
PARABOLIC IMPLOSION FOR ENDOMORPHISMS OF C2

FABRIZIO BIANCHI

We give an estimate of the discontinuity of the large Julia set for a perturbation
of a class of maps tangent to the identity, by means of a two-dimensional Lavaurs
Theorem. We adapt to our situation a strategy due to Bedford, Smillie and Ueda in
the semiattracting setting. We also prove the discontinuity of the filled Julia set for
such perturbations of regular polynomials.

1. Introduction and results

Parabolic dynamics and the study of parabolic perturbations have been
at the heart of holomorphic dynamics in the last couple of decades. Starting
with the work by Lavaurs [Lav89], the theory of parabolic implosion has
provided useful tools for a very precise control of these perturbations and for
the proof of some of the most striking recent results in the field, e.g., the
construction of Julia sets of positive area [BC08, AL15], significative steps
toward the setting of the hyperbolicity conjecture for quadratic polynomials
[CS15] and the construction of endomorphisms of P2(C) with a wandering
domain [ABD+16]. In particular, these techniques have proved extremely
useful in the study of bifurcation loci (see, e.g., [Shi98]).

In several complex variables, the study of parabolic perturbations and the
theory of parabolic implosion are just at the start, with recent results only
in the semiattracting setting [BSU12, DL13]. The goal of this paper is to
provide a starting point for an analogous theory in the completely parabolic
setting, by a precise study of perturbations of germs of endomorphisms of
C2 tangent to the identity at the origin.

Let us briefly recall the foundational results of the one-dimensional theory.
We refer to [Dou94] for a more extended introduction to the subject, as well
as to the original work by Lavaurs [Lav89]. Consider the polynomial map on
C tangent to the identity given by f(z) = z + z2. The origin is a parabolic
fixed point for f . The dynamics is attracting near the negative real axis:
there exists a parabolic basin B for 0, i.e., an open set of points converging
to the origin after iteration. The origin is on the boundary of B, and the
convergence happens tangentially to the negative real axis. The iteration of
f on B is semiconjugated to a translation by 1. More precisely, there exists
an incoming Fatou coordinate ϕι : B → C such that, for every z ∈ B, we
have ϕι ◦ f(z) = f(z) + 1.

The same happens for the inverse iteration near the positive real axis:
we have a repelling basin R of points converging to 0 under some inverse
iteration, and the convergence happens tangentially to the positive real axis.
We can construct in this case an outgoing Fatou parametrization, i.e., a map
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ψo : C→ R such that f ◦ ψo(z) = ψo(z + 1). It is worth noticing here that
the union of B and R gives a full pointed neighbourhood of the origin.

Notice that the incoming Fatou coordinate is a map from the dynamical
plane to C, while the outgoing Fatou parametrization is a map from C to
the dynamical plane. In particular, given any α ∈ C and denoting by tα the
translation by α on C, the composition Lα := ψo ◦ tα ◦ ϕι is well defined as
a function from B to R. Such a map is usually called a Lavaurs map, or a
transfer map.

We consider now the perturbation fε(z) = z + z2 + ε2 of the system f , for
ε real and positive. As ε 6= 0, the dynamics abruptly changes: the parabolic
point splits in two (repelling) points ±iε, and the orbits of points in B can
now pass through the “gate” between these two points. Using the Lavaurs
map it is possible to give a very precise description of this phenomenon, by
studying the dynamics of high iterates of the perturbed maps fε, as ε→ 0.
The following definition plays a central role in this study.

Definition 1.1. Given α ∈ C, an α-sequence is a sequence (εν , nν)ν∈N ∈
(C× N)N such that nν →∞ and nν − π

εν
→ α as ν →∞.

Notice in particular that the definition of α-sequence implies that εν tends
to the origin tangentially to the positive real axis. More precisely, there exists
a constant c such that, for every ν sufficiently large, we have |Im εν | ≤ c |εν |2.
The following result gives the limit description of suitable high iterates of fε.

Theorem 1.2 (Lavaurs [Lav89]). Let fε(z) = z + z2 + ε2 + o(z2, ε2) and
(εν , nν) be an α-sequence. Then fnνεν → Lα, locally uniformly on B.

One of the most direct consequences of Lavaurs theorem is the fact that
the set-valued functions ε 7→ J(fε) and ε 7→ K(fε) are discontinuous for
the Hausdorff topology at ε = 0. Here J(fε) and K(fε) denote the Julia
set and the filled Julia set of fε, respectively (recall – see e.g. [Dou94]
– that J(fε) is always lower semicontinuous, while K(fε) is always upper
semicontinuous). More precisely, define the Lavaurs-Julia set J(f0, Lα) and
the filled Lavaurs-Julia set K(f0, Lα) by

J(f0, Lα) := { z ∈ C : ∃m ∈ N, Lmα (z) ∈ J(f0) }
K(f0, Lα) := { z ∈ C : ∃m ∈ N, Lmα (z) /∈ K(f0) }c

Notice that the Lavaurs-Julia set J(f0, Lα) is in general larger than the Julia
set of f0. On the other hand, the set K(f0, Lα) is in general smaller than
K(f0). The following Theorem then gives an estimate of the discontinuity of
the maps ε 7→ J(fε) at ε = 0.

Theorem 1.3 (Lavaurs [Lav89]). Let fε(z) = z + z2 + ε2 + o(z2 + ε2) and
(εν , nν) be an α-sequence. Then

lim inf J(fεν ) ⊃ J(f0, Lα) and lim supK(fεν ) ⊂ K(f0, Lα)

In particular, at ε = 0,

(1) the map ε→ J(fε) is lower semicontinuous, but not continuous;
(2) the map ε→ K(fε) is upper semicontinuous, but not continuous.
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The goal of this paper is to make a step toward the generalization of
Theorems 1.2 and 1.3 to the two-variable setting, by studying the perturbation
of a class of maps tangent to the identity (i.e., with differential at a fixed
point equal to the identity). More precisely, we consider an endomorphism
of C2 of the form (see at the end of the introduction for the notation used)

(1) F0

(
x
y

)
=

(
x+ x2(1 + (q + 1)x+ ry +O(x2, xy, y2))

y(1 + ρx+O2(x
2, xy, y2))

)
.

where ρ is real and greater than 1 and q, r ∈ C. For instance, F0 may be the
local expression of an endomorphism of P2 (e.g., if the two components of F0

are polynomials of the same degree in (x, y) with 0 as the only common root
of their higher-degree homogeneous parts). We shall primarily be interested
in this situation.

The map F0 has a fixed point tangent to the identity at the origin, and two
invariant lines {x = 0 } and { y = 0 }. By the work of Hakim [Hak97] (see
Section 2) we know that [1 : 0] is a non-degenerate characteristic direction,
and that there exists an open set B of initial conditions, with the origin on the
boundary, such that every point in B is attracted to the origin tangentially

to the direction [1 : 0]. Moreover there exists, on an open subset C̃0 of
B, a (one dimensional) Fatou coordinate ϕ̃ι, with values in C, such that
ϕ̃ι ◦ F0(p) = ϕ̃ι(p) + 1 (see Lemma 2.2).

A similar description holds for the inverse map. Indeed, after restricting
ourselves to a neighbourhood U of the origin where F0 is invertible, we can
define the set R of point that are attracted to the origin tangentially to the
direction [1 : 0] by backward iteration. There is then a well defined map

ϕ̃o : −C̃0 ∩ U → C such that ϕ̃o ◦ F0(p) = ϕ̃o(p) + 1 whenever the left hand
side is defined. It is actually possible to construct two-dimensional Fatou
coordinates (see [Hak97]), but we shall not need them in this work.

Consider now a perturbation Fε of F0 of the form
(2)

Fε

(
x
y

)
=

(
x+ (x2 + ε2)αε(x, y)
y(1 + ρx+ βε(x, y))

)
=

(
x+ (x2 + ε2)(1 + (q + 1)x+ ry +O(x2, xy, y2) +O(ε2))

y(1 + ρx+O2(x
2, xy, y2) +O(ε2))

)
.

Our goal is to study the dependence of the large Julia set1 J1(Fε) on ε near
the parameter ε = 0. Our main result is the following Theorem, which is
a partial generalization of Theorem 1.2 to our setting. As in dimension 1,

α-sequences play a crucial role. The set C̃0 introduced above will be precisely
defined in Proposition 2.1, and the Fatou coordinates ϕ̃ι and ϕ̃o in Lemma
2.2.

Theorem 1.4. Let Fε be a holomorphic family of endomorphisms of C2

as in (2). Let F0 be invertible on a neighbourhood U of the origin and let

ϕ̃ι : C̃0 → C and ϕ̃o : −C̃0 → C be the (1-dimensional) Fatou coordinates
for F0. Let B be the attracting basin for the origin for the map F0 with
respect to the characteristic direction [1 : 0] and R the repelling one. Let

1i.e., the complement of the Fatou set, which in general is larger than the Julia set
defined as the support of the equilibrium measure for endomorphisms of P2, see [DS10].
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α be a complex number and (nν , εν) be an α-sequence. Then every compact
subset C ⊂ B ∩ { y = 0 } has a neighbourhood UC where, up to extracting a
subsequence, we have

Fnνεν → Tα

locally uniformly, where Tα is a well defined open holomorphic map from UC
to C2, with values in R. Moreover,

(3) ϕ̃o ◦ Tα(p) = α+ ϕ̃ι(p)

whenever both sides are defined.

As a consequence, we shall deduce an estimate of the discontinuity of the
large Julia set in this context (notice that the discontinuity itself follows
from an application of Theorem 1.2 to the invariant line { y = 0 }). We say

that, given U ⊂ C̃0, a map Tα : U → C2 is a Lavaurs map if there exists an
α-sequence (εν , nν) such that Fnνεν → Tα on U . We then have the following

result (see Section 7 for the definition of the Lavaurs-Julia sets J1(F0, Tα) in
this setting).

Theorem 1.5. Let Fε be a holomorphic family of endomorphisms of P2 as
in (2) and Tα : U → C2 be a Lavaurs map such that Fnνεν → Tα on U for
some α-sequence (εν , nν). Then

lim inf J1(Fεν ) ⊃ J1(F0, Tα).

Finally, in the last section, we consider a family of regular polynomials,
i.e., polynomial endomorphisms of C2 admitting an extension to P2(C). For
these maps, it is meaningful to define the filled Julia set K as the set of
points with bounded orbit. In analogy with the one-dimensional theory, we
deduce from Theorem 1.4 an estimate for the discontinuity of the filled Julia
set at ε = 0 (see Section 8 for the definition of the set K(F0, Tα)) and in
particular deduce that ε 7→ K(Fε) is discontinuos at ε = 0. Notice that,
differently from the case of the large Julia set, this is not already a direct
consequence of the 1-dimensional theory.

Theorem 1.6. Let Fε be a holomorphic family of regular polynomial maps
of C2 as in (2) and Tα : U → C2 be a Lavaurs map such that Fnνεν → Tα on
U for some α-sequence (εν , nν). Then

K(F0, Tα) ⊃ lim supK(Fεj ).

Moreover, ε 7→ K(Fε) is discontinuous at ε = 0.

The paper is organized as follows. In Section 2 we recall the results by
Hakim describing the local dynamics of the map (1) near the origin, and
introduce the Fatou coordinates associated to the attracting and repelling
basins. In Section 3 we define and study suitable perturbations of the Fatou
coordinates, that allow to semiconjugate the iteration of Fε to a translation by
1, up to a controlled error. In Sections 4 and 5 we carefully study the orbits of
points under iteration by Fε and prove some preliminary convergence result
needed for the proof of Theorem 1.4, which is given in Section 6. In Section 7
and 8 we deduce from Theorem 1.4 the estimates of the discontinuity of the
large Julia set and (for regular polynomials) of the filled Julia set at ε = 0.
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Notation. The symbol O(x) will stand for some element in the ideal gener-
ated by x. More generally, given any f , O(f) will stand for some element
in the ideal generated by f . Analogously, O(f1, . . . , fk) will stand for some
element in the ideal generated by f1, . . . , fk.

The notation O2(x, y) will be a shortcut for O(x2, xy, y2). Given a point
p ∈ C2, we shall denote its components as x(p) and y(p).

Acknowledgements. It is a pleasure to thank my advisor Marco Abate for
suggesting me this problem, for his many helpful comments and the careful
reading of this paper. I would also like to thank Eric Bedford for helpful
discussions about his paper.

2. Preliminaries and Fatou coordinates

Following the work of Hakim [Hak97] (see also [Hak98, AR14]), we start
giving a description of the local dynamics near the origin for F0 by recalling
some classical notions in this setting. Let Φ be a germ of transformation
tangent to the identity at the origin of C2. We can locally write it near the
origin as

Φ

(
x
y

)
=

(
x+ P (x, y) + . . .
y +Q(x, y) + . . .

)
,

where P and Q are homogeneous polynomials of degree 2. In the following,
we shall always assume that P (x, y) is not identically zero. A characteristic
direction is a direction V = [x : y] ∈ P1(C) such that the complex line through
the origin in the direction [x : y] is invariant for (P,Q). The direction is
degenerate if the restriction of (P,Q) is zero on it, non degenerate otherwise.

Consider now a non degenerate characteristic direction V and take coordi-
nates such that V = [1 : u0]. Notice that the fact that [1 : u0] is a character-
istic direction is equivalent to u0 being a zero of r(u) := Q(1, u)− uP (1, u).
The director of the characteristic direction [1 : u0] is thus defined as

r′(u0)

P (1, u0)

(see [Aba15, Definition 2.4] for a more intrinsec – and equivalent – definition).
Given a germ Φ and a non degenerate characteristic direction V for Φ we can
assume, without loss of generality, that V = [1 : 0] and that the coefficient
of x2 in P (x, y) is 1 (notice that Hakim has the opposite normalization, i.e.,
with the term −x2). The following result by Hakim ([Hak97, Proposition
2.6]) gives an explicit description of an invariant subdomain of B. In all
this work, we will restrict ourselves to points belonging to such an invariant
domain.

Proposition 2.1 (Hakim). Let Φ be a germ of transformation of C2 tangent
to the identity (normalized as above), such that V = [1 : 0] is a nondegenerate
characteristic direction with director δ whose real part is greater than some
0 < α ∈ R. Then, if γ, s and R are small enough positive constants, every
point of the set

C̃0(γ,R, s) := { (x, y) ∈ C2 : |Imx| ≤ −γ Rex, |x| ≤ R, |y| ≤ s |x| }
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is attracted to the origin in the direction V and x(Φn(x, y)) ∼ − 1
n . Moreover

we have |xn| ≤ 2
n and

(4) |y(Φn(x, y))| |x(Φn(x, y))|−α−1 ≤ |y| |x|−α−1 .

Notice that, for a γ1 slightly smaller than γ, we have F0(C̃0(γ,R, s)) ⊆
C̃0(γ,R, s).

Let us now consider F0 as in (1). It is immediate to see that [1 : 0] is a
non-degenerate characteristic direction, with director equal to ρ− 1. This is
the reason we made the assumption that ρ > 1. It will be even clearer later
(Lemma 5.1) that this a crucial assumption.

An important feature of our setting is that the (local) inverse of a map
tangent to the identity shares a lot of properties with the original map (this
does not happen for instance in the semi-parabolic situation). In fact, it is
immediate to see that the local inverse of an endomorphism tangent to the
identity is still tangent to the identity, with the same characteristic directions
and moreover the same Hakim directors. In our situation, (0, 0) is still a
double fixed point for the local inverse G0, which has the following form (see
for example the explicit description of the coefficients of the inverse of an
endomorphism tangent to the identity given in [AR13]),

G0

(
x
y

)
=

(
x− x2(1 + (q − 1)x+ ry +O2(x, y))

y(1− ρx+O2(x, y))

)
and the stated properties are readily verified.

In the following, we will fix a neighbourhood U of the origin where F0 is

invertible, and consider an invariant domain C̃0 as in Proposition 2.1 for F0

such that −C̃0 satisfies the same property for G0 and both C̃0 and −C̃0 are
contained in U .

We now briefly recall how to construct a (one dimensional) Fatou coor-

dinate ϕ̃ι on C̃0 semiconjugating F0 to a translation by 1. We notice here
that it is actually possible to construct a two-dimensional Fatou coordinate,

on a subset of C̃0, with values in C2 and semiconjugating the system to
the translation by (1, 0). Since we will not use it, we do not detail the
construction here, but we refer the interested reader to [Hak97].

The first step of the construction of ϕ̃ι is to consider the map

(5) w̃ι0(x, y) := −1

x
− q log(−x).

Notice that, in the chart w̃ι0, the map F0 already looks like a translation by
1. Indeed, by (1), we have

(6)

wι0(F0(x, y)) = − 1

x(F0(x, y))
− q log(−x(F0(x, y)))

= −1

x
− q log(−x) + 1 + ry +O2(x, y)

= w̃ι0(x, y) + 1 + ry +O2(x, y).

In order to get an actual Fatou coordinate, we consider the functions

(7) ϕ̃ι0,n := w̃ι(Fn0 (x, y))− n.
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The following Lemma proves that the ϕ̃ι0,n’s converge to an actual Fatou

coordinate ϕ̃ι as n→∞.

Lemma 2.2. The functions ϕ̃ι0,n converge, locally uniformly on C̃0, to an

analytic function ϕ̃ι : C̃0 → C satisfying

ϕ̃ι(F0(p)) = ϕ̃ι(p) + 1.

Proof. Set A0(x, y) := w̃ι0(F0(x, y))− w̃ι0(x, y)− 1 = ϕ̃ι0,1(x, y)− ϕ̃ι0,0(x, y)

and notice that A0(F
n
0 (x, y)) = ϕ̃ι0,n+1(x, y) − ϕ̃ι0,n(x, y). In order to

ensure the convergence of the ϕ̃ι0,n’s we can prove that the series of the

A0(F
n
0 (x, y))’s converges normally on C̃0. It follows from (6) that

A0(F
n
0 (x, y)) = ry(Fn0 (x, y)) +O2(x(Fn0 (x, y)), y(Fn0 (x, y))).

By Proposition 2.1, we have |x(Fn0 (x, y))| ≤ 2/n and |y(Fn0 (x, y))| ≤ 1/nα+1,
for some α > 0. This implies that the series

∑∞
n=0 |A0(F

n(x, y))| converges
normally to

ϕ̃ι(x, y) := ϕ̃ι0(x, y) +
∞∑
n=0

A0(F
n
0 (x, y)).

The functional relation is also easily verified, since |A0(F
n(x, y))| → 0. �

In the repelling basin the situation is completely analogous. Setting

w̃o0 := − 1
x − q log(x) on −C̃0 and ϕ̃o0,n := w̃o0(F−n0 (x, y)) + n, we have

ϕ̃o0,n → ϕ̃o locally uniformly on −C̃0, where ϕ̃o : C̃0 → C satisfies the

functional relation ϕ̃o ◦ F0(p) = ϕ̃o(p) + 1.
We notice that the Fatou coordinates are not unique. For instance, we can

add any constant to them and still have a coordinate satisfying the desired
functional relation. In the following (and in Theorem 1.4), we shall use as
coordinate the one obtained in Lemma 2.2 above.

3. The perturbed Fatou coordinates

We consider now the perturbation (2) of the system F0. The goal of this
section is modify the Fatou coordinate ϕ̃ι built in Section 2 to an approximate
coordinate for Fε. More precisely, we are going to construct some coordinates

ϕ̃ιε (with values in C) that, on suitable subsets of C̃0:

(1) almost conjugate Fε to a translation by 1, in the sense that the error
that we have in considering Fε as a translation in this new chart will
be bounded and explicitly estimated; and

(2) tend to the one-dimensional Fatou coordinates ϕ̃ι for F0 as ε→ 0.

We shall only be concerned with ε small and satisfying

(8)

{
Re ε > 0

|Im ε| < c
∣∣ε2∣∣ .

Notice that this means that ε is contained in the region, in a neighbouhood
of the origin, of the points with positive real part and bounded by two circles
of the same radius centered on the imaginary axis and tangent one to the
other at the origin. Notice in particular that, by definition, every sequence
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εν associated to an α sequence (εν , nν) (see Definition 1.1) satisfies the above
property.

First of all, we fix a small neighbourhood U of the origin, such that Fε
is invertible in U , for ε sufficiently small. In this section, we shall only be
concerned with this local situation. Then, fix sufficiently small γ < γ′, R and

s such that Proposition 2.1 holds on C̃0(γ,R, s) and C̃0(γ
′, R, s) for both

F0 and H0 := −F−10 . By taking γ and γ′ sufficiently close, we can assume

that F0(C̃0(γ
′, R, s)) and H0(C̃0(γ

′, R, s)) are contained in C̃0. Denote by

C̃0, C̃
′
0 ⊂ U (dropping for simplicity the dependence on the parameters) these

sets and by C0, C
′
0 their projections on the x-plane. We shall assume that

Rρ� 1, and so that C̃0 ⊂ C̃ ′0 b U .
We consider the classical 1-variable change of coordinates on x (and

depending on ε) given by

(9) uε(x) =
1

ε
arctan

(x
ε

)
=

1

2iε
log

(
iε− x
iε+ x

)
.

The geometric idea behind this map is the following: for ε small as in
(8), uε sends iε to the “infinity above” and −iε to the “infinity below”.
Circular arcs connecting these two points are sent to parallel (and almost
vertical) lines. In particular, the image of the map uε is contained in the strip{
− π

2|ε| < Re
(
ε
|ε|w

)
< π

2|ε|

}
and the image of the disc of radius ε centered at

the origin is the strip
{
− π

4|ε| < Re
(
ε
|ε|w

)
< π

4|ε|

}
. Notice that the inverse of

this function on
{
− π

2|ε| < Re
(
ε
|ε|w

)
< π

2|ε|

}
is given by w 7→ ε tan (εw). We

gather in the next Lemma the main properties of uε that we shall need in
the sequel.

Lemma 3.1. Let uε be given by (9). Then the following hold.

(1) For every compact subset C ⊂ C0 there exist two positive constants
M−(C) and M+(C) such that, for every x ∈ C, we have

(10) − π

2 |ε|
+M− < Re

(
ε

|ε|
uε(x)

)
< − π

2 |ε|
+M+

for every ε sufficiently small.

(2) If − π
2|ε| < Re

(
ε
|ε|uε(x)

)
< − π

4|ε| , then |x| ≤ 1
π

2|ε|+Re( ε|ε|uε(x))
.

Proof. For the first assertion the main point is to notice that, by the com-
pactness of C, we have

uε(x) +
π

2ε
→ −1

x
uniformly on C, as ε→ 0. From this we deduce the existence of constants
M−,M+ such that (10) holds for every x ∈ C.

For the second one, we exploit the inverse of uε on {− π
2|ε| < Re

(
ε
|ε|w

)
<

π
2|ε|}, which is given by w 7→ ε tan(εw). We have

π

4
< |Rew| < π

2
⇒ |tanw| ≤ tan |Rew| < 1

π
2 − |Rew|

and the assertion follows putting w = εuε(x). �
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We define now, by means of the functions uε, different regions in the
dynamical plane. In order to do this, we have to define some constants
(independent on ε) that we shall repeatedly use in the sequel.

First of all, fix some 1 < ρ′ < ρ. Then, fix some 1 < ρ′′ < 5/4 such that∣∣∣∣ 4π(ρ′′ − 1)

tan (4π(ρ′′ − 1))

∣∣∣∣ > 1

ρ′
.

This is possible since ρ′ > 1. In particular, ρ′′ may be very close to 1. Finally,
set

(11) K := 2π(ρ′′ − 1) and τ :=

∣∣∣∣tan

(
−π

2
+
K

2

)∣∣∣∣ .
Without loss of generality, we can take ρ′′ small enough to ensure that
K ≤ π/4. Moreover, we shall assume that γ′ and s are small enough such
that

(12)

{
ρ′ < ρ 1−γ′√

1+γ′2
,

4τs < 1.

Denote by Dε the subset of C given by

(13) x ∈ Dε ⇔ −
π

2 |ε|
+
K

|ε|
< Re

(
ε

|ε|
uε(x)

)
<

π

2 |ε|
− K

2 |ε|
.

Notice the asymmetry in the definition of Dε. This will be explained in
Lemma 6.2.

Let us now move to C2. Let D̃ε be the product Dε × D2e4πρτ |ε| ⊂ C2 (the

constant e4πρτ will be explained in Proposition 4.7). By definition, since
K ≤ π/4, we have

(14) D|ε| × D2e4πρτ |ε| ⊂ D̃ε ⊂ Dτ |ε| × D2e4πρτ |ε|.

Notice in particular that the ratios τ and 2e4πρτ are independent of ε.

Set Cε := ε
|ε|C0 \Dε and C̃ε :=

(
ε
|ε| , 1

)
· C̃0 \ D̃ε the rotations of C0 and

C̃0 of ε
|ε| around the y plane. Notice that C̃ε → C̃0 and C̃ε ∪ D̃ε → C̃0 as

ε→ 0. Morevover, we have C̃ε ⊂ C̃ ′0 for ε sufficiently small (and satisfying
(8)) The following Lemma will be very useful in the sequel.

Lemma 3.2. For ε sufficiently small, we have Fε(C̃ε) ⊂ C̃ε ∪ D̃ε.

Proof. By the choice of C̃0 and C̃ ′0, we have F0(C̃
′
0) ⊂ C̃0. Moreover, Fε =

F0 +O(ε2) and Fε uniformly converges to F0 on compact subsets of C̃ ′0. The
assertion then follows from the the first inclusion in (14). �

The first step in the construction of the almost Fatou coordinates consists
in considering the functions ũε given by

ũε(x, y) := uε(x).

The following lemma gives the fundamental estimate on ũε: in this chart, the
map Fε(x, y) approximately acts as a translation by 1 on the first coordinate.
Here and in the following, it will be useful to consider the expression

γε(x, y) :=
αε(x, y)

1 + xαε(x, y)
.
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It is immediate to see that γε(x, y) = 1 + qx+ ry +O2(x, y) +O(ε2).

Lemma 3.3. Take p = (x, y) ∈ C̃ε ∪ D̃ε. Then

ũε(Fε(p))− ũε(p) = 1 + qx+ ry +O2(x, y) +O(ε2).

In particular, when γ,R, s and ε(γ,R, s) are small enough, for p = (x, y) ∈
C̃ε ∪ D̃ε we have

|ũε(Fε(p))− ũε(p)− 1| < ρ′′ − 1 and

∣∣∣∣ ε|ε| (ũε(Fε(p))− ũε(p))− 1

∣∣∣∣ < ρ′′ − 1.

Proof. Since x(Fε(x, y)) = x+ (x2 + ε2)αε(x, y), it follows that

iε− x(Fε(x, y))

iε+ x(Fε(x, y))
=

(iε− x) (1 + (x+ iε)αε(x, y))

(iε+ x) (1 + (x− iε)αε(x, y))

and so
iε+ x

iε− x
iε− x(Fε(x, y))

iε+ x(Fε(x, y))
=

1 + iεγε(x, y)

1− iεγε(x, y)
.

The desired difference is then equal to

ũε(Fε(p))− ũε(p) =
1

2iε
log

1 + iεγε(x, y)

1− iεγε(x, y)

=
1

iε

[
iεγε(x, y) +

1

3
(iεγε(x, y))3 +O(ε4)

]
= γε(x, y) +O(ε2)

= 1 + qx+ ry +O2(x, y) +O(ε2)

and the assertion is proved. �

The next step is to slightly modify our coordinate ũε to a coordinate w̃ιε
satisfying the following two properties:

(1) w̃ιε → w̃ι0 (with w̃ι0 as in (5)) as ε→ 0, and

(2) w̃ιε(F
n
ε (p))−n→ ϕ̃ι when ε→ 0 and n→∞ satisfying some relation

to be determined later.

We also look for functions w̃oε satisfying analogous properties on −C̃0. Recall
that the functions w̃ι0(x, y) and w̃o0(x, y) almost semiconjugates the (first
coordinate of the) system F0 to a translation by 1 (by (6)).

We set

w̃ε(x, y) := ũε(x, y)− q

2
log(ε2 + x2) =

1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2).

and consider their incoming and outgoing normalizations w̃ιε and w̃oε given by

w̃ιε(x, y) :=
1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2) +

π

2ε
,

w̃oε(x, y) :=
1

2iε
log

(
iε− x
iε+ x

)
− q

2
log(ε2 + x2)− π

2ε
.

It is immediate to check that the first request is satisfied, i.e., that w̃ιε(x, y)→
w̃ι0 on C̃0 (and w̃oε(x, y)→ w̃o0 on −C̃0) as ε→ 0. In the next proposition we
estimate the distance between the reading of Fε in this new chart w̃ε and
the translation by 1. We want to prove, in particular, that now the error has
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no linear terms in the x variable. Indeed, notice that also for the system F0

we had to remove this term (see Lemma 2.2) to ensure the convergence of
the series of the A0(F

n
0 (p))’s, by the harmonic behaviour of x(Fn0 (p)). For

convenience of notation, we denote this error by

Aε(x, y) := w̃ε(Fε(x, y))− w̃(x, y)− 1

We then have the following estimate.

Proposition 3.4. Aε(x, y) = ry +O2(x, y) +O(ε2).

Notice that, differently from [BSU12], here the error is still linear in y.
The reason is that we do not add any correction term in y in the expression
of w̃ε. On the other hand, by our assumptions we do not have any linear
dipendence in ε.

Proof. The computation is analogous to the one in [BSU12]. By the definition
of w̃ε and the analogous property of ũε (Lemma 3.3) we have

w̃ε(Fε(x, y))− w̃ε(x, y) = ũε(Fε(x, y))− ũε(x, y)

− q

2
log(ε2 + x(Fε(x, y))2) +

q

2
log(ε2 + x2)

= 1 + qx+ ry +O2(x, y) +O(ε2)

− q

2
log

ε2 + x(Fε(x, y))2

ε2 + x2
.

It is thus sufficient to prove that

ε2 + x(Fε(x, y))2

ε2 + x2
= 1 + 2x+O2(x, y) +O(ε2).

But

ε2 + x(Fε(x, y))2 = ε2 + x2 + (x2 + ε2)2α2
ε(x, y) + 2x(x2 + ε2)αε(x, y)

= (x2 + ε2)(1 + 2xαε(x, y) +O(x2, ε2))

= (x2 + ε2)(1 + 2x+O2(x, y) +O(ε2))

and the assertion follows. �

Let us finally introduce the incoming almost Fatou coordinate, by means
of the w̃ιε, as it was done for the map F0 in (7). Set

(15) ϕ̃ιε,n(p) := w̃ιε(F
n
ε (p))− n = w̃ιε(p) +

n−1∑
j=0

Aε(F
j
ε (p)).

We shall be particularly interested in the following relation between the
parameter ε and the number of iterations.

Definition 3.5. A sequence (εν ,mν) ⊂ (C× N)N such that εν → 0 will be
said of bounded type if π

2εν
−mν is bounded in ν.

Notice that, given an α-sequence (εν , nν), the sequence (εν , nν/2) is of
bounded type.

The following result in particular proves that the coordinates w̃ιε satisfy the
second request. This convergence will be crucial in order to prove Theorem

1.4. Here ϕ̃ι denotes the Fatou coordinate on C̃0 given by Lemma 2.2.
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Theorem 3.6. Let (εν ,mν)ν∈N be a sequence of bounded type. Then

ϕ̃ιεν ,mν → ϕ̃ι

locally uniformly on C̃0.

We can also define the outgoing almost Fatou coordinates on −C̃0 as

ϕ̃oε,n(p) := w̃o(F−nε (p)) + n

(recall that by assumption −C̃0 is contained in a neighbourhood U of the
origin where Fε is invertible, for ε sufficiently small). The following con-
vergence is then an immediate consequence of Theorem 3.6 applied to the
inverse system.

Corollary 3.7. Let (εν ,mν) be a sequence of bounded type. Then

ϕ̃oεν ,mν → ϕ̃o

locally uniformly on −C̃0.

To prove Theorem 3.6, we need to estimate the series of the errors in (15).
In particular, we need to bound the modulus of the two coordinates of the

orbit F jε (p), for p ∈ C̃0 and j up to (approximately) π/2 |ε|. This is the
content of the next section. The proof of Theorem 3.6 will be then given in
Section 5.

In our study, we will need to carefully compare the behaviour of Fε in C̃0

and the one of F−1ε on −C̃0. Notice that F−1ε is given by

F−1ε

(
x
y

)
=

(
x− (x2 + ε2)(1 + (q − 1)x+ ry + +O(ε2) +O2(x, y))

y(1− ρx+O(ε2) +O2(x, y))

)
In order to compare the behaviour of the orbits for F−1ε with the ones for Fε,
it will be useful to consider the change of coordinate (x, y) 7→ (−x, y) and
thus study the maps
(16)

Hε

(
x
y

)
=

(
x+ (x2 + ε2)(1 + (−q + 1)x+ ry + +O(ε2) +O2(x, y))

y(1 + ρx+O(ε2) +O2(x, y))

)
=

(
x+ (x2 + ε2)αHε (x, y)
y(1 + ρx+ βHε (x, y))

)
In this way, we can study both Fε and Hε in the same region of space. Notice
that the main difference between Fε and Hε is that the coefficient q has
changed sign.

4. The estimates for the points in the orbit

In this section we are going to study the orbit of a point p ∈ C̃0 under the
iteration of Fε. In particular, since the main application we have in mind
is the study of Fnνεν when (εν , nν) is an α-sequence, we shall be primarily
interested in the study of orbit up to an order of π/ |ε| iterations.

Recall that the set C̃0 is given by Proposition 2.1 and in particular consists
of points that converge to the origin under F0 tangentially to the (negative)
real axis of the complex direction [1 : 0]. We shall still assume (by taking



PARABOLIC IMPLOSION FOR ENDOMORPHISMS OF C2 13

R � 1 small enough) that C̃0 is contained in a small neighbourhood U of
the origin where F0 and Fε are invertible, for ε sufficiently small.

By Lemma 3.1, for every compact C ⊂ C̃0 there exist two constants M−(C)
and M+(C) such that

(17) − π

2 |ε|
+M−(C) ≤ Re

(
ε

|ε|
ũε(p)

)
≤ − π

2 |ε|
+M+(C) ∀p ∈ C,∀ε ≤ ε0.

Without loss of generality, we will assume that M− and M+ are integers
and � 1 (since R� 1).

We shall divide the estimates of the coordinates of F jε (p) according to its

position with respect to the set D̃ε, i.e., according to the position of x(F jε (p))
with respect to Dε as in (13). The following notation will be consistently
used through all our study.

Definition 4.1. Given p ∈ C̃0 and ε such that p ∈ C̃ε, we define the entry
time np(ε) and the exit time n′p(ε) by

(18)
np(ε) := min { j ∈ N : F jε (p) ∈ D̃ε }

n′p(ε) := min { j ∈ N : F jε /∈ C̃ε ∪ D̃ε }

The next Proposition gives the bounds on np(ε) that we shall need in the
sequel.

Proposition 4.2. Let C ⊂ C̃0 be a compact subset and M−,M+ be as in
(17). Then, for every p = (x, y) ∈ C and ε sufficiently small,

K

ρ′′ |ε|
− M+

ρ′′
≤ np(ε) ≤

K

(2− ρ′′) |ε|
− M−

2− ρ′′
.

In particular, F jε (p) ∈ C̃ε for 0 ≤ j < K
ρ′′|ε| −

M+

ρ′′ .

Proof. Notice that, since Fε(C̃ε) ⊂ C̃ε ∪ D̃ε (by Lemma 3.2), we only have to

study the first coordinate of the orbit. Since C̃ε → C̃0, we have that C ⊂ C̃ε
for ε sufficiently small. From Lemma 3.3 it follows that

2− ρ′′ < Re

(
ε

|ε|
ũε(Fε(p))

)
− Re

(
ε

|ε|
ũε(p)

)
< ρ′′.

Thus, we deduce that

(19) − π

2 |ε|
+M− + (2− ρ′′)j < Re

(
ε

|ε|
ũε(F

j
ε (q))

)
< − π

2 |ε|
+M+ + ρ′′j

and the assertion follows from the definition of Dε (see (13)). �

4.1. Up to np(ε). Given p in some compact subset C ∈ C̃0, here we study
the modulus of the two coordinates of the points in the orbit for Fε of p

until they fall in D̃ε, i.e., for a number of iteration up to np(ε). We start
estimating the first coordinate. Here we shall make use of the definition of
K (see (11)).

Lemma 4.3. Let C ⊂ C̃0 be a compact subset and M− be as in (17). Then∣∣x(F jε (p))
∣∣ ≤ 2

j +M−
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for every p ∈ C, for ε small enough and j ≤ np(ε).

Proof. The statement follows from Lemma 3.1 (2) and the (first) inequality
in (19). Indeed, we have (recall that 3/4 < 2− ρ′′ < 1)∣∣x(F jε (p))

∣∣ < 1
π
2|ε| + Re( ε

|ε| ũε(F
j
ε (p)))

≤ 1
π
2|ε| −

π
2|ε| + (2− ρ′′)j +M−

≤ 1

2− ρ′′
1

j +M−
≤ 2

j +M−
.

and the inequality is proved. �

We now come to the second coordinate. Estimating this is the main
difference between our setting and the semiparabolic one. Notice that, by (2),

in order to bound the terms
∣∣∣y(F jε (p))

∣∣∣, we will need to get an estimate from

below of the first coordinate. This will be done by means of the following
lemma.

Lemma 4.4. Let C ⊂ C̃0 be a compact subset and M− be as in (17). Let
p, q ∈ C and set qj := ε (tan ε(ũε(q) + j)) and q̃j := ε (tan ε(ũε(q) + |ε| j/ε)).
Then, for some positive constants C depending on C and Cε depending on C
and ε, and going to zero as Re ε→ 0,

(20)
∣∣x(F jε (p))− qj

∣∣ < C
1 + log(M− + j)

(M− + j)2

and

(21)
∣∣x(F jε (p))− q̃j

∣∣ < C
1 + log(M− + j)

(M− + j)2
+ Cε

1

M+ + j

for every 0 ≤ j ≤ np(ε).

Notice in particular that the two estimates reduce to the same for ε real.

Proof. The idea is to first estimate the distance between the two sequences

ũε(F
j
ε (p)) and ũε(q) + j (and between ũε(F

j
ε (p)) and ũε(q) + |ε| j/ε) and

then to see how this distance is transformed by the application of the inverse

of uε. Notice that, since j ≤ np(ε), by definition of D̃ε (see (13)) we have

Re
(
ε
|ε| ũε(F

j
ε (p))

)
< − π

4|ε| for the points in the orbit under consideration

(since K ≤ π/4).
We first prove that

(22)
∣∣ũε(F jε (p))− ũε(q)− j

∣∣ ≤ C1

(
1 + log(M− + j)

)
.

Notice that this is an improvement with respect to the estimate obtained in
Lemma 3.3, but that we shall need both that estimate and the bound from
above obtained in Lemma 4.3 in order to get this one.

By the definition of M−, we have that |x(p)| and |x(q)| are bounded above

by 2/M−. Recalling that |y| ≤ s |x| for every (x, y) ∈ C̃ε, Lemma 3.3 gives∣∣ũε(F jε (p))− ũε(p)− j
∣∣ ≤ c1∑

i<j

∣∣x(F iε(p))
∣∣+ c2

∑
i<j

(∣∣x(F iε(p))
∣∣2 + |ε|2

)
.
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Since by Lemma 4.3 we have
∣∣∣x(F jε (p))

∣∣∣ ≤ 2/(j + M−) and the maximal

number of iterations np(ε) is bounded by a constant times 1/ |ε|, this gives∣∣ũε(F jε (p))− ũε(p)− j
∣∣ ≤ C2

(
1 + log(M− + j)

)
for some positive C2, and the estimate (22) follows since the two sequences
(ũε(p) + j)j and (ũε(q) + j)j obviously stay at constant distance.

We then consider the sequence q̃j . Using (22), it is immediate to see that

(23)
∣∣ũε(F jε (p))− ũε(q)− |ε| j/ε

∣∣ ≤ C1

(
1 + log(M− + j)

)
+ |arg(ε)| j,

since the distance between the two sequences ũε(q) + j and ũε(q) + |ε| j/ε.
is bounded by the last term.

We now need to estimate how the errors in (22) and (23) are transformed
when passing to the dynamical space, and in particular recover the quadratic
denominator in (20). By (23) we have

Re

(
ε

|ε|
ũε(F

j
ε (p))

)
≥ − π

2 |ε|
+M− + j − C1

(
1 + log(M− + j)

)
− |arg ε| j

> − π

2 |ε|
+ C3(M

− + j)

for ε sufficiently small (as in (8)), j ≤ np(ε) and some C3 > 0. So, given L > 0,
it is enough to bound from above the modulus of the derivative of the inverse

of uε on the strip
{
− π

2|ε| + L ≤ Re
(
ε
|ε|w

)
< − π

4|ε|

}
by (a constant times)

1/ |L|2. This can be done with a straightforward computation. Recall that
uε(z) = 1

ε arctan
(
z
ε

)
, so that its inverse is given by ε tan(εw). The derivative

of this inverse at a point −π/2ε+w is thus given by ψε(w) = ε2 (cos (εw))−2.
On the strip in consideration, ψε takes its maximum at w = − π

2ε + L,

where we have ψε(− π
2ε + L) = ε2/ sin2(εL). The estimate then follows since

x ≤ 2 sin(x) on [0, π/4]. �

Proposition 4.5. Let C ⊂ C̃0 be a compact subset, M−,M+ be as in (17)
and C,Cε as in Lemma 4.4. Then(

1

ρ′
− Cε

)
1

M+ + j
− C 1 + log(M− + j)

(M− + j)2
≤
∣∣x(F jε (p))

∣∣ ≤ 2

j +M−

for every p ∈ C, for ε small enough and j ≤ np(ε).

Proof. The second inequality is the content of Lemma 4.3. Let us then prove
the lower bound. By Lemma 4.4, it is enough to get the bound

1

ρ′(M+ + j)
≤ |q̃j |

where q̃j := ε tan (ε(Re(ũε(p)) + |ε| j/ε)) as in Lemma 4.4. Notice that
we arranged the points ε

|ε| ũε(q̃j) to be on the real axis. Since we have

Re ε
|ε| ũε(q0) < −

π
2|ε| + M+ (and thus Re ε

|ε|uε (q̃j) ≤ − π
2|ε| + M+ + j), it

follows that

|q̃j | ≥ |ε|
∣∣∣∣tan

(
ε

(
− π

2 |ε|
+ (M+ + j)

|ε|
ε

))∣∣∣∣ =
|ε|

tan (M+ |ε|+ j |ε|)
.
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We thus have to prove that, for ε sufficiently small and j ≤ np(ε),

|ε|M+ + |ε| j
tan (M+ |ε|+ j |ε|)

>
1

ρ′
.

The left hand side is decreasing in j, so we can evaluate it at j = np(ε),

which is less or equal than K
(2−ρ′′)|ε| by Proposition 4.2. We thus need to

prove that, for ε sufficiently small,

|ε|M+ + K
2−ρ′′∣∣∣tan

(
M+ |ε|+ K

2−ρ′′
)∣∣∣ > 1

ρ′
.

This follows since |ε|M+ + K
2−ρ′′ < 2K for |ε| � 1 and, by assumption, K

satisfies
∣∣∣ 2K
tan(2K)

∣∣∣ > 1
ρ′ . This concludes the proof. �

We can now give the estimate for the second coordinate.

Proposition 4.6. Let C ⊂ C̃0 be a compact subset and M+ be as in (17).
There exists a positive constant c1, depending on C, such that for p ∈ C and
J ≤ np(ε), ∣∣y(F Jε (p))

∣∣ ≤ c1 |y(p)|
M++J−1∏
l=M+

(
1− ρ̃

l

)
for some 1 < ρ̃ < ρ

ρ′
1−γ′√
1+γ′2

.

Notice that 1 < ρ
ρ′

1−γ′√
1+γ′2

by the assumption (12).

Proof. We shall make use of both estimates obtained in Proposition 4.5.

Since the part of orbit which we are considering is in C̃ε (at least) up to

J − 1, we have
∣∣∣y(F jε (p))

∣∣∣ ≤ s ∣∣∣x(F jε (p))
∣∣∣ and

∣∣∣x(F jε (p))
∣∣∣ > |ε|, for j ≤ J − 1.

So, by the expression of y(Fε(p)) in (2), we get

∣∣y(F Jε (p))
∣∣ ≤ |y(p)|

J−1∏
j=0

∣∣1 + ρx(F jε (p)) +O(x2(F jε (p))
∣∣

≤ |y(p)|
J−1∏
j=0

(∣∣1 + ρx(F jε (p))
∣∣+ c̃1

∣∣x2(F jε (p))
∣∣)

for some positive c̃1. For ε sufficiently small, we have C̃ε ⊂ C̃ ′0 = C̃0(γ′, R, s)

(see Proposition 2.1). This implies that
∣∣∣Im(x(F jε (p))

)∣∣∣ < γ′
∣∣∣Re

(
x(F jε (p))

)∣∣∣
for every j < np(ε). Thus∣∣1 + ρx(F jε (p))

∣∣ ≤ 1− ρ
∣∣Re

(
x(F jε (p))

)∣∣+ ρ
∣∣Im (x(F jε (p))

)∣∣
≤ 1− ρ(1− γ′)

∣∣Re
(
x(F jε (p))

)∣∣
≤ 1− ρ 1− γ′√

1 + γ′2

∣∣x(F jε (p))
∣∣
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and thus, by the estimates on x(F jε (p)) in Proposition 4.5 we deduce that
(for ε sufficiently small)

∣∣y(F Jε (p))
∣∣ ≤ |y(p)|

J−1∏
j=0

(
1− ρ 1− γ′√

1 + γ′2

(
1

ρ′
− Cε

)
1

M+ + j
+ c̃′1

1 + log(M− + j)

(M− + j)2

)

≤ c1 |y(p)|
J−1∏
j=0

(
1− ρ̃ 1

M+ + j

)

where ρ̃ is some constant such that 1 < ρ̃ < ρ
ρ′

1−γ′√
1+γ′2

, and the assertion

follows. �

4.2. From np(ε) to n′p(ε). Notice that D̃ε needs not to be Fε-invariant. In
this section we estimate the second coordinate for points in an orbit entering

D̃ε (and in particular explain the constant e4πρτ in the definition of D̃ε).
Our goal is prove a lower bound on n′p(ε) (and moreover to prove that the

orbit cannot come back to C̃ε). This will in particular give an estimate for
the coordinates of the point in the orbit for j up to the lower bound of n′p(ε)

(since in D̃ε both |x| and |y| are bounded by (a constant times) |ε|).

Proposition 4.7. Let C ⊂ C̃0 be a compact subset. Then, for every p ∈ C,
and np(ε) < j ≤ n′p(ε), we have∣∣y(F jε (p))

∣∣ ≤ e4πρτ ∣∣∣y(F
np(ε)
ε (p))

∣∣∣ ≤ e4πρτ |ε|
Proof. Recall that τ = tan

(
−π

2 + K
2

)
and that by the assumption (12) we

have 4sτ < 1. Since the part of orbit under consideration is contained in D̃ε

(and thus
∣∣∣x(F jε (p))

∣∣∣ ≤ τ |ε|, by (14)), we have

∣∣y(F jε (p))
∣∣ ≤ ∣∣∣y(F

np(ε)
ε (p))

∣∣∣ j−1∏
i=np(ε)

(1 + 2ρτ |ε|)

≤
∣∣∣y(F

np(ε)
ε (p))

∣∣∣ b
π−K/2

(2−ρ′′)|ε| c∏
i=np(ε)

(1 + 2ρτ |ε|) .

The product is bounded by (1 + 2ρτ |ε|)2π/|ε| ≤ e4πρτ as ε → 0. Moreover,

we have
∣∣∣y(F

np(ε)
ε (p))

∣∣∣ ≤ ∣∣∣y(F
np(ε)−1
ε (p))

∣∣∣ ∣∣∣1 + ρx(F
np(ε)−1
ε )

∣∣∣ ≤ 4sτ |ε| < |ε|.
This gives the assertion. �

We can now give the estimate on n′p(ε).

Proposition 4.8. Let C ⊂ C̃0 be a compact subset and M−,M+ be as in
(17). Then, for every p ∈ C,

π −K/2
ρ′′ |ε|

− M+

ρ′′
≤ n′p(ε) ≤

π −K/2
(2− ρ′′) |ε|

− M−

2− ρ′′
.
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Moreover, we have
∣∣∣y(F jε (p))

∣∣∣ ≤ e4πρτ |ε| for np(ε) ≤ j < n′p(ε) and

Re

(
ε

|ε|
ũε

(
F
n′p(ε)
ε

))
≥ π −K

2 |ε|
.

In particular, once entered in D̃ε, the orbit cannot come back to C̃ε.

Proof. By Proposition 4.7, the modulus of the second coordinate of the points
of the orbit is bounded by e4ρπτ |ε| for np(ε) < j ≤ n′p(ε). Since for j ≤ np(ε)
it is bounded by s

∣∣∣x(F jε (p))
∣∣∣, the assertion follows from Equation (19). �

4.3. After n′p(ε). In order to study the behaviour of Fε after D̃ε, we shall
make use of the family Hε introduced in (16). The following proposition is
an immediate consequence of the analogous results for Fε (first assertion of
Lemma 4.4). We denote by nHp (ε) the entry time for H (see Definition 4.1).

Lemma 4.9. Let C ⊂ C̃0 be a compact subset and M− be as in (17). Let

p, q be contained in some compact subset C ⊂ C̃0. Then, for ε sufficiently
small, ∣∣x(F jε (p))− x(Hj

ε (q))
∣∣ < C

1 + log(M− + j)

(M− + j)2

for every 0 ≤ j ≤ min(np(ε), n
H
q (ε)), for some positive constant C.

We will get the estimates on the second coordinate in this part of the orbit
directly in Section 6, when proving Theorem 1.4, by applying Proposition
4.6 to both Fε and Hε.

5. A preliminary convergence: proof of Theorem 3.6

In this section we prove Theorem 3.6. Namely, given a sequence (εν ,mν)
of bounded type (see Definition 3.5), we prove that ϕ̃ιεν ,mν → ϕ̃ι and

ϕ̃oεν ,mν → ϕ̃o, locally uniformly on C̃0 and −C̃0, where ϕ̃ι and ϕ̃o are the
Fatou coordinates for F0 given by Lemma 2.2. Recall that by assumption
these two sets are contained in a neighbourhood U of the origin where Fε
is invertible, for ε sufficiently small, ans thus in particular where ϕ̃o is well
defined. We shall need the following elementary Lemma.

Lemma 5.1. Let a ∈ R, be strictly greater than 1. Then, for every j0 ≥
l0 ≥ 1 such that 0 < 1− a

l < 1 for every l ≥ l0, the series

∞∑
j=j0

j∏
l=l0

(
1− a

l

)
converges.

Notice that the Lemma is false when a = 1, since the series reduces to an
harmonic one. In our applications a will essentially be ρ, which we assume
by hyphotesis to be greater than 1.
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Proof. As in [Wei98, Lemma 4], let us set Pj :=
∏j
l=l0

(1− a
l ) and notice that

the Pj ’s admit an explicit expression as

Pj = c
Γ(j + 1− a)

Γ(j + 1)

for some constant c = c(l0), where Γ is the Euler Gamma function. Since
Γ(j + 1 − a) ∼ 1

ja j! as j → ∞, we deduce that Pj ∼ c 1
ja , and so

∑
j Pj

converges. �

We can now prove Theorem 3.6. The proof follows the main ideas of the
one of [BSU12, Theorem 2.6]. The major issue (and the main difference
with respect to [BSU12]) will be to take into account the errors due the
O(y)-terms in the estimates. This will be done by means of the following
Lemma, which relies on Propositions 4.6 and 4.7.

Lemma 5.2. Let p ∈ C̃0 and np(ε) be as in (18). Let n(ε) be such that
np(ε) ≤ n(ε) ≤ 3π

5|ε| . Then the following hold:

(1) the function ε 7→
∑n(ε)

j=1

(∣∣∣y (F jε (p)
)∣∣∣+

∣∣∣y (F j0 (p)
)∣∣∣) is bounded, lo-

cally uniformly on p, for ε sufficiently small;

(2) limε→0
∑n(ε)

j=np(ε)+1

∣∣∣y(F jε (p))
∣∣∣ = 0, locally uniformly on p.

Notice that, by Proposition 4.8, n′p(ε) ≥
π−K/2
ρ′′|ε| −

M+

ρ′′ ≥
7π
8

5
4|ε|−

M+

ρ′′ ≥
3π
5|ε|

for ε sufficiently small. So, in particular, the orbit up to time n(ε) is

contained in C̃ε∪ D̃ε. On the other hand, we have np(ε) + M−

2−ρ′′ ≤
K

(2−ρ′′)|ε| ≤
π/4

(2−5/4)|ε| −
M−

2−ρ′′ ≤
π
3|ε| . So, in particular, the assumption of Lemma 5.2 is

satisfied when (εν , n(εν)) is of bounded type.

Proof. We start with the first point. The convergence of the second part
of the series is immediate from Proposition 2.1, by the harmonic behaviour

of x(F j0 (p)) and the estimate (4). Let us thus consider the first part. Here
we split this series in a first part, with the indices up to np(ε) and in the
remaining part starting from np(ε) + 1. The sum is thus given by

np(ε)∑
j=1

∣∣y (F jε (p)
)∣∣+

n(ε)∑
j=np(ε)+1

∣∣y (F jε (p)
)∣∣

and, by Propositions 4.6 and 4.7, this is bounded by (a constant times)

np(ε)∑
j=1

M++j−1∏
l=M+

(
1− ρ̃

l

)
+

np(ε)−1+M+∏
j=M+

(
1− ρ̃

j

) · n(ε)∑
j=np(ε)

e4πρτ

where M+ is as in (17) and ρ̃ is (as in Proposition 4.6) a constant greater than
1. By the lower estimates on np(ε) in Proposition 4.2 and the asymptotic
behaviour proved in Lemma 5.1, the last expression is bounded by

∞∑
j=1

j−1+M+∏
l=M+

(
1− ρ̃

l

)
+

3π

5 |ε|
· e4πρτ ·

(
1

K
ρ′′|ε| −

M+

ρ′′ − 1 +M+

)ρ̃
.
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The first term is bounded, again by Lemma 5.1, and the second one (which,
up to a constant, is in particular a majorant for the sum in the second point
in the statement) goes to zero as ε → 0 (since ρ̃ > 1). This proves both
statements. �

Proof of Theorem 3.6. First of all, recall that by Lemma 2.2 the sequence

ϕ̃ι0,mν = w̃ι0 +
∑mν−1

j=0 A0(F
j
0 (p)) converges to a (1-dimensional) Fatou coor-

dinate ϕ̃ι (for this we just need that mν →∞). It is then enough to show
that the difference ϕ̃ιεν ,mν − ϕ̃ι0,mν goes to zero as ν → ∞. Here we shall
make use of the hypothesis that the sequence (εν ,mν) is of bounded type.
The difference is equal to

ϕ̃ιεν ,mν (p)− ϕ̃ι0,mν (p) = w̃ιεν (p)− w̃ι0(p) +

mν−1∑
j=0

(
Aεν (F jεν (p))−A0(F

j
0 (p))

)
and we see that the first difference goes to zero as ν → ∞. We thus only
have to estimate the second part, whose modulus is bounded by∑

I

+
∑
II

:=

mν−1∑
j=0

∣∣∣A0(F
j
εν (p))−A0(F

j
0 (p))

∣∣∣
+

mν−1∑
j=0

∣∣Aεν (F jεν (p))−A0(F
j
εν (p))

∣∣ .
Let us consider the first sum. First of all, we prove that the majorant∑mν−1

j=1

(∣∣∣A0(F
j
εν (p))

∣∣∣+
∣∣∣A0(F

j
0 (p))

∣∣∣) converges. This follows from the fact

that A0(p) = O(x2, y) by Proposition 3.4, the estimates on
∣∣∣x(F j0 (p))

∣∣∣ and∣∣∣x(F jεν (p))
∣∣∣ in Propositions 2.1 and 4.5 and from Lemma 5.2 (1). Indeed,

with M+ as in (17), we have (for some positive constant K0),∑
I

≤
mν−1∑
j=1

(∣∣A0(F
j
εν (p))

∣∣+
∣∣∣A0(F

j
0 (p))

∣∣∣)

≤ K0

mν−1∑
j=1

(∣∣x(F jεν (p))
∣∣2 +

∣∣∣x(F j0 (p))
∣∣∣2)+K0

mν−1∑
j=1

(∣∣y(F jεν (p))
∣∣+
∣∣∣y(F j0 (p))

∣∣∣)

≤ K0

mν−1∑
j=1

(
8

(j +M+)2
+ |εν |2

)
+K0

mν−1∑
j=1

(∣∣y(F jεν (p))
∣∣+
∣∣∣y(F j0 (p))

∣∣∣) ≤ B
where in the last passage we used the assumption that the sequence (εν ,mν)

is of bounded type to estimate the sum of the |εν |2’s and in order to apply
Lemma 5.2 (1) for the second sum.

We now prove that
∑

I goes to zero, as ν → ∞. Given any small η, we
look for a sufficiently large J such that the sum

mν−1∑
j=J

∣∣∣A0(F
j
εν (p))−A0(F

j
0 (p))

∣∣∣
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is less than η for |εν | smaller than some ε0. The convergence to 0 of
∑

I will

then follow from the fact that A0(F
j
εν (p))− A0(F

j
0 (p)) → 0 as ν → ∞, for

every fixed j. As above, this sum is bounded by

(24)

mν−1∑
j=J

(
8

(j +M+)2
+ |εν |2

)
+

mν−1∑
j=J

∣∣y(F jεν (p))
∣∣+

mν−1∑
j=J

∣∣∣y(F j0 (p))
∣∣∣ .

For J sufficiently large, the first sum is smaller than η/3 (uniformly in ε),
since (εν ,mν) is of bounded type. The same is true for the third one, by the

harmonic behaviour of x(F j0 (p)) and the estimate (4). We are thus left with
the second sum of (24). We split it as in Lemma 5.2:

(25)

mν−1∑
j=J

∣∣y(F jεν (p))
∣∣ ≤ np(εν)∑

j=J

∣∣y(F jεν (p))
∣∣+

mν−1∑
j=np(εν)+1

∣∣y(F jεν (p))
∣∣ .

Lemma 5.2 (2) implies that the second sum of the right hand side goes to
zero as εν → 0. We are thus left with the first sum in the right hand side of
(25). We estimate it by applying twice Proposition 4.6 and Lemma 5.1:

np(εν)∑
j=J

∣∣y(F jεν (p))
∣∣ ≤ c1 np(εν)∑

j=J

∣∣y(F Jεν (p))
∣∣ j−1+M+∏
l=J+M+

(
1− ρ̃

l

)

≤ c1
∣∣y(F Jεν (p))

∣∣ ∞∑
j=J

j−1+M+∏
l=J+M+

(
1− ρ̃

l

)
≤ C1

∣∣y(F Jεν (p))
∣∣

≤ C2 |y(p)|
J−1+M+∏
l=M+

(
1− ρ̃

l

)
.

We can then take J large enough (and independent from ε) so that the last
term is smaller than η

6 . Notice in particular the independence of J from ε
(for ε sufficiently small).

So, until now we have proved that
∑

I goes to zero as ν → ∞. It is
immediate to check that the same holds for

∑
II . Indeed,∑

II

≤
mν−1∑
j=0

∣∣Aεν (F jεν (p))−A0(F
j
εν (p))

∣∣ ≤ mν−1∑
j=0

K1 |εν |2

for some positive constant K1. The assertion then follows since (εν ,mν) is
of bounded type. �

6. The convergence to the Lavaurs map

In this section we prove Theorem 1.4. We shall exploit the 1-dimensional

Theorem 1.2, i.e., the convergence of the restriction of Fnνεν on C0 = C̃0 ∩
{ y = 0 } to the 1-dimensional Lavaurs map Lα.

Lemma 6.1. Let p0 ∈ C̃0 ∩ { y = 0 } and (εν , nν) an α-sequence. Assume

that q0 := Lα(p0) belongs to −C̃0 ∩ { y = 0 }. Then for every δ there exists η
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such that (after possibly shrinking C̃0)

ϕ̃o
(
−C̃0 ∩ Fnνεν

(
C̃0 ∩

(
ϕ̃ι
)−1 (D(ϕ̃ι(p0), η)

)))
⊂ D(ϕ̃o(q0), δ)

for every ν sufficiently large.

The need of shrinking C̃0 is just due to the fact that Theorem 3.6 and

Corollary 3.7 give the convergence on compact subsets of C̃0 (and −C̃0).

Proof. Let mo
ν and mι

ν be sequences of bounded type such that mι
ν+mo

ν = nν .

By definition of ϕ̃ιε,n and ϕ̃oε,n we have

(26)

ϕ̃oεν ,moν ◦ F
nν
εν (p) = w̃εν

(
F−m

o

εν (Fnνεν (p))
)
− π

2εν
+mo

ν

= w̃εν

(
F
mιεν
εν (p)

)
− π

2εν
−mι

ν + nν

= ϕ̃ιεν ,moν (p) + nν −
π

εν

whenever Fnνεν (p) ∈ −C̃0. The assertion follows from Theorem 3.6 and
Corollary 3.7. �

Lemma 6.2. Let p0 ∈ C̃0 ∩ { y = 0 } and (εν , nν) be a α-sequence. Assume

that q0 := Lα(p0) belongs to −C̃0 ∩ { y = 0 }. Then, for every polydisc ∆q0

centered at q0 and contained in −C̃0 there exists a polydisc ∆p0 centered at

p0 and contained in C̃0 such that Fnνεν (∆p0) ⊂ ∆q0 for ν sufficiently large.

Proof. Set ∆q0 = D1
q0×D2

q0 and analogously ∆p0 = D1
p0×D2

p0 . By Lemma 6.1
it is enough to prove that, if ∆p0 is sufficiently small, for every ν sufficiently
large we have

max
D1
p0
×∂D2

p0

∣∣y(Fm
ι
ν

εν )
∣∣ ≤ 1

2
min

D1
q0
×∂D2

q0

∣∣y(F−m
o
ν

εν )
∣∣ .

We shall use the estimates collected in Section 4. First of all, notice that, by
Proposition 4.7, it is enough to prove that

max
p∈D1

p0
×∂D2

p0

∣∣∣y(F
np(εν)
εν )

∣∣∣ ≤ c min
q∈−D1

q0
×∂D2

q0

∣∣∣y(H
nν−n′p(εν)
εν )

∣∣∣
for some constant c, where Hε is as in (16). Geometrically, we want to ensure
that the vertical expansion in the third part of the orbit (i.e., after n′p(ε)) is
balanced by a suitable contraction during the first part (i.e., up to np(ε)).

This means proving that

(27)

∣∣∣∣∣∣
np(ε)∏
j=0

(
1 + ρx(F jεν (p)) + βεν (x(F jεν (p)), y(F jεν (p)))

)∣∣∣∣∣∣
≤ c′

∣∣∣∣∣∣
nν−n′p(εν)∏

j=0

(
1 + ρx(Hj

εν (p)) + βHεν (x(Hj
εν (p)), y(F jεν (p)))

)∣∣∣∣∣∣
for some positive c′. First of all, we claim that there exists a constant K1

(independent from ν) such that K1+np(εν) ≥ nν−n′p(εν), i.e., the number of

points in the orbit for Fε before entering in D̃εν (and thus in the contracting
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part) is at least the same (up to the constant) of the number of points in
the expanding part. Indeed, recalling that the definition (11) of K, we have
K

ρ′′|εν | ≥
π
|εν | −

π−K/2
ρ′′|εν | . So, by Propositions 4.2 and 4.8 we have, with M+ as

in (17),

1 + |α|+ M+

ρ′′
+ np(εν) ≥ 1 + |α|+ M+

ρ′′
+

K

ρ′′ |εν |
− M+

ρ′′

≥ nν −
π

|εν |
+

π

|εν |
− π −K/2

ρ′′ |εν |
≥ nν − n′p(εν)

for ν sufficiently large, and the desired inequality is proved. The inequality
(27) now follows from Lemma 4.9 (and Proposition 4.5), and the assertion
follows. �

We can now prove Theorem 1.4.

Proof of Theorem 1.4. First of all, we can assume that p0 belongs to C0 =

{ y = 0 } ∩ C̃0. Indeed, there exists some N0 such that FN0
0 (p0) ∈ C̃0. So,

we can prove the Theorem for the (α−N0)-sequence (εν , nν −N0) and the

base point FN0
0 (p0) and the assertion then follows since FN0

εν → FN0
0 . For

the same reason, we can assume that q0 := Lα(p0) belongs to −C̃0.
By Lemma 6.2, there exists a polydisc ∆p0 centered at p0 such that the

sequence Fnνεν is bounded on ∆p0 . In particular, up to a subsequence, this

sequence converges to a limit map Tα, defined in ∆p0 with values in −C̃0.
Notice that the limit must be open, since the same arguments apply to the
inverse system. The relation (3) then follows from (26) and the assertion
follows. �

In the following, given a subset U ⊂ C̃0, we denote by Tα(U) the set

Tα(U) := {T : U → C2 : ∃(εν , nν)α− sequence such that Fnνεν → T on U }

We denote by Tα the union of all the Tα(U)’s, where U ⊂ C̃0, and call the
elements of Tα Lavaurs maps. Theorem 1.4 can then be restated as follows:

every compact subset C0 ⊂ C0 has a neighbouhhood UC0 ⊂ C̃0 such that
every Tα(UC0) is not empty.

Remark 6.3. Computer experiments suggest that given any α-sequence

(εν , nν) there is a neighbourhood of C0 in C̃0 such that the sequence Fnνεν
converges to a (unique) limit map Tα, without the need of extracting a
subsequence.

7. The discontinuity of the large Julia set

In this section we shall prove Theorem 1.5. By means of the Lavaurs
maps Tα, we first define a 2-dimensional analogous of the Julia-Lavaurs set
J1(F0, Tα), and use this set to estimate the discontinuity of the Julia set at
ε = 0.

Definition 7.1. Let U ⊂ C̃0 and Tα ∈ Tα(U). The Julia-Lavaurs set
J1(F0, α) is the set

J1(F0, Tα) := { z ∈ P2|∃m ∈ N : Tmα (z) ∈ J1(F0) }.
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The condition Tmα (z) ∈ J1(F0) means that we require T iα(z) to be defined,
for i = 0, . . .m. In particular, we have z, . . . , Tm−1α (z) ∈ U .

From the definition it follows that J1(F0) ⊆ J1(F0, Tα), for every Tα ∈ Tα.
The following result gives the key estimate for the lower-semicontinuity of
the large Julia sets at ε = 0. The proof is analogous to the 1-dimensional
case, exploiting the fact that the maps Tα are open.

Theorem 7.2. Let Tα ∈ Tα be defined on U ⊂ C̃0 and (nν , εν) be a α-
sequence such that Fnνεν → Tα on U . Then

lim inf J1(Fεν ) ⊇ J1(F0, Tα).

Proof. The key ingredients are the lower semicontinuity of J1(Fε) and
Theorem 1.4. By definition, the set of all z’s admitting an m such that
Tmα (z) ∈ J1(F0) is dense in J1(F0, Tα). Thus, given z0 and m satisfying the
previous condition, we only need to find a sequence of points zν ∈ J1(Fεν )
such that zν → z0, for some sequence εν → 0.

Set p0 := Tmα (z0). By the lower semicontinuity of ε 7→ J1(Fε) we can
find a sequence of points pν ∈ J1(Fεν ) such that pν → p0. By Theorem 1.4
we have Fmnνεν → Tmα uniformly near z0, and this (since Tα is open) gives

a sequence zν converging to z0 such that Fmnνεν (zν) = pν ∈ J1(Fεν ). This

implies that zν ∈ J1(Fεν ), and the assertion follows. �

Notice the function ε 7→ J1(Fε) is discontinuous at ε = 0 since, by means
of just the one-dimensional Lavaurs Theorem 1.2, we can create points in

C̃0∩{ y = 0 } (which is contained in the Fatou set) satisfying Lα(p) ∈ J1(F0).
Indeed, the following property holds:

(28) ∀p ∈ C̃0 ∩ { y = 0 } there exists α such that p ∈ J1((F0)|y=0 , Lα).

where Lα is the 1-dimensional Lavaurs map on the invariant line { y = 0 }
associated to α. Indeed, since ∂B ⊆ J1(F0) and B intersects the repelling
basin R, we can find q ∈ J1(F0) ∩ { y = 0 } in the image of the Fatou
parametrization ψo for (F0)|{ y=0 }. The assertion follows considering α such

that Lα(p) = q.
In our context, given any p ∈ C0 and q ∈ −C0 as above, by means of

Theorem 1.4 we can consider a neighbourhood of p where a sequence Fnνεν
converges to a Lavaurs map Tα (necessarily coinciding with Lα on the line
{ y = 0 }). Since Tα is open, we have that T−1α (J1(F0)) is contained in the
liminf of the Julia sets J1(fεν ). This gives a two-dimensional estimate of the
discontinuity.

8. The discontinuity of the filled Julia set

For regular polynomial endomorphism of C2 it is meaningful to consider
the filled Julia set, defined in the following way.

Definition 8.1. Given a regular polynomial endomorphism F of C2, the
filled Julia set K(F ) is the set of points whose orbit is bounded.

Equivalently, given any sufficently large ball BR, such that BR b F (BR),
the filled Julia set is equal to

K(F ) := ∩n≥0F−n(BR).
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In this section we shall prove that, if the family (2) is induced by regular
polynomials, then the set-valued function ε→ K(Fε) is discontinuos at ε = 0.

Recall that the function ε→ K(Fε) is always upper semicontinuous (see
[Dou94]). Here the key definition will be the following analogous of the filled
Lavaurs-Julia set in dimension 1 ([Lav89]).

Definition 8.2. Given U ⊂ C̃0 and Tα ∈ Tα(U), the filled Lavaurs-Julia set
K(F0, Tα) is the complement of the points p such that there exists m ≥ 0
such that Tmα (p) is defined and is not in K(F0).

Notice in particular that K(F0, Tα) ⊆ K(F0) and coincides with K(F0)
outside U . Moreover, notice that K(F0, Tα) is closed.

Theorem 8.3. Let Tα ∈ Tα be defined on some U ⊂ C̃0. and let (εν , nν) be
an α-sequence such that Fnνεν → Tα on U . Then

K(F0, Tα) ⊇ lim supK(Fεν ).

Proof. Since the set-valued function ε 7→ Kε is upper-semicontinuous, there
exists a large ball B such that, for ν ≥ ν0, we have ∪νK(Fεν ) ⊂ B. Without
loss of generality we can assume that ν0 = 1. Let us consider the space

P := { { 0 } ∪
⋃
ν

{εν} } ×B

and its subset X given by

X := { (0, z) : x ∈ K(F0, Tα) } ∪
⋃
ν

{ (εν , z) : z ∈ K(Fεν ) } .

By [Dou94, Proposition 2.1] and the fact that P is compact, it is enough to
prove that X is closed in P . This follows from Theorem 1.4. Indeed, let z
be in the complement of K(F0, Tα). Since this set is closed, a small ball Bz
around z is outside K(F0, Tα), too. By definition, this means that, for some
m, we have Tm(Bz) ⊂ K(F0)

c. Theorem 1.4 implies that, up to shrinking
the ball Bz, we have Fnνεν (Bz) ⊂ K(F0)

c for ν sufficiently large. The upper
semicontinuity of ε 7→ K(Fε) then implies that Fnνεν (Bz) ⊂ K(Fεν )c, for ν
large enough. So, Bz ⊂ K(Fεν )c and this gives the assertion. �

Corollary 8.4. Let Fε be a holomorphic family of regular polynomials of C2

as in (2). Then the set-valued function ε 7→ K(Fε) is discontinuous at ε = 0.

Proof. The argument is the same used to prove the discontinuity of J1(Fε)
in Section 7. If the function ε → K(Fε) were continuous, Theorem 8.3
and the fact that K(F0, Tα) ⊆ K(F0) for every α would imply that all the

K(F0, Tα)’s were equal to K(F0). Since C̃0 ⊆ K(F0), it is enough to find

p ∈ C̃0 and α such that p /∈ K(F0, Tα). To do this, it is enough to take any
point q in { y = 0 } not contained in K(F0) (recall that K(F0) is compact)

and then consider a point p ∈ C̃0 ∩ { y = 0 } and α such that Lα(p) = q.
The existence of such points is a consequence of the property (28). Then,
consider a neighbourhood U of p such that some sequence Fnνεν converges to
a Lavaurs map Tα on U . The assertion follows since Tα is open and coincides
with Lα on the intersection with the invariant line { y = 0 }. �
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