
6
Global dynamics of holomorphic maps

In this chapter we study the dynamics of a holomorphic self map of a Riemann surface.

6.1 Dynamics on hyperbolic Riemann surfaces

We begin our study with the hyperbolic surfaces, i.e., surfaces covered by the unit disc.
Let us start assuming that the surface is the disc and the map f a biholomorphism. Then
f is a Moebius transformation. The dynamics of f follows immediately by the description
of the previous chapters.

Exercise 6.1.1. Study the dynamics of a Moebius transformation of the unit disc.

We now move to self maps of any degree (and any hyperbolic surface). We will just
state the results, without proofs. For all the details, one can consult Milnor’s book. The
following Lemma is a consequence of Montel Theorem.

Lemma 6.1.2. The Julia set of any self map of a hyperbolic Riemann surface is empty.

Theorem 6.1.3 (Fatou). For every holomorphic self map f of a hyperbolic Riemann surface,
exactly one of the following occurs:

1. f has an attracting fixed point, and all orbits converge to this point and the convergence
is locally uniform on compact subsets;

2. some orbit has no accumulation point, and so no orbit has accumulation points;

3. f has two distinct periodic points, and some iterate of f is the identity map;

4. in all other case, S is biholomorphic to either the disc, the puntured disc or an annulus,
and the dynamics is conjugated to an irrational rotation.
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54 Global dynamics of holomorphic maps

Theorem 6.1.4 (Denjoy-Wol�). Let f be a holomorphic self map of the unit disc. Then:

1. f is conjugated to a rotation; or

2. the iterates of f converge locally uniformly on compact subsets to a constant map
h(z) = c

0

, where c
0

can belong to the disc or to its boundary.

6.2 Dynamics on Euclidean Riemann surfaces

We consider now self maps of surfaces whose universal covering is the complex plane.
We have the following cases: the complex tori, the punctured plane (or cylinder) and the
complex plane itself.

We start with the complex tori. In this case, the surface is compact and we have
T = C/�. It turns out that the dynamics is quite easy to understand.

Theorem 6.2.1. Every holomorphic map f : T æ T is an affine map, f(z) = –z + c
mod �, with degree d = |–|2, and we have the following dichotomy:

1. if d Æ 1, then the Julia set is empty;

2. if d > 1, then the Julia set equals T.

Proof. Let us assume that the torus is given by T/C/�, where � = È1, ·Í, with · /œ R. The
map f lifts to a self map F of the covering space C.

There exists a – œ � such that F (z + 1) = F (z) + –. Indeed, we must have F (z + 1) ©
F (z) mod � and the difference function F (z + 1) ≠ F (z) must be constant since takes
value in a discrete set. In the same way, there exists — œ C such that F (z + ·) = F (z) + —.
Set g(z) = F (z) ≠ –z, so that g(z) = g(z + 1). Then

g(z + ·) = F (z + ·) ≠ –(z + ·) = F (z) + — + –z + –· = g(z) + — ≠ –·.

It suffices to prove that g is constant. Notice that g gives rise to a (holomorphic) map
from T to C/(— ≠ –·)Z. The target surface can be C or a cylinder. In either case, it is non
compact, which implies that g is constant.

So, F (z) = –z + c as required. The area is multiplied by |–|2, so the degree is |–|2. The
final assertions are proved by considering the derivative of the sequence { fn } at any
point of T.

In the non compact case the dynamical study is much more difficult. Remark that we
may have two possibilities: the iteration of a polynomial map, or of a trascendental map.
The study of the iteration of polynomial maps can be seen as a particular case of the
study of rational maps on the Riemann sphere, that we will do in the next section. The
study of transcendental maps is much more difficult and we do not do it here.



6.3. Conformal dynamics on the Riemann sphere 55

6.3 Conformal dynamics on the Riemann sphere

We study in this section the dynamics of a rational map on the Riemann sphere. We start
with some general properties of the Julia set. Recall the following version of Montel
Theorem.

Theorem 6.3.1 (Montel’s Theorem). Suppose that V µ C is an open domain, and let F be
a family of meromorphic maps f : V æ ‚C that whose range omits three distinct values in ‚C;
that is, there exist three distinct points {a, b, c} such that for any f œ F , f(‚C)fl{a, b, c} = ÿ.
Then F is a normal family.

Lemma 6.3.2. The Julia set of f is non-empty.

Proof. We argue by contradiction. Suppose that J(f) is empty. Then {fn} forms a normal
family on ‚C. Then there exists a subsequence fnj of the iterates of g that converges
uniformly to a meromorphic function g on ‚C. But now, all but a finite number of points
have d = deg(g) preimages under g. Since fnj converges uniformly to g, for j large
enough, fnj has the same property. But deg(fnj ) tends to infinity as j æ Œ, so that is
impossible. Hence J(f) is non-empty.

The grand orbit of a point z under f : ‚C æ ‚C is the set of all points whose orbit
eventually intersects the orbit of z. A point zÕ is in the grand orbit of z if there exist
m, n œ N such that fm(z) = fn(zÕ). A point z is called grand orbit finite (or exceptional)
if its grand orbit is a finite set.

Lemma 6.3.3 (Finite Grand Orbits). Let f : ‚C æ ‚C be a rational map with degree at least
2. The set of points with finite grand orbits can have at most two elements and these points,
if they exist, must be super attracting fixed points and hence must belong to the Fatou set.

Proof. Suppose that z is a point whose grand orbit is finite. A rational mapping f : ‚C æ ‚C
must map the grand orbit of any point onto itself. Since the grand orbit of z is finite, f
must map the grand orbit of z bijectively onto itself. Hence the grand orbit of z must
consist of a single periodic orbit

z = z
0

‘æ z
1

‘æ z
2

‘æ . . . ‘æ z
m

= z
0

.

Notice that any point ‚z œ ‚C has d = deg(f) preimages, counted with multiplicity. Thus
every point z

i

, 0 Æ i < m, must be a critical point of f . Thus the number of grand orbit
finite points is finite (bounded by the number of critical points of f) and is part of a super
attracting cycle. Hence they are in the Fatou set.

Suppose that there are three distinct grand orbit finite points, then for any set U that
does not contain these points, {fn|U} is a normal family (the range of every function in
the family omits the three grand orbit finite points, so Montel’s Theorem applies.) But
now, every point in ‚C is contained in the Fatou set of f , which contradicts the fact that
the Julia set is non-empty.
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Theorem 6.3.4 (Transitivity). Let z
0

œ J(f) and let N be an arbitrary neighbourhood of
z

0

. Let U = fiŒ
n=0

fn(N), be the union of forward images of N . Then U contains J(f) and
contains all but at most two points of ‚C. If N is chosen sufficiently small, then ‚C \ U is the
set of grand orbit finite points.

Proof. Montel’s Theorem implies that the complement of U can contain at most 2 points.
Otherwise since f(U) µ U it follows from Montel’s Theorem that {fn} is a normal family
on N , which contradicts z

0

œ J(f). Let z œ ‚C \ U . No preimage of z can be contained in
U , so z is either fixed point or a periodic point of period 2, and it grand orbit finite. Since
the points with finite grand orbit are contained in the Fatou set of f , it follows that U
contains J(f). If N is chosen small enough so that N does not contain any grand orbit
finite point of f , then ‚C \ U consists of grand orbit finite points.

Corollary 6.3.5. If J(f) has interior, then J(f) = ‚C.

Proof. Suppose that N is an open set contained in J(f), then U = fiŒ
n=0

fn(N) is a union
of open sets, and so it is open. By Theorem 6.3.4, U omits at most two points in ‚C, and
by invariance, U µ J(f). Hence J(f) omits at most two points in ‚C, but J(f) is closed
(so that it must contain its boundary points), thus J(f) = ‚C.

Corollary 6.3.6 (Iterated preimages are dense). Suppose that z
0

œ J(f), then fiŒ
n=0

f≠n(z
0

)
is dense in J(f); that is,

{z : fn(z) = z
0

for some n Ø 0}

is dense in J(f).

Proof. Notice that z
0

is not grand orbit finite and use Theorem 6.3.4. The details are left
as an exercise.

Corollary 6.3.7. J(f) has no isolated points.

Proof. If J(f) was a finite set, then it would consist of grand orbit finite points, but these
are in the Fatou set of f . Hence J(f) is infinite. Since J(f) is compact, it must contain at
least one limit point z

0

. The iterated preimages of z
0

forms a dense set of nonisolated
points. So no point in J(f) can be isolated.

We say that a property is generic if it holds on a countable intersection of dense open
sets.

Corollary 6.3.8 (Topological transitivity). For a generic z œ J(f),

{fn(z) : n œ N}

is dense in J(f); that is, the forward orbit of z is dense in J(f).
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Proof. For each integer j, we can cover J(f) by finitely many open sets, N
j,k

, with
diameter < 1/j (in the spherical metric). For each N

j,k

let U
j,k

be the union of preimages
of N

j,k

: U = fiŒ
n=0

f≠n(N
j,k

). By the Iterated Preimages are Dense Lemma, the closure
U

j,k

fl J(f) = J(f). Hence U
j,k

fl J(f) is a dense open subset of J(f). If a point z belongs
to the intersection of fl

j,k

U
j,k

, then the orbit of z intersects every N
j,k

, and hence is dense
in J(f).

The next theorem gives a nice characterization of the Julia set.

Theorem 6.3.9 (Repelling cycles are dense). The Julia set is the closure of the set of repelling
periodic points.

Notice the stark difference between Proposition 6.3.8 and Theorem 6.3.9: the forward
orbit of a repelling periodic point can never be dense in the Julia set - it’s finite, and
repelling periodic points are dense in J(f). But the set of repelling periodic points is
small - it’s countable - and generically, forward orbits of points are dense in the Julia set.
We will prove this theorem later.

6.4 Most periodic orbits repel

Theorem 6.4.1. Suppose that f : ‚C æ ‚C is rational map with degree d at least 2. The
number of attracting or indifferent cycles of F is bounded from above by 6d ≠ 6.

For a rational map of degree d, f Õ has degree 2d ≠ 2, and so a rational map can have at
most 2d ≠ 2 critical points. Thus we have already explained why the number of attracting
or parabolic points is at most 2d ≠ 2 - to each attracting or parabolic point, there is an
associated critical point in the immediate basin of attraction (in the attracting case) or in
an attracting petal (in the parabolic case). Hence the theorem follow from

Lemma 6.4.2. Let f be a rational map with degree d at least 2. Then f has at most 4d ≠ 4
indifferent cycles.

Proof. Let k denote the number of indifferent cycles of f . The idea of the proof is to
perturb 1/2 of the indifferent cycles of f , so that they become attracing. Then k/2 Æ 2d≠2,
which gives us that k Æ 4d ≠ 4, which is what we want.

If f is the function z ‘æ zd, then f has no indifferent cycles, and the estimate holds. So
from now on, we assume that f is not identical to z ‘æ zd, and that k ”= 0.

To start, we include f in a smooth family of rational maps: Suppose that

f(z) = p(z)
q(z)

is a quotient of polynomials without common factors. Set

f
t

= p(z) ≠ tzd

q(z) ≠ t
, f

0

(z) = f(z), fŒ(z) = zd.
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Remember that f
t

is a family of rational functions that depends on a complex paramater
t.

For almost all values of t the family f
t

varies smoothly with respect to t. The only time
it doesn’t is when a root of the numerator coincides with a root of the denominator at a
point ‚t, so that as t æ ‚t, the the degree of f

t

is d for t close to ‚t, but t ”= ‚t, and the degree
of f‚

h

is < d. When this occurs we have that p(z) ≠ tzd = 0 = q(z) ≠ t, and we see that

f(z) = p(z)
q(z) = tzd

t
= zd.

Notice that the equation f(z) = zd does not depend on t, and that since f is a rational
function that is not identical to zd, it has at most finitely many solutions. Thus there are
at most finitely many values of t such that p(z) ≠ tzd = 0 = q(z) ≠ t. Thus, since f = f

0

,
there is a neighbourhood U of 0 such that t ‘æ f

t

is a smooth family of rational maps for
t œ U .

For each indifferent cycle O
j

(0), j = 1, . . . k, of f
0

= f choose a periodic point z
j

(0) œ
O

j

(0). Let l
j

be the period z
j

(0) and let ⁄
j

(0) = Df lj (z
j

(0)) be its multiplier.
Observe that f

lj
0

(z
j

(0)) = z
j

(0), and that t ‘æ f
t

is a smooth family of rational maps, so
that by the Implicit Function Theorem, there is a a neighbourhood U Õ µ U of 0 such that
for all t œ U, there is a point f

lj
t

(z
j

(t)) = z
j

(t). To each of these cycles we associate the
multiplier mapping

t ‘æ ⁄
j

(t) = Df
lj
t

(x
j

(t)).

The points z
j

(t) and the multipliers ⁄
j

(t) all depend holomorphically on t.
Choose an angle ◊ œ [0, 2fi) such that the ray

r ‘æ rei◊ = R(r), r œ [0, Œ]

avoids the finitely many points ‚t where f
t

does not depend smoothly on t.

Claim: None of the funtions t ‘æ ⁄
j

(R(r)) is constant on a neighbourhood of 0 in [0, Œ].

Proof of claim. We argue by contradiction. Suppose that for some j, t ‘æ ⁄
j

(t) is
constant on a neighbourhood of 0. Let A µ [0, Œ] denote the set of all r such that
⁄

j

(R(r)) = ⁄
j

(R(0)). By assumation A is non-empty. We will show that A is open and
closed. Let r

i

æ ‚r be any sequence of points in A. Since the periodic points z
j

(R(r
i

)) of
period l

j

under f
R(ri)

depend continuously on r for all r œ [0, Œ], z
j

(R(r
i

)) æ z
j

(R(‚r))
as r

i

æ ‚r, and the multiplier, ⁄
j

(R(r
i

)) æ ⁄
j

(R(‚r)), since ⁄
j

(R(r
i

) = ⁄
j

(0) for all i, we
have that ⁄

j

(‚r) = ⁄
j

(0). So ‚r œ A and A is closed. By the Implicit Function Theorem
we have that any periodic orbit: f

lj

R(r)

(z
j

(R(r))) = z
j

(R(r)) varies smoothly with r, and
since the multiplier map is holomorphic, and constant in A, that nearby maps have the
same multiplier. Hence A is open.

This implies that A = [0, Œ], but now fŒ(z) = zd has an indifferent cycle, but this is
not the case.



6.5. Density of Repelling Periodic Points 59

Let us return to the proof of the theorem. For 1 Æ j Æ k, express

⁄
j

(t)
⁄

j

(0) = 1 + a
j

tnj + . . . a
j

”= 0, n
j

Ø 1.

Then
|⁄

j

(t)| = 1 + Re(a
j

tnj ) + o(tnj ).

We divide the t-plane into n
j

sectors where Re(a
j

tnj ) > 0 and n
j

sectors where Re(a
j

tnj ) <
0.

Let
‡

j

(◊) = sign(Re(a
j

ei◊nj )).

Then ‡
j

(◊) = 1 iff |⁄
j

(rei◊)| > 1 for small r > 0 and ‡
j

(◊) = ≠1 iff |⁄
j

(rei◊)| < 1 for
small r > 0. For each j

‡
j

(◊) æ {1, ≠1, 0}
is a step function that takes on the values ±1 except at the 2n

j

discontinuity points and
has average value 0 on [0, 2fi).

Suppose that k is odd. Let ‡ = ‡
1

+ ‡
2

+ · · · + ‡
k

. Then ‡ is a step function with
average value 0, and ‡ takes on odd integer values almost everywhere.

Suppose that there exists no value of ◊ such that ‡
j

(◊) = ≠1 for at least (k + 1)/2 of
the j’s. Then for all ◊, at most (k ≠ 1)/2 of the values ‡

j

(◊) is ≠1, but this implies that the
average of ‡ on [0, 2fi) is greater than 0, which is a contradiction. Hence, there is some
value of theta such that at least (k + 1)/2 of the values ‡

j

(◊) are ≠1. Taking r sufficiently
small, we have that at least (k + 1)/2 of the cycles of f

re

i◊ have multiplier ⁄
j

(rei◊) with
|⁄

j

(rei◊)| < 1. Thus (k + 1)/2 < 2d ≠ 2, so that

k < k + 1 Æ 4d ≠ 4.

If k is even, set ‡ = ‡
1

+ · · · + ‡
k≠1

and repeat the argument.

6.5 Density of Repelling Periodic Points

Theorem 6.5.1. The Julia set for any rational map f with degree d Ø 2 is equal to the
closure of its repelling periodic points.

Proof. Since the Julia set of f contains no isolated points, we can exclude finitely points
from consideration without affecting the argument.

Let z
0

be any point in J(f) such that z
0

is not a critical point of f and not a fixed
point of f . (Since f is a rational map, it has at most finitely many fixed points and
at most finitely many critical points). Then there exist distinct points z

1

, z
2

œ f≠1(z
0

)
which are both distinct from z

0

and local inverses Ï
1

and Ï
2

of f so that Ï
i

(z
0

) = z
i

and
f ¶ Ï

i

(z
0

) = z
0

for i = 1, 2. Let U be any neighbourhood of z
0

that is contained in the
domain of Ï

1

and the domain of Ï
2

.
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Claim: there exists z œ U and n œ N such that fn(z) œ {z, Ï
1

(z), Ï
2

(z)}.

Proof of claim: Suppose not. Then for all z œ U , fn(z) avoids the three values z, Ï
1

(z)
and Ï

2

(z). (We cannot apply Montel’s Theorem at this moment since the points that the
family fn|U avoids depend on the point z. This is easily overcome.) Let

g
n

(z) = (fn(z) ≠ Ï
1

(z))(z ≠ Ï
2

(z))
(fn(z) ≠ Ï

2

(z))(z ≠ Ï
1

(z)) .

Then gn|U avoids the values 0, 1 and Œ. Hence {gn|U} is a normal family. It is easy to see
that this implies that fn|U is a normal family. Since U fl J(f) ”= ÿ, this is impossible

Thus we see have that either fn(z) = z or fn+1 = f(fn(z)) = f(Ï
i

(z)) = z (for one of
i = 1 or 2). Hence z œ U is a periodic point. We have proved that z

0

is an accumulation
point of periodic points. By Theorem 9.1 at most finitely many periodic points of f are
non-repelling. Hence z

0

is an acculumution point of repelling periodic points. Since all
repelling periodic points are contained in the Julia set, we have the repelling periodic
points are dense in the Julia set.

Corollary 6.5.2. If U is an open set that intersects J(f) then for n sufficiently big fn(U fl
J(f)) = J(f).

Proof. There exists a repelling periodic point z
0

œ U of say period p, so using the local
behaviour of fp near z

0

, we can find a neighbourhood V of z
0

such that fp(V ) ∏ V . But
now

V µ fp(V ) µ f2p(V ) µ . . . .

We know from before that

J(f) = J(fp) µ fiŒ
n=1

fnp(V ).

By compactness of J(f), we have that there exists N such that J(f) ∏ fiN

n=1

fnp(V ) =
fNp(V ). The result now follows from the total invariance of the Julia set.

Corollary 6.5.3. If U µ ‚C is any open set that intersects the Julia set J(f), then no sequence
of iterates fni can converge uniformly on compact subsets of U .

Proof. Suppose that a sequence of functions fni converges uniformly on compact subsets
of U to a function g. Let z

0

œ U fl J(f). The since g is continuous, for any Á > 0, there
exists a neighbourhood U Õ of z

0

such that for any z œ U Õ, we have |g(z) ≠ g(z
0

)| < Á. But
then for all i large enough |fni(z) ≠ g(z

0

)| < 2Á. In other words

fni(U Õ) µ D(z
0

, 2Á)

for all large i. This contradicts the previous corollary.
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6.6 Classification of periodic Fatou components

Theorem 6.6.1. Suppose that f : ‚C æ ‚C is a rational mapping of the Riemann sphere with
degree at least 2. Assume that f maps a Fatou component U onto itself, then there are four
possibilities:

• U is an immediate basin of attraction for an attracting fixed point.

• U is the immediate basin of an attracting petal for a parabolic fixed point which has
multiplier ⁄ = 1

• U is a Siegel disk; that is, U is simply connected and f : U æ U is conjugate to an
irrational rotation.

• U is a Herman ring; that is, U is conformally isomorphic to an annulus, A
r

and f is
conjugate to an irrational rotation.

Proof. The Fatou component U is a hyperbolic Riemann surface, so by Theorem ??, either
U contains an attracting fixed point, {fn} is compactly divergent, f is an automorphism
of finite order, of f is conjugate to an irrational rotation of D, D \ {0} or an annulus,
A

r

. Since f has degree at least 2, no iterate of f can be the identity. This also implies
that J(f) has no isolated points, so that U cannot be conformally isomorphic to the
punctured disk. So we need to show that if {fn} is compactly divergent that all orbits
z

0

æ z
1

æ z
2

æ . . . converge to the same boundary point, which is a parabolic fixed
point with multiplier 1.

Lemma 6.6.2. Suppose that f is as in Theorem 6.6.1. Suppose that U is a fixed Fatou
component of f and that {fn} is compactly divergent on U . Then all orbits z

0

æ z
1

æ . . .
under f |U converge to the same point ‚z œ ˆU and ‚z is fixed by f . Moreover, the convergence
is uniform on compact subsets of U .

Proof. Let p : [0, 1] æ U be a continuous path connecting z
0

and z
1

. Label this path
by p[0, 1]. Extend the path inductively by the formula: p[n, n + 1] = f(p[n ≠ 1, n]). Let
” = diam

U

(p[0, 1]). Then by the Schwarz-Pick Lemma for all n, diam
U

p[n, n + 1] Æ ”. Let
‚z be any accumulation point of z

0

‘æ z
1

‘æ z
2

‘æ . . . . Since {fn} is compactly divergent,
‚z œ ˆU . Let V be any neighbourhood of ‚z. There exists a neighbourhood W of ‚z so that
if p[n, n + 1] fl W ”= ÿ, then p[n, n + 2] µ V . Since this is true for any neighbourhood of ‚z,
we see that ‚z must be a fixed point of f . Since f is a rational mapping of the Riemann
sphere, we know that f has only finitely many fixed points, so in particular f has at most
finitely many fixed points on ˆU . We will show that the set of fixed points of f on ˆU
must be connected, from which it follows that ‚z is the unique accumulation point on ˆU
of orbits in U . We can express the set of accumulation points of the orbit z

0

‘æ z
1

‘æ . . .
as fl

tØ0

p[0, t]. This is an intersection of compact connected sets, so it must be connected.
Indeed the same argument shows that every sequence of orbits must accumulate to the
same fixed point. We leave it to the reader to check that convergence is uniform on
compact subsets.
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Lemma 6.6.3 (Snail Lemma). Let V be a neighbourhood of 0. Suppose that there exists a
path p : [0, Œ) æ V \ {0} so that f(p(t)) = p(t + 1) and so that p(t) æ 0 as t æ Œ. Then
either |f Õ(0)| < 1 or f Õ(0) = 1.

Proof. Omitted. For a proof see, for example, Dynamics in One Complex Variable by John
Milnor.

6.7 Dynamics of polynomials

In this section we assume that f is a polynomial on C of a given degree d Ø 2. We will
suppose that f is monic, i.e., the leading term will be zd. Notice this is possibly by simply
conjugating f with a suitable dilation.

Definition 6.7.1. The filled Julia set K of f is the set of points with bounded orbit.

Proposition 6.7.2. The filled Julia set is compact, with connected complement, equal to the
basin of infinity. The boundary of K is equal to J . The interior of K is the union of all
bounded components of the Fatou set. All bounded connected components of the Fatou set
are simply connected.

Proof. First of all, Œ is a superattracting fixed point. There exists thus a R such that if
|z| > R then |f(z)| > 2 |z|. To be more precise, notice that f(z)/zd æ 1 as z æ Œ. Thus,
for |z| > r

0

, we have
---f(z)/zd ≠ 1

--- < 1/2, which implies

|f(z)| >
---zd

--- /2 > 2 |z| .

So, every point z such that |z| > r
0

belongs to the basin � of the point at infinity. A basin
is open, and so K = ‚C \ � is compact. This implies ˆK = ˆ�, which is equal to J be the
Lemma below.

Let us show that � is connected. Let U a bounded component of the Fatou set and
let us prove that U is not contained in �. Since the boundary of U is contained in J
(and thus in K), we have |fn(z)| < r

0

for every z œ ˆU , and thus for every z œ U by the
maximum principle. This implies that U is contained in K, and the unique unbounded
Fatou component coincides with the basin �.

Finally, let us prove that every bounded component U of the Fatou set is simply
connected. Let “ be a simple closed curve in U and let V be the bounded component of
C \ �. Again by the maximum principle, we have that V is contained in K. In particular,
V cannot contain any point of J = ˆK. This proves that V is contained in the Fatou set,
and thus in U .

We used the following lemma, valid for every rational map.

Lemma 6.7.3. Let f be a rational map and A be the basin of a periodic attracting cycle.
Then the boundary ˆA = A \ A is equal to the entire Julia set. Every connected component
of the Fatou either coincides with some connected component of A or is disjoint from A.
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Proof. Let N be an open neighbourhood of a point of J . By Theorem 6.3.4, some fn(N)
intersects A, and so also N intersects A (possibly a different component of A). So,
J µ A. Since J fl A = ÿ, we have J µ ˆA. Let us prove the other inclusion. If N is an
open neighbourhood of a point of ˆA, then any limit of iterates fn must have a jump
discontinuity on N , and so ˆA µ J .

The last assertion follows since every connected component of the Fatou set cannot
intesect J = ˆA.


