C with |z| ≥ 1 and every w ∈ A we have |w − z| > δ.

Fix an arbitrary z0 ∈ D. Define the map

g(z) = f(z) +
δ

2
(f(z)− f(z0)), ∀z ∈ D.

The map g is holomorphic on D, and maps D into D since

|g(z)| ≤ |f(z)|+ δ

2
|f(z)− f(z0)| < (1− δ) +

δ

2
· 2 = 1.

We have g(z0) = f(z0) and g′(z0) = (1+ δ/2)f ′(z0). By Theorem 4.21, g is non-expanding

the Poincaré metric at z0, that is,

g∗ρ(z0) ≤ ρ(z0).

Writing the definition of g∗, this yields

(1 + δ/2) · |f ′(z0)| · ρ(f(z0)) ≤ ρ(z0).

As z0 ∈ D was arbitrary, we conclude that the above inequality holds for all z0 ∈ D. In

particular, if γ is any C1 curve in D, then

(1 + δ/2) · ℓρ(f ◦ γ) ≤ ℓρ(γ).
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This implies that for arbitrary points z and w in D we have

dρ(f(z), f(w)) ≤ (1 + δ/2)−1 · dρ(z, w).

Fix an arbitrary w0 in D and define the sequence of points wi+1 = f(wi), for i ≥ 0.

Inductively using the above inequality we conclude that for every i ≥ 2 we have

dρ(wi+1, wi) ≤ (1 + δ/2)−1 · dρ(wi, wi−1) ≤ · · · ≤ (1 + δ/2)−i · dρ(w1, w0).

Since
∑∞

i=0(1 + δ/2)−i is finite, the sequence wi is Cauchy with respect to dρ. The space

D with respect to dρ is a complete metric space, see Exercise 4.3. This means that any

Cauchy sequence (w.r.t dρ) in D converges (w.r.t dρ) to some point in D. By Exercise 4.2,

the sequence wi converges with respect to the Euclidean metric on D. Let p denote the

limit of this sequence. Taking limit from the relation wi+1 = f(wi) as i tends to +∞, we

conclude that f(p) = p.

If there is q in D with f(q) = q, by the above inequalities,

dρ(p, q) = dρ(f(p), f(q)) ≤ (1 + δ/2)−1dρ(p, q).

As δ > 0, this is only possible if p = q. This shows the uniqueness of p. So far we have

completed the proof of Part i).

By the above arguments, dρ(wi, p) ≤ (1 + δ/2)−idρ(w0, p). Hence, wi converges to p

with respect to dρ. It follows that wi converges to p with respect to the Euclidean metric,

see Exercise 4.2.

4.4 Exercises

Exercise 4.1. Show that dρ : Ω× Ω → R defined in Definition 4.5 is a metric on Ω.

Exercise 4.2. Let zi, i ≥ 1, be an infinite sequence in D, and ρ be the Poincaré metric

on D. Show that zi converges to some point z in D with respect to dρ iff it converges to

z ∈ D with respect to the Euclidean metric.

Exercise 4.3. Show that the disk D equipped with the Poincaré metric ρ is a complete

metric space. That is, every Cauchy sequence in D with respect to dρ converges to some

point in D with respect to the distance dρ.

Exercise 4.4. Let ρ be the Poincaré metric on D. For z ∈ D and r > 0, the circle of

radius r about z with respect to the metric dρ is defined as

{w ∈ D : dρ(z, w) = r}.
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Show that for every z ∈ D and r > 0, the circle of radius r about z is an Euclidean circle.

Find the center of this circle.

Exercise 4.5. Let Ω1 and Ω2 be open sets in C with conformal metrics ρ1 and ρ2,

respectively. Assume that f : Ω1 → Ω2 is a one-to-one holomorphic map that is an

isometry from (Ω1, ρ1) to (Ω2, ρ2). Prove that for all z and w in Ω1 we have

dρ1(z, w) = dρ2(f(z), f(w)).

Exercise 4.6. Recall the biholomorphic map F : H → D given in Equation (2.1), and let

ρ be the Poincaré metric on ρ. Show that for all w ∈ H we have

(F ∗ρ)(w) =
1

2| Imw| .
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