
4
Generalities about dynamics on Riemann

surfaces

In this chapter we start studying the dynamics of a self-map of Riemann surface. We will
decompose the Riemann surface into two subsets, one stable for the dynamics and the
other one chaotic. We then study periodic orbits.

4.1 Definitions and basic properties

We consider here a holomorphis self map f of a Riemann surface S. We denote by fn the
n-fold iterate of f .

Definition 4.1.1. The Fatou set J is the maximal open set where the sequence { fn } is
locally normal. The Julia set J is the complement of the Fatou set.

It is immediate from the definition that the Fatou set is open (and so the Julia set is
closed).

Example 4.1.2. Let f(z) = z2 be a self map of C. The iterates of f are of the form
fn(z) = z2

n . It is easy to see that this family is normal on the interior of the unit disc (with
every subsequence converging to the constant map 0). On the other hand, the complement of
the closed disc is in the Fatou set, too. Indeed, here it is immediate to verify that the family
of iterates diverges on compact subsets.

FInally, we consider any point on the unit circle. For any neighborhood of this point, any
limit map of the sequence must have a jump discontinuity on ˆD. The family is thus not
normal there. So, we have J = ˆD and F = C \ ˆD.

Notice that, if we consider the same map on ‚C, the decomposition is the same (we just
have that the sequence is not divergent on compact subsets on the complement of the closed
unit disc - since now the Riemann surface is compact - but has the constant map Œ as limit).
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40 Generalities about dynamics on Riemann surfaces

Lemma 4.1.3. The Fatou and Julia set are completely invariant:

1. F = f(F) = f≠1(F);

2. J = f(J ) = f≠1(J ).
Proof. Since the Julia set is the complement of the Fatou set, (1) holds if and only if
(2) holds, so it is enough to prove (1). Suppose that z œ F(f). Then there exists a
neighbourhood V of z such that {fn} forms a normal family on V . The set f≠1(V ) is a
neighbourhood of the set f≠1(z). Consider the family of iterates {fn|

f

≠1
(V )

}. Take any
subsequence {f

nj

f

≠1
(V )

}, we can assume that n
j

> 1 for all j. Since {fn

V

} is a normal

family, {fnj≠1|
V

} possesses a subsequence, {f
njk

≠1

V

} that converges on compact subsets
of V to a meromorphic function g, but now {fnjk } converges uniformly on compact
subsets of f≠1(V ) to f ¶ g. Hence {fn

f

≠1
(V )

} is a normal family. So all preimages of z

belong to F(f), and thus f≠1F(f) ™ F(f).
For the reverse inclusion (which also gives f(F(f)) ™ F(f)), we will use that f is open.

Let z œ F(f). If the sequence { fn } diverges near z, the same is true for the sequence
{fn≠1} near f(z), and the assertion follows. Let us the fix a subsequence fnj . We look for
a converging subsequence near f(z). Since z œ F(f), we can assume that the subsequence
of {fnj+1} has a converging subsequence { fnjk

+1 }near z. More precisely, for every Á
there exists a ” such that d(fnjk

+1(z), fnjk
+1(zÕ)) < Á if d(z, zÕ) < ”. Take N := B(z, ”).

Since f is open, f(N) is an open neighbourhood of f(z). Moreover, f is surjective from
N to f(N). So, given any wÕ œ f(N), there exists zÕ œ N such that f(zÕ) = wÕ. So, for
every wÕ œ f(N), we have d(fnjk (f(z), fnjk wÕ)) = d(fnjk

+1(z), fnjk
+1(zÕ)) < Á. So the

sequence is equicontinuous and the assertion follows.
So, F(f) ™ f≠1(F(f)), which implies F(f) = f≠1F(f) by the first part. The equality

F(f) = f(F(f)) follows by applying f to the previous one (since f is surjective).

Lemma 4.1.4. For every k Ø 1, we have J (f) = J (fk) (and similarly for F).

Proof. This statement is equivalent to proving that F (fk) = F (f), and that is what we
will prove. Suppose that x œ F (f), then there exists a neighbourhood V of x such that
{fn} forms a normal family on V . It is immediate that {fkn} forms a normal family on V
too.

So suppose that x œ F (fk). Then {fkn}Œ
n=0

is a normal family. We can express

{fn}Œ
n=k

= {fkn}Œ
n=1

fi {fkn+1}Œ
n=1

fi {fkn+2}Œ
n=1

fi · · · fi {fkn+k≠1}Œ
n=1

.

Since {fkn}Œ
n=1

forms a normal family on V , each {fkn+i|V }Œ
n=1

= {f i ¶ fkn|V }Œ
n=1

i = 1, 2, . . . , k ≠ 1, is a normal family too. Hence {fn|
V

} is a normal family.

4.2 Periodic points

A point z
0

is called periodic if there exists a p œ N such that fp(z
0

) = z
0

. For convenience
set z

i

= f i(z
0

), then

f : z
0

æ z
1

æ z
2

æ · · · æ z
p≠1

æ z
p

= z
0

.
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If z
0

, z
1

, . . . , z
p≠1

are all distinct, so that p is minimal so that fp(z
0

) = z
0

, then p is called
the period of z

0

.
A quantity associated to a periodic point is its multiplier,

⁄ = Dfp(z
0

) = f Õ(z
0

)f Õ(z
1

) . . . f Õ(z
p≠1

).

If |⁄| < 1, then z
0

is called attracting. It will sometimes be convenient to distinguish two
different types of attraction: z

0

is called geometrically attracting if 0 < |⁄| < 1 and super
attracting if ⁄ = 0. If |⁄| > 1, then z

0

is called repelling; and if |⁄| = 1, then z
0

is called
neutral.

Exercise 4.2.1. Prove that the multiplier does not depend on the chart with respect to which
it is computed.

Let’s immediately justify the names attracting and repelling. We say that a periodic
point z

0

of period p is topologically attracting if there exists a neighbourhood U of z
0

,
such that the family of iterates {fnp|U}Œ

n=1

converges uniformly to the constant function
g(z) = z

0

on U .

Lemma 4.2.2. Let z
0

be a periodic point of period p. Let ⁄ = Dfp(z
0

) be the multiplier of
the periodic cycle. Then z

0

is topologically attracting if and only if |⁄| < 1.

Before proving this, let’s state an immediate corollary:

Corollary 4.2.3. If z
0

is periodic point with multiplier less than 1, then z
0

is in the Fatou
set of f .

Proof. The previous lemma implies that if z
0

is a periodic point with multiplier less than
one, then z

0

is topologically attracting, and the definition of topologically attracting
implies that {fn} is a normal family in a neighbourhood of z

0

.

Proof of Lemma 4.2.2. Let g = fp. Then z
0

is a fixed point of g. For convenience, we will
assume that z

0

= 0. First suppose that |⁄| < 1. We will show that 0 is a topologically
attracting fixed point of g. Then the Taylor series of g at 0 has the form

g(z) = ⁄z + O(z2),

so there exist constants r
0

> 0 and C > 0 such that

|g(z) ≠ ⁄z| Æ C|z2|, for |z| < r
0

.

Choose c so that |⁄| < c < 1, and choose r, 0 < r < r
0

so that |⁄| + Cr < c. Then
whenever |z| < r, we have that

|g(z)| < |⁄z| + C|z2| < c|z|.
Hence |gn(z)| Æ cn|z| < cnr. So that as n æ Œ this converges uniformly to 0.

On the other hand, suppose that 0 is a topologically attracting fixed point of g. Then
there exist Á

0

> 0 and an iterate gn such that gn(D
Á0) is a proper subset of D

Á

. The
Schwarz Lemma implies that Dgn(0) = ⁄n satisfies |⁄|n < 1.e wo So |⁄| < 1.
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We say that a periodic point z
0

of period p is topologically repelling if there is a
neighbourhood U of z

0

so that for every z œ U, z ”= z
0

, there exists some n œ N such that
fn(z) /œ U . We call such a neighbourhood U a isolating neighbourhood of z

0

.

Exercise 4.2.4. If |⁄| > 1, then z
0

is topologically repelling.

Lemma 4.2.5 (Topologically repelling periodic points). Let z
0

be a periodic point of period
p, and let ⁄ = Dfp(z

0

) be its multiplier. Then z
0

is topologically repelling if and only if
|⁄| > 1.

Proof. We will prove that if z
0

is topologically repelling, then |⁄| > 1. The converse is left
as an exercise.

If z
0

is topologically repelling, then it cannot be topologically attracting. So by
Lemma 4.2.2, |⁄| Ø 1. let g = fp. We can find a compact isolating neighbourhood
N of z

0

such that N is mapped homeomorphically onto a compact neighbourhood g(N)
of z

0

. Let N
k

= N fl g≠1(N) fl · · · fl g≠k(N). Then N
k

is a compact neighbourhood of z
0

that consists of points for which the first k forward images all belong to N . Then

N ∏ N
1

∏ N
2

∏ . . . ,

and flN
k

= {z
0

}, since N is an isolating neighbourhood. By compactness, it follows that
diam(N

k

) æ 0 as k æ Œ, but it follows from the construction that

f(N
k

) = N
k≠1

fl f(N),

moreover, since diam(N
k

) æ 0, for k large, N
k≠1

µ f(N). Thus for large k, f(N
k

) =
N

k≠1

. Let U
k

be the connected component of the interior of N
k

that contains z
0

. Then
there exists n > 0 such that f≠n maps U

k

onto U
k+n

, biholomorphically, and U
k+n

is
strictly smaller than U

k

. Hence, by the Schwarz lemma |⁄≠n| < 1, which gives us that
|⁄| > 1.

Lemma 4.2.6. Suppose that z
0

is a repelling periodic point for f . Then z
0

œ J(f).
Proof. Suppose that z

0

is a fixed point of f . Since z
0

is repelling, the multiplier ⁄ = f Õ(z
0

)
satisfies, |⁄| > 1. But then Dfk(z

0

) = ⁄k grows exponentially. Hence the family {fn}
cannot converge uniformly to a holomorphic function in any neighbourhood of z

0

. If z
0

is
a periodic point of period p, then it is a fixed point for fp, and the statement follows from
the Iteration Lemma.

We say that a neutral periodic point z
0

is parabolic if its multiplier ⁄ is a root of unity,
but no iterate of f is the identity map.

Lemma 4.2.7. Parabolic periodic points are contained in the Julia set.

Proof. For convenience, we consider the case that z
0

= 0 is a fixed point of f . Then for
some m > 0, fm(z) = z + a

q

wq + a
q+1

wq+1 + . . . , where q Ø 2 and a
q

”= 0. Then fmk has
Taylor series

z ‘æ z + ka
q

wq + . . . .

Thus the q-derivative of f is q!ka
q

, which diverges to Œ as k æ Œ. Again, it follows from
the Iteration Lemma that z

0

œ J(f).
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Understanding the local dynamics near neutral periodic points is more complicated
than in the attracting and repelling cases. The remaining periodic points, those with
multiplier one that are not parabolic are called irrationally indifferent. Whether an
irrationally indifferent periodic point is contained in the Fatou set or the Julia set depends
on the arithmetic properties of the multiplier. We will return to this later in the course.


