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Abstract

This habilitation thesis covers a large part of the research I have carried out since the end of
my PhD. The main topic is the study of dynamical systems in several complex variables, mostly
by means of pluripotential theory techniques. In the first part I describe my works related to
the characterization of stability and bifurcation in families of endomorphisms of Pk(C). In the
second part, I describe the results related to the statistical study of endomorphisms of Pk(C) and
Hénon maps. In the last part, I collect the results which are not directly related to these two main
directions, or that, on the opposite, rely on both.

Résumé

Cette thèse d’habilitation couvre une grande partie des mes travaux depuis la fin de ma thèse de
doctorat. Le sujet principal est l’étude des systèmes dynamiques à plusieurs variables complexes,
principalement au moyen de techniques de la théorie du pluripotentiel. Dans la première partie
je décris mes travaux liés à la caractérisation de la stabilité et de la bifurcation dans les familles
d’endomorphismes de Pk(C). Dans la deuxième partie, je présente les résultats liés à l’étude
statistique des endomorphismes de Pk(C) ainsi que des applications de Hénon. Dans la dernière
partie, je rassemble les résultats qui ne sont pas directement liés à ces deux directions principales,
ou qui, au contraire, s’appuient sur les deux.
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Introduction

This manuscript is a survey on the main results that I obtained after my PhD thesis, which was
defended in 2016. The domain is that of complex dynamics in several variables, at the interface of
dynamical systems, complex analysis, and geometry. The main tools are (pluri)potential theory
and the theory of (positive closed) currents.

One of my main topics of interest since my PhD thesis has been the dependence of holomorphic
dynamical systems from a parameter and the study of the discontinuity of dynamically relevant ob-
jects for special values of the parameter itself. In my PhD thesis, I contributed to the generalization
of the classical theory by Lyubich, Mañé-Sad-Sullivan, and DeMarco about the stability of rational
maps to the more general setting of endomorphisms of Pk(C) [BBD18; Bia19a] and proved the
first result on completely parabolic implosion in two complex variables [Bia19b]. Since then,
and in continuation of those results, I started a systematic exploration of bifurcations [BB18a;
BB18b; AB23; BO20; BR22; BB23b], in particular exhibiting new phenomena with respect to
the one-dimensional theory [BT17; AB22]. I describe most of my research in this direction in
Chapter 1. After an overview of the context and of the motivations, I briefly recall the main results
of [BBD18; Bia19a], which set the stage for the rest of my work on bifurcations, and list a few
natural open questions. A description of the main results obtained in [BT17; BB18a; AB23; AB22;
BR22] is then given in Sections 1.2, 1.3, and 1.4.

The second main research direction that I pursued has been the study of statistical properties
of complex dynamical systems. In 2018, together with Tien-Cuong Dinh, we started a long term
project involving the systematic study of the thermodynamics of endomorphisms of projective
spaces in any dimensions, with a new approach based on pluripotential theory and functional
analysis. This study already led to a unified treatment of essentially all statistical properties
previously known for continuous observables, in a much larger generality and with sharper
statements [BD23a; BD22]. I describe these results in Section 2.2. More recently, we also started
investigating the statistical properties of the measure of maximal entropy of complex Hénon maps,
and of automorphisms of compact Kähler manifolds. The results already obtained in this direction
are contained in [BD24; BD23b] and are described in Section 2.3.

In parallel to the main directions above, I worked on a number of – related or less related –
other research projects. I summarize in Chapter 3 the results that do not fit in the two large
directions above, but that still have dynamical content, or that, on the opposite, involve both the
two topics.

I describe the proof of the monotonicity of the dynamical degrees for polynomial-like and
horizontal-like maps in any dimension obtained in [BDR23] in Section 3.3 and the introduction
of a dynamical volume dimension satisfying a generalized version of the Mañé-Manning formula
in any dimensions [BH23] in Section 3.4. I also postpone to this chapter the description of
the results of the two papers [BB23b] and [BO20]. The first is directly related to the topic
of stability and bifurcation, but relies both on the paper [BR22] described in Section 1.4 and
on [BD23a], described in Section 2.2. The second, although also related to bifurcations, has a
different motivation, and will be then described separately here. Parts of the papers [BR22] and
[BD23a] are also described in this chapter, as they are close to [BDR23] and [BB23b], respectively.

ix



x Introduction

Plan of the manuscript and brief description of the results

The first two chapters of this manuscript are essentially self-contained, and each of them will start
with an introduction on the general motivations and the context. On the other hand, I give below
an overview of each of them. The sections below should be taken more as a road map to the
reading of these chapters, also explaining how some projects emerged and the relations between
parts which are a priori far in the manuscript. The reader is invited to refer to them for the precise
definitions, the statements of the results, and the references. As mentioned above, Chapter 3 is of
a different flavour; I will highlight below the relations between the parts of this chapter and the
rest of the manuscript, both on the level of the techniques and content, and of how such projects
started and developed.

Chapter 1 - Stability and bifurcations in several complex variables

The main topic of Chapter 1 is the study of families of dynamical systems, and more precisely of
the properties that persist – or not – under a perturbation of an element of the family. After a brief
introduction on the motivations and the context, Chapter 1 takes the move from Theorem 1.1.1.
This result, obtained with François Berteloot and Christophe Dupont [BBD18] and contained in
my PhD thesis, provides a generalization to families of endomorphisms of Pk in any dimension
of the classical dichotomy stability-bifurcation due to Lyubich, Mañé-Sad-Sullivan, and DeMarco
for families of rational maps. I refer to Section 1.1.1 for a presentation of this result and its
context. In Section 1.1.2, I list a few natural questions that immediately arise when comparing the
characterizations of stability in dimension 1 with those valid in any dimension given by Theorem
1.1.1. Addressing these questions, and in general developing a general theory of stability and
bifurcation in higher dimensions, has been a main motivation for my work since my PhD thesis.

Section 1.2 presents those results which are the closest to my PhD thesis, both as content and
date. I first present a work with Johan Taflin [BT17], where we gave an explicit example of a
family fλ of endomorphisms of P2 for which the chaotic Julia set of fλ move continuously (in the
Hausdorff topology) with the parameter, but at the same time the bifurcation locus coincides with
the parameter space. This example shows, at the same time, two main differences between the
stability-bifurcation theories in dimension 1 and higher. Although the relation between Hausdorff
continuity and stability is not completely clear yet, the existence of open sets of bifurcation, even in
the full family of endomorphisms of a given degree, was established independenly from [BT17] by
Dujardin, Taflin, and Biebler and has emerged as a main specific feature of the higher-dimensional
theory. I give more details on [BT17] and of the related results in Section 1.2.1.

In Section 1.2, I also describe an estimate of the Hausdorff dimension of the bifurcation locus,
valid everywhere in the parameter space, and optimal near the so-called isolated Lattés maps, that I
obtained with François Berteloot [BB18a]. The proof is based on a geometric transfer construction
between the phase space and the parameter space. I give more details on this in Section 1.2.2.

In Section 1.3 I describe the two works [AB23] and [AB22], which are the result of a long
term collaboration with Matthieu Astorg. The original idea of this project, started when we were
both PhD students in Toulouse, was to study more precisely the dichotomy stability-bifurcation
from [BBD18], as well as other dynamical properties, in families of polynomial skew product,
i.e., polynomial endomorphisms of P2 of the form (z, w) 7→ (p(z), q(z, w)). Astorg had a more
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1-dimensional background, and these families looked like a natural ground of collaboration.
Moreover, Astorg had just worked with maps of this type for the construction of wandering
domains. As a result of this collaboration, we first established some decomposition formulas for
the bifurcation locus and current in these families, we proved that hyperbolicity is preserved in
stable components, and we classified a family of hyperbolic components in their parameter space,
see Section 1.3.1. We also established an approximation formula for the bifurcation current, which
is actually valid in any family of endomorphisms, by means of dynamically defined hypersurfaces
in the parameter space, see Section 1.3.2. All the above is contained in [AB23].

Thanks to the study above, we realized that a new phenomenon had to occur in these families
with respect to the one-dimensional setting: as soon as some bifurcation was created, a cascade
of bifurcations had to happen. A precise way to say this is that the support of the bifurcation
current is equal to the support of the bifurcation measure, which could a priori be (and indeed is,
in dimension 1) a smaller set in the parameter space. Our proof, given in [AB22] and described
in Section 1.3.3, is based on both an analytical criterion to ensure that a point belongs to the
support of the bifurcation measure, and on a geometric construction to verify the criterion at a
given parameter as soon as one simple bifurcation appears nearby. This geometric construction
was the key point of [AB22], and possibly the main result in our collaboration with Astorg so far.
In order to complete our arguments, we also had to use some tools coming from the theory of
thermodynamic formalism. Although independent from the results in this direction that will be
presented in Chapter 2, it turned out to be very useful that I had started being more interested in
that direction by that time.

The last result presented in Chapter 1 is the outcome of my collaboration [BR22] with my
postdoc Karim Rakhimov, who came to Lille in 2020-2022. The question was motivated by a result
by Berger-Dujardin in the setting of the stabilility-bifurcation dichotomy that had been developed
in parallel to [BBD18] by Dujardin and Lyubich for families of Hénon maps, i.e., polynomial
diffeomorphisms of C2. More precisely, the goal was to extend the measurable holomorphic
motion established in [BBD18] for almost all points with respect to the measure of maximal
entropy, to almost all points with respect to all measures of – for instance - sufficiently large
entropy.

I give more details on this result in Section 1.4. A point I would like to emphasize here is the
following. Already in my PhD thesis, I had established a generalization of the theory of [BBD18]
to the much larger setting of polynomial-like maps of large topological degrees [Bia19a]. More
than the generalization itself, this result showed that the algebraicity of the maps was not an
essential tool in the theory. Our result with Rakhimov also holds in these more general families.
On the other hand, we had to put an a priori stronger assumption on the dynamical degrees of
the elements of the family. The question of whether this assumption was really needed, or was
just implied by being of large topological degree, was a natural one. It turned out that the correct
answer is the second, as we proved with Tien-Cuong Dinh [BDR23], after exchanges motivated by
the above result. The description of this result is given in Section 3.3.1, see also below for a brief
introduction with further motivations. I also postpone to Section 3.3.2 the presentation of the
result with Rakhimov in this more general context.

As mentioned above, the works [BO20], obtained in collaboration with Yûsuke Okuyama, and
[BB23b], obtained with my PhD student Maxence Brévard, are also related to bifurcations. For the
reasons given above, I decided to postpone their presentation to Chapter 3. For coherence, I will
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describe them below also in this introduction.

Chapter 2 - Thermodynamics and statistical properties of equilibrium states

Chapter 2 is dedicated to the second large topic of my research since my PhD thesis in 2016 –
and possibly the main one since 2018. This is the study of holomorphic dynamical systems from
a statistical point of view. Roughly speaking, this means the construction of natural invariant
measures associated to such systems, and the study of the orbits of typical points with respect to
such measures. The general goal is to establish limit theorems, paralleling those of sequences of
independent random variables, for the sequence {g ◦ fn} – where g is an observable and f is the
dynamical system – seen as a sequence of random variables with respect to the invariant measures
that we consider. For the sake of this introduction, these measures will depend on a given function
ϕ, that we will call weight, and will be called equilibrium states associated to ϕ, and denoted by
µϕ. This chapter contains the two pairs of works [BD23a; BD22] and [BD24; BD23b], all obtained
in collaboration with Tien-Cuong Dinh.

Following the work of Brolin, Lyubich, Freire-Lopes-Mañé, Denker-Przytycki-Urbański, Przytycki-
Smirnov-Rivera-Letelier, Haydn, Zdunik, and others, the study of the existence, uniqueness, and
statistical properties of equilibrium states in the setting of rational maps is now a classical subject.
By (even more) classical techniques, the question of the existence of the equilibrium states can be
reduced to showing the convergence λ−nLnϕ(g)→ ρϕ for some suitable λ = λ(ϕ), where Lnϕ is the
n-th iterate of the (Ruelle-Perron-Frobenius) transfer operator Lϕ, defined as

Lϕ(g)(y) =
∑

f(x)=y
eϕ(x)g(x).

And a way to approach this problem is the following. One first shows the existence of a good
scaling factor λ, usually by means of some fixed point theorem, and then tries to show that the
sequence λ−nLnϕ(g) is uniformly bounded and equicontinuous. By means of the theory of almost
periodic operators, first applied to the thermodynamics formalism by Lyubich, this leads to a
unique limit function ρ = ρϕ. And a rough idea is that, the better one controls the convergence
towards ρ, the more precise limit theorems one can prove for the equilibrium state associated
to ϕ. In order to show the equicontinuity of the sequence, one has to control the regularity of
the function Lnϕ(g). By its very definition, this amounts to precisely estimate the distortion of the
inverse branches of fn.

The starting point of the project that lead to [BD23a; BD22] was a paper by Urbański-Zdunik,
where they proved the existence and uniqueness of the equilibrium states associated to generic
endomorphisms of Pk (in any dimension k) and Hölder continuous weights. Their proof, somehow
in the spirit of dimension 1, consists in precise estimates on the regularity of inverse branches
of endomorphisms. Our first goal in [BD23a] was to give a new proof of the result by Urbański-
Zdunik by means of a new method, based instead on pluripotential theory. Let us take g equal to
function 1 constantly equal to 1 for simplicity. The main idea behind the method is that, instead of
controlling the inverse branches of fn, we consider the currents ddcLnϕ1. In order to show that the
sequence Lnϕ1 is (up to some normalization) equicontinuous, we show that

|ddcLnϕ1| . (minLnϕ1) · |ddch|,
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where h is an explicit continuous functions, with controlled modulus of continuity. Thanks to
more standard comparisons principles, this leads to the equicontinuity of the sequence. The
comparisons principles will be given in Section 2.2.2, and a simplified version of our construction
will be presented in Section 2.2.3.

The strength of our method comes from a number of features which, combined, lead to a
number of consequences. One of them is that it does not rely on a fixed point theorem in order
to find the scaling factor λ, but this is constructed as part of the method. This makes it very
flexible, in the sense that it is very suitable to study the dependence of the estimates and of the
equilibrium states from the weight ϕ. This point is crucial for the statistical study. Another point is
that it naturally allows one to start looking for a norm with the property that, when both g and
ϕ are bounded in this norm, the same is true for Lnϕg, and the operator λ−1Lϕ is a contraction
with respect to this norm (outside of an invariant line). This is the so called spectral gap property.
Together with the possibility of precisely controlling the dependence on ϕ, this gives a spectral gap
for the transfer operator and its perturbations, possibly the strongest control that one can get on
the transfer operator. Indeed, this allows one to control very precisely the iteration of the operator
and deduce the most complete statistical study.

Since all the statistical properties follow from the spectral gap by means of more standard
techniques, I will not detail this point in the manuscript, but I just give here a rough motivation of
why this should be true. It is a general idea in probability that the statistical properties of a random
variable X (with respect to a given measure ν) are related to the generating function t 7→ E(etX),
i.e., to t 7→ 〈ν, etX〉. More precisely, the statistical properties of X are somehow encoded in the
Taylor coefficients of the development in t of this function. In our case, the random variable X will
be given by the sum Sn(u) =

∑n
j=1 u ◦ f i, for u : X → R an observable of a given regularity. By the

form of the transfer operator, we have 〈µϕ, etSn(u)〉 = 〈µϕ, λ−nLnϕ+tu1〉. Hence, understanding the
operator Lϕ – and its perturbations Lϕ+tu – as above allows one to precisely control the function
〈µϕ, etSn(u)〉 (and its development in t), and deduce the statistical properties of µϕ.

With the motivations above, we then embarked in the main goal of the project, and what I
consider the main result in this manuscript: the construction of the norm for which the transfer
operator becomes a contraction, which is the main result of [BD22]. As the construction is quite
technical, and requires the introduction of several intermediate norms, I decided to include in
Section 2.2.4 an informal discussion about the properties that these intermediate norms must
satisfy in order to lead to the final one. The reader can think of that section as a continuation of
this introduction. For each property, I will present the main difficulty, and the idea to overcome it.
In Section 2.2.5, I instead give the precise construction of the norms. Finally, in Section 2.2.6 I
show the spectral gap property for the perturbed transfer operator. This section can be read by
just assuming the existence of a norm satisfying the properties in Section 2.2.4.

I will just highlight here two of the main challenges, and their solutions. First, even in the
simplest case ϕ = 0, the operator L0 = f∗ does not preserve any real regularity of functions. Our
norm is then dynamical, and already takes into account the action of f in its definition. It coincides
with the Hölder norm in the case of hyperbolic maps, but becomes weaker and weaker (but still
dominating a log-Hölder norm) as soon as the critical set is more and more recurrent in the Julia
set. A second problem is that, while the operator f∗ commutes with ddc, this is not true anymore
for the operator Lϕ. This leads to serious issues (also described more in detail in the informal
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Section 2.2.4). In order to solve them, instead of just using the operator ddc as in Sections 2.2.2
and 2.2.3, we need to combine it with the operator u 7→ i∂u∧∂u. Obtaining comparison principles
for this operator is definitely more challenging than proving those for just the operator ddc. The
establishment of such (quantitative) principles is a key point in our solution of the problem.

Section 2.3 is dedicated to the two works [BD24; BD23b]. The general motivation, part of an
ongoing project, would be to develop a study similar to the above also in the setting of, for instance,
Hénon maps, i.e., polynomial diffeomorphisms of C2. These systems display both expanding and
contracting directions, so the methods developed in [BD23a; BD22] cannot be applied, and, in
particular, it is not known whether these systems have in general a spectral gap on a suitable
functional space. As a partial step towards this more long term goal, we established the central
limit theorem for the measure of maximal entropy of every Hénon maps and Hölder continuous
observables. This already solves a long-standing question in the domain. I refer to Section 2.3.1
for more details and a description of our method. In Section 2.3.2, I describe the companion paper
[BD23b], where we prove a similar result in the setting of automorphisms of Kähler manifolds.
The first difference with respect to [BD24] is that here we have to use the theory of superpotentials,
as developed by Dinh-Sibony. Although we initially believed that this result would have been
a simple adaptation of [BD23b], up to the technical use of superpotentials, it turned out that a
number of further technical complications appeared. I describe some of them in Section 2.3.2.

Chapter 3 - Other related works

This chapter will mainly describe the four works [BB23b; BO20; BDR23; BH23], as well as some
parts of [BD23a] and [BR22]. I give a quick overview of each section below, and highlight the
relations of each part with the rest of the manuscript. A tool that is used several times in the
results in this Chapter (as well as in Sections 1.2.2 [BB18a] and 1.3.2 [AB23]) is a linearization
process along generic inverse branches of endomorphisms (with respect to invariant measures
with strictly positive Lyapunov exponents) due to Berteloot-Dupont-Molino.

Section 3.1 provides a link between the domains of Chapter 1 and 2. The topic is the equidistri-
bution of repelling points in two different but related settings: with respect to the equilibrium
states as in Section 2.2, and the distribution of their holomorphic motions in stable families, as in
Chapter 1 and Theorem 1.1.1. The key point in the first case, proved in [BD23a], is to get a more
precise version of the Briend-Duval method for the proof of the equidistribution of repelling points
with respect to the measure of maximal entropy of endomorphisms of Pk. The constant Jacobian
of the measure plays a crucial role in that proof, and we have here to develop precise estimates on
the Jacobian of pull-backs of the equilibrium states by the maps fn. A key ingredient here is the
precise linearization along generic inverse branches provided by Berteloot-Dupont-Molino. The
details are in Section 3.1.1.

In the work [BB23b], joint with my PhD student Maxence Brévard, we adapt this construction
in the setting of families of endomorphisms. I had already adapted the work by Briend-Duval in
this context in my PhD thesis (and in particular in [Bia19a]), obtaining the equidistribution of the
holomorphic motions of repelling points (and, in particular, proving the existence of such motions)
with respect to natural measures related to the measures of maximal entropy, in stable families of
endomorphisms. The work [BB23b] closes this circle, by proving the existence of the holomorphic
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motions for a large set of repelling points, related to the equilibrium states, with respect to natural
measures that I had introduced in my work [BR22] with Rakhimov, described in Section 1.4.

Section 3.2 is dedicated to my joint work [BO20] with Yûsuke Okuyama. This work originated
from a question by Charles Favre about the degeneration of endomorphisms of P2 to Hénon maps,
related to his recent work on degenerations of holomorphic endomorphisms to a hybrid space.
We explicitly compute the non-archimedean Lyapunov exponent in a class of examples, and we
also show that every Hénon map can be approximated by maps in the bifurcation locus of the
family of the endomorphisms. The proof relies on a generalization of some estimates that Dujardin
had recently developed to show that the bifurcation of saddle sets for endomorphisms of P2 is
independent from the bifurcation of their Julia sets as in Theorem 1.1.1. We also study the limit
behaviour of the individual Lyapunov exponents at the degeneration. This estimate crucially relies
on an approximation formula for the individual Lyapunov exponents, which is again based on the
Berteloot-Dupont-Molino linearization process along inverse branches.

As mentioned above, the motivation for the work [BDR23], joint with Tien-Cuong Dinh and
Karim Rakhimov, came from my other work [BR22] with Rakhimov. In various algebraic settings,
by the work of Gromov and the celebrated Khovanskii-Teissier inequalities, one can show that the
sequence of the dynamical degrees of a systems (the numbers detecting the growth rates of the
mass of positive closed currents under iteration) is log-concave. This implies that the sequence is
also increasing, up to some degree of maximal value, and then decreasing after that. We showed
in [BDR23], see Section 3.3.1, that this monotonicity property holds true also in non-algebraic
settings, in particular for the invertible horizontal-like maps and the polynomial-like maps. In this
last case, this implies that, for polynomial-like maps of large topological degree, the topological
degree strictly dominates all other degrees. Up to some further technical results (in particular, the
generalization of a theorem by de Thélin and Dupont on the Lyapunov exponents of measures
with sufficiently large entropy) presented in Section 3.3.2, this is enough to extend the results of
Section 1.4 to this larger setting.

Finally, in Section 3.4, I describe the work [BH23], joint with Yan Mary He. The motivation is the
celebrated Mañé-Manning formula for rational maps, stating that the measure-theoretic entropy
of an invariant measure is the product of its Lyapunov exponent and its Hausdorff dimension.
A conjectural higher-dimensional version of this formula is due to Binder-DeMarco, and has
motivated a number of results since its formulation. We showed here a variation of this formula.
More precisely, given an endomorphism of Pk, we introduced a dynamical volume dimension for
a large class of invariant measures (essentially those for which the strong holomorphic motion
established with Rakhimov [BR22] applies - and in particular all the equilibrium states as in
Section 2.2), and showed that this dimension is the ratio between the entropy of the measure
and the sum of its Lyapunov exponents. Both the construction of this dimension and the proof of
the formula again rely on the Berteloot-Dupont-Molino linearization result. More motivations,
consequences, and an overview of the construction are given in Section 3.4.
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1
Stability and bifurcations in several complex

variables

1.1 Context and motivations

Given a certain class of dynamical systems, say parametrized by some parameter space Λ, a central
goal is to classify the possible dynamical behaviours and to describe a generic element of the class.
Roughly speaking, the main steps towards this goal may be summarized as follows.

(A1) Prove that there exists a dynamically relevant decomposition of Λ into stability and bifur-
cation loci. The stability region is where the global dynamics does not change under small
perturbation, and the bifurcation locus is where a small change in the parameters gives rise
to global changes in the dynamics;

(A2) Prove that maps in the stable locus can be characterized by means of dynamically relevant
notions (for instance, hyperbolicity). Understand whether a generic map is stable;

(A3) Identify all possible ways in which bifurcations occur. Describe the specific dynamical
features of maps corresponding to parameters in the bifurcation locus.

One of the long term goals of my research, and the general theme of the works presented in this
chapter, is to settle the above program in the setting of holomorphic endomorphisms of projective
spaces in any dimension.

The one-dimensional case, i.e., that of rational maps (or simply polynomials) acting on the
Riemann sphere (or C), is nowadays quite well understood. The point (A1) of the program was
settled by Lyubich [Lyu83b] and Mañé-Sad-Sullivan [MSS83] in the 1980s. They proved that
several different definitions of stability are actually equivalent. They deduced that the stability
locus is dense in any family of polynomials or rational maps. Thus, in this setting a generic map is
stable (see point (A2)).

Let us recall a fundamental example. The simplest case we can consider
is the quadratic polynomial family. We have a parameter space Λ = C and,
for every λ ∈ Λ, we consider the quadratic polynomials fλ(z) = z2 + λ. In
this case, the bifurcation locus is precisely the boundary of the Mandelbrot
set (at right). All the white parts of the picture are stability components, i.e.,
connected components of the stability locus. Given a λ, we can associate
to the polynomial fλ its Julia set. This is the part of the plane where the
chaotic part of the dynamics is concentrated (for instance, it is the support

1
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of the – unique – measure of maximal entropy). Stability as described above is equivalent to
the fact that the Julia set moves continuously with λ: thus, this set moves continuously when λ
stays in a stability component, while it has a discontinuity if the parameter is in the bifurcation
locus. Hyperbolicity (i.e., uniform expansion on the Julia set) propagates in stable components:
as soon as a parameter is hyperbolic, all parameters in the same component satisfy the same
property. Conjecturally, all white stable components are hyperbolic, i.e., all parameters in the
same component correspond to maps which are uniformly expanding on their Julia set. This is
the content of the so called Fatou hyperbolicity conjecture, possibly the main open question in the
domain.

1.1.1 Previous works and definitions

By the classical results by Mañé-Sad-Sullivan [MSS83] and Lyubich [Lyu83b] mentioned above, the
stability of a family of rational maps of degree d ≥ 2 is determined by the stability of its repelling
cycles. More precisely, the so-called λ-lemma ensures that, once one can follow holomorphically
with the parameter a dense subset of the Julia set Jλ0 (the support of the unique measure of
maximal entropy of fλ0 [FLM83; Lyu82; Lyu83a]) at a given parameter λ0, then every point of Jλ0

can be followed holomorphically. The important point here is that the motions corresponding to
different points (that exist thanks to Montel theorem) do not intersect. This is a consequence of
Hurwitz theorem. The stability locus is the (open dense) subset of the parameter space where the
above condition of stability holds true. The complement of such set is the bifurcation locus. By a
result of DeMarco [DeM03], such locus is the support of a naturally defined bifurcation current,
given by the complex Laplacian of the function associating to every λ the Lyapunov exponent
of the measure of maximal entropy of fλ, see also [Prz85; Sib81] for the polynomial case. In
particular, the (pluri)harmonicity of this function is equivalent to the stability as above. Let us
recall that the use of potential-theoretic tools in holomorphic dynamics had been pioneered by
Brolin [Bro65], who showed, by these means, the equidistribution of preimages of generic points
with respect to the equilibrium measure of complex polynomials, a result later generalized to all
rational maps in [FLM83; Lyu82; Lyu83a].

In my PhD thesis, I contributed to a generalization of the theory by Mañé-Sad-Sullivan, Lyubich,
and DeMarco to families of endomorphisms of Pk of algebraic degree d ≥ 2 in any dimension
k ≥ 1, see [BBD18; Bia19a] and also [BB18b] for an overview of the arguments and methods. As
most of the one-dimensional techniques do not apply anymore, the main tools came from ergodic
and (pluri)potential theory. Very roughly speaking, compactness of suitable spaces of currents and
plurisubharmonic functions played the role of Montel theorem. And precise statistical properties
of the measure of maximal entropy [BD01; DS10a; FS94] (among them, an explicit lower bound
for its Lyapunov exponents [BD99]) played somehow the role of an asymptotic Hurwitz theorem.
As a consequence, dynamical stability in such families (defined for instance by the vanishing of
a natural bifurcation current [BB07; Pha05], or by a condition on the stability of the repelling
points) is equivalent to the existence of a holomorphic motion for a full measure subset of the Julia
set, with respect to the measure of maximal entropy.

Let us be more precise. Given a complex manifold M , a holomorphic family (fλ)λ∈M of
endomorphisms of Pk parametrized by M is a holomorphic map f : M × Pk → M → Pk of the
form f(λ, z) = (λ, fλ(z)) and such that every fλ has the same algebraic degree d. We always
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assume that d ≥ 2. We denote by µλ the equilibrium measure of fλ (i.e., the unique measure of
maximal entropy k log d of fλ) and recall that the Julia set Jλ of fλ is by definition the support of
µλ.

Theorem 1.1.1 (Berteloot-Bianchi-Dupont [BBD18; Bia19a]). Let M be an open connected and
simply connected manifold and (fλ)λ∈M a holomorphic family of endomorphisms of Pk of a given
algebraic degree d ≥ 2. The following conditions are equivalent:

(S1) asymptotically all the repelling points in the Julia sets move holomorphically with λ;

(S2) the sum L(λ) =
´

log | Jac fλ|µλ of the Lyapunov exponents of µλ satisfies ddcL ≡ 0;

(S3) there are no Misiurewicz parameters;

(S4) there exists an equilibrium lamination;

(S5) there exists an acritical equilibrium web.

Definition 1.1.2. We say that a family is stable if any of the equivalent conditions in Theorem 1.1.1
locally holds.

More generally, the stability locus of a holomorphic family is the maximal open set of the
parameter space where the conditions in Theorem 1.1.1 (locally) hold. The bifurcation locus is the
complement of the stability locus.

In the remaining part of this section we fix some notations and give the definitions of the
conditions in Theorem 1.1.1.

Denote by J the set of all holomorphic maps γ : M → Pk such that γ(λ) belongs to Jλ for all
λ ∈ M . We often identify a map γ with its graph Γγ in the product space M × Pk. The family
(fλ)λ∈M induces a dynamical system F on the space J by Fγ(λ) := fλ(γ(λ)). Observe that J is a
metric space, with the topology of local uniform convergence, and that (J ,F) is a well-defined
dynamical system.

The repelling J -cycles of fλ are the repelling cycles of fλ which belong to Jλ. In dimension k = 1,
all repelling cycles are automatically repelling J -cycles and are dense in the Julia set. When k ≥ 2
there are examples of repelling points outside of the Julia set (see for instance [FS01; HP94]).
However, repelling J -cycles are still dense in the Julia set [BD99].

Definition 1.1.3. We say that the repelling J -cycles of fλ move holomorphically over an open subset
Ω ⊆ M if for every n ≥ 1 there exists a set of holomorphic maps γj,n ∈ J such that Rn(λ) =
{γj,n(λ) : 1 ≤ j ≤ Nd(n)} for all λ ∈ Ω, where Rn(λ) := {repelling n− periodic points of fλ in Jλ}
and Nd(n) = Card(Rn(λ)) for all λ ∈M .

I introduced the following, a priori weaker, condition on the repelling cycles in [Bia19a].

Definition 1.1.4. We say that asymptotically all repelling cycles move holomorphically on Ω if there
exists a set P = ∪Pn ⊂ J with the following properties:

1. Card(Pn) = dkn + o(dkn);
2. every γ ∈ Pn is n-periodic for F ;
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3. for all open Ω′ b Ω, we have

d−kn · Card
(
{γ ∈ Pn : γ(λ) is repelling for all λ ∈ Ω′}

)
→ 1 for n→∞.

We denote by Cf the critical set of f , and by GO(Cf ) the grand orbit of Cf , i.e., GO(Cf ) :=
∪n,m≥0f

−m(fn(Cf )).

Definition 1.1.5. We say that λ0 ∈M is a Misiurewicz parameter if there exist integers p0, n0 ≥ 1
and a holomorphic map σ defined on some neighbourhood of λ0 such that σ(λ) ∈ Rp0(λ) and
Γσ ∩W 6= ∅ but Γσ 6⊆W for some irreducible component W of fn0(Cf ).

Definition 1.1.6. A dynamical lamination for the family f is a F -invariant subset L of J such that

1. Γγ ∩ Γγ′ = ∅ for all γ 6= γ′ ∈ L;

2. Γγ ∩GO(Cf ) = ∅ for all γ ∈ L;

3. F : L → L is dk-to-1.

An equilibrium lamination or µλ-measurable holomorphic motion of Jλ is a dynamical lamination
satisfying µλ({γ(λ) : γ ∈ L}) = 1 for all λ ∈M .

For every λ ∈M , we denote by pλ : J → Jλ, the natural map given by pλ(γ) = γ(λ). A web for
the family f is a F -invariant probability measure compactly supported on J . An equilibrium web
for the family f is a webM such that (pλ)∗M = µλ for all λ ∈M .

Definition 1.1.7. A webM is said to be acritical ifM(Js) = 0, where

Js := {γ ∈ J : Γγ ∩GO(Cf ) 6= ∅}

If k = 2 or if M is an open subset of the (parameter space of the) family Hd(Pk) of all the
endomorphisms of Pk of a given algebraic degree d ≥ 2, the conditions in Theorem 1.1.1 are
equivalent to the motion of all the repelling J-cycles as in Definition 1.1.3, see [BBD18]. By a
result of Berteloot [Ber18], (S1) can actually be weakened to the following, a priori even weaker,
condition: there exists a function N : N→ N with lim supn→∞ d−knN(n) > 0 such that, for every
n, N(n) repelling n-periodic points move holomorphically (as repelling periodic points) over M .
We refer to [Lev82; Lyu83b] for the equivalence of (S3) to the other conditions in dimension 1,
and to another recent work by Berteloot and Brévard [BB23a] for further characterizations of
stability in any dimension.

1.1.2 First questions and summary of results

Comparing Theorem 1.1.1 with the one-dimensional version by Mañé-Sad-Sullivan, Lyubich, and
DeMarco, the following are possibly the first natural questions that arise:

(SQ1) is the Hausdorff continuity of the Julia sets equivalent to the other notions of stability?

(SQ2) is the stability locus dense?

(SQ3) do all repelling points move holomorphically (as in Definition 1.1.3) in any stable family?
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(SQ4) does hyperbolicity propagate in stable components, i.e., is every map in a given component
hyperbolic as soon as one given map in the component is?

As already mentioned above, the answer to all these questions is positive in dimension 1.

In the next Section 1.2, I will present some results giving a negative answer to (SQ1) and (SQ2)
[BT17], as well as some estimates on the Hausdorff dimension of the bifurcation locus [BB18b].

Section 1.3 describes my works [AB23; AB22] with Matthieu Astorg, where we aim at a precise
description of the parameter space of families of polynomial skew products. We answer positively
to (SQ4) in this context, and we give a more precise description of the bifurcation locus, as well
as a classification of hyperbolic components near the boundary of the parameter space. We also
study the self-intersections of the bifurcation current, as well as their supports. We establish some
equidistribution results for dynamically defined hypersurfaces of the parameter space towards the
bifurcation current, which hold in general families of endomorphisms.

We conclude this section by recalling that a parallel theory to that of [BBD18; Bia19a] has been
developed in the setting of polynomial diffeomorphisms of C2 by Dujardin and Lyubich, see [DL15;
Duj22]. Stability is defined also in this setting by means of a number of equivalent conditions,
among them the existence of a branched holomorphic motion for the Julia sets, meaning that
natural motions of distinct points can a priori intersect. In [BD17] Berger and Dujardin introduced
a notion of regular point and proved that such motion is unbranched at every regular point. This
applies to almost every point with respect to all measures with strictly positive and negative
Lyapunov exponents, and in particular to the measure of maximal entropy. This result was the
inspiration for the paper [BR22], where with Karim Rakhimov we proved an analogous result in
the setting of endomorphisms of Pk. This is described in Section 1.4. Building on the techniques
developed there, with Maxence Brévard we also partially addressed the question (SQ4) in [BB23b].
As this work also relies on results that will be explained in Chapter 2, its description is postponed
to Section 3.1.2.

1.2 Hausdorff continuity of the Julia sets, open sets of bifurcation,
and Hausdorff dimension of the bifurcation locus

In this section I describe the two works [BT17] and [BB18a], which were the first I wrote after the
completion of my PhD manuscript, and are those more closely related to it. They address the first
two natural questions (SQ1) and (SQ2) in the list in the previous section.

1.2.1 Bifurcations in the elementary Desboves family

The following theorem, obtained with Johan Taflin, gives an explicit example of a family of
endomorphisms of P2 for which the answer to both the questions (SQ1) and (SQ2) is negative.

Theorem 1.2.1 (Bianchi-Taflin [BT17]). The family of endomorphisms of P2 given by

fλ([x : y : z]) =
[
− x(x3 + 2z3) : y(z3 − x3 + λ(x3 + y3 + z3)) : z(2x3 + z3)

]
with λ ∈ C∗ satisfies the following properties:



6 Stability and bifurcations in several complex variables

1. the Julia set of fλ depends continuously on λ, for the Hausdorff topology;
2. the bifurcation locus coincides with C∗.

The family above is called the elementary Desboves family and these maps were previously
studied by Bonifant-Dabija [BD02] and Bonifant-Dabija-Milnor [BDM07]. Each element of the
family preserves the Fermat curve C = {x3 + y3 + z3 = 0}. Moreover, the following dynamical
features hold for every λ ∈ C∗:

1. fλ preserves the line Y = {y = 0} and (fλ)|Y is a Lattés map g (independent of λ);
2. fλ preserves the pencil P of lines passing through the point p0 := [0 : 1 : 0] and the action

on P is conjugated to g;
3. p0 is an attracting fixed point and the Fatou set of fλ is equal to the basin A of p0. As a

consequence, for every λ we have the decomposition P2 = A ∪ Jλ.

We can now give a sketch of the proof of Theorem 1.2.1. The proof of the first assertion is
a direct consequence of the third property above. Indeed, such property implies that the map
λ 7→ Jλ is upper-semicontinuous. As such map is always lower-semicontinuous, the continuity
follows.

We then need to establish that every λ is in the bifurcation locus. In order to do this, by Theorem
1.1.1 we can show that Misiurewicz parameters are dense in C∗. This requires to first better
understand the critical set of each fλ. It is not difficult to see that this consists of 3 lines through
p0 (corresponding to the critical points of g) and a further cubic C ′λ, which actually depends on
λ and is generically transverse to the elements of the pencil P. In particular, the intersections
between C ′λ and Y move with λ. A simple computation also shows that, for every λ, at least one
among the two points Y ∩ {x = 0} and Y ∩ {z = 0} is repelling. We consider the preimages of
such point in Y , which correspond to preimages under g and are dense in Y . As these preimages
do not depend of λ while C ′λ ∩ Y does, this implies that there exist non-persistent Misiurewicz
parameters for a dense set of λ ∈ C∗. We prove this by showing that any persistent intersection
would have to persist also for λ = 0 (where f0 is still an endomorphism of P2 \ {p0}), which is
excluded by an explicit check. The assertion follows.

Notice that Theorem 1.2.1 does not contradict the possible equivalence of stability and Hausdorff
continuity of the Julia sets in the family Hd(Pk) of all endomorphisms of Pk of a given degree d.
Hence, in this family, question (QS1) is still open. Similarly, it does not imply the existence of an
open set in the bifurcation locus for the family Hd(Pk) (a robust bifurcation). The existence of
such an open set was first announced, essentially in parallel to [BT17] and independently from
Theorem 1.2.1, by Dujardin [Duj17], who presented two different mechanisms leading to robust
bifurcations, in any dimension and degree.

Let us now focus on the case k = 2. The methods by Dujardin give open sets in the bifurcation
locus near maps of the form (z, w) 7→ (p(z), q(w)), where p is a bifurcating polynomial in the
family of degree d polynomials Pd(C), and q has a rather specific form. This means that these
maps are in the closure of the interior of the bifurcation locus of Hd(Pk). Dujardin then asked
whether any product map of the form (z, w) 7→ (p(z), q(w)) (where p or q is bifurcating in Pd(C))
is contained in the closure of the interior of the bifurcation locus of Hd(P2). This question was
positively answered by Taflin [Taf21].
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1.2.2 Hausdorff dimension estimates

The Hausdorff dimension of the bifurcation locus can also be studied for generic families. Let us
recall the fundamental result of Shishikura [Shi98] stating that the Hausdorff dimension of the
boundary of the Mandelbrot set (which is the bifurcation locus of the quadratic family) is equal to
2. From this one can deduce [McM00b; Tan98] that the Hausdorff dimension of the bifurcation
locus is always maximal for every family of rational maps. For families (fλ)λ∈M of endomorphisms
of Pk, we proved with François Berteloot [BB18a] an estimate for the Hausdorff dimension of the
bifurcation locus near any bifurcation parameter λ0, which depends on the values of the Lyapunov
exponents of fλ0 . In particular, this dimension is always maximal near (higher-dimensional)
isolated Lattès maps, i.e., endomorphisms of Pk which are suitably semi-conjugated to affine maps
on Ck [BD05; Mil06].

Theorem 1.2.2 (Berteloot-Bianchi [BB18a]). Let f be any holomorphic family of endomorphisms of
Pk, parametrized by M . Assume that λ0 ∈M is such that fλ0 is a Lattès map, and λ0 is accumulated
by parameters λ for which fλ is not a Lattès map. Then the Hausdorff dimension of the bifurcation
locus is maximal at λ0.

This is coherent with a conjecture in [Duj17], which states that Lattès maps should be contained
in the closure of the interior of the bifurcation locus of Hd(Pk). A step towards the settling of this
conjecture in dimension 2 has been done by Biebler [Bie19], who showed that for every Lattès
map L of degree d on P2 there exists an integer n0 = n(L) such that for every n ≥ n0 the iterate
Ln belongs to the closure of the interior of the bifurcation locus of the family Hdn(P2).

We conclude this section giving an idea of the proof of Theorem 1.2.2. Let us assume that M has
dimension 1 and suppose that λ1 is a Misiurewicz parameter. We also assume that the Lyapunov
exponents χ1 ≤ · · · ≤ χk of µλ1 do not satisfy any resonance relation. Then, we can show the
inequality

lim inf
r→0

dimH(Bif ∩D(λ1, r)) ≥
χ1
χk

(k log d
χk

)
− (2k − 2), (1.1)

where d is the algebraic degree of the family. The proof of the above estimate is based on the
following classical transfer geometric argument. Roughly speaking, whenever a Misiurewicz
bifurcation happens, one can construct a large Iterated Function System in the phase space of
the Misiurewicz parameter, persisting in a neighbourhood of the parameter. Up to reducing M ,
we can think of it as a tube T0 = M × B, for some ball B ⊂ Pk, and a collection T = ∪n≥1Tn
of subsets of T0, where the cardinality of Tn is larger than δn for some dk−1 < δ < dk, such that
each element of Tn is mapped bijectively to T0 by the family fn. The intersection between the
postcritical set and a repelling point at the Misiurewicz parameter implies that the postcritical set
also intersects every element of T . It is not difficult to see that every such intersection gives a new
Misiurewicz parameter. Thanks to the intersections with the postcritical set one can then transfer
the original IFS to the parameter space. The Hausdorff dimension of the bifurcation locus can be
then estimated from below by that of the transferred IFS.

This strategy works particularly well in dimension 1. In higher dimension, we need to combine
the above arguments with a precise linearization along inverse orbits which was established by
Berteloot-Dupont-Molino [BDM08] and results by Pesin-Weiss [PW96] on the Hausdorff dimension
of limit sets of contractions with controlled geometry. Theorem 1.2.2 then directly follows by
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applying the general estimate (1.1) to Misiurewicz parameters λ1 arbitrarily close to λ0, for which
we have χ1 ∼ χk ∼ (log d)/2.

1.3 Hyperbolicity and bifurcations in families of polynomial skew
products

This section describes the two papers [AB23; AB22], joint with Matthieu Astorg, in which we
study and characterize hyperbolicity and bifurcations in families of polynomial skew products.

Polynomial skew products are regular polynomial endomorphisms of C2 of the form f(z, w) =
(p(z), q(z, w)), for p and q polynomials of a given degree d ≥ 2. Regular here means that the
coefficient of wd in q is non zero, which is equivalent to the extendibility of these maps as
holomorphic self-maps of P2. Despite their specific forms, these maps had already provided
examples of new phenomena with respect to the established theory of one-variable polynomials or
rational maps, see for instance [Ast+16; Duj16] and the already mentioned [Duj17; Taf21].

We will denote in what follows by Sk(p, d) the family of all polynomial skew products of a given
degree d over a fixed base polynomial p up to affine conjugacy, and denote by Dd its dimension.
By Theorem 1.1.1, it is possible to partition the parameter space of the family Sk(p, d) (identified
with CDd) into the two dynamically defined stability and bifurcation loci. The first goal of [AB23]
was to describe more precisely this decomposition, and in general develop in more detail the
program (A1)-(A3), in families of polynomial skew products. As part of our work, we also solved
(SQ3) in this context.

1.3.1 Hyperbolicity and bifurcations

While many of our results apply to more general families, we mainly focus here on the family
of quadratic skew products, i.e., polynomial skew products of (algebraic) degree 2, that are in
this context the analogue of the family z2 + c. By means of an affine change of coordinates, the
dynamical study of this family can be reduced to that of the family

fλ : (z, w) 7→ (z2 + d,w2 + az2 + bz + c) (1.2)

with d and λ := (a, b, c) as (complex) parameters. Since bifurcations due to the parameter d are of
one-dimensional nature, we fix here p(z) := z2 + d and consider the parameter space C3 of the
family Sk(p, 2) := {fλ : (a, b, c) ∈ C3}.

In [AB23], we especially focused our attention on parameters near the boundary of this space,
i.e., near the hyperplane at infinity, that we denote by P2

∞, both from the point of view of stability
and bifurcation. The first result gives a complete description of the bifurcation locus near P2

∞
from both a topological and measure-theoretical point of view. We denote by Jp the Julia set of p.
Given z ∈ C, we set Ez := { [a, b, c] : az2 + bz + c = 0 } ⊂ P2

∞ and E := ∪z∈JpEz. An analogous
result for quadratic rational maps had been proved in [BG15a].

Theorem 1.3.1 (Astorg-Bianchi [AB23]). The accumulation on P2
∞ of the bifurcation locus of the

family (1.2) coincides with E. Moreover, the bifurcation current Tbif on C3 extends as a positive
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closed current T̂bif to P3 = C3 ∪ P2
∞ and we have

T̂bif ∧ [P2
∞] =

ˆ
Jp

[Ez]µp(z).

The proof of this result relies on several ingredients. The first is a decomposition for the
bifurcation current (and locus), see [AB23, Theorem 3.3] for the precise statement. We then prove
that special dynamically defined hypersurfaces Pervn(η) in C3 equidistribute towards the bifurcation
current Tbif (and T̂bif), see the next Section 1.3.2 for more details. Moreover, we can precisely
control the intersections of these hypersurfaces with P2

∞. We thus obtain the convergences

1
d2n [Pervn(η)]→ T̂bif and

1
d2n [Pervn(η)] ∧ [P2

∞]→
ˆ
z∈Jp

[Ez]µp.

Theorem 1.3.1 then reduces to proving that the convergences above imply

1
d2n [Pervn(η)] ∧ [P2

∞]→ T̂bif ∧ [P2
∞],

which is a problem of intersection of currents. To do this, we exploit the theory of horizontal
positive closed currents [Duj04; DS06c]. This requires to prove some uniform estimates on the
directions at which the bifurcation locus approaches P2

∞.

Once the bifurcation locus near the hyperplane at infinity was understood, we turned our
attention to its complement, and in particular to the characterization of the hyperbolic components
as in (SQ3). Notice that, in order for those to exist, p must be hyperbolic.

The stability of a polynomial skew product as in (1.2) is determined by the behaviour of the
critical points of the form (z, 0) with z ∈ Jp. As is the case for polynomials, when all these points
escape to infinity by iteration, the map is hyperbolic. It is however not clear a priori why such
property should propagate on a stable component. In our next result not only we solved (SQ3)
in the setting of polynomial skew products (thus giving meaning to the expression hyperbolic
components here), but we also gave a complete classification of hyperbolic components that are
analoguous to the so-called shift locus from dimension 1.

More precisely, let D be the set of parameters for which all critical points in Jp × C escape, and
let D′ ⊂ D be the subset of parameters λ for which there is an arc joining λ to P2

∞\E inside D. Set

Sp :=
{
s : π0(K̊p)→ {0, 1, 2} :

∑
U∈π0(K̊p)

s(U) ≤ 2
}
,

where π0(K̊p) denotes the set of bounded Fatou components of p.

Theorem 1.3.2 (Astorg-Bianchi [AB23]). Let (fλ)λ∈M be a holomorphic family of polynomial skew
products.

1. Any fλ in a stable component containing a hyperbolic parameter is hyperbolic.

2. Assume that M = Sk(p, 2). All connected components of D′ are hyperbolic components, and
there is a natural bijection between Sp and the connected components of D′.
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The condition of the base polynomial p of being hyperbolic is actually not necessary, if we
replace hyperbolicity with vertical expansion, i.e., an expansion condition for the vertical fiber-wise
dynamics, see [Jon99]. Theorem 1.3.2 holds in this case too, proving that stability preserves
vertical expansion, and giving a classification of vertically expanding component.

The proof of the first item of Theorem 1.3.2 is based on a characterization of hyperbolicity
(and vertical expansion) due to Jonsson [Jon99] and based on the (non) accumulation of the
postcritical set on the Julia set. We showed that stability preserves this equivalent notion. The
proof of the second item is topological in nature. The main issue was to exclude the possibolity
that a given hyperbolic component could accumulate two distinct components of P2

∞\E. To prove
this, we showed that the combinatorial invariants s ∈ Sp encode the isotopy class of the Julia set
in Jp × C.

1.3.2 Equidistribution towards the bifurcation current

As mentioned above, one of our main tools in the proof of Theorem 1.3.1 is an approximation result
for the bifurcation current by means of dynamically defined hypersurfaces in the parameter space.
In dimension 1, the idea of seeing Tbif as a limit of currents detecting dynamically interesting
parameters goes back to Levin [Lev82] (see also [Lev90]), who proved that the centres of the
hyperbolic components of the Mandelbrot set equidistribute the bifurcation current, which is
supported on its boundary. Versions of this result were established for any family of polynomials
(and actually rational maps) in [BB09], where now currents became an essential tool, see also
[Oku14], and also for the distribution of maps with a cycle of any given multiplier [BB11; BG15b;
Gau16; GOV19] or with preperiodic critical points [DF08; FG15].

In our situation, in the proof of Theorem 1.3.1 we needed an equidistribution property towards
Tbif of the parameters admitting a periodic point with vertical multiplier η. Since the same
techniques allow one to prove a general result valid for any family of endomorphisms of Pk, in any
dimensions k, we proved the following more general result. It is the first equidistribution result in
the parameter space for holomorphic dynamical systems in dimension larger than one.

Theorem 1.3.3 (Astorg-Bianchi [AB23]). Let (fλ)λ∈M be the family of all holomorphic endomor-
phisms of Pk of a given degree d ≥ 2. For all η ∈ C outside of a polar subset, we have

1
d2n [Pern(η)]→ Tbif ,

where Pern(η) := {λ : ∃z ∈ Jfλof exact period n for fλ and such that Jacz fλ = η}.

The general strategy of the proof of Theorem 1.3.3 follows the main line of the one dimensional
case and is based on techniques and tools from pluripotential theory. However, one of the
difficulties we had to face here was the possible presence of infinitely many non-repelling cycles
for an endomorphism of Pk – something which is excluded for k = 1 as such non-repelling cycles
are known to be in finite number. We thus needed more quantitative estimates on the number of
repelling cycles with small multiplier, which are related to the approximation formula for the sum
of the Lyapunov exponents valid in any dimension established in [BDM08].
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1.3.3 Higher bifurcations for polynomial skew products

For families of rational maps, the study of the self-intersections of the bifurcation current (which
are meaningful because of the continuity of its potential) was started in [BB07], see also [Pha05;
DF08; Duj11]. A geometric interpretation of the support of these currents is the following: the
support of T kbif := T∧kbif is the locus where k critical points bifurcate independently. Moreover, the
current T kbif is known to equidistribute many kinds of dynamically defined parameters, such as
maps possessing k cycles of prescribed multipliers and periods tending to infinity (see, e.g., [BB07;
Gau16]). This gives rise to a natural stratification of the bifurcation locus as

SuppTbif ⊇ SuppT 2
biff ⊇ · · · ⊇ SuppT kmax

bif ,

where kmax is the dimension of the parameter space. The inclusions above are not equalities in
general, and are for instance strict when considering the family of all polynomials or rational
maps of a given degree (where kmax is equal to d− 1 and 2d− 2, respectively). It is worth pointing
out that this stratification is often compared with an analogous stratification for the Julia sets of
endomorphisms of Pk (given by the supports of the self-intersections of the Green current, see for
instance [DS10a]). We refer to [Duj11] for a more detailed exposition.

The arguments in the proof of Theorem 1.3.3 can easily be adapted to prove a similar statement
for the bifurcation currents T kbif : given generic η1, . . . , ηk ∈ C, k ≤ kmax, the bifurcation current
T kbif detects the distribution of skew products having k cycles of periods tending to infinity and
respective vertical multipliers η1, . . . , ηk ∈ C. It is then natural to ask whether the supports of the
bifurcation currents still give a natural stratification of the bifurcation locus.

The main goal of the paper [AB22] was to show that the situation in families of higher
dimensional dynamical systems is completely different from the one-dimensional counterpart.
Namely, we established the following result.

Theorem 1.3.4 (Astorg-Bianchi [AB22]). Let p be a polynomial with Julia set not totally disconnected,
which is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Let Sk(p, d) denote the family
of polynomial skew products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy, and
let Dd be its dimension. Then the associated bifurcation current Tbif satisfies

SuppTbif ≡ SuppT 2
bif ≡ · · · ≡ SuppTDdbif .

Theorem 1.3.4 is stated for the full family Sk(p, d) which was introduced at the beginning of
this Section 1.3. One could ask whether such a result holds for algebraic subfamilies of Sk(p, d):
clearly, some special subfamilies have to be ruled out, such as the family of trivial product maps
of the form (p, q) : (z, w) 7→ (p(z), q(w)). A less obvious example in degree 3 is given by the
subfamily of polynomial skew products over the base polynomial z 7→ z3 of the form

fa,b : (z, w) 7→ (z3, u3 + awz2 + bz3), (a, b) ∈ C2.

One can check that fa,b is semi-conjugated to the product map

ga,b : (z, u) 7→ (z3, u3 + au+ b)
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via the blow-up π : (z, w) 7→ (z, zw), that is, we have fa,b ◦ π = π ◦ ga,b. It follows that
SuppT 2

bif(Λ) ( SuppTbif(Λ), where Λ := {fa,b, (a, b) ∈ C2}.

The proof of Theorem 1.3.4 indeed uses the fact that the family Sk(p, d) is general enough
so that it is possible to perturb a bifurcation parameter to change the dynamical behaviour of a
critical point in a vertical fibre without affecting all other fibres. It would be interesting to classify
algebraic subfamilies of Sk(p, d) that, like Λ, are degenerate in the sense that a bifurcation in one
fibre implies a bifurcation in all other fibres; for such families, the conclusion of Theorem 1.3.4
would not hold. Likewise, it would be natural to try to extend Theorem 1.3.4 to other families
with a similar fibred structure, see for instance [DT21]. To do this, one should first ensure that
such a family is large enough in the sense above.

The proof of Theorem 1.3.4 essentially consists of two ingredients, respectively of analytical
and geometrical flavours.

The first is an analytical sufficient condition for a parameter to be in the support of T kbif . This
is inspired by analogous results by Buff-Epstein [BE09] and Gauthier [Gau12] in the context of
rational maps, and is based on the notion of large scale condition introduced in [Ast+19]. It is a
way to give a quantified meaning to the simultaneous independent bifurcation of multiple critical
points, and to exploit this condition to prove the non-vanishing of T kbif .

The second ingredient is a procedure to build these multiple independent bifurcations at a
common parameter starting from a simple one. The idea is to start with a parameter with a
Misiurewicz bifurcation (i.e., a non-persistent collision between a critical orbit and a repelling
point, see Definition 1.1.5), and to construct a new parameter nearby where two – and actually,
Dd – independent Misiurewicz bifurcations occur simultaneously. Here we say that k Misiurewicz
relations are independent at a parameter λ if the intersection of the k hypersurfaces given by the
Misiurewicz relations has codimension k in Sk(p, d), and we denote by Bifk the closure of such
parameters.

This geometrical construction is our main technical result, and the key point of [AB22]. Together
with the analytic arguments mentioned above (which give Bifk ⊆ SuppT kbif for all 1 ≤ k ≤ Dd)
and the trivial inclusion SuppTDdbif ⊆ SuppTbif , it implies Theorem 1.3.4.

Theorem 1.3.5 (Astorg-Bianchi, [AB22]). Let p be a polynomial with Julia set not totally disconnected,
which is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Let Sk(p, d) denote the family
of polynomial skew products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy, and
let Dd be its dimension. Then

Bif = Bif2 = · · · = BifDd .

In order to construct the desired Misiurewicz parameter, we had to consider the motion of
a sufficiently large hyperbolic subset of the Julia set near a parameter in the bifurcation locus.
This hyperbolic set needed to satisfy some precise properties, and this is where the assumptions
on p come into play. The construction uses tools from the thermodynamic formalism of rational
maps, and more generally of endomorphisms of Pk (but is independent of the results presented in
Section 2.2). Once the hyperbolic set is constructed, the proof proceeds by induction. We show
that, given a Misiurewicz relations satisfying a given list of further properties, it is possible to
construct, one by one, the extra Misiurewicz relations happening simultaneously.
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Our main theorems and the method developed for their proof have a number of consequences
and corollaries. Below are a few of them.

Corollary 1.3.6. Let p be a polynomial with Julia set not totally disconnected, which is neither
conjugated to z 7→ zd nor to a Chebyshev polynomial. Near any bifurcation parameter in Sk(p, d)
there exist algebraic subfamilies Mk of Sk(p, d) of any dimension k < Dd such that the support of
the bifurcation measure of Mk has non-empty interior in Mk.

These families are given by the maps satisfying a given critical relation. Notice that d (and thus
Dd) can be taken arbitrarily large. This result is for instance an improvement of Thereom 1.2.1,
where 1-parameter families with the same property are constructed.

More strikingly, as already mentioned in Section 1.2, in [Duj17; Taf21], Dujardin and Taflin
constructed open sets in the bifurcation locus in the family Hd(Pk) of all endomorphisms of Pk,
k ≥ 1, of a given degree d ≥ 2. Their strategy also works when considering the subfamily of
polynomial skew products (and actually these open sets are built close to this family). Combining
Theorem 1.3.4 with their result we thus get the following consequence.

Corollary 1.3.7. Let p be a polynomial with Julia set not totally disconnected, which is neither
conjugated to z 7→ zd nor to a Chebyshev polynomial. The support of the bifurcation measure in
Sk(p, d) has non empty interior.

Notice that it is not known whether the bifurcation locus is the closure of its interior (see the last
paragraph in [Duj17]). Hence, a priori, the open sets as above could exist only in some regions of
the parameter space. The last consequence of our main theorems is a uniform and optimal bound
for the Hausdorff dimension of the support of the bifurcation measure, which is a generalization
to this setting of the main result in [Gau12].

Corollary 1.3.8. Let p be a polynomial with Julia set not totally disconnected, which is neither
conjugated to z 7→ zd nor to a Chebyshev polynomial. The Hausdorff dimension of the support of the
bifurcation measure in Sk(p, d) is maximal at all points of its support.

Notice that, in the family of all endomorphisms of a given degree, such a uniform estimate is
not known even for the bifurcation locus, see Section 1.2.2 and [BB18a] for some local estimates.

It is natural to ask whether a similar result as Theorem 1.3.4 stays true in the full family of all
endomorphisms of Pk. As it is, the proof of Theorem 1.3.4 relies on the fibered structure at several
points, and it is unclear how to adapt it to the general case. On the other hand, recently Gauthier,
Taflin, and Vigny could establish a version of Corollary 1.3.7 in this full family. This was a step in
the proof of a much deeper result on the sparsity of posticritically finite maps on Pk [GTV23].

1.4 Stability of expanding measures

The main goal of the work [BR22], joint with my postdoc Karim Rakhimov, was to strengthen
Theorem 1.1.1 by showing that, in stable families of endomorphisms of Pk of algebraic degree
d ≥ 2, dynamical stability implies the existence of a well-defined local motion for almost all
points with respect to all measures on the Julia set with strictly positive Lyapunov exponents and not
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charging the post-critical set. By results of de Thélin, Dinh, and Dupont [deT06; deT08; Din07;
Dup12], this in particular applies to all ergodic measures whose measure-theoretic entropy is
strictly larger than (k− 1) log d. In this case, the motion is well-defined on all the parameter space.
Observe that the topological entropy of an endomorphism of Pk of algebraic degree d is equal to
k log d [Gro03] (which is then equal to the measure-theoretic entropy of the unique measure of
maximal entropy), and that (k − 1) log d is a natural threshold for many dynamical phenomena.
We refer to [BD23a; BD22; Dup12; SUZ14; UZ13], and in particular to Section 2.2, for large
classes of examples of such measures in any dimension, and their statistical properties.

An analogous result is already known in the setting of polynomial diffeomorphisms of C2. As
was mentioned in Section 1.1.1, a parallel theory to that of [BBD18; Bia19a] has been developed
in this setting by Dujardin and Lyubich, see [DL15]. The current work was inspired by the
unbranching property proved by Berger and Dujardin in [BD17] and provides a parallel to that
result for families of endomorphisms of Pk. As was already the case for [DL15] and [BBD18], our
approach is completely different from the one in [BD17], since the key point here is to understand
the relation between the Julia sets and the dynamics of the critical set (which does not exist in the
case of diffeomorphims of C2). This is achieved with techniques from pluripotential theory.

In order to state the main result of [BR22], we need a more general version of some definitions
in Section 1.1.1. Recall that we denote by J the set of all holomorphic maps γ : M → Pk such that
γ(λ) belongs to Jλ for all λ ∈M . We often identify a map γ with its graph Γγ in the product space
M ×Pk. The family (fλ)λ∈M induces a dynamical system F on the space J by Fγ(λ) := fλ(γ(λ)).
Recall that dynamical laminations are defined in Definition 1.1.6.

Definition 1.4.1. Given λ0 ∈ M and an fλ0-invariant probability measure ν supported on Jλ0 , a
dynamical lamination L is said to be a (λ0, ν)-lamination (or ν-lamination for brevity) if ν({γ(λ0) :
γ ∈ L}) = 1.

Recall that, for every λ ∈M , we denote by pλ : J → Jλ, the natural map given by pλ(γ) = γ(λ).

Definition 1.4.2. Given λ0 ∈ M and an fλ0-invariant probability measure ν supported on Jλ0 , a
(λ0, ν)-web (or ν-web for brevity) is a webM such that (pλ0)∗M = ν.

We say that J is unbranched at (λ0, z0) if there exists (at most) one γ ∈ J with γ(λ0) = z0. It
follows from [BBD18, Lemma 2.5] that, if (fλ)λ∈M is stable, for every λ ∈ M and z ∈ Jλ there
exist γ ∈ J such that γ(λ) = z. Moreover, by [BBD18, Section 4.3], such γ is unique for every
λ ∈M and µλ-almost every z ∈ Jλ. Hence, J is unbranched at (λ, z) for every λ and µλ-almost
every z ∈ Jλ.

Our main result can be stated as follows. For every λ ∈ M , we denote by Cfλ the critical set
and by C+

fλ
:= ∪m≥0f

m
λ (Cfλ) the postcritical set of fλ.

Theorem 1.4.3 (Bianchi-Rakhimov [BR22]). Let M be an open connected and simply connected
manifold and (fλ)λ∈M a stable family of endomorphisms of Pk of algebraic degree d ≥ 2. Fix λ0 ∈M
and consider an ergodic fλ0-invariant probability measure ν0 on Jλ0 with strictly positive Lyapunov
exponents and such that ν(C+

fλ0
) = 0. Then, J is unbranched at (λ0, z) for ν0-almost every z ∈ Jλ0 .

Moveover, up to replacing M with a sufficiently small open neighbourhood Mλ0,ν0 of λ0,

(S4’) there exist a ν0-lamination;
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(S5’) there exists an ergodic acritical ν0-webM and a constant A > 0 such that for all λ ∈Mλ0,ν0

the Lyapunov exponents of (pλ)∗M are uniformly bounded from below by A.

The main reason why we may need to reduce M to Mλ0,ν0 (possibly depending on ν0) is the
fact that the smallest Lyapunov exponent of the motion of ν0 may, a priori, become negative at
some λ1 ∈M . In our construction (and more precisely in the construction of the ν0-lamination)
we need to restrict to the parameters where such an exponent stays positive.

It is proved in [BBD18] that the existence of a graph γ : M → Pk whose orbit does not intersect
the postcritical set implies the stability of the family, and is then equivalent to it. In particular,
it follows directly that the existence of an acritical web (associated to any measure, hence in
particular (S4’)) implies that the family is stable. The implication (S5’) ⇒ (S4’) follows from
similar arguments as in [BBD18; Bia19a; BB18a]. The main point of Theorem 1.4.3 is the proof of
(S5’), and in particular the positivity of the Lyapunov exponents.

The first task is to prove the existence of an acritical ν0-web. This is done by first approximating
the measure ν0 with measures supported on the repelling points for fλ0 , and using the holomorphic
motions of such points (which, at least asymptotically, exist by assumption) to construct a measure
M on J such that (pλ0)∗M = ν0. This measureM can be made invariant and ergodic by standard
arguments. It is then an ergodic ν0-web. This in particular implies that (pλ)∗M is ergodic for all λ,
so that the Lyapunov exponents as in the statement are well defined.

We then need to prove the positivity of such exponents near λ0. By a generalization of a result
by Pham [Pha05], the upper sums of such exponents are plurisubharmonic (in particular, the sum
of all of them but the smallest is upper semicontinuous). We show that the sum is pluriharmonic.
This gives the lower semicontinuity of the smallest exponent. Since this exponent is positive at λ0
by assumption, this gives the desired positivity in a neighbourhood of λ0.

Proving the pluriharmonicity of the Lyapunov sums gives a version of (S3) for these more
general measures. In order to get it, we follow the general strategy as in [BBD18] for the proof of
the pluriharmonicity of the sum of the Lyapunov exponents of the measure of maximal entropy. A
delicate point is to ensure that, as soon as (the graph of) an element in the support ofM intersects
some component of the postcritical set, it has to be contained in it. This is achieved thanks to the
absence of Misiurewicz parameters in a stable family, a condition that makes no reference to the
measure.

Given any λ0 ∈M and any ergodic fλ0-invariant measure ν0 as in Theorem 1.4.3, it is possible to
define a local measurable holomorphic motion of Jλ associated to the measure ν0. In particular, by
[deT08; Dup12] and [deT06; Din07], Theorem 1.4.3 applies when the measure-theoretic entropy
of the measure ν0 is strictly larger than (k − 1) log d. We then have the following consequence.

Corollary 1.4.4. Let M be an open connected and simply connected manifold and (fλ)λ∈M a holo-
morphic family of endomorphisms of Pk of a given algebraic degree d ≥ 2. Assume that the family
(fλ)λ∈M is stable in the sense of Theorem-Definition 1.1.1.

1. For any ergodic fλ0-invariant probability measure ν0 such that hν0(fλ0) > (k − 1) log d, the
properties (S4’) and (S5’) hold on M ;

2. there exists a dynamical lamination L satisfying ν({γ(λ) : γ ∈ L}) = 1 for every λ ∈M and
every ergodic fλ-invariant measure ν whose measure-theoretic entropy is strictly larger than
(k − 1) log d.
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Results analogous to Theorem 1.4.3 and Corollary 1.4.4 also hold in the much more general
setting of families of polynomial-like maps of large topological degree, see [DS10a] and Section 3.3.
A version of Theorem 1.1.1 in this more general setting is the main result of [Bia19a]. Theorem
1.4.3 in this more general setting has exactly the same statement and proof. On the other hand, as
part of the proof of the analogue of Corollary 1.4.4, we also needed to prove a generalization of
de Thélin and Dupont theorem above [deT08; Dup12], giving the strict positivity of the Lyapunov
exponents of measures of sufficiently large measure-theoretic entropy for polynomial-like maps of
large topological degree. As other properties of polynomial-like maps related to this one will be
studied more in detail in Chapter 3, and in particular in Section 3.3.1, we postpone to Section
3.3.2 the description of these results.

We conclude this section by observing that a version of the equidistribution of repelling points
(in this case, repelling graphs) towards a web Mν as above, when ν is a suitable equilibrium
state, was the main goal of my work [BB23b], joint with Maxence Brévard. This is a result in
the direction of (SQ3). As equilibrium states will be studied in Chapter 2, and in particular in
Section 2.2, the description of such result is postponed to Section 3.1.2. We also observe that it is
natural to ask whether it is true that all the slices (pλ)∗M are equilibrium states as soon as one of
them has such property. This question, together with related ones, is addressed by Brévard and
Rakhimov in [BR24], which is part of Brévard’s PhD thesis.



2
Thermodynamics and statistical properties of

equilibrium states

2.1 Motivations

Let f : X → X be a dynamical system displaying some chaotic behaviour (i.e., strong sensitivity
of the orbits from the initial condition). A basic question would be to understand the orbits of
points. But this is, essentially by definition, an impossible task for most of the orbits. A possible
approach to the problem is to instead consider an observable, i.e., a function u : X → R, and
study the sequence u(x), u(f(x)), . . . of the evaluations of u along orbits. This leads to consider
the sequence Ui := u ◦ f i as a sequence of random variables on the space X. We can take here
any invariant measure ν as reference. The fact that ν is invariant precisely says that the Ui’s are
identically distributed. On the other hand, they are clearly not independent, as they arise from a
completely deterministic setting (once one fixes a point, the orbit is completely determined). A
general, heuristic, goal can then be phrased as follows.

General goal: Prove that the variables Ui are sufficiently weakly correlated to satisfy the main
properties of independent random variables: central limit theorem, laws of iterated logarithms,
almost sure invariance principles, large deviations theorems...

The more general one can take ν, and the more refined statistical properties one can prove, the
more one can say to understand the system from a probabilistic point of view. Doing this for all
invariant (even ergodic) measures is likely an impossible task, but one could at least consider all
measures having some further dynamical significance. Here is where the thermodynamic formalism
enters into play. This theory takes its motivation from thermodynamics and statistical mechanics
and has found powerful applications in the field of dynamical systems, at least since the seminal
works of Sinai, Ruelle, Bowen [Sin72; Rue78b; Bow08]. Roughly speaking, it is the study of the
limit distributions (or equilibrium states) of configuration spaces under given constraints (or, more
mathematically, of the invariant measures which are maximisers of some dynamically defined
functional). More rigorously, one fixes a function ϕ (a weight) of a given regularity, and defines
the pressure functional P (ϕ) = supν(hν + 〈ν, ϕ〉), where hν is the metric entropy of the measure ν
and the supremum is taken over all invariant measures. An equilibrium state (associated to ϕ) is
then an invariant measure (usually denoted µϕ) maximizing the function P (ϕ). The general goal
can then be split as follows.

(B1) Prove the existence (and, if possible, uniqueness) of equilibrium states µϕ for ϕ of a given
regularity;

(B2) Prove the (if possible, exponential) mixing of µϕ (i.e., the decay of correlations);

17
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(B3) Establish statistical laws with respect to µϕ, for observables u of a given (possibly different)
regularity.

The more general we can take ϕ and u, the better we can say to understand the system from a
statistical point of view.

I describe in this chapter the two pairs of works [BD23a; BD22] and [BD24; BD23b], obtained
in collaboration with Tien-Cuong Dinh. In the first two, we completed the program above in the
setting of generic endomorphisms of Pk and (for instance) Hölder continuous weights. In the
second two, we proved the Central Limit Theorem for the measure of maximal entropy of any
complex Hénon map, and of any automorphism of a compact Kähler manifold with a natural
condition on the dynamical degrees.

2.2 Equilibrium states of holomorphic endomorphisms of Pk

In this section I describe the completion of the program (B1)-(B3) in the setting of endomorphisms
of Pk and (for instance) Hölder continuous weights ϕ, which we obtained with Tien-Cuong Dinh
[BD23a; BD22]. I consider the results in this section my main achievements since my PhD, and
the main results in this manuscript. Hence, I will give more details about the proofs. In order to
make the text more readable, I will make some simplifying assumptions, in order to just focus on
the main arguments.

2.2.1 Results

Let f : Pk → Pk be a holomorphic endomorphism of the complex projective space Pk = Pk(C),
with k ≥ 1, of algebraic degree d ≥ 2. Denote by µ the unique measure of maximal entropy for
the dynamical system (Pk, f) [Lyu83a; BD01; DS10a] and recall that the Julia set of f is the
support supp(µ) of µ. The measure µ corresponds to the equilibrium state of the system in the
case without weight, i.e., when the weight is zero. The general program (B1)-(B3) above had
already been studied for Hölder continuous weights using a geometric approach, in dimension 1,
see, e.g., Denker-Przytycki-Urbański [Prz90; DU91a; DU91c; DPU96] and Haydn [Hay99] just to
name a few, and also in higher dimensions, see Szostakiewicz-Urbański-Zdunik [UZ13; SUZ14].
In the papers [BD23a; BD22], we developed an analytic method which allowed us to obtain more
general and more quantitative results. Many results are new even when ϕ = 0 and even for k = 1.

As in [BD23a; BD22], throughout this section we make use of the following technical assumption
for f :

(Hf) the local degree of the iterate fn := f ◦ · · · ◦ f (n times) satisfies

lim
n→∞

1
n

log max
a∈Pk

deg(fn, a) = 0.

Here, deg(fn, a) is the multiplicity of a as a solution of the equation fn(z) = fn(a). Note that
generic endomorphisms of Pk satisfy this condition, see [DS10b]. Our study still holds under
a weaker condition that the exceptional set of f (i.e., the maximal proper analytic subset of Pk
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invariant by f−1) is empty or more generally has no intersection with supp(µ) (in particular,
this condition is superfluous in dimension 1). However, this situation requires more technical
conditions on the weight ϕ. The main result of [BD23a] is the following.

Theorem 2.2.1 (Bianchi-Dinh [BD23a]). Let f be an endomorphism of Pk of algebraic degree d ≥ 2
and satisfying the Assumption (Hf) above. Let ϕ be a real-valued function on Pk such that

(Hϕ) ‖ϕ‖logq <∞ and Ω(ϕ) := maxϕ−minϕ < log d

for some q > 2. Then ϕ admits a unique equilibrium state µϕ, whose support is equal to the small
Julia set of f . This measure µϕ is K-mixing and mixing of all orders, and repelling periodic points of
period n (suitably weighted) are equidistributed with respect to µϕ as n goes to infinity. Moreover,
there is a unique conformal measure mϕ associated to ϕ. We have µϕ = ρmϕ for some strictly positive
continuous function ρ on Pk and the preimages of points by fn (suitably weighted) are equidistributed
with respect to mϕ as n goes to infinity.

We set
‖ϕ‖logq := sup

a,b∈Pk
|ϕ(a)− ϕ(b)| · (log? |a− b|)q,

where log? r := 1+ | log r| for every r > 0. We say that a function is logq-continuous if ‖ϕ‖logq <∞,
i.e., if its oscillation on a ball of radius r is bounded by a constant times (log? r)−q, see Section
2.2.2.1 for details. As mentioned in the introduction to this chapter, an equilibrium state as in the
statement above is defined as follows, see for instance [Rue72; Wal00; PU10]. Given a weight, i.e.,
a real-valued continuous function, ϕ as above, we define the pressure of ϕ as

P (ϕ) := sup
{
hν(f) + 〈ν, ϕ〉

}
,

where the supremum is taken over all Borel f -invariant probability measures ν and hν(f) denotes
the metric entropy of ν. An equilibrium state for ϕ is then an invariant probability measure µϕ
realizing a maximum in the above formula, that is,

P (ϕ) = hµϕ(f) + 〈µϕ, ϕ〉.

On the other hand, a conformal measure is defined as follows. Define the Perron-Frobenius (or
transfer) operator L with weight ϕ as (we often drop the index ϕ for simplicity)

Lg(y) := Lϕg(y) :=
∑

x∈f−1(y)
eϕ(x)g(x), (2.1)

where g : Pk → R is a continuous test function and the points x in the sum are counted with
multiplicity. A conformal measure is an eigenvector for the dual operator L∗ acting on positive
measures (the name conformal comes from [Pat76], where related measures are obtained on limit
sets of finitely generated discrete subgroups of conformal mappings acting on the hyperbolic space,
see [DU91b; DU91c]).

Notice that, in the case where ϕ is Hölder continuous, a part of Theorem 2.2.1 was established
by Urbański-Zdunik [UZ13] (also under a genericity assumption for f), see also [Prz90; DU91a;
DU91c; DPU96] for previous results in dimension k = 1. When ϕ is constant, the operator L
reduces to a constant times the push-forward operator f∗ and we get µϕ = µ. For an account of
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the known results in this case, see for instance [DS10a] and [Bro65; FLM83; Lyu82; Lyu83a] for
k = 1.

A reformulation of Theorem 2.2.1 is the following: given ϕ as in the statement, there exist a
scaling ratio λ > 0 and a continuous function ρ = ρϕ : Pk → R such that, for every continuous
function g : Pk → R, the following uniform convergence holds:

λ−nLng(y)→ cgρ (2.2)

for some constant cg depending on g. By duality, this is equivalent to the convergence, uniform on
probability measures ν,

λ−n(L∗)nν → mϕ, (2.3)

where mϕ is a conformal measure associated to the weight ϕ. The equilibrium state µϕ is then
given by µϕ = ρmϕ, and we have cg = 〈mϕ, g〉.

To prove Theorem 2.2.1, we developed in [BD23a] a new and completely different approach
with respect to [UZ13] and to the previous studies in dimension 1. As we will see later, the
flexibility of this method allowed for a more quantitative understanding of the convergences (2.2)
and (2.3), and for the direct establishment of several statistical properties of the equilibrium
states.

I will give more details on the method in Section 2.2.3, but I explain here the main idea. I just
consider for simplicity the case where both of the functions g and ϕ are of class C2 (the general
case requires suitable approximations of g and ϕ by C2 functions, and this is where the assumption
on ‖ϕ‖logq < ∞ for some q > 2 plays its main role). Given such a function g, first we want to
prove that the ratio between the maximum and the minimum of Lng stays bounded with n. This
allows us to define the good scaling ratio λ and to get that the sequence λ−nLng is uniformly
bounded. Next, we would like to prove that this sequence is actually equicontinuous. By means of
the theory of almost periodic operators [Lyu88], which was first applied to the thermodynamical
formalism in [Lyu82; Lyu83a], this would imply the existence and uniqueness of the limit function
ρ.

In order to establish the above controls, we study the sequence of (1, 1)-currents given by
ddcLng. First we prove that suitably normalized versions of these currents are uniformly bounded
by a common positive closed (1, 1)-current R. This is the core of our method which replaces
all controls on the distortion of inverse branches of fn in the geometric method of [UZ13] by a
unique, global, and flexible estimate. Namely, for every n ∈ N we can get an estimate of the form

∣∣∣ddcLng
cn

∣∣∣ . ∞∑
j=0

(eΩ(ϕ)

d

)j (f∗)jωFS

d(k−1)j with cn := ‖g‖C2〈ωkFS,Ln1〉. (2.4)

Here, ωFS denotes the usual Fubini-Study form on Pk normalized so that ωkFS is a probability
measure. Notice that the last infinite sum gives a key reason for the assumption Ω(ϕ) < log d
made on the weight ϕ as the mass of the current f j∗ωFS is equal to d(k−1)j .

We then establish some general criteria, interesting in themselves, which allow one to bound
the oscillation of c−1

n Lng in terms of the oscillation of the potentials of the current in the RHS of
(2.4). This latter oscillation is actually controllable. Assumption (Hf) allows us to have a simple
control which makes the estimates less technical but such a control exists without Assumption
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(Hf). Both the criteria and the above controls are collected in Section 2.2.2. They can be assumed
in Section 2.2.3 if the reader just prefers to focus on the dynamical arguments in the method.

Combining all these ingredients, the existence and uniqueness of the equilibrium state and
conformal measure, as well as the equidistribution of preimages and the equality P (ϕ) = log λ,
follow from more standard arguments (which I will not recall in this text), see for instance
[PU10; UZ13] and [BD23a, Section 4.2]. We also prove that the entropy of µϕ is larger than
k log d−Ω(ϕ) > (k − 1) log d, and that all the Lyapunov exponents of µϕ are strictly positive. This
also leads to a lower bound for the Hausdorff dimension of µϕ.

We also establish the equidistribution of repelling periodic points with respect to µϕ, which
completes the proof of Theorem 2.2.1. This result is due to Lyubich [Lyu82; Lyu83a] (for k = 1)
and Briend-Duval [BD99] (for any k ≥ 1) when ϕ = 0, and is new even for k = 1 otherwise. Since
the proof of this result uses different techniques, and is also related to my other work [BB23b], I
will describe it in more details in Section 3.1.

Without extra arguments, given a continuous test function g the convergence as n→∞ in (2.2)
is not uniform in g. Our next and main goal was to establish an exponential speed of convergence
in (2.2). This requires to build a suitable (semi-)norm for (or equivalently, a suitable functional
space on) which the operator λ−1L turns out to be a contraction.

Establishing the following statement was then our main goal and is the main result of [BD22].
As far as we know, this is the first time that the existence of a spectral gap for the perturbed
Perron-Frobenius operator is proved in this context even in dimension 1, except for hyperbolic
endomorphisms or for weights with ad-hoc conditions (see for instance [Rue92; MS00]). Observe
that, while in Theorem 2.2.1 ϕ is required to just be logq-continuous, here it may a priori have
to be (slightly) more regular. An important and specific feature of our norms, which will be
highlighted below, is their dependence on the map f .

Theorem 2.2.2 (Bianchi-Dinh [BD22]). Let f, q, ϕ, ρ,mϕ be as in Theorem 2.2.1 and L, λ the above
Perron-Frobenius operator and scaling factor associated to ϕ. Let A > 0 and 0 < Ω < log d be two
constants. Then, for every constant 0 < γ ≤ 1, there exist two explicit equivalent norms for functions
on Pk: ‖·‖�1

, depending on f, γ, q and independent of ϕ, and ‖·‖�2
, depending on f, ϕ, γ, q, such that

‖·‖∞ + ‖·‖logq . ‖·‖�1
' ‖·‖�2

. ‖·‖Cγ .

Moreover, there are positive constants c = c(f, γ, q, A,Ω) and β = β(f, γ, q, A,Ω) with β < 1, both
independent of ϕ and n, such that when ‖ϕ‖�1

≤ A and Ω(ϕ) ≤ Ω we have

‖λ−nLn‖�1 ≤ c, ‖ρ‖�1
≤ c, ‖1/ρ‖�1

≤ c, and
∥∥λ−1Lg

∥∥
�2
≤ β ‖g‖�2

for every function g : Pk → R with 〈mϕ, g〉 = 0. Furthermore, given any constant 1 < δ < dγ/(2γ+2),
when A is small enough the norm ‖·‖�2

can be chosen so that we can take β = 1/δ.

According to this theorem, on the space of functions with bounded ‖ · ‖�2 norm, the operator
λ−1L admits a spectral gap. It acts as the identity of the line spanned by ρ while its norm on the
invariant hyperplane {g : 〈mϕ, g〉 = 0} is bounded by β < 1.

The construction of the norms ‖·‖�1
and ‖·‖�2

is quite involved and is the main achievement of
this project. We use here ideas from the theory of interpolation between Banach spaces [Tri95]
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combined with techniques from pluripotential theory and complex dynamics. As above, I give
here a rough overview (see also Section 2.2.4) and refer to Sections 2.2.5 and 2.2.6, where I will
give more details on the construction and properties of the norms and on the proof of the spectral
gap, respectively.

Roughly speaking, an idea from interpolation theory allows us to reduce the problem to the case
where γ = 1. The definition of the above norms in this case requires a control of the derivatives
of g (in the distributional sense), and this is where we use techniques from pluripotential theory.
This also explains why these norms are bounded by the C1 norm. Note that we should be able
to bound the derivatives of Lg in a similar way. A quick expansion of the derivatives of Lg using
(2.1) gives an idea of the difficulties that one faces. The existence of these norms is still surprising
to us.

Let us highlight two among these difficulties. First, the objects from complex analysis and
geometry are too rigid for perturbations with a non-constant weight: the operators f∗, d, and ddc

do not commute with the operator L. In particular, the ddc-method developed by the Dinh and
Sibony (see for instance [DS10a]) cannot be applied in this context, even for small perturbations
of the weight ϕ = 0. Moreover, there may be critical points on the support of the measure, which
cause a loss in the regularity of functions under the operators f∗ and L. Notice that we do not
assume that our potential degenerates at the critical points.

Our solution to these problems is to define a new invariant functional space and norm in this
mixed real-complex setting, that we call the dynamical Sobolev space and semi-norm, taking into
account both the regularity of the function (to cope with the rigidity of the complex objects)
and the action of f (to take into account the critical dynamics). The construction of this norm
requires the definition of several intermediate semi-norms and the precise study of the action of
the operator f∗ with respect to them. Some of the intermediate estimates already give new or
more precise convergence properties for the operator f∗ and the equilibrium measure µ.

A spectral gap for the Perron-Frobenius operator and its perturbations is one of the most
desirable properties in dynamics. It allowed us to obtain several statistical properties of the
equilibrium state. In the present setting, we have the following result. As this follows from the
spectral gap in Theorem 2.2.2 by means of standard techniques, I will not detail the proof in
this manuscript. I just notice that the estimates on ρ and 1/ρ in Theorem 2.2.2 are needed to
study the operator L (which leaves invariant the space generated by ρ) by means of the operator
L(·) := λ−1ρ−1L(ρ ·), which fixes constant functions.

Theorem 2.2.3 (Bianchi-Dinh [BD22]). Let f, ϕ, µϕ,mϕ, ‖·‖�1
be as in Theorems 2.2.1 and 2.2.2 ,

λ the scaling ratio associated to ϕ, and assume that ‖ϕ‖�1
< ∞. Then the equilibrium state µϕ is

exponentially mixing for observables with bounded ‖·‖�1
norm and the preimages of points by fn

(suitably weighted) equidistribute exponentially fast towards mϕ as n goes to infinity. The measure
µϕ satisfies the Large Deviation principle (LDP) for all observables with finite ‖·‖�1

norm, the Almost
Sure Invariant Principle (ASIP), Central Limit Theorem (CLT), Almost Sure Central Limit Theorem
(ASCLT), Law of Iterated Logarithm (LIL) for all observables with finite ‖·‖�1

norm which are not
coboundaries, and the local Central Limit Theorem for all observables with finite ‖·‖�1

norm which
are not (‖·‖�1

, ϕ)-multiplicative cocycles. Moreover, the pressure P (ϕ) is equal to log λ and is analytic
in the following sense: for ‖ψ‖�1 <∞ and t sufficiently small, the function t 7→ P (ϕ+ tψ) is analytic.

In particular, all the properties in Theorem 2.2.3 hold when the weight ϕ and the observable
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are Hölder continuous and satisfy the necessary coboundary/cocycles requirements. Under such
assumptions, some of the above properties were previously obtained with ad hoc arguments, see
[PUZ89; DU91a; DU91c; DPU96; Hay99; DNS07; SUZ15] when k = 1, [UZ13; SUZ14] for mixing,
CLT, LIL when k ≥ 1, and [Dup10] for the ASIP when k ≥ 1 and ϕ = 0. Note that the LDP and
the local CLT are new even for ϕ = 0 (for all k ≥ 1 and for all k > 1, respectively). The proof of
Theorem 2.2.3 exploits the spectral gap established in Theorem 2.2.2 and is based on the theory
of perturbed operators [Nag57; PP90; Rou83; Bro96; Gou15]. Observe in particular that the fine
control given for instance by the local CLT is simply impossible to prove using weaker arguments,
such as martingales, see, e.g., [Gou15, p. 163].

2.2.2 Notations and preliminary comparison principles

2.2.2.1 logp-continuous functions

Given a subset U of Pk or Ck and a real-valued function g : U → R, define the oscillation ΩU (g) of
g as

ΩU (g) := sup g − inf g

and its continuity modulus mU (g, r) at distance r as

mU (g, r) := sup
x,y∈U : dist(x,y)≤r

|g(x)− g(y)|.

We may drop the index U when there is no possible confusion.

Definition 2.2.4. The semi-norm ‖·‖logp is defined for every p > 0 and g : Pk → R as

‖g‖logp := sup
a,b∈Pk

|g(a)− g(b)| · (log? dist(a, b))p = sup
r>0,a∈Pk

ΩBPk (a,r)(g) · (1 + | log r|)p,

where BPk(a, r) denotes the ball of center a and radius r in Pk and log?(·) := 1 + | log(·)|.

Observe, in particular, that all Hölder continuous functions satisfy the above condition for all
p > 0. We have the following technical lemma, which will be important to deduce Theorem 2.2.1
for logq-continuous functions ϕ from its counterpart for smooth ones.

Lemma 2.2.5. For every logp-continuous function g : Pk → R, p > 0, s ≥ 1, and 0 < ε ≤ 1, there
exist continuous functions g(1)

ε and g(2)
ε such that

g = g(1)
ε + g(2)

ε , ‖g(1)
ε ‖Cs ≤ c ‖g‖∞ e

(1/ε)1/p
, and ‖g(2)

ε ‖∞ ≤ c ‖g‖logp ε,

where c = c(p, s) is a positive constant independent of g and ε. In particular, for every n ≥ 1 there
exist g(1)

n of class C2 and g(2)
n continuous such that

g = g(1)
n + g(2)

n , ‖g(1)
n ‖C2 ≤ c ‖g‖∞ e

1
2n

2/p
, and ‖g(2)

n ‖∞ ≤ c ‖g‖logp n
−2.
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2.2.2.2 Comparisons between currents and their potentials

A technical key point in the proof of Theorem 2.2.1 is based on the following general idea: if
u and v are two functions on some domain in Ck such that |ddcu| ≤ ddcv, then u inherits some
of the regularity properties of v. We collect in this section the precise versions of the heuristic
principle above, in the forms that will be used in the proof of Theorem 2.2.1. We omit the proofs,
as they are mostly elementary. All the details can be found in [BD23a, Section 2.3]

Lemma 2.2.6. There exists a positive constant A such that, for every positive closed (1, 1)-current
S0 on Pk of mass 1 and for every positive closed (1, 1)-current S on Pk with S ≤ S0, we have
Ω(uS) ≤ A+ Ω(uS0), where uS0 and uS denote the dynamical potentials (see Section 2.2.2.3 for the
definition) of S0 and S, respectively.

Corollary 2.2.7. There exists a positive constant A such that for every positive closed (1, 1)-current
S0 on Pk and for every continuous function g : Pk → R with |ddcg| ≤ S0 we have Ω(g) ≤ A ‖S0‖+
3Ω(uS0).

The following result gives a quantitative control on the oscillation of u in terms of the oscillation
of v. Notice in particular that it implies that, if v is Hölder or logp-continuous for some p > 0,
then u enjoys the same property with possibly a loss in the Hölder exponent, but not in the
logp-exponent.

Proposition 2.2.8. Let u and v be two p.s.h. functions on Bk3 such that ddcu ≤ ddcv and v is
continuous. Then u is continuous and for every 0 < s ≤ 1 there is a positive constant A (independent
of u and v) such that, for every 0 < r ≤ 1/2, we have

mBk1
(u, r) ≤ mBk2

(v, rs) +AmBk2
(u, rs)r1−s ≤ mBk2

(v, rs) +AΩBk2
(u)r1−s.

Corollary 2.2.9. Let v be a continuous p.s.h. function on Bk3. Let u be a continuous real-valued
function on Bk3 such that |ddcu| ≤ ddcv. Then for every 0 < s ≤ 1 we have for 0 < r ≤ 1/2

mBk1
(u, r) ≤ 3mBk2

(v, rs) +A
(
ΩBk2

(u) + ΩBk2
(v)
)
r1−s,

where A is a positive constant independent of u and v.

Corollary 2.2.10. Let S0 be a positive closed (1, 1)-current on Pk with continuous local potentials.
Let F(S0) denote the set of all continuous real-valued functions g on Pk such that |ddcg| ≤ S0. Then
F(S0) is equicontinuous.

2.2.2.3 Dynamical potentials

Let T denote the Green (1, 1)-current of f . It is positive closed and of unit mass, and can be
defined as

T := lim
n→∞

1
dn

(fn)∗(ωFS),

see for instance [DS10a, Theorem 1.16 and Definition 1.17]. Let S be any positive closed (1, 1)-
current of mass m on Pk. As the cohomology H1,1(Pk, R) has dimension 1, there is a unique
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function uS : Pk → R ∪ {−∞} which is p.s.h. modulo mT (i.e., locally written as v −mvT with
v, vT p.s.h. and ddcvT = T ) and such that

S = mT + ddcuS and 〈µ, uS〉 = 0.

Locally, uS is the difference between a potential of S and a potential of mT . We call it the
dynamical potential of S. Observe that the dynamical potential of T is zero, i.e., uT = 0.

Recall that T has Hölder continuous potentials. So, uS is locally the difference between a p.s.h.
function and a Hölder continuous one. The dynamical potential of S behaves well under the
push-forward and pull-back operators associated to f . Indeed, because of the invariance properties
of T , we have

f∗S = md · T + ddc(uS ◦ f) and f∗S = mdk−1 · T + ddc(f∗uS),

which, together with the invariance properties of µ, imply

uf∗S = uS ◦ f and uf∗S = f∗uS .

We refer the reader to [DS10a] for details. We will only use currents S such that uS is continuous.

In the rest of this section we give estimates on the dynamical potentials of the currents (fn)∗ωFS.
As explained in Section 2.2.1, these estimates will allow us to globally control the distortion of fn.
We always assume that f satisfies the Assumption (Hf) in Section 2.2.1

Define
ωn := d−(k−1)n(fn)∗ωFS.

Recall that f∗ multiplies the mass of a positive closed (1, 1)-current by dk−1. Therefore, all currents
ωn have unit mass. We denote by un the dynamical potential of ωn. In particular, u0 is the
dynamical potential of ωFS. It is known that u0 is Hölder continuous, see [Kos97; DS10a].

Observe that d−1f∗ωFS is a smooth positive closed (1, 1)-form of mass 1. Therefore, there is a
unique smooth function v such that

ddcv = d−1f∗ωFS − ωFS and 〈µ, v〉 = 0.

It is not difficult to check that

un = d−(k−1)n(fn)∗u0 and u0 = −
∞∑
n=0

d−nv ◦ fn.

We will need explicit bounds on the oscillation Ω(un) of un. These are provided in the next
result. The proof is elementary, but we notice that assumption (Hf) is used here (in a similar
way as in the proof of Lemma 2.2.12 below). Without such assumption, the estimate is more
complicated, as it can diverge (in a controlled way) near the periodic critical hypersurfaces.

Lemma 2.2.11. For every constant A > 1, there exists a positive constant c independent of n such
that ‖un‖∞ ≤ cAn and Ω(un) ≤ cAn for all n ≥ 0.
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As an application of this estimate and of the Hölder continuity of the Green function, we have
the following lemma that can be used to study the regularity of functions g : Pk → R. Although
this is not the precise form that we will use later, we give the statement and proof since it contains
an idea that will be used several times in the following. It also gives an idea of how the assumption
(Hf) is used.

Lemma 2.2.12. Let g : Pk → R be a continuous function and 0 < β < 1 a constant such that

|ddcg| ≤
∞∑
n=0

βnωn. (2.5)

Then, for every q > 0, there is a positive constant c = c(q, β) independent of g such that

‖g‖logq ≤ c.

Proof. We bound the continuity modulus m(g, r) of g by means of Corollary 2.2.9. We only need to
consider 0 < r ≤ 1/2. For this purpose, since T has Hölder continuous local potentials, it suffices
to bound the continuity modulus of the dynamical potential of the RHS of (2.5). This dynamical
potential is equal to

u :=
∞∑
n=0

βnun.

Fix a constant 1 < A < 1/β. By Lemma 2.2.11, we have ‖un‖∞ . An. Hence, for every N , we
have

m(u, r) .
∑
n≤N

βnm(un, r) +
∑
n>N

(Aβ)n .
∑
n≤N

βnm(un, r) + (Aβ)N .

Applying [DS10b, Corollary 4.4] inductively to some iterate of f , we see that the Assumption (Hf)
implies:

(H’f) for every constant κ > 1, there are an integer nκ ≥ 0 and a constant cκ > 0 independent
of n such that for all x, y ∈ Pk and n ≥ nκ we can write f−n(x) = {x1, . . . , xdkn} and f−n(y) =
{y1, . . . , ydkn} (counting multiplicity) with the property that

dist(xj , yj) ≤ cκ dist(x, y)1/κn for j = 1, . . . , dkn.

By definition, the function u0 is γ-Hölder continuous for some Hölder exponent γ because T has
Hölder continuous local potentials. The above property (H’f) implies that (fn)∗u0 is γκ−n-Hölder
continuous for all n ≥ nκ. More precisely, we have

m(d−kn(fn)∗u0, r) ≤ c′rγκ
−n

and hence m(un, r) ≤ c′dnrγκ
−n

for some positive constant c′ independent of n ≥ nκ and r. Observe also that for 0 ≤ n ≤ nκ all
the un are ακ-Hölder continuous for some ακ > 0. Indeed, as the multiplicity of fn at a point is at
most dkn, we have (see again [DS10b, Corollary 4.4]):

(H”f) there is a constant c0 > 0 such that for every n ≥ 0, for all x, y ∈ Pk, we can write
f−n(x) = {x1, . . . , xdkn} and f−n(y) = {y1, . . . , ydkn} (counting multiplicity) with the property
that

dist(xj , yj) ≤ c0 dist(x, y)1/dkn for j = 1, . . . , dkn.
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Therefore, we have

m(u, r) . rακ +
∑

nκ≤n≤N
(βd)n rγκ−n + (Aβ)N . (2.6)

Choose κ close enough to 1 so that 2q log κ < | log(Aβ)| and take

N = 1
2 log κ log |log r|

(recall that we only need to consider r ≤ 1/2). Then, the last term in (2.6) satisfies

(Aβ)N = eN log(Aβ) < e−2Nq log κ = | log r|−q.

It remains to prove that the sum in (2.6) satisfies a similar estimate. We have

∑
n≤N

(βd)n rγκ−n ≤
∑
n≤N

βndNrγκ
−N

. dNrγκ
−N = e

log d
2 logκ log|log r|

eγ(log r)e−
1
2 log | log r|

= | log r|
log d

2 logκ

eγ
√
| log r|

·

The last expression is smaller than a constant times | log r|−q because et � tM when t → ∞
for every M ≥ 0. This, together with the above estimates, gives m(u, r) . | log r|−q and ends the
proof of the lemma.

2.2.3 Existence, uniqueness, and first properties

In this section I give the main ideas of the proof of Theorem 2.2.1, and in particular of the existence
of a good scaling ratio λ. Recall that the Perron-Frobenius operator L is defined as in (2.1). A
direct computation gives

Ln(g)(y) =
∑

fn(x)=y
eϕ(x)+ϕ(f(x))+···+ϕ(fn−1(x))g(x).

The following is the main statement.

Theorem 2.2.13. Let f and ϕ be as in Theorem 2.2.1. There exist a number λ > 0 and a continuous
function ρ > 0 on Pk such that Lρ = λρ and for every continuous function g : Pk → R the sequence
λ−nLn(g) is equicontinuous and converges uniformly to cgρ, where cg is a constant depending linearly
on g. Moreover, if g is strictly positive, then cg is strictly positive and the sequence Ln(g)1/n converges
uniformly to λ as n tends to infinity.

For simplicity, I will give the full proof of the convergence in Theorem 2.2.13 in the case where
g is equal to 1, the function constantly equal to 1, see Sections 2.2.3.1 and Section 2.2.3.2. The
general case can be deduced from this particular case, and all the main ideas are already contained
in the proof of this case. I briefly describe the general case and the conclusion of the proof of
Theorem 2.2.13 in Section 2.2.3.3.

Define 1n := Ln(1). Denote by ρ+
n and ρ−n the maximum and the minimum of 1n, respectively.

Consider also the ratio θn := ρ+
n /ρ

−
n and the function 1∗n := (ρ−n )−11n. Observe that the last

function satisfies min 1∗n = 1.
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I will also first make the following simplifying assumption on ϕ: I will assume that ϕ is C2,
and that ‖ϕ‖C2 is sufficiently small. Again, the main ideas are all already there in this case. The
general case is more technical and relies on a suitable interpolation for ϕ (and Lemma 2.2.5). This
is how the assumption on ‖ϕ‖logq <∞ appears in the main statement. I will mention the main
modifications, as well as give some statements that will be needed later, in Section 2.2.3.2.

2.2.3.1 The case g ≡ 1 and ‖ϕ‖ � 1.

As mentioned above, we assume here that ‖ϕ‖C2 � 1. The following result is in practice the key
the prove Theorem 2.2.13, and it is the only part that will be detailed here.

Proposition 2.2.14. Under the hypotheses of Theorem 2.2.13, the sequence { θn } is bounded and
the sequence of functions { 1∗n } is uniformly bounded and equicontinuous.

Proposition 2.2.14 follows from the following crucial estimate for ddc1n. We will see here the
role of the estimate of the C2 norm of ϕ.

Proposition 2.2.15. There exists a a positive constant c = c(‖ϕ‖C2), independent of n, such that for
all n ≥ 1 we have

|ddc1n| ≤ c
n∑

m=0
m3emmaxϕρ+

n−md
(k−1)mωm.

Recall that the function 1n is given by

1n(y) =
∑

fn(x)=y
eϕ(x)+ϕ(f(x))+···+ϕ(fn−1(x)).

In order to estimate ddc1n, we will use a now classical construction due to Gromov [Gro03].
Define the manifold Γn ⊂ (Pk)n+1 by

Γn :=
{
(z, f(z), . . . , fn(z)) : z ∈ Pk

}
,

which can also be seen as the graph of the map (f, f2, . . . , fn) in the product space (Pk)n+1.
Consider the function h on (Pk)n+1 given by

h(x) = h(x0, . . . , xn) := eϕ(x0)+ϕ(x1)+···+ϕ(xn−1).

The function 1n on Pk is equal to the push-forward of the function h|Γn to the last factor Pk of
(Pk)n+1. Indeed, denoting by πn the restriction of the projection x 7→ xn to Γn, we have

(πn)∗ (h)(y) =
∑

(x0,...,xn)∈Γn : xn=y
h(x) =

∑
z∈f−n(y)

eϕ(z)+···+ϕ(fn−1(z)) = 1n(y).

Recall that, since ddc1n is real, estimating |ddc1n| means finding a good positive closed (1, 1)-
current S on Pk such that both S ± ddc1n are positive. According to the identities above, we
have

ddc1n = (πn)∗
(
ddch

)
.

Thus, we need to estimate ddch on (Pk)n+1 and Γn. We define ω(m) as the pullback of the Fubini-
Study form ωFS to (Pk)n+1 by the projection x 7→ xm. Equivalently, ω(m) is a (1, 1)-form on (Pk)n+1

such that ω(m)(x) = ωFS(xm).
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Lemma 2.2.16. There exists a positive constant c = c(‖ϕ‖C2), independent of n, such that

|ddch| ≤ ch
n−1∑
m=0

(n−m)3ω(m).

Proof. A direct computation gives

i∂∂h = h
( n−1∑
m=0

i∂∂ϕ(xm) +
n−1∑

m,m′=0
i∂ϕ(xm) ∧ ∂ϕ(xm′)

)
.

For the first sum, observe that

|i∂∂ϕ(xm)| . ‖ϕ‖C2ω(m)(x).

For the second sum, consider m′ ≤ m ≤ n − N − 1. By using Cauchy-Schwarz’s inequality, we
have

|i∂ϕ(xm)∧∂ϕ(xm′)|
≤ (m−m′ + 1)−2i∂ϕ(xm) ∧ ∂ϕ(xm) + (m−m′ + 1)2i∂ϕ(xm′) ∧ ∂ϕ(xm′)
. (m−m′ + 1)−2‖ϕ‖2C1ω(m)(x) + (m−m′ + 1)2‖ϕ‖2C1ω(m′)(x).

(2.7)

This and the fact that
∑∞
j=1 j

−2 is finite imply that∣∣∣ ∑
0≤m′≤m≤n−1

i∂ϕ(xm) ∧ ∂ϕ(xm′)
∣∣∣

.
n−1∑
m=0
‖ϕ‖2C1ω(m)(x) +

n−1∑
m′=0

(n−m′ + 1)3‖ϕ‖2C1ω(m′)(x)

.
n−1∑
m=0

(n−m)3‖ϕ‖2C1ω(m)(x).

(2.8)

We obtain by symmetry a similar estimate for the case where m < m′ ≤ n−N − 1.
Finally, combining all the above identities and estimates we get

|i∂∂h| . h
n−1∑
m=0

(n−m)3(‖ϕ‖C2 + ‖ϕ‖2C1)ω(m).

The lemma follows.

Proof of Proposition 2.2.15. We are only interested in the restriction of h to the graph Γn. We
deduce from Lemma 2.2.16 that

|ddc1n| = |(πn)∗ dd
ch| .

n−1∑
m=0

(n−m)3(πn)∗
(
hω(m)), (2.9)

where the implicit constant depends on ‖ϕ‖C2 but not on n.
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Using the definition of h, we have

h . e(n−m) maxϕeϕ(x0)+ϕ(x1)+···+ϕ(xm−1) . e(n−m) maxϕh′,

where
h′ := eϕ(x0)+ϕ(x1)+···+ϕ(xm−1).

Note that the sum in the definition of h′ contains m terms while the one of h contains n terms.
The specific choice of h′ is convenient for our next computation as it is related to the function 1m.

Consider the map π′ : Γn → (Pk)n−m+1 defined by π′(x) := x′ := (xm, . . . , xn). Denote by Γ′
the image of Γn by π′. It is the graph of the map (f, . . . , fn−m) from Pk to (Pk)n−m. We also have
for x′ ∈ Γ′

π′−1(x′) =
{(
y, f(y), . . . , fm−1(y), x′

)
with y ∈ f−m(xm)

}
.

So π′ : Γn → Γ′ is a ramified covering of degree dkm.
Consider the map π′′ : Γ′ → Pk defined by π′′(x′) := xn. We have, for xn ∈ Pk,

π′′−1(xn) =
{(
z, f(z), . . . , fn−m(z)

)
with z ∈ f−n+m(xn)

}
.

So π′′ : Γ′ → Pk is a ramified covering of degree dk(n−m). We have πn = π′′ ◦ π′. Observe that
π′∗(h′ω(m)) is a (1, 1)-form on Γ′ such that

π′∗(h′ω(m))(x′) =
( ∑
y∈f−m(xm)

eϕ(y)+···+ϕ(fm−1(y))
)
ωFS(xm)

≤ ρ+
mωFS(xm) =: ρ+

mω
′(x′),

where we define ω′ as the pull-back of ωFS to Γ′ by the map x′ 7→ xm. We also have

π′′∗(ω′)(xn) =
∑

xm∈f−n+m(xn)
ωFS(xm) = (fn−m)∗(ωFS)(xn) = d(k−1)(n−m)ωn−m(xn).

Thus,
(πn)∗(hω(m)) . e(n−m) maxϕπ′′∗π

′
∗(h′ω(m)) ≤ e(n−m) maxϕρ+

md
(k−1)(n−m)ωn−m

and

n−1∑
m=0

(n−m)3(πn)∗
(
hω(m)) .

n−1∑
m=0

(n−m)3e(n−m) maxϕρ+
md

(k−1)(n−m)ωn−m

=
n∑

m=1
m3emmaxϕρ+

n−md
(k−1)mωm. (2.10)

Finally, we deduce the proposition from (2.9) and (2.10) by multiplying c with a large enough
constant.

We are now in the position to apply the comparisons principles in Section 2.2.2. Proposition
2.2.14 follows from the following two Lemmas 2.2.17 and 2.2.18. Recall that um is the dynamical
potential of ωn := d−(k−1)n(fn)∗ωFS, see Section 2.2.2.3.
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Lemma 2.2.17. Under the hypotheses of Theorem 2.2.13, the sequence (θn) is bounded.

Proof. Observe that, by the definition of ρ±n , θn, and Ω(·), for every K ≥ 1 the two inequalities
θn ≤ K and Ω(1n) ≤ (K − 1)ρ−n are equivalent. Hence, in order to get the assertion, it is enough
to show that Ω(1n)/ρ−n is bounded. The constants that we use below are independent of n. Fix a
constant δ such that eΩ(ϕ) < δ < d.

We use Proposition 2.2.15 and Corollary 2.2.7 in order to estimate Ω(1n) in terms of Ω(um).
Recall that um is the dynamical potential of ωm. We also use Lemma 2.2.11, which gives Ω(um) .
dmδ′−m for any δ′ such that δ < δ′ < d. More precisely, we obtain from those results that

Ω(1n) .
n∑

m=1
m3emmaxϕdkmδ′−mρ+

n−m.

Since δ < δ′, we have

Ω(1n) .
n∑

m=1
emmaxϕdkmδ−mρ+

n−m. (2.11)

Working by induction on n, we can assume that Ω(1m)/ρ−m ≤ 1 (recall that we are here assuming
that ‖ϕ‖C2 � 1, in order to simplify; the induction is slightly more complicated otherwise), which
implies ρ+

m ≤ ρ−m, for all m < n. We need to prove the same inequality for m = n. I prove that
Ω(1n)/ρ−n is bounded, with a bound independent of n the actual argument requires slightly more
involved estimates.

By (2.11), the induction hypothesis, and the inequality ρ−n−md
kmemminϕ ≤ ρ−n , we have

Ω(1n) .
n∑

m=1
emmaxϕdkmδ−mρ−n−m ≤

n∑
m=1

emΩ(ϕ)δ−mρ−n .

Then, using that δ > eΩ(ϕ), we obtain

Ω(1n)
ρ−n

.
n∑

m=1
emΩ(ϕ)δ−m.

which gives the announced bound. Observe that the sum can be assumed to be arbitrarily small if
we take ‖ϕ‖C2 � 1, as in our simplifying assumption. This ends the proof of the lemma.

Lemma 2.2.18. Under the hypotheses of Theorem 2.2.13, for all p > 0 the sequence ‖1∗n‖logp is
bounded. In particular, the sequence of functions 1∗n is equicontinuous.

Proof. By Lemma 2.2.17 the sequence (θn) is bounded. This and Proposition 2.2.15 imply that

|ddc1∗n| .
1
ρ−n

n∑
m=1

m3emmaxϕρ−n−md
(k−1)mωm.

Then, using ρ−n−md
kmemminϕ ≤ ρ−n we obtain

|ddc1∗n| .
n∑

m=1
m3emΩ(ϕ)d−mωm.

Finally, since eΩ(ϕ) < d, Lemma 2.2.12 implies the result.
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2.2.3.2 The case g ≡ 1 and general ϕ

Let us now describe how the proof in the previous section should be modified to handle a general
ϕ with ‖ϕ‖logq <∞, for some q > 2.

By Lemma 2.2.5 applied to ϕ instead of g, we can find functions ϕn and ψn such that

ϕ = ϕn + ψn, ‖ϕn‖C2 ≤ c ‖ϕ‖∞ e
1
2n

2/q
, and ‖ψn‖∞ ≤ c ‖ϕ‖logq n

−2. (2.12)

Consider two integers J ≥ 0 and N ≥ 0. Define for n ≥ N + 1

L̂n(g)(x) :=
∑

fn(x)=y
eϕn+J (x)+ϕn+J−1(f(x))+···+ϕJ+N+1(fn−N−1(x))g(x).

This operator will be used to approximate Ln. The gain here is the fact that the involved functions
ϕm have controlled C2 norms. As above, we define

1̂n := L̂n1, ρ̂+
n := max 1̂n, ρ̂−n := min 1̂n, θ̂n := ρ̂+

n /ρ̂
−
n , and 1̂∗n := (ρ̂−n )−11̂n.

The following lemma allows us to reduce our problem to the study of the functions 1̂n.

Lemma 2.2.19. There exists a positive constant c = c(N) such that, for all n > N ≥ 0 and J ,

c−1 ≤ ρ+
n /ρ̂

+
n ≤ c and c−1 ≤ ρ−n /ρ̂−n ≤ c.

In particular, the sequence
{
θ̂n
}

is bounded if and only if the sequence { θn } is bounded.

The following is the counterpart of Proposition 2.2.15 for a general ϕ, see [BD23a, Proposition
3.4]. The details will not be given here.

Proposition 2.2.20. There exists a sub-exponential function η(t) = ct3e(t+J)2/q
with a positive

constant c = c(‖ϕ‖logq , ‖ϕ‖∞) independent of n, J and N such that for all n > N ≥ 0 we have

∣∣∣ddc1̂n∣∣∣ ≤ n−N∑
m=N+1

η(m)emmaxϕρ̂+
n−md

(k−1)mωm +
n∑

m=n0

dkNη(m)e(n−N) maxϕd(k−1)mωm,

where n0 := max(n−N + 1, N + 1).

Idea of the proof of Proposition 2.2.14 for a general ϕ. Thanks to Proposition 2.2.20, we can show
that {θ̂n} is bounded (with similar arguments as in Lemma 2.2.17). By Lemma 2.2.19, this shows
that the sequence {θn} is bounded.

In order to show that the sequence {1∗n} is equicontinuous, it is enough to approximate it
uniformly by an equicontinuous sequence. Take N = 0. Fix an arbitrary constant 0 < ε < 1. Since
‖ϕ− ϕm‖∞ . m−2 by (2.12), we can choose an integer J large enough so that for every n ≥ 0
we have

(1− ε)1̂n ≤ 1n ≤ (1 + ε)1̂n.
This implies

1− ε
1 + ε

1̂∗n ≤ 1∗n ≤
1 + ε

1− ε 1̂∗n.

Therefore, |1∗n − 1̂∗n| is bounded uniformly by a constant times ε. By arguments as in Lemma
2.2.18, we can show that the sequence (1̂∗n) is equicontinuous. We deduce that the sequence (1∗n)
is equicontinuous as well.
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2.2.3.3 Proof of Theorem 2.2.13

We first define the scaling ratio λ. By definition of ρ+
n , we easily see that the sequence (ρ+

n ) is
sub-multiplicative, that is, ρ+

n+m ≤ ρ+
mρ

+
n for all m,n ≥ 0. It follows that the first limit in the

following line exists

λ := lim
n→∞

(
ρ+
n

)1/n
= lim

n→∞

(
ρ−n
)1/n

,

where the last identity is due to the fact that (θn) is bounded, see Lemma 2.2.17. We have the
following lemma.

Lemma 2.2.21. The sequences (λ−nρ+
n ) and (λ−nρ−n ) are both bounded above and below by positive

constants. In particular, the sequence
(
λ−n1n

)
is uniformly bounded and equicontinuous.

Proof. It is clear that the second assertion is a consequence of the first one and Proposition 2.2.14.
We prove now the first assertion. Since the sequence ρ+

n is sub-multiplicative, it is well-known that
infn(ρ+

n )1/n is equal to λ. Hence, we have λ−nρ+
n ≥ 1. Since θn is bounded, we have ρ+

n . ρ−n . It
follows that both λ−nρ±n are bounded from below by positive constants. Similarly, the sequence ρ−n
is super-multiplicative, i.e., ρ−n+m ≥ ρ−mρ−n for all m,n ≥ 0, and we deduce that that both λ−nρ±n
are bounded from above by positive constants. The lemma follows.

The above completes the proof of the convergence in Theroem 2.2.13 in the case where g ≡ 1.
We then extend the above result to all continuous test functions.

Lemma 2.2.22. Let F be a uniformly bounded and equicontinuous family of real-valued functions
on Pk. Then the family

FN := {λ−nLn(g) : g ∈ F , n ≥ 0}
is also uniformly bounded and equicontinuous.

I only give a sketch of the proof of the above lemma. For simplicity, I will assume that all the
functions in F are C2, and that the same is true for ϕ. The general case (see [BD23a, Lemma 3.9])
can be handled by approximating elements of F with C2 functions, and by an interpolation on ϕ
as in the previous section. In particular, I assume that ‖g‖C2 is bounded by a constant for g ∈ F .
The constants involved in the proof below do not depend on g ∈ F .

Sketch of the proof of Lemma 2.2.22 in the C2 case. By Lemma 2.2.21, the family FN is uniformly
bounded. We prove that it is equicontinuous.

We will use the same idea as in Proposition 2.2.15 and Lemma 2.2.16. Instead of the function h,
we need to consider the following slightly different function

H(x0, . . . , xn) := eϕ(x0)+ϕ(x1)+···+ϕ(xn−1)g(x0) = h(x0, . . . , xn)g(x0).

We have
i∂∂H = (i∂∂h)g(x0) + h(i∂∂g(x0)) + i∂h ∧ ∂g(x0)− i∂h ∧ ∂g(x0).

Applying Cauchy-Schwarz’s inequality to the last two terms, and since g has a bounded C2 norm,
we obtain

|i∂∂H| ≤ |(i∂∂h)g(x0)|+ |h(i∂∂g(x0))|+ ih−1∂h ∧ ∂h + ih∂g(x0) ∧ ∂g(x0)
. |i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h + hωFS(x0)
. |i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h.
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We claim that the last sum satisfies

|i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h . h
n−1∑
m=0

(n−m)3ω(m).

Lemma 2.2.16 shows that the first term |i∂∂h| of the LHS is bounded by the RHS. The second
term clearly satisfies the same property (consider m = 0 in the above sum). For the last term, by
Cauchy-Schwarz’s inequality and using a computation as in the proof of Lemma 2.2.16, we have

ih−1∂h ∧ ∂h = h
n−1∑

m,m′=0
i∂ϕ(xm) ∧ ∂ϕ(xm′) . h

n−1∑
m=0

(n−m)3ω(m).

This implies the claim and gives a bound for |i∂∂H|.

Since Ln(g) = (πn)∗(H), we obtain as in the proof of Proposition 2.2.15 that

|ddcλ−nLn(g)| . λ−n
n∑

m=1
m3emmaxϕρ+

n−md
(k−1)mωm.

By Lemmas 2.2.19 and 2.2.21 we have ρ±n−m . λn−m. Therefore, we obtain

|ddcλ−nLn(g)| .
n∑

m=1
m3emmaxϕλ−md(k−1)mωm.

Finally, since λ ≥ dkeminϕ by definition of λ, the last estimate implies that

|ddcλ−nLn(g)| .
n∑

m=1
m3emΩ(ϕ)d−mωm.

Lemma 2.2.12 and the fact that d > eΩ(ϕ) imply the result.

We now construct a density function ρ on Pk. Recall that the sequence λ−n1n is uniformly
bounded and equicontinuous. Therefore, the Cesaro sums

1̃n := 1
n

n−1∑
j=0

λ−j1j

also form a uniformly bounded and equicontinuous sequence of functions. It follows that there
is a subsequence of 1̃n which converges uniformly to a continuous function ρ. Observe that
ρ ≥ infn λ−nρ−n . Hence, by Lemma 2.2.21, the function ρ is strictly positive. A direct computation
gives

λ−1L(1̃n)− 1̃n = 1
n

(λ−n1n − 10).

Since λ−n1n is bounded uniformly in n, the last expression tends uniformly to 0 when n tends to
infinity. We then deduce from the definition of ρ that λ−1L(ρ) = ρ.
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End of the proof of Theorem 2.2.13. Observe that we only need to show that λ−nLn(g) converges
to cgρ for some constant cg, where ρ is a unique function satisfying Lρ = λρ (up to a multiplicative
constant). The remaining part of the theorem is then clear. Let G denote the family of all limit
functions of subsequences of λ−nLn(g). By Lemma 2.2.22, the sequence λ−nLn(g) is uniformly
bounded and equicontinuous. Therefore, by Arzelà-Ascoli theorem, G is a uniformly bounded
and equicontinuous family of functions which is compact for the uniform topology. Observe also
that G is invariant under the action of λ−1L. Using the equidistribution of preimages of generic
points towards the measure of maximal entropy, whose support is the Julia set, it is not difficult to
deduce that G consists of the single function ρ constructed above. This completes the proof of the
theorem.

Once Theorem 2.2.13 is established, Theorem 2.2.1 follows from more standard arguments,
that I do not recall here, see for instance [PU10; UZ13] and [BD23a, Section 4.2]. We just state
below two specific results that will be needed in the proof of the spectral gap in the next sections.
The proofs are omitted as they follow from the above and more standard arguments.

For positive real numbers q,M , and Ω with q > 2 and Ω < log d, consider the following set of
weights

P(q,M,Ω) :=
{
ϕ : Pk → R : ‖ϕ‖logq ≤M, Ω(ϕ) ≤ Ω

}
and the uniform topology induced by the sup norm. Observe that this family is equicontinuous.
The two lemmas below give the dependence on ϕ ∈ P(q,M,Ω) of the objects introduced in this
section. Therefore, we will use the index ϕ or parameter ϕ for objects which depend on ϕ, e.g.,
we will write λϕ,Lϕ, ρϕ,1n(ϕ) instead of λ,L, ρ and 1n.

Lemma 2.2.23. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d. The maps
ϕ 7→ λϕ, ϕ 7→ mϕ, ϕ 7→ µϕ, and ϕ 7→ ρϕ are continuous on ϕ ∈ P(q,M,Ω) with respect to the
standard topology on R, the weak topology on measures, and the uniform topology on functions.
In particular, ρϕ is bounded from above and below by positive constants which are independent of
ϕ ∈ P(q,M,Ω). Moreover, ‖λ−nϕ Lnϕ‖∞ is bounded by a constant which is independent of n and of
ϕ ∈ P(q,M,Ω).

Lemma 2.2.24. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d. Let F be a
uniformly bounded and equicontinuous family of real-valued functions on Pk. Then the family{

λ−nϕ Lnϕ(g) : n ≥ 0, ϕ ∈ P(p,M,Ω), g ∈ F
}

is equicontinuous. Moreover,
∥∥λ−nϕ Lnϕ(g)− 〈mϕ, g〉

∥∥
∞ tends to 0 uniformly on ϕ ∈ P(p,M,Ω) and

g ∈ F when n goes to infinity.

2.2.4 A game of norms

Once Theorem 2.2.1 is established, we move towards the establishment of the main Theorem
2.2.2. This requires the introduction of several intermediates (semi-)norms, and a precise study of
the action of the operator (fn)∗ on functions and currents with respect to such norms. Recall that
we always assume that f satisfies the Assumption (Hf) in Section 2.2.1.

Before introducing the final norm, and the several intermediate norms that we will need, in the
next section, I give here a rough description of the properties that a norm ‖·‖� should have in order
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to satisfy Theorem 2.2.2. They are essentially as follows. We fix 0 < γ ≤ 2 as in that statement.
Recall that we are trying to find a norm with respect to which the operator λ−1L becomes a
contraction (all the norms below are actually semi-norms, and give norms on a complement of the
span on ρ. We will just refer to them as norms for simplicity, by only considering functions g such
that 〈mϕ, g〉 = 0).

(N1) ‖ · ‖� . ‖ · ‖Cγ ;

(N2) {g : ‖g‖� ≤ 1} is an equicontinuous family of continuous functions;

(N3) ‖f∗‖� < 1, i.e., there exists β < 1 such that ‖f∗g‖� < β‖g‖� for every g;

(N4) ‖gh‖� . ‖g‖∞‖h‖� + ‖g‖�‖h‖∞.

The first property is clear. In practice, this will be addressed with the final norm ‖·‖〈p,α〉,γ
described in Section 2.2.5.5. We will first construct a norm ‖·‖〈p,α〉 satisfying (N2), (N3), (N4),
and

(N1’) ‖ · ‖� . ‖ · ‖C2 ,

see Section 2.2.5.4. The norm ‖·‖〈p,α〉,γ will then be built from ‖·‖〈p,α〉 by means of an interpolation
(in the same way as Hölder continuous functions can be constructed by an interpolation between
continuous and smooth ones, see Lemma 2.2.39).

The first idea to have a norm bounded by ‖ · ‖C2 is clearly to have a term of the form ‖ddcg‖∗ in
the definition of the norm (where we recall that this is, roughly speaking, the sum of the masses of
the positive and negative parts of ddcg). This is the DSH norm ‖g‖DSH introduced by Dinh-Sibony
[DS06b; DS06a]. We also recall that such norm satisfies (N3). It is then a good starting building
block. Recalling that L(g) = f∗(eϕg), an estimate for ddcλ−1L(g) is given by∣∣∣∣ddcL(g)

λ

∣∣∣∣ .
(
eΩ(ϕ)

d

)(
|f∗(ddcg)|+ ‖g‖∞ |f∗(dd

cϕ)|+ f∗(|i∂g ∧ ∂ϕ+ i∂ϕ ∧ ∂g|)
)
.

In practice, since we would like to use the information on the convergence of λ−nLn(g) towards
〈mϕ, g〉ρ, we will be lead to bound ddcλ−nLn(g) for some large n. In this case, by similar
computations as in the previous section, we have

∣∣∣∣ddcLngλn

∣∣∣∣ .
(
eΩ(ϕ)

d

)n
|fn∗ (ddcg)|+

n∑
j=1

(
eΩ(ϕ)

d

)j ∥∥∥∥∥Ln−j(g)
λn−j

∥∥∥∥∥
∞
|f j∗ (ddcϕ)|+Mn(g, ϕ)

= Sn(g, ϕ) +Mn(g, ϕ),

where Mn(g, ϕ) is a sum involving, for instance, mixed products of the form i∂g ∧ ∂ϕ+ i∂ϕ ∧ ∂g.

Let us forget for now the term Mn(g, ϕ). We see that the property (N2) is needed to be able
to apply Lemma 2.2.24 uniformly on all the space {g : ‖g‖� ≤ 1}, and in particular to bound the
terms

∥∥λ−n+jLn−j(g)
∥∥
∞ in the above expression. It is enough for this to add any norm (stronger

than ‖ · ‖∞!) in the definition of ‖·‖�. A Hölder norm would be a natural guess, but we already
saw that this norm is very badly suited for the problem, as we lose regularity at every step of the
iteration. Moreover, if we choose a Hölder norm, this and condition (N1) would imply that we
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are in practice using a Hölder norm for ‖·‖�, which we know that cannot work in general. As
we saw in the previous sections that the norm ‖ · ‖logp is better suited to the problem, the next
natural norm is given by ‖g‖p := ‖ddcg‖∗ + ‖g‖logp . This is the norm studied in Section 2.2.5.2,
and the cornerstone of all the subsequent norms. Observe that we can also define a norm ‖R‖p
on (positive closed) (1, 1)-currents, by setting ‖R‖p = ‖R‖∗ + ‖uR‖logp , where uR is a dynamical
potential for R, see Section 2.2.2.3.

Let us now move to (N3). As mentioned above, the DSH norm would satisfy this request, but
not (N2). The first key point in the construction of the norm is to address (N2) and (N3) together,
i.e., to find a norm which has a spectral gap at least in the case ϕ = 0, and still gives a compact
space of continuous functions (observe, in particular, that the term M(g, ϕ) does not appear when
ϕ = 0). The main idea of the construction is as follows. Because of the estimates that regularly
appeared in the constructions, it is natural to define a norm (depending on some α ∈ (0, 1)) on
(1, 1)-currents S as

‖S‖α := min
{
c : |S| ≤ c

∞∑
j=0

αj
f j∗ (ωFS)
d(k−1)j

}
.

and to then set ‖g‖α := ‖ddcg‖α. By Lemma 2.2.12, we have ‖g‖logq . ‖g‖α for every q. The norm
‖ · ‖α is also tailor-suited to work well under the iteration of f∗. This is in practice the idea of
the norm ‖ · ‖p,α introduced in Section 2.2.5.3. With respect to the sum above, in the definition
of ‖ · ‖p,α, we replace ωFS by any (1, 1)-current with ‖R‖p ≤ 1, to gain more flexibility in the
construction and estimates (since, for instance, the functions ϕ that we will use will not always
be smooth). Lowering the regularity to ‖R‖p ≤ 1 may a priori create problems with (N2), but
we show that this is not the case. Indeed, we can show that ‖ · ‖q . ‖ · ‖p,α for some explicit q
depending on p, α, and the degree of f , see Lemma 2.2.30. The compactness of the space defined
by ‖ · ‖p,α ≤ 1 is one of the key points in all the construction. An important point in the proof of
this fact is that we can prove preliminary estimates on ‖ · ‖logp showing that, at least, the operator
d−kf∗ is Lipschitz with respect to this norm, with a constant that can be taken arbitrarily close to 1
when taking iterates (thanks to the genericity assumption (Hf)), see Lemma 2.2.25 and Theorem
2.2.26.

Until now, the above would give a norm which has a spectral gap for the operator f∗. This
is already good enough for some applications, but not for those which require to control the
perturbation of the transfer operator. Recalling that Lg = f∗(eϕg), up to developing the exponential
we see why the last condition (N4) should be addressed to completely solve the problem. Another,
analytical, way to see this is that a norm on g just based on some control on ddcg will not be able to
control the terms of the form i∂g ∧ ∂ϕ appearing in the development of Lng, and in particular the
term Mn(g, ϕ). The fact that this is the main difficulty in all the construction is essentially related
to the fact that the operator f∗(eϕ·) is a real perturbation of a complex operator. In particular, it
behaves badly with respect to ddc. We explicitly notice that it is not enough to get an estimate of
the form ‖gh‖� . ‖g‖� · ‖h‖� instead of (N4).

The solution to this final problem leads to the norm ‖·‖〈p,α〉, described in Section 2.2.5.4, and
essentially defined as

‖g‖〈p,α〉 := ‖∂g ∧ ∂g‖1/2p,α .

The idea of this norm is that, instead of trying to bound ddcLng by means of some bound on ddcg
and ddcϕ, we try to bound ∂Lng ∧ ∂Lng by means on some bound on ∂g ∧ ∂g and ∂ϕ ∧ ∂ϕ. A
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development of ∂Lng ∧ ∂Lng shows that we have

i∂Lng ∧ ∂Lng
λ2n .

(
eΩ(ϕ)

d

)2n

fn∗ (i∂g ∧ ∂g) +
n∑
j=1

(
eΩ(ϕ)

d

)2j ∥∥∥∥∥Ln−j(g)
λn−j

∥∥∥∥∥
2

∞
f j∗ (i∂ϕ ∧ ∂ϕ).

The details for the bounds of the operator L in the norm ‖ · ‖〈p,α〉 (with both g and ϕ bounded in
this norm) are given in Section 2.2.6, which essentially consists of the proof of Theorem 2.2.2 up
to admitting that the norm ‖·‖〈p,α〉 satisfies the properties (N1’), (N2), (N3), and (N4).

Proving (N4) for the norm ‖·‖〈p,α〉 requires to prove related intermediate estimates for the norms
‖·‖p and ‖·‖p,α. And while it is not difficult to see that the norm ‖·‖〈p,α〉 also satisfies (N1’) and
(N3), we should now make sure that ‖·‖〈p,α〉 still satisfies (N2). Indeed, all the verifications of such
properties for the previous norms were based on the comparison principles for the operator ddc

introduced in Section 2.2.2. In this case, we need a more refined comparison principle, involving
complex Sobolev function. Such comparison is still valid (although more technical), and given in
Proposition 2.2.33. Together with the previous verifications, this completes the proof of the fact
that the norm ‖·‖〈p,α〉 satisfies all the properties above.

As mentioned above, the norm ‖·‖〈p,α〉 satisfies (N1’) instead of (N1). The final norm ‖·‖〈p,α〉,γ ,
introduced by interpolation in Section 2.2.5.5, satisfies this last property. Up to a couple of further
technical arguments (essentially involving the fact that we need to iterate the system a finite
number of times to get a spectral gap for the norms ‖·‖〈p,α〉 and ‖·‖〈p,α〉,γ), this is in practice the
final norm in Theorem 2.2.2.

2.2.5 The norms and corresponding estimates

In this section I give the precise definitions of all the (semi-)norms that we introduced in our study,
as well as the property of each of them that we will need. All the details which are not given here
are in [BD22, Section 3].

2.2.5.1 Bounds with respect to the semi-norm ‖·‖logp

In this section, we study the action of the operator f∗ on functions with bounded semi-norm
‖·‖logp . We first prove that, with respect to this semi-norm, the operator f∗ is Lipschitz. We omit
the proof as it is elementary, but, as Lemma 2.2.11, observe that it relies on the assumption (Hf).

Lemma 2.2.25. For every constant A > 1, there exists a positive constant c = c(A) such that for
every n ≥ 0, p > 0, and continuous function g : Pk → R, we have∥∥d−kn(fn)∗g

∥∥
logp ≤ c

pApn ‖g‖logp .

We will need the following result which is an improvement of [DS10b, Theorem 1.1] in
the case where f satisfies the Assumption (Hf). By duality, this result implies an exponential
equidistribution of d−kn(fn)∗ν towards µ for every probability measure ν. The assumption (Hf)
is necessary here to get the estimate in the norm ‖·‖∞. Since this is an interesting result in itself,
we give the complete proof (assuming Lemma 2.2.25).
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Theorem 2.2.26. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and satisfying the
Assumption (Hf). Consider a real number p > 0. Let g : Pk → R be such that ‖ddcg‖∗ ≤ 1, 〈µ, g〉 = 0
and ‖g‖logp ≤ 1. Then, for every constant d−p/(p+1) < η < 1, there is a positive constant c independent
of g such that for every n ≥ 0 ∥∥d−kn(fn)∗g

∥∥
∞ ≤ cη

n.

Proof. Set gn := d−kn(fn)∗g. Recall (see, e.g., [Sko72; DNS10]) that there exists a positive
constant c0 independent of g and n such that

ˆ
Pk
ed
n|gn| ≤ c0,

where the integral above is taken with respect to the Lebesgue measure associated to the volume
form ωkFS on Pk.

Fix a constant A > 1 such that η > (A/d)p/(p+1). Suppose by contradiction that for infinitely
many n there exists a point an ∈ Pk such that |gn(an)| ≥ 3ηn for some g as above. Choose
r := e−cAA

nη−n/p with cA the constant given by Lemma 2.2.25 (we write cA instead of c in order
to avoid confusion). By that lemma, when dist(z, an) < r, we have

|gn(z)| ≥ |gn(an)| − |gn(z)− gn(an)| ≥ 3ηn − cpAA
pn(1 + | log r|)−p ≥ ηn.

This implies that

c0 ≥
ˆ

Pk
ed
n|gn| ≥

ˆ
dist(z,an)<r

ed
n|gn(z)| & r2ked

nηn & e−2kcAAnη−n/p+dnηn .

By the choice of A, the last expression diverges when n tends to infinity. This is a contradiction.
The theorem follows.

2.2.5.2 The semi-norm ‖·‖p
We now combine the semi-norms ‖·‖logp and ‖·‖∗ to build a new semi-norm ‖·‖p. For every positive
closed (1, 1)-current S on Pk we first define

‖S‖′p := ‖S‖+ ‖uS‖logp ,

where uS is the dynamical potential of S, see Section 2.2.2.3. When R is any (1, 1)-current we
define

‖R‖p = inf ‖S‖′p ,

where the infimum is taken over all positive closed (1, 1)-currents S such that |R| ≤ S, and we set
‖R‖p :=∞ when no such S exists. By the compactness of positive closed currents with bounded
‖ · ‖′p-norm, this infimum is actually a minimum when it is finite. Finally, for all g : Pk → R, define

‖g‖p := ‖ddcg‖p.

The following lemma, whose proof is based of the comparison principles and estimates of Section
2.2.2.2, shows in particular that the norm ‖·‖p is equivalent to the norm ‖·‖′p when both are
defined. We will thus just consider the norm ‖·‖p in the sequel.
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Lemma 2.2.27. Let S be a positive closed (1, 1)-current on Pk and let g : Pk → R be a continuous
function. Then

‖uS‖p ≤ 2‖S‖′p, ‖S‖p ≤ ‖S‖
′
p ≤ c ‖S‖p , and ‖g‖logp ≤ c ‖g‖p

for some positive constant c = c(p) independent of S and g.

The following lemma is the first step towards the property (N4).

Lemma 2.2.28. There is a positive constant c = c(p) such that for all continuous functions g, h : Pk →
R with finite ‖·‖p semi-norms and C2 or convex and Lipschitz function χ : R→ R we have∥∥∥∂g ∧ ∂h∥∥∥

p
≤ c(Ω(g)‖h‖p + ‖g‖pΩ(h)) and ‖χ(g)‖p ≤ c‖χ′(g)‖∞‖g‖p.

2.2.5.3 The dynamical norm ‖·‖p,α
We now define the main norms ‖·‖p,α for (1, 1)-currents that we will use to quantify the convergence
(2.2). We will see that these norms satisfy the inequalities

‖·‖q . ‖·‖p,α . ‖·‖p

for some explicit q depending on p, α, and d. In particular, the new norms are at the same time
weaker than the previous norm ‖·‖p, but still inherit the main properties of a similar norm ‖·‖q.

Definition 2.2.29. Given a positive closed (1, 1)-current S on Pk and a real number α such that
d−1 ≤ α < 1, we define the current Sα by

Sα :=
∞∑
n=0

αn
(fn)∗(S)
d(k−1)n ·

For any (1, 1)-current R on Pk and real number p > 0, we define

‖R‖p,α := inf { c ∈ R : ∃S positive closed : ‖S‖p ≤ 1, | R| ≤ cSα } (2.13)

and we set ‖R‖p,α :=∞ if such a number c does not exist.

Recall that the mass of d−(k−1)n(fn)∗(S) is independent of n. Hence, we have ‖Sα‖ =
∑
n≥0 α

n.
Note also that when ‖R‖p,α is finite, by compactness, the infimum in (2.13) is actually a minimum
and that, by definition we have ‖ξR‖p,α ≤ ‖R‖p,α for every (1, 1)-current R and every ξ : Pk → C
with |ξ| ≤ 1. We have the following lemma where the assumption d−1 ≤ α < d−1/(p+1) is
equivalent to 0 < q0 ≤ p.

Lemma 2.2.30. Let α and p be positive and such that d−1 ≤ α < d−1/(p+1). Then, for every
0 < q < q0 := |logα|

log d (p+ 1)− 1, there are positive constants c1 = c1(p, α) and c2 = c2(p, α, q) such
that, for every (1, 1)-current R,

‖R‖p,α ≤ c1 ‖R‖p and ‖R‖q ≤ c2 ‖R‖p,α .
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Proof. The first inequality holds by the definition of ‖·‖p,α and Lemma 2.2.27. We prove the second
inequality. Consider a current R such that ‖R‖p,α = 1. We have to show that ‖R‖q is bounded by
a constant.

From the definition of ‖·‖p,α, we can find a positive closed current S such that ‖S‖p = 1 and
|R| ≤ Sα. By the definition of the norm ‖·‖q and Lemma 2.2.27 applied to Sα, it is enough to
show that ‖Sα‖′q is bounded. Denote by uα the dynamical potential of Sα. Since the mass of Sα is
bounded, we only need to show that ‖uα‖logq is bounded. By definition of Sα, we have

uα =
∞∑
n=0

αn
(fn)∗uS
d(k−1)n ·

It follows that, for every positive number N ,

m(uα, r) ≤
∑
n≤N

αnd−(k−1)n‖(fn)∗uS‖logp(log? r)−p + 2
∑
n>N

αnd−(k−1)n ‖(fn)∗uS‖∞ .

Fix constants A > 1 close enough to 1, η > d−p/(p+1) close enough to d−p/(p+1) and α′ > αAp

close enough to α. In particular, by the assumption on α and the choice of η, we have that αdη
is close to αd1/(p+1) and smaller than 1. By Lemma 2.2.25 and Theorem 2.2.26 we know that
‖(fn)∗uS‖logp . dknApn and ‖(fn)∗uS‖∞ . dknηn. This, the above estimate on m(uα, r), and the
fact that α′d > αd ≥ 1 imply that

m(uα, r) .
∑
n≤N

αndnApn(log? r)−p +
∑
n>N

αndnηn . (α′d)N (log? r)−p + (αdη)N .

Finally, choose N = p+1
log d log log? r. Observe that if we replace α′ by α and αdη by αd1/(p+1), the

last sum is equal to 2(log? r)−q0 . So, this sum is bounded by a constant times (log? r)−q for q < q0
because α′ is chosen close to α and αdη is close to αd1/(p+1). This concludes the proof of the
lemma.

The following shifting property of the norm ‖·‖p,α will be very useful when we work with
the action of f , and is the key property that we need of this norm. The proof follows from the
definition of the norm ‖·‖p,α.

Lemma 2.2.31. For every n ≥ 0 and every (1, 1)-current R on Pk, we have∥∥d−kn (fn)∗R
∥∥
p,α
≤ 1
dnαn

‖R‖p,α .

2.2.5.4 The dynamical Sobolev semi-norm ‖·‖〈p,α〉

We can now define the first semi-norm for functions g : Pk → R with respect to which we will be
able to prove the existence of a spectral gap for the transfer operator. We can also define this norm
for 1-forms. Recall that this will not be the final norm, as it is only bounded by the ‖ · ‖C1 norm,
and not by the Hölder norms as in Theorem 2.2.2.

Definition 2.2.32. Let p and α be real numbers such that p > 0 and d−1 ≤ α < 1. For any function
g : Pk → R we set

‖g‖〈p,α〉 :=
∥∥∥i∂g ∧ ∂g∥∥∥1/2

p,α
.
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We following proposition is the key to extend the results that we proved for the norm ‖·‖p,α to
the norm ‖·‖〈p,α〉, see [BD22, Proposition 2.7]

Proposition 2.2.33. Let u : Bk5 → R be continuous and such that ‖∂u‖L2(Bk5) < ∞. Assume that
i∂u ∧ ∂u ≤ ddcv where v : Bk5 → R is continuous, p.s.h., and such that

ˆ 1

0
mBk4

(v, t)(log log? t)4t−1dt < +∞.

Then there is a positive constant c, independent of u and v, such that, for all 0 < r ≤ 1/2, we have

mBk1
(u, r) ≤ c

( ˆ r1/2

0
mBk4

(v, t)(log log? t)2t−1dt
)1/2

+ cmBk4
(v, r)1/3ΩBk4

(v)1/6(log? r)1/2 + cΩBk4
(v)1/2r1/2(log? r)1/2.

Corollary 2.2.34. Let S0 be a positive closed (1, 1)-current on Pk of unit mass, whose dynamical
potential uS satisfies ‖uS‖logp ≤ 1 for some p > 3/2. Let F(S0) denote the set of all continuous
functions g : Pk → R such that i∂g ∧ ∂g ≤ S0. Then for any positive number q < p

3 −
1
2 we have

‖g‖logq ≤ c for some positive constant c = c(p, q) independent of S0. In particular, the family F(S0)
is equicontinuous.

Remark 2.2.35. The conclusion of Lemma 2.2.12 stays true if the assumption (2.5) is replaced by

i∂g ∧ ∂g ≤
∞∑
n=0

βnωn.

It suffices to use Corollary 2.2.34 instead of Corollary 2.2.9.

The following two lemmas give the main properties of the semi-norm ‖·‖〈p,α〉 that we will need
in Section 5, together with Lemma 2.2.31. Recall that q0 is defined in Lemma 2.2.30. Note that the
hypothesis p > 3/2 ensures that d−1 < d−5/(2p+2) and the hypothesis on α ensures that q0 > 3/2,
and hence that q1 as in the statement below is positive.

Lemma 2.2.36. Let α and p be positive numbers such that p > 3/2 and d−1 ≤ α < d−5/(2p+2). Then,
for every 0 < q < q1 := q0

3 −
1
2 , there are positive constants c1 = c1(p, α, q) and c2 = c2(p, α) such

that for every g : Pk → R we have

‖g‖logq ≤ c1 ‖g‖〈p,α〉 , ‖g‖〈p,α〉 ≤ c2 ‖g‖p , and ‖g‖〈p,α〉 ≤ c2 ‖g‖C1 .

Proof. We can assume that ‖g‖〈p,α〉 ≤ 1. By the definition of the norm ‖·‖〈p,α〉 and Lemma 2.2.30,∥∥∥i∂g ∧ ∂g∥∥∥
q′

is bounded by a constant for any q′ < q0. Therefore, we have i∂g ∧ ∂g ≤ R for

some positive closed current R such that ‖R‖ and ‖uR‖logq′ are bounded by a constant. The first
inequality follows from Corollary 2.2.34. The second assertion follows from Lemmas 2.2.30 and
2.2.28. The last assertion follows from Definition 2.2.32.

The following lemma, related to (N4), follows from a direct development of i∂(gh) ∧ ∂(gh).
Lemma 2.2.37. Let α and p be positive numbers such that d−1 ≤ α < 1. Then for all functions
g, h : Pk → R we have

‖gh‖〈p,α〉 ≤
√

2
(
‖g‖〈p,α〉 ‖h‖∞ + ‖g‖∞ ‖h‖〈p,α〉

)
.
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2.2.5.5 The semi-norm ‖·‖〈p,α〉,γ
The following semi-norm defines the final space of functions that we will use in our study of the
transfer operator. We use here some ideas from the theory of interpolation between Banach spaces,
see also [Tri95].

Definition 2.2.38. For all real numbers d−1 ≤ α < 1, γ > 0 and p > 0, we define for a continuous
function g : Pk → R

‖g‖〈p,α〉,γ := inf
{
c ≥ 0: ∀ 0 < ε ≤ 1 ∃ g(1)

ε , g(2)
ε :

g = g(1)
ε + g(2)

ε ,
∥∥g(1)
ε

∥∥
〈p,α〉 ≤ c(1/ε)

1/γ ,
∥∥g(2)
ε

∥∥
∞ ≤ cε

}
.

When such a number c does not exist, we set ‖g‖〈p,α〉,γ :=∞.

The following lemma is the counterpart of Lemma 2.2.5 for Hölder-continuous function. Applied
with s = 1, it implies that ‖·‖〈p,α〉,γ . ‖·‖Cγ because ‖·‖〈p,α〉 . ‖·‖C1 , see Lemma 2.2.36.

Lemma 2.2.39. Let 0 < γ ≤ 1 be a constant. Then, for every Cγ function g : Pk → R, s ≥ 1, and
0 < ε ≤ 1, there exist a Cs function g(1)

ε and a continuous function g(2)
ε such that

g = g(1)
ε + g(2)

ε , ‖g(1)
ε ‖Cs ≤ c ‖g‖∞ (1/ε)s/γ and ‖g(2)

ε ‖∞ ≤ c ‖g‖Cγ ε,

where c = c(γ, s) is a positive constant independent of g and ε.

The following two lemmas are the counterparts of Lemmas 2.2.36 and 2.2.37 for the semi-norm
‖·‖〈p,α〉,γ . Recall that q1 is defined in Lemma 2.2.36.

Lemma 2.2.40. For all positive numbers p, α, γ, q satisfying p > 3/2, d−1 ≤ α < d−5/(2p+2) and
q < q2 := γ

γ+1q1, there is a positive constant c = c(p, α, γ, q) such that

‖g‖logq ≤ c ‖g‖〈p,α〉,γ and ‖g‖〈p,α〉,γ ≤ ‖g‖〈p,α〉

for every continuous function g : Pk → R. Moreover, if χ : I → R is a Lipschitz function with Lipschitz
constant κ on an interval I ⊂ R containing the image of g, then we have

‖χ(g)‖〈p,α〉,γ ≤ κ‖g‖〈p,α〉,γ .

The key point of this lemma is the first inequality. We give a sketch of its proof.

Proof of the first inequality. We can assume that ‖g‖〈p,α〉,γ ≤ 1. Lemma 2.2.36 implies that g(1)
ε

has ‖·‖logq′ semi-norm bounded by a constant times (1/ε)1/γ when q′ < q1. Therefore, we have for
r > 0

m(g, r) ≤ m(g(1)
ε , r) +m(g(2)

ε , r) . (1/ε)1/γ

(log? r)q′ + ε.

Choosing ε = (log? r)−K with K = q′/(1 + 1/γ) gives

m(g, r) . (log? r)−q′+K/γ + (log? r)−K = 2(log? r)−q′/(1+1/γ).

The assertion follows by choosing q′ close enough to q1.
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Lemma 2.2.41. For all positive numbers p, α, γ such that d−1 ≤ α < 1 we have

‖gh‖〈p,α〉,γ ≤ 3
(
‖g‖〈p,α〉,γ ‖h‖∞ + ‖g‖∞ ‖h‖〈p,α〉,γ

)
for every continuous functions g, h : Pk → R.

2.2.6 Spectral gap for the transfer operator

Assuming the controls on the norms in the previous section, in this section I give the main ideas in
the proof our main Theorem 2.2.2. Theorem 2.2.1 and (2.2) give the scaling ratio λ, the density
function ρ as an eigenfunction for the operator L = Lϕ, and the probability measures mϕ and µϕ,
all under the hypothesis that ‖ϕ‖logq <∞ for some q > 2. The semi-norms ‖·‖〈p,α〉 and ‖·‖〈p,α〉,γ
were introduced in Sections 2.2.5.4 and 2.2.5.5, respectively.

The following is the main result of [BD22]. Theorem 2.2.2 follows from it from more standard
arguments and other similar estimates, that I will not give here, recalling that ‖·‖〈p,α〉,γ . ‖ · ‖Cγ .

Theorem 2.2.42. Let f, ϕ,mϕ, ρ be as in Theorem 2.2.1, L the Perron-Frobenius operator associated
to ϕ as in (2.1), and λ the scaling ration as in (2.2). Let p, α, γ,A,Ω be positive constants and q2 as
in Lemma 2.2.40 such that p > 3/2, d−1 ≤ α < d−5/(2p+2), Ω < log(dα), and q2 > 2. Assume that
‖ϕ‖〈p,α〉,γ ≤ A and Ω(ϕ) ≤ Ω. Then we have

‖λ−nLn‖〈p,α〉,γ ≤ c

for some positive constant c = c(p, α, γ,A,Ω) independent of ϕ and n. Moreover, for every constant
0 < β < 1 there is a positive integer N = N(p, α, γ,A,Ω, β) independent of ϕ such that∥∥λ−NLNg∥∥〈p,α〉,γ ≤ β ‖g‖〈p,α〉,γ (2.14)

for every function g : Pk → R with 〈mϕ, g〉 = 0. Furthermore, there exists N ′ = N ′(p, α, γ,Ω) such
that for any given constant 1 < δ < (dα)γ/(2γ+2), when A is small enough (depending on the choice
of N ′) (2.14) holds with N = N ′ and β = δ−N

′
.

Notice that Lemma 2.2.40 and the assumption q2 > 2 imply that ‖ϕ‖logq <∞ for some q > 2.
Hence, the scaling ratio λ, the density function ρ, and the measures mϕ and µϕ are well defined by
Theorem 2.2.1. Notice also that q2 > 2 implies that the condition α < d−5/(2p+2) is automatically
satisfied.

As it was the case for Theorem 2.2.13, the proof of Theorem 2.2.42 will be reduced to a
comparison between suitable currents and their norms. Theorem 2.2.42 then follows from some
interpolation techniques. As in Section 2.2.3.1, I present the following simpler version of Theorem
2.2.42. Theorem 2.2.42 in practice follows from it by means of interpolation techniques, which I
will briefly describe at the end of this section.

Theorem 2.2.43. Let f, ϕ, λ,mϕ, ρ be as in Theorem 2.2.1 and L the Perron-Frobenius operator
associated to ϕ. Let p, α,A,Ω be positive constants and q1 as in Lemma 2.2.36 such that p > 3/2,
d−1 ≤ α < d−5/(2p+2), Ω < log(dα), and q1 > 2. Assume that ‖ϕ‖〈p,α〉 ≤ A and Ω(ϕ) ≤ Ω. Then we
have

‖λ−nLn‖〈p,α〉 ≤ c
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for some positive constant c = c(p, α,A,Ω) independent of ϕ and n. Moreover, for every constant
0 < β < 1 there is a positive integer N = N(p, α,A,Ω, β) independent of ϕ such that∥∥λ−NLNg∥∥〈p,α〉 ≤ β ‖g‖〈p,α〉
for every function g : Pk → R with 〈mϕ, g〉 = 0. Furthermore, for every given constant 1 < δ <
(dα)1/2, when A is small enough we can take β = δ−N .

Note that Lipschitz functions have finite ‖·‖〈p,α〉 semi-norm (this follows from Lemma 2.2.36,
since Lipschitz functions can be uniformly approximated by C1 ones whose norm is dominated by
the Lipschitz constant, see also the proof of Lemma 2.2.40). So the last theorem can be applied to
Lipschitz functions. For such functions we can take any p large enough and α close to 1. The rate
of contraction is then almost equal to d−1/2 when A is small enough (i.e., when ϕ is close to a
constant function). This rate is likely optimal as it corresponds to known results obtained in the
setting of zero weight, see [DS10a].

The crucial estimate that we will need in order to proof Theorem 2.2.43 is the following.

Proposition 2.2.44. Let f be as in Theorem 2.2.1. Take 0 < α < 1 and p > 0. Given n functions
ϕ(j) : Pk → R for j = 1, . . . , n, set

Φm := α−md(k−1)memmaxϕ.

Then there exists a positive constant c = c(p, α), independent of ϕ, such that

‖Lng‖〈p,α〉 ≤ c ‖L
n1‖1/2∞ Φ1/2

n ‖g‖〈p,α〉 + c
n∑

m=1

∥∥ϕ∥∥〈p,α〉m3/2Φ1/2
m ‖Lm1‖1/2∞

∥∥Ln−mg∥∥∞
for every function g : Pk → R.

Recalling that ‖1n‖∞ . λn we obtain from Proposition 2.2.44 the inequality

∥∥λ−nLng∥∥〈p,α〉 . ‖g‖〈p,α〉 ( eΩ

dα

)n/2 + ‖ϕ‖〈p,α〉
n∑

m=1
m3/2( eΩ

dα

)m/2‖λ−n+mLn−mg‖∞.

With this estimate, it is easy to deduce Theorem 2.2.43.

Proof of Proposition 2.2.44. By Definition 2.2.32 of the semi-norm ‖·‖〈p,α〉, we need to bound the
current i∂Lng ∧ ∂Lng. We will use here the map πn introduced in Section 2.2.3.1. We have, using
a direct computation,

∂
(
eϕ(x0)+···+ϕ(xn−1)g(x0)

)
= Θ1 + Θ2

with

Θ1 := h′′∂g(x0), Θ2 := h′′g(x0)
n−1∑
m=0

∂ϕ(xm), and h′′ := eϕ(x0)+···+ϕ(xn−1).

Using Cauchy-Schwarz’s inequality, we obtain

i∂Lng ∧ ∂Lng = i(πn)∗(Θ1 + Θ2) ∧ (πn)∗(Θ1 + Θ2)
≤ 2i(πn)∗(Θ1) ∧ (πn)∗(Θ1) + 2i(πn)∗(Θ2) ∧ (πn)∗(Θ2).
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We need to bound the norm ‖·‖p,α of the two terms in the last sum by the square of the RHS of
the inequality in the proposition.

For the first term, using again Cauchy-Schwarz’s inequality, the definition of Φm as in the
statement, and Lemma 2.2.31, we get (notice that (πn)∗(h′′) = L1,n1)∥∥∥i(πn)∗(Θ1) ∧ (πn)∗(Θ1)

∥∥∥
p,α

≤
∥∥∥(πn)∗(h′′)(πn)∗

(
h′′i∂g(x0) ∧ ∂g(x0)

)∥∥∥
p,α

≤ ‖Ln1‖∞ e
nmaxϕ

∥∥∥(fn)∗(i∂g ∧ ∂g)
∥∥∥
p,α

≤ ‖Ln1‖∞Φn

∥∥∥i∂g ∧ ∂g∥∥∥
p,α

.

This gives the desired estimate for the first term.
For the second term, observe that i(πn)∗(Θ2) ∧ (πn)∗(Θ2) is equal to∑

0≤m,m′<n
i(πn)∗

(
h′′g(x0)∂ϕ(xm)

)
∧ (πn)∗

(
h′′g(x0)∂ϕ(xm′)

)
≤ 2

∑
0≤m′≤m<n

∣∣i(πn)∗
(
h′′g(x0)∂ϕ(xm)

)
∧ (πn)∗

(
h′′g(x0)∂ϕ(xm′)

)∣∣.
Using Cauchy-Schwarz’s inequality as in (2.7) and (2.8) we can bound the current in the absolute
value signs by

(m−m′ + 1)−2i(πn)∗
(
h′′g(x0)∂ϕ(xm)

)
∧ (πn)∗

(
h′′g(x0)∂ϕ(xm)

)
+(m−m′ + 1)2i(πn)∗

(
h′′g(x0)∂ϕ(x′m)

)
∧ (πn)∗

(
h′′g(x0)∂ϕ(x′m)

)
and deduce that i(πn)∗(Θ2) ∧ (πn)∗(Θ2) is bounded by a constant times∑

0≤m<n
(n−m)3i(πn)∗

(
h′′g(x0)∂ϕ(xm)

)
∧ (πn)∗

(
h′′g(x0)∂ϕ(xm)

)
.

Therefore, in order to get the proposition, setting η := (πn)∗
(
h′′g(x0)∂ϕ(xm)

)
we only need to

show that
‖iη ∧ η‖p,α ≤

∥∥ϕ∥∥2
〈p,α〉Φn−m

∥∥Ln−m1
∥∥
∞ ‖Ln−m+1,ng‖2∞ .

Now, using π′′ as in the proof of Proposition 2.2.15, we see that

η = π′′∗
(
Lmg(xm)hm∂ϕ(xm)

)
with hm := eϕ(xm)+···+ϕ(xn−1).

It follows from Cauchy-Schwarz’s inequality that

iη ∧ η ≤ ‖Lmg‖2∞π′′∗(hm)π′′∗(hmi∂ϕ(xm) ∧ ∂ϕ(xm))
≤ ‖Lmg‖2∞‖π′′∗(hm)‖∞‖hm‖∞(fn−m)∗(i∂ϕ ∧ ∂ϕ).

Thus, by Lemma 2.2.31 and the definition of π′′, we get

‖iη ∧ η‖p,α ≤ ‖Lmg‖2∞‖Ln−m1‖∞Φn−m‖i∂ϕ ∧ ∂ϕ‖p,α.

This ends the proof of the proposition.
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We conclude this section with an idea of how to get the actual Theorem 2.2.42 by means of
more refined estimates and interpolation techniques. I only show how to prove (2.14), since the
estimates required for the other assertions are similar. First of all, the following proposition is a
version of Proposition 2.2.44 for the norm ‖·‖〈p,α〉,γ , see [BD22, Proposition 4.4].

Proposition 2.2.45. Let f be as in Theorem 2.2.1. Take 0 < α < 1 and p > 0. Given n functions
ϕ(j) : Pk → R for j = 1, . . . , n, set

Φm := α−md(k−1)me
∑m

j=1 max(ϕ(j)) and Lm,n := Lϕ(m) ◦ · · · ◦ Lϕ(n) .

Then there exists a positive constant c = c(p, α), independent of ϕ(j), such that

‖L1,ng‖〈p,α〉 ≤ c ‖L1,n1‖1/2∞ Φ1/2
n ‖g‖〈p,α〉 + c

n∑
m=1

∥∥ϕ(m)∥∥
〈p,α〉m

3/2Φ1/2
m ‖L1,m1‖1/2∞ ‖Lm+1,ng‖∞

for every function g : Pk → R.

Once Proposition 2.2.45 is established, Theorem 2.2.42 can be deduced as follows. By subtract-
ing from ϕ a constant, we can assume that ϕ belongs to the family of weights

Q0 :=
{
ϕ : Pk → R : minϕ = 0, ‖ϕ‖〈p,α〉,γ ≤ A, Ω(ϕ) ≤ Ω

}
.

Observe that we can apply Lemmas 2.2.23 and 2.2.24 because, by Lemma 2.2.40 and the assump-
tions on α and p, the family Q0 is contained in P0(q,M,Ω):= {ϕ ∈ P(q,M,Ω): minϕ = 0} for
suitable q > 2 and M . Observe also that ‖ϕ‖∞ = Ω(ϕ) ≤ Ω and ‖ϕ‖∞ . ‖ϕ‖〈p,α〉,γ ≤ A.

Consider two constants K ≥ 1 and K ′ ≥ 1 whose values will depend on β. Note that the
constants hidden in the signs . below are independent of the parameters A, β,K,K ′, n and also
of the constant 0 < ε ≤ 1 and the integer j that we consider now.

Since ‖ϕ‖〈p,α〉,γ ≤ A, for every j ≥ 1 there are functions ϕ(j) and ψ(j) such that

ϕ = ϕ(j) + ψ(j),
∥∥ϕ(j)∥∥

〈p,α〉 ≤ A(Kj2)1/γ(1/ε)1/γ , and
∥∥ψ(j)‖∞ ≤ AK−1j−2ε. (2.15)

Observe that ‖ϕ(j)‖∞ is bounded by a constant since ‖ϕ‖∞ is bounded by a constant.
We can assume for simplicity that ‖g‖〈p,α〉,γ ≤ 1, which implies that Ω(g) is bounded by a

constant. Since 〈mϕ, g〉 = 0 by hypothesis, we deduce that ‖g‖∞ is bounded by a constant. By the
definition of the semi-norm ‖·‖〈p,α〉,γ , we can find two functions g(1)

ε and g(2)
ε satisfying

g = g(1)
ε + g(2)

ε ,
∥∥g(1)
ε

∥∥
〈p,α〉 ≤ K

′1/γ(1/ε)1/γ ,
∥∥g(2)
ε

∥∥
∞ ≤ 2K ′−1ε, 〈mϕ, g

(1)
ε 〉 = 〈mϕ, g

(2)
ε 〉 = 0.

Notice that without the condition 〈mϕ, g
(2)
ε 〉 = 0 we would not need the coefficient 2 in the

above estimate of ‖g(2)
ε ‖∞. We obtain this condition by adding to g(2)

ε a suitable constant and
subtracting the same constant from g

(1)
ε . The condition 〈mϕ, g

(1)
ε 〉 = 0 is deduced from the

hypothesis 〈mϕ, g〉 = 0 when we have 〈mϕ, g
(2)
ε 〉 = 0. Since ‖g‖∞ is bounded by a constant,

‖g(1)
ε ‖∞ is also bounded by a constant.
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Define as above Lm,n := Lϕ(m) ◦ · · · ◦ Lϕ(n) , where the ϕ(j)’s are as in (2.15), and write

λ−nLng = λ−nL1,ng
(1)
ε + λ−n

(
Lng(1)

ε − L1,ng
(1)
ε

)
+ λ−nLng(2)

ε =: G(a)
n,ε +G(b)

n,ε +G(c)
n,ε.

We can prove the following estimates for the three terms in the RHS of the above expression.
Lemma 2.2.47 is the key point, and is where Proposition 2.2.45 is used.

Lemma 2.2.46. When K and K ′ are large enough, we have for every n ≥ 1

∥∥G(b)
n,ε

∥∥
∞ ≤

1
2βε and

∥∥G(c)
n,ε

∥∥
∞ ≤

1
2βε.

Lemma 2.2.47. When K ≥ 1 and K ′ are fixed, there is a constant 0 < ε0 ≤ 1 independent of ϕ and
g such that, for all 0 < ε ≤ ε0 and all n large enough, also independent of ϕ and g,

∥∥G(a)
n,ε

∥∥
〈p,α〉 ≤ β(1/ε)1/γ .

Take now N large enough, independent of ϕ. It suffices to show that we can write

λ−NLNg = G
(1)
N,ε +G

(2)
N,ε with

∥∥G(1)
N,ε

∥∥
〈p,α〉 ≤ β(1/ε)1/γ and

∥∥G(2)
N,ε

∥∥
∞ ≤ βε.

We apply Lemmas 2.2.46 and 2.2.47 to n := N . When ε ≤ ε0, it is enough to choose G(1)
N,ε := G

(a)
N,ε

andG(2)
N,ε := G

(b)
N,ε+G

(c)
N,ε. Assume now that ε0 ≤ ε ≤ 1 and chooseG(1)

N,ε := 0 andG(2)
N,ε := λ−NLNg.

With N large enough, we have ‖G(2)
N,ε‖∞ ≤ βε0 ≤ βε because ‖λ−nLng‖∞ tends to 0 uniformly on

ϕ and g when n goes to infinity, see Lemma 2.2.24. Thus, we have the desired decomposition of
λ−NLNg and hence the property (2.14) for all N large enough.

2.3 Exponential mixing of all orders and Central Limit Theorems

In this section I describe the two works [BD24] and [BD23b], obtained in collaboration with Tien-
Cuong Dinh. The main goal is to prove that the measures of maximal entropy of some dynamical
systems of saddle type satisfy the Central Limit Theorem for Hölder observables. Observe that, for
these systems, we do not know yet if a spectral gap exists on a suitable functional space, since the
method of the previous section cannot be applied, due to the presence of the attracting directions.
The Central Limit Theorem could be for instance deduced from the spectral gap since this would
imply that the assumptions in the classical Gordin theorem [Gor69] are satisfied. More generally,
the fact that the dynamics is expanding in some directions, but contracting in others, makes it not
possible to apply directly the Gordin criterion, either, since this would require a control on the
dynamics in the stable directions, which is not clear how to obtain in general. We will instead
deduce the Central Limit Theorem from a strong version of mixing, the exponential mixing of all
orders, that we are able to establish for these systems.
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2.3.1 Hénon maps

Hénon maps are among the most studied dynamical systems that exhibit interesting chaotic
behaviour. The main goal of the work [BD24], joint with Tien-Cuong Dinh, is to prove that the
measure of maximal entropy of any complex Hénon map is exponentially mixing of all orders
with respect to Hölder observables. As a consequence, we also solved a long-standing question
proving the Central Limit Theorem for all Hölder observables with respect to the maximal entropy
measures of complex Hénon maps. A similar result holds for automorphisms of compact Kähler
surfaces with positive entropy [BD23b], and related versions are also true in higher dimension.
Since the general strategy is similar, I mainly focus on the case of Hénon maps in this section, and
briefly describe the differences in the second case in the next one.

The reader can find in the work of Bedford, Dinh, Fornaess, Lyubich, Sibony, and Smillie
fundamental dynamical properties of these systems, see [BLS93; BS91; BS92; DS14; For96; FS92;
Sib99] and the references therein. It is shown in [BLS93] that the measure of maximal entropy µ
is Bernoulli. In particular, it is mixing of all orders [CFS12]. Namely, for every κ ∈ N, observables
g0, . . . , gκ ∈ Lκ+1(µ), and integers 0 =: n0 ≤ n1 ≤ · · · ≤ nκ, we have

〈µ, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −
κ∏
j=0
〈µ, gj〉 → 0.

On the other hand, the control of the speed of mixing (i.e., the rate of the above convergence)
for general dynamical systems and for regular enough observables is a challenging problem, and
usually one can obtain it only under strong hyperbolicity assumptions on the system.

Let us recall the following general definition.

Definition 2.3.1. Let (X, f) be a dynamical system and ν an f -invariant measure. Let (E, ‖ · ‖E)
be a normed space of real functions on X with ‖ · ‖Lp(ν) . ‖ · ‖E for all 1 ≤ p <∞. We say that ν
is exponentially mixing of order κ ∈ N∗ for observables in E if there exist constants Cκ > 0 and
0 < θκ < 1 such that, for all g0, . . . , gκ in E and integers 0 =: n0 ≤ n1 ≤ · · · ≤ nκ, we have∣∣∣〈ν, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0
〈ν, gj〉

∣∣∣ ≤ Cκ · ( κ∏
j=0
‖gj‖E

)
· θmin0≤j≤κ−1(nj+1−nj)
κ .

We say that ν is exponentially mixing of all orders for observables in E if it is exponentially mixing
of order κ for every κ ∈ N.

A recent major result by Dolgopyat, Kanigowski, and Rodriguez-Hertz [DKR21] ensures that,
under suitable assumptions on the system, the exponential mixing of order 1 implies that the
system is Bernoulli. In particular, it implies the mixing of all orders (with no control on the rate
of decay of correlation). It is a main open question whether the exponential mixing of order 1
implies the exponential mixing of all orders, see for instance [DKR21, Question 1.5].

Let now f be a complex Hénon map on C2. It is a polynomial diffeomorphism of C2. We can
associate to f its unique measure of maximal entropy µ [BLS93; BS91; BS92; Sib99]. It was
established by Dinh in [Din05a] that such measure is exponential mixing of order 1 for Hölder
observables, see also Vigny [Vig15] and Wu [Wu22]. Similar results were obtained by Liverani
[Liv95] in the case of uniformly hyperbolic diffeomorphisms and Dolgopyat [Dol98] for Anosov
flows.
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Theorem 2.3.2 (Bianchi-Dinh [BD24]). Let f be a complex Hénon map and µ its measure of maximal
entropy. Then, for every κ ∈ N∗, µ is exponential mixing of order κ as in Definition 2.3.1 for Cγ
observables (0 < γ ≤ 2), with θκ = d−(γ/2)κ+1/2.

For endomorphisms of Pk(C), the exponential mixing for all orders for the measure of maximal
entropy and Hölder observables was established in [DNS10]. As we saw in Section 2.2, such
property holds for a large class of invariant measures with strictly positive Lyapunov exponents
[BD22]. In that case, this was proved by constructing a suitable (semi-)norm on functions that
turns the so-called Ruelle-Perron-Frobenius operator (suitably normalized) into a contraction. As
far as we know, the paper [BD24] gives the first instance where the exponential mixing of all
orders is established for holomorphic dynamical systems with both positive and negative Lyapunov
exponents.

The exponential mixing of all orders is one of the strongest properties in dynamics. It was
recently shown to imply a number of statistical properties, see for instance [BG20; DFL21]. As an
example, a consequence of Theorem 2.3.2 is the following result. Take u ∈ L1(µ). As µ is ergodic,
Birkhoff’s ergodic theorem states that

n−1Sn(u) := n−1(u(x) + u ◦ f(x) + · · ·+ u ◦ fn−1(x)
)
→ 〈µ, u〉 for µ− a.e. x ∈ X.

We say that u satisfies the Central Limit Theorem (CLT) with variance σ2 ≥ 0 with respect to µ if
n−1/2(Sn(u)− n〈µ, u〉)→ N (0, σ2) in law, where N (0, σ2) denotes the (possibly degenerate, for
σ = 0) Gaussian distribution with mean 0 and variance σ2, i.e., for any interval I ⊂ R we have

lim
n→∞

µ
{Sn(u)− n〈µ, u〉√

n
∈ I

}
=


1 when I is of the form I = (−δ, δ) if σ2 = 0,

1√
2πσ2

ˆ
I
e−t

2/(2σ2)dt if σ2 > 0.

By a result of Björklund and Gorodnik [BG20], the following is then a consequence of Theorem
2.3.2. We refer to [BD22; DPU96; DS06a; Dup10; PR07; SUZ14; SUZ15] for other cases where the
CLT for Hölder observables was established in holomorphic dynamics. As is the case for Theorem
2.3.2, this is the first time that this is done for systems with both positive and negative Lyapunov
exponents.

Corollary 2.3.3. Let f be a complex Hénon map and µ its measure of maximal entropy. Then all
Hölder observables u satisfy the Central Limit Theorem with respect to µ with

σ2 =
∑
n∈Z

〈µ, ũ(ũ ◦ fn)〉 = lim
n→∞

1
n

ˆ
X

(ũ+ ũ ◦ f + . . .+ ũ ◦ fn−1)2dµ,

where ũ := u− 〈µ, u〉.

Theorem 2.3.2 and Corollary 2.3.3 in particular apply to any real Hénon map of maximal
entropy [BS04], i.e., complex Hénon maps with real coefficients and whose measure of maximal
entropy is supported in R2. By Friedland-Milnor [FM89], they apply to all automorphisms of C2

which are not conjugated to a map preserving a fibration. They hold also in the larger settings of
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Hénon-Sibony automorphisms (sometimes called regular, or regular in the sense of Sibony) of Ck

in any dimension [Sib99], and invertible horizontal-like maps in any dimension [DNS08; DS06c].

Our method to prove Theorem 2.3.2 relies on pluripotential theory and on the theory of positive
closed currents. The idea is as follows. Using the classical theory of interpolation [Tri95], we
can reduce the problem to the case γ = 2. For simplicity, assume that ‖gj‖C2 ≤ 1 for all j. The
measure of maximal entropy µ of a Hénon map f of C2 of algebraic degree d ≥ 2 is the intersection
µ = T+ ∧ T− of the two Green currents T+ and T− of f [BS91; Sib99]. If we identify C2 to an
affine chart of P2 in the standard way, these currents are the unique positive closed (1, 1)-currents
of mass 1 on P2, without mass at infinity, satisfying f∗T+ = dT+ and f∗T− = dT−.

Consider the automorphism F of C4 given by F := (f, f−1). Such automorphism also admits
Green currents T+ = T+ ⊗ T− and T− = T− ⊗ T+. These currents satisfy (Fn)∗T+ = d2T+ and
(Fn)∗T− = d2T−. Under mild assumptions on their support, other positive closed (2, 2)-currents S
of mass 1 of P4 satisfy the estimate

|〈d−2n(Fn)∗(S)− T−,Φ〉| ≤ cS,Φd−n (2.16)

when Φ is a sufficiently smooth test form. Here, cS,Φ is a constant depending on S and Φ.

We show that proving the exponential mixing for κ+ 1 observables g0, . . . , gκ with ‖gj‖C2 ≤ 1
can be reduced to proving the convergence (we assume that n1 is even for simplicity)

|〈d−n1(Fn1/2)∗[∆]− T−,Θ{gj},{nj}〉| . d−min0≤j≤κ−1(nj+1−nj)/2, (2.17)

where

Θ{gj},{nj} := g0(w)g1(z)(g2 ◦ fn2−n1(z)) . . . (gκ ◦ fnκ−n1(z))T+,

[∆] denotes the current of integration on the diagonal ∆ of C2 × C2, and (z, w) denote the
coordinates on C2 × C2. A crucial point here is that the estimate should not only be uniform in
the gj ’s, but also in the nj ’s. Note also that the current [∆] is singular and the dependence of the
constant cS,Φ in (2.16) from S makes it difficult to employ regularization techniques to deduce
the convergence (2.17) from (2.16).

The key point here is to notice that, when ddcΦ ≥ 0 (on a suitable open set), one can also get
the following variation of (2.16):

〈d−2n(Fn)∗(S)− T−,Φ〉 ≤ cΦd
−n. (2.18)

With respect to (2.16), only the bound from above is present, but the constant cΦ is now indepen-
dent of S. This permits to regularize ∆ and work as if this current were smooth. Note also that,
although Θ{gj},{nj} is not smooth, we can handle it using a similar regularization.

Working by induction, we show that it is possible to replace both Θ{gj},{nj} and −Θ{gj},{nj} in
(2.17) with currents Θ± satisfying ddcΘ± ≥ 0. This permits to deduce the estimate (2.17) from
two upper bounds given by (2.18) for Θ±, completing the proof.
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2.3.2 Automorphisms of compact Kähler manifolds

In [BD23b], we explained how to adapt the strategy above to get the exponential mixing of all
orders and the CLT for the measure of maximal entropy of every automorphism of a compact
Kähler manifold with simple action on cohomology. As non-trivial plurisubharmonic functions do
not exist on compact Kähler manifolds, the approach described above cannot work here. Instead,
we use more refined estimates on the regularity of the currents involved. We prove that if Θ{gj},{nj}
is Hölder continuous in a precise sense (i.e., when seen as a function on the space of positive exact
(k, k)-currents, endowed with a suitable metric), then the convergence (2.17) holds. This is done
by exploiting the theory of super-potentials for positive closed currents, as developed by Dinh and
Sibony [DS09; DS10c].

Let us be more precise. Let (X,ω) be a compact Kähler manifold of dimension k and f a
holomorphic automorphism of X. We refer to [BK09; FT23; McM02; McM07; Ogu09; OT15]
for interesting examples of such maps, and to [dD12; Din05b; DS05a; DS10c] for their general
properties, see also [Can01; CD20; DH22; FT21; Gue10; Ogu14]. We denote by fn the iterate
of order n of f . For 0 ≤ q ≤ k, the dynamical degree dq is defined as the spectral radius of the
pull-back operator acting on the cohomology group Hq,q(X,R) (see also Section 3.3.1). We have
d0 = dk = 1 and dq(fn) = dq(f)n for all n ∈ N.

By a fundamental result of Khovanskii [Kho79], Teissier [Tei79], and Gromov [Gro90], the
sequence q 7→ log dq is concave, see also [DN06] and Section 3.3.1. This implies that there exist
integers 0 ≤ p ≤ p′ ≤ k such that

1 = d0 < d1 < . . . < dp = . . . = dp′ > . . . > dk = 1.

We say that f has simple action on cohomology if p = p′ and if moreover the action of f∗ on
Hp,p(X,R) admits a unique eigenvalue of maximal modulus. Such eigenvalue is then necessarily
equal to dp. We denote in this case by δ = δ(f) the maximum between maxq 6=p dq and the moduli
of the other eigenvalues for the action of f∗ on Hp,p(X,R). We call dp the main dynamical degree
and δ the auxiliary dynamical degree of f .

From now on, we assume that f has simple action on cohomology. It admits a unique probability
measure of maximal entropy µ, which is the intersection of a positive closed (p, p)-current T+ and
a positive closed (k − p, k − p)-current T− (the main Green currents of f), see [DS05a; DS10c].
Such measure is also called the equilibrium measure of f , and is mixing and hyperbolic. It was
shown in [DS10a] that it is exponentially mixing for Hölder observables, see also [Din05a; Vig15;
Wu22].

Theorem 2.3.4 (Bianchi-Dinh [BD23b]). Let f be a holomorphic automorphism of a compact Kähler
manifold (X,ω) with simple action on cohomology. Let dp be its main dynamical degree and δ
its auxiliary dynamical degree. Then, for every δ < δ′ < dp and 0 < γ ≤ 2, the equilibrium
probability measure µ of f is exponentially mixing of all orders κ ∈ N∗ for all Cγ observables, with
θκ = (dp/δ′)−(γ/2)κ+1/2, see Definition 2.3.1.

Using the classical theory of interpolation [Tri95], it is enough to prove the theorem in the case
where γ = 2. Consider the compact Kähler manifold X := X×X. The automorphism F := (f, f−1)
of X and its inverse have simple action on cohomology, with the largest dynamical degree being
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that of order k, which is equal to d2
p. We can define the main Green currents T+ and T− for F as

T+ := T+ ⊗ T− and T− := T− ⊗ T+. They satisfy (Fn)∗(T+) = d2
pT+ and (Fn)∗(T−) = d2

pT−. As
in the case of Hénon maps in the previous section and [BD24], proving the exponential mixing of
order κ for the κ+ 1 observables g0, . . . , gκ can be reduced to proving the estimate

|〈d−n1
p (Fn1/2)∗[∆]− T−,Θ{gj},{nj}〉| .

κ∏
j=0
‖gj‖C2d−min0≤j≤κ−1(nj+1−nj)/2, (2.19)

where [∆] denotes the current of integration on the diagonal ∆ ⊂ X ×X, (z, w) the coordinates
on X ×X, we set

Θ{gj},{nj} := g0(w)g1(z)(g2 ◦ fn2−n1(z)) . . . (gκ ◦ fnκ−n1(z))T+,

and we assumed for simplicity that n1 is even.

In the case of Hénon maps, we saw that the above convergence can be established by proving
that Θ{gj},{nj} can be replaced by suitable currents Θ± with ddcΘ± ≥ 0, for which the estimate
above can be proved thanks to the properties of plurisubharmonic functions. As non-trivial
plurisubharmonic functions do not exist on compact Kähler manifolds, that approach cannot work
here. Instead, we use more refined estimates on the regularity of the currents involved. We prove
that if Θ{gj},{nj} is Hölder continuous in a precise sense (i.e., when seen as a function on the space
of positive exact (k, k)-currents, endowed with a suitable metric), then the convergence (2.19)
holds. This is done by exploiting the theory of super-potentials for positive closed currents, as
developed by Dinh and Sibony.

The main task becomes to prove the Hölder continuity of the current Θ{gj},{nj}. As before,
the estimate needs to be uniform in the nj ’s and in the gj ’s (assuming ‖gj‖C2 ≤ 1 for all j), in
order for the implicit constant in (2.17) not to depend on such parameters. Observe also that this
problem does not exist when just proving the mixing of order κ = 1, see [DS10a]. This is the main
technical point in [BD23b].

By means of a general comparison principle for the super-potentials of positive closed currents
[DNV18], we show that it is enough to find a positive closed current Ξ with a Hölder continuous
super-potential and such that

|ddcΘ{gj},{nj}| ≤ Ξ for all nj and all gj with ‖gj‖C2 ≤ 1.

Finding such Ξ and establishing such an estimate rely on the gap between dp and the auxiliary
dynamical degree of f and on Hölder estimates for the action on f∗ on (p+ 1, p+ 1)-currents, that
we also develop in [BD23b].

As in the previous section, the following is a consequence of Theorem 2.3.4 and [BG20].

Corollary 2.3.5. Let f be a holomorphic automorphism of a compact Kähler manifold (X,ω) with
simple action on cohomology. Then all Hölder observables u : X → R satisfy the Central Limit
Theorem with respect to the measure of maximal entropy µ of f with

σ2 =
∑
n∈Z

〈µ, ũ(ũ ◦ fn)〉 = lim
n→∞

1
n

ˆ
X

(ũ+ ũ ◦ f + . . .+ ũ ◦ fn−1)2dµ,

where ũ := u− 〈µ, u〉.
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Let now X be a compact Kähler surface and f an automorphism of positive entropy. By [Gro03;
Yom87], the topological entropy is equal to log d1, see also [DS04]. In particular, d1 is strictly
larger than 1. A result by Cantat [Can01] says that all the eigenvalues of the action of f∗ on
H1,1(X,R) have modulus 1, except for two eigenvalues d1 and 1/d1, which have multiplicity 1.
In particular, every automorphism of positive entropy of a Kähler surface has simple action on
cohomology.

Corollary 2.3.6. Let f be a holomorphic automorphism of positive entropy on a compact Kähler
surface X. Then, for every 1 < d′ < d1 and 0 < γ ≤ 2, the equilibrium probability measure µ of
f is exponentially mixing of all orders κ ∈ N∗ for all Cγ observables, with θκ = (d′)−(γ/2)κ+1/2, see
Definition 2.3.1. Moreover, all Hölder observables satisfy the Central Limit Theorem with respect to
the measure of maximal entropy of f .
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Other related works

3.1 Weighted equidistribution results

In this section I present the equidistribution of repelling periodic points with respect to the
equilibrium states as in Theorem 2.2.1 and a version of this result for the motions of the repelling
periodic points in stable families of endomorphisms of Pk as in Theorem 1.1.1.

3.1.1 Repelling points and equilibrium states

We use in this section the notations introduced in Section 2.2. The following result, obtained in
[BD23a], is contained in Theorem 2.2.1 and completes its proof.

Theorem 3.1.1 (Bianchi-Dinh [BD23a]). Let f : Pk → Pk be a holomorphic endomorphism of Pk of
algebraic degree d ≥ 2 and satisfying Assumption (Hf). Let ϕ : Pk → R satisfy ‖ϕ‖logq <∞ for some
q > 2 and Ω(ϕ) < log d. Let µϕ be the unique equilibrium state associated to ϕ, and λ the scaling
ratio. Then for every n ∈ N there exists a set P ′n of repelling periodic points of period n in the small
Julia set such that

lim
n→∞

λ−n
∑
y∈P ′n

eϕ(y)+ϕ(f(y))+···+ϕ(fn−1(y))δy = µϕ. (3.1)

A related equidistribution property for Hölder continuous weights was proved by Comman-
Rivera-Letelier [CR11] for (hyperbolic and) topologically Collect-Eckmann rational maps on
P1.

To prove Theorem 3.1.1, we followed a now classical strategy due to Briend-Duval [BD99]
for the measure of maximal entropy (which corresponds to the case ϕ ≡ 0), which permitted
to generalize to any dimension the equidistribution of the periodic points with respect to this
measure, first established by Lyubich [Lyu82; Lyu83a] in dimension 1. We employ a trick due to
Buff [Buf04] which simplifies the original proof. An extra difficulty with respect to the case ϕ ≡ 0
is due to the fact that there is no a priori upper bound for the mass of the left hand side of (3.1)
when we replace P ′n with the set of all repelling periodic points of period n.

Given any point x ∈ Pk we denote by µx,n the measure

µx,n := λ−nρ(x)−1 ∑
fn(a)=x

eϕ(a)+ϕ(f(a))+···+ϕ(fn−1(a))ρ(a)δa.

55
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It follows from Theorem 2.2.1 and Section 2.2 that, for every continuous function g : Pk → R, we
have

〈µx,n, g〉 = λ−nρ(x)−1 ∑
fn(a)=x

eϕ(a)+ϕ(f(a))+···+ϕ(fn−1(a))ρ(a)g(a)→ ρ(x)−1 〈ρ(x)mϕ, ρg〉 = 〈µϕ, g〉

as n→∞. This means that, for all x ∈ Pk, we have µx,n → µϕ as n→∞.

We denote by 0 < L1 ≤ · · · ≤ Lk the Lyapunov exponents of µϕ (we recall that they are strictly
positive since the measure-theoretic entropy of µϕ is larger than (k − 1) log d). We fix in what
follows a constant 0 < L0 < L1. Given x ∈ X, a ball B of center x, and n ∈ N, we say that
g : B → B′ is an m-good inverse branch of f of order n on B if

g ◦ fn = Id|B′ and diam f l(B′) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n.

Notice that the definition in particular implies that diam(B) ≤ e−m. We denote by µ(m)
B,n the

measure
µ

(m)
B,n := λ−nρ(x)−1 ∑

a=g(x)
eϕ(a)+ϕ(f(a))+···+ϕ(fn−1(a))ρ(a)δa,

where the sum is taken on the m-good inverse branches g of f of order n on B. Since we have
µ

(m)
B,n ≤ µx,n for all n ≥ 0, it follows that any limit value µ′B of the sequence

{
µ

(m)
B,n

}
satisfies

µ′B ≤ µϕ. In particular, we have ‖µ′B‖ ≤ 1.
Given m > 1 we say that a ball B centred at x is m-nice if

1. infB ρ > (1− 1/m) supB ρ;

2.
∥∥µ(m)

B,n

∥∥ ≥ 1− 1/m for every n sufficiently large.

Observe that the second condition implies that diam(B) ≤ e−m for every m-nice ball B. Moreover,
we have ‖µ′B‖ ≥ 1 − 1/m for every limit value µ′B of the sequence µ(m)

B,n. The following is a key
step in getting Theorem 3.1.1.

Lemma 3.1.2. For µϕ-almost every x ∈ Pk, every sufficiently small ball centred at x is m-nice.

The proof of Lemma 3.1.2 is elementary but makes uses of the natural extension of the system
(Pk, f, µϕ), see for instance [CFS12, Section 10.4]. We denote by X0, Cf , PCf the small Julia
set, the critical set and the postcritical set PCf := ∪n≥0f

n(Cf ) of f , respectively. We also set
X := X0 \ ∪m∈Nf

−m(PCf ). By Theorem 2.2.1 we have µϕ(f−m(PCf )) = 0 for every m ∈ N,
hence µ(X) = 1. We denote by X̂ the set

X̂ := { x̂ := (xn)n∈Z : xn ∈ X, f(xn) = xn+1 } ,

by πn : x̂ 7→ xn the natural projection from X̂ to X and by f̂ : X̂ → X̂ the map

f̂(. . . , x−1, x0, x1, . . . ) := (. . . , f(x−1), f(x0), f(x1), . . . ) = (. . . , x0, x1, x2, . . . ).

Observe that πn ◦ f̂ = f ◦ πn for all n ∈ Z. Let us consider on X̂ the σ-algebra B̂ generated by all
cylinders, i.e., the sets of the form

An,B := π−1
n (B) = {x̂ : xn ∈ B} for n ≤ 0 and B ⊆ Pk a Borel set



3.1. Weighted equidistribution results 57

and set
µ̂ϕ(An,B) := µϕ(B) for all An,B as above.

It follows from the invariance of µϕ and the fact that xn ∈ B if and only if xn−m ∈ f−m(B) (with
m ≥ 0) that µ̂ϕ is well defined on the collection of the sets An,B and

µ̂ϕ(An,B) = µ̂ϕ(An−m,B) for all m ≥ 0.

Similarly, for every m > 0 and Borel sets B0, B−1, . . . , B−m ⊆ Pk we then have

µ̂ϕ({x̂ : x0 ∈ B0, x−1 ∈ B−1, . . . , x−m ∈ B−m})
= µ̂ϕ({x̂ : x−m ∈ f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m})
= µϕ(f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m).

We then extend µ̂ϕ to a probability measure, still denoted by µ̂ϕ, on B̂. Observe that µ̂ϕ is
f̂ -invariant by construction and satisfies (π0)∗µ̂ϕ = µϕ.

For n > 0 we denote by f−n
x̂

the inverse branch of fn defined in a neighbourhood of x0 and such
that f−n

x̂
(x0) = x−n. This branch exists for all x0 ∈ X. We have the following lemma, which is

again a consequence of the fact that µϕ has strictly positive Lyapunov exponents, see also [BD99]
and [BDM08] for the case of ϕ = 0.

Lemma 3.1.3. For every 0 < L < L1 there exist two measurable functions ηL : X̂ → (0, 1] and
SL : X̂ → (1,+∞) such that, for µ̂ϕ-almost every x̂ ∈ X̂, the map f−n

x̂
is defined on BPk(x0, ηL(x̂))

with Lip(f−n
x̂

) ≤ SL(x̂)e−nL for every n ∈ N.

We can now give an idea of the proof of Lemma 3.1.2.

Proof of Lemma 3.1.2. Since ρ is continuous and strictly positive, we only need to check that, for
µϕ-almost every x ∈ Pk, every sufficiently small ball B centred at x satisfies

∥∥µ(m)
B,n

∥∥ ≥ 1− 1/m for
every n sufficiently large.

Let us consider the disintegration of the measure µ̂ϕ with respect to µϕ and the projection π0.
We denote by µ̂xϕ the conditional measure on {x0 = x}. The measure µ̂xϕ is uniquely defined for
µϕ-almost all x ∈ X and characterized by the identity

〈µ̂ϕ, g〉 = 〈µϕ, u(x)〉 , where u(x) :=
〈
µ̂xϕ, g

〉
for all bounded measurable functions g : X̂ → R. Since (π0)∗µ̂ϕ = µϕ, µ̂xϕ is a probability measure
for µϕ-almost every x.

We will need a more explicit description of the conditional measures µ̂xϕ. For n > 0 and x ∈ X we
consider the measure µ̂xn on X̂ defined as follows. First, let us consider the projection X̂ → Xn+1

given by
π̂n := (π−n, . . . , π−1, π0).

For every element (y−n, . . . , y0) ∈ Xn+1 we choose a representative ẑ ∈ X̂ such that zj = yj for
all −n ≤ j ≤ 0. For any given y0 and any n > 0 we then have dkn distinct such representatives,
and we denote by Ẑn their collection. We then set

µ̂xn := λ−nρ(x)−1 ∑
ẑ∈Ẑn : z0=x

eϕ(z−n)+ϕ(z−n+1)+···+ϕ(z−1)ρ(z−n)δẑ.
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Since this is a finite sum, the measures µ̂xn are well defined on X̂. Moreover, we can prove that

lim
n→∞

µ̂xn = µ̂xϕ for µϕ − almost every x ∈ X. (3.2)

The proof of (3.2) is elementary and is omitted here.

Let us now fix an integer m > 0, a constant L0 < L < L1, and a second positive integer γ. For
every integer N > 0 we set

X̂N :=
{
x̂ ∈ X̂ : ηL(x̂) ≥ N−1 and SL(x̂) ≤ N

}
.

Observe that µ̂ϕ(X̂N ) → 1 as N → ∞. In particular, there exists N0 = N0(m, γ) such that, for
every N > N0, we have µ̂ϕ(X̂N ) > 1 − 1/(2mγ+1). It follows by Markov inequality that there
exists a subset Xγ ⊂ X with µϕ(Xγ) > 1− 1/mγ such that, for all N > N0,

µ̂xϕ(X̂N ∩ {x0 = x}) > 1− 1/(2m) for all x ∈ Xγ .

It is enough to prove the property in the lemma for all x ∈ Xγ . Let us fix one such x. By Lemma
3.1.3 and the definition of X̂N , for every x̂ ∈ X̂N and n ≥ 0 the inverse branch f−n

x̂
is defined on

the ball BPk(x0, N
−1) with Lip(f−n

x̂
) ≤ Ne−nL. In particular, diam(f−n

x̂
(BPk(x0, e

−m/(2N)))) ≤
e−m−nL0 for all n ≥ 0. It follows that all inverse branches on BPk(x, e−m/(2N)) corresponding to
elements x̂ ∈ X̂N ∩ {x0 = x} are m-good for all n.

By (3.2), we have

µ̂xn(X̂N ∩ {x0 = x}) > 1− 1/m for all n large enough.

This precisely means that, for all n sufficiently large, we have
∥∥µ(m)

B,n

∥∥ > 1 − 1/m, where B =
BPk(x, e−m/(2N)). This implies that such a ball B is m-nice and completes the proof of Lemma
3.1.2.

Lemma 3.1.4. There exists a positive constant C = C(L0, q) such that, for all n ∈ N,m > 0, and
every m-good inverse branch g : B → B′ of f of order n on a ball B, and for all sequences of points
{xl}, {yl} with 0 ≤ l ≤ n− 1 and xl, yl ∈ f l(B′) we have

n−1∑
l=0
|ϕ(xl)− ϕ(yl)| ≤ Cm−(q−1).

Proof. Since g is m-good, we have dist(xl, yl) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n − 1. Hence, since∑∞
l=l0>0 l

−r . l
−(r−1)
0 for r > 2, we have

n−1∑
l=0
|ϕ(xl)− ϕ(yl)| ≤

n−1∑
l=0
‖ϕ‖logq | log? dist(xl, yl)|−q ≤ ‖ϕ‖logq

n−1∑
l=0
|1 +m+ (n− l)L0|−q

= ‖ϕ‖logq
n∑
l=1
|1 +m+ lL0|−q ≤ ‖ϕ‖logq

∞∑
l=1
|1 +m+ lL0|−q . m−(q−1),

where the implicit constant depends on L0, q and we used the assumption that q > 2.
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Lemma 3.1.5. Let U be a finite collection of disjoint open subsets of Pk. For every m > 0 there exists
n(m,U) > m and, for every n ≥ n(m,U), a set Qm,n of repelling periodic points of period n in the
intersection of the union of the sets in U with the small Julia set such that, for all U ∈ U ,

(1− 1/m)µϕ(U) ≤ λ−n
∑

y∈Qm,n∩U
eϕ(y)+ϕ(f(y))+···+ϕ(fn−1(y)) ≤ (1 + 1/m)µϕ(U).

Proof. We can assume that U consists of a single open set U , the general case follows by taking
n(m,U) to be the maximum of the n(m,U), for U ∈ U . We can also assume that µϕ(U) > 0
because otherwise we can choose n(m,U) = m+ 1 and Qm,n = ∅. Fix integers m2 � m1 � m.
By Lemma 3.1.2, for µϕ-almost every point a, every ball of sufficiently small radius centred at
a is m2-nice. Hence, we can find a finite family of disjoint m2-nice balls Bi b U , such that
µϕ(U \ ∪Bi) < µϕ(U)/m2. It is then enough to prove the lemma for each Bi instead of U . More
precisely, let B = BPk(a, r) be an m2-nice ball. It is enough to find an n(m2) > m2 and, for all
n ≥ n(m2), a set Q of repelling periodic points of period n in B ∩ supp(µϕ) such that

(1− 1/m1)µϕ(B) ≤ λ−n
∑
y∈Q

eϕ(y)+ϕ(f(y))+···+ϕ(fn−1(y)) ≤ (1 + 1/m1)µϕ(B). (3.3)

We fix in what follows an integer m3 � m2/µϕ(B) and a second ball B? = BPk(a, r?), with
r? < r, such that µϕ(B?) > (1− 1/m2)µϕ(B). Choose a finite family of disjoint m3-nice balls Di

with the property that µϕ(∪Di) > 1− 1/m3. We set D := ∪Di and let bi be the center of Di. We
also fix balls D?

i b Di centred at bi and such that µϕ(∪D?
i ) > 1− 1/m3 and set D? := ∪D?

i .

We have the following two estimates, which are a consequence of the definitions of the objects
involved, the fact that we work with nice balls, and the equidistribution of preimages in Theorem
2.2.1. The proofs are omitted here.

Claim 1. There is an integer M1 = M1(m2, B,B
?, Di) such that, for all N ≥M1, we have

(1− 4/m2)µϕ(B) ≤ µ(m3)
Di,N

(B?) ≤ (1 + 4/m2)µϕ(B) for all i.

Claim 2. There is an integer M2 = M2(m2, B,D
?) such that, for all N ≥M2, we have

1− 4/m2 ≤ µ(m2)
B,N (D?) ≤ 1 + 4/m2.

For every N1 sufficiently large, every point in the support of 1B?µ
(m3)
Di,N1

corresponds to an m3-
good inverse branch of f of order N1 mapping Di to a relatively compact subset of B. Similarly,
for every N2 sufficiently large every point in the support of 1D?µ

(m2)
B,N2

corresponds to an m2-good
inverse branch of f of order N2 mapping B to a relatively compact subset of D. Composing such
inverse branches we get inverse branches gj of fN1+N2 defined on B whose images are relatively
compact in B. In what follows, we only consider these inverse branches gj . We also write gj as
g

(1)
j ◦ g

(2)
j , where g(2)

j is the corresponding inverse branch of fN2 on B (whose image is then in

D) and g(1)
j is the corresponding inverse branch of fN1 on g(2)

j (B). We also set i = i(j), where

g
(2)
j (B) ⊂ Di.
Each inverse branch gj as above contracts the Kobayashi metric of B, and thus admits a unique

fixed point yj , which is attracting for gj and hence repelling for fN1+N2 . Up to possibly increasing
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the integers M1 and M2 given by the Claims above, we can assume that the above properties hold
for N1 = M1 and N2 = M2. We set n(m) := M1(m2) +M2(m2) for a fixed choice of sufficiently
large m1,m2,m3 and, for all n ≥ n(m), we define the set Q as the union of all such fixed points
constructed as above with N1 = M1(m2) and N2 = n−N1 ≥M2(m2). The points in Q are then
repelling periodic points of period n = N1 +N2 for f . Observe that, for all j and all z ∈ B, since
gj(B) b B we have glj(z)→ yj as l→∞. Since B intersects the small Julia set, by taking z in the
small Julia set we see that yj belongs to the small Julia set. To conclude, we need to prove (3.3)
for this choice of Q. We set

µn := λ−n
∑
y∈Q

eϕ(y)+ϕ(f(y))+···+ϕ(fn−1(y))δy = λ−n
∑
j

eϕ(yj)+ϕ(f(yj))+···+ϕ(fn−1(yj))δyj

and

µ̃n := λ−n
∑
j

(
eϕ(g(1)

j (bi(j)))+ϕ(f◦g(1)
j (bi(j)))+···+ϕ(fN1−1◦g(1)

j (bi(j))) ρ(g(1)
j (bi(j)))
ρ(bi(j))

×

× eϕ(g(2)
j (a))+ϕ(f◦g(2)

j (a))+···+ϕ(fN2−1◦g(2)
j (a)) ρ(g(2)

j (a))
ρ(a) δgj(a)

)
.

Observe that there is a correspondence between the terms in µn and those in µ̃n. Moreover, since
all the balls B and Di are m2-nice, we have

|ρ(g(1)
j (bi(j)))/ρ(a)− 1| . m−1

2 and |ρ(g(2)
j (a))/ρ(bi(j))− 1| . m−1

2 for all i and j.

It follows from these inequalities and Lemma 3.1.4 that |µn(B)− µ̃n(B)| . µ̃n(B)m−1
2 . Hence,

in order to conclude it is enough to prove that

(1− 1/(2m1))µϕ(B) ≤ µ̃n(B) ≤ (1 + 1/(2m1))µϕ(B)

because m2 is chosen large enough. By construction, we have

µ̃n(B) =
∑
i

µ
(m2)
B,N2

(D?
i ) · µ

(m3)
Di,N1

(B?).

By Claim 1, this implies that

(1− 4/m2)µϕ(B)
∑
i

µ
(m2)
B,N2

(D?
i ) ≤ µ̃n(B) ≤ (1 + 4/m2)µϕ(B)

∑
i

µ
(m2)
B,N2

(D?
i ).

The assertion then follows from Claim 2 and the fact that
∑
i µ

(m2)
B,N2

(D?
i ) = µ

(m2)
B,N2

(D?), by taking
m2 large enough.

We can now conclude the proof of Theorem 3.1.1. As mentioned at the beginning of the section,
this also completes the proof of Theorem 2.2.1.

End of the proof of Theorem 3.1.1. For every i ∈ N we construct a finite family of disjoint open
sets Ui := {Ui,j}1≤j≤Ji with the following properties:

1. µϕ(∪1≤j≤JiUi,j) = 1;
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2. for all 1 ≤ j ≤ Ji we have diam(Ui,j) < 1/i;

3. for all i ≥ 2 and 1 ≤ j ≤ Ji there exists 1 ≤ j′ ≤ Ji−1 such that Ui,j ⊂ Ui−1,j′ .

We can construct these sets using local coordinates and generic real hyperplanes which are parallel
to the coordinate hyperplanes. Observe also that, by the first condition, we have µϕ(∂Ui,j) = 0 for
all i and 1 ≤ j ≤ Ji.

For every n, we define in := max{m ≤ n : n ≥ n(m,Um)}, where n(m,Um) is given by Lemma
3.1.5. Observe that in → ∞ as n → ∞. We define P ′n ⊂ ∪jUin,j as the union of the sets of
repelling periodic points of period n in the small Julia set obtained by applying Lemma 3.1.5 to
the collection Uin instead of U , and set

µ′n := λ−n
∑
y∈P ′n

eϕ(y)+ϕ(f(y))+···+ϕ(fn−1(y))δy.

By Properties (i) and (ii) of the open sets Ui,j and Lemma 3.1.5, any limit µ′ of the sequence {µ′n}
has mass 1. So, since µϕ(∪jUin,j) = 1 for all n and diam(Ui,j) < 1/i for all i, it is enough to prove
that

lim inf
n→∞

µ′n(Ui?,j?) ≥ µϕ(Ui?,j?) for all i? ∈ N and 1 ≤ j? ≤ Ji? . (3.4)

Indeed, given any open set A ⊆ Pk, we can write A as a countable union of compact sets of
the form U i,j b A, overlapping only on their boundaries. We then see that (3.4) implies that
µϕ(A) ≤ µ′(A) for every open set A, and the facts that ‖µϕ‖ = ‖µ′‖ and µϕ(∂Ui,j) = 0 for all i, j
imply that µϕ = µ′.

We can then fix i?, j? as in (3.4) and a positive number ε, and it is enough to prove that

µ′n(Ui?,j?) ≥ µϕ(Ui?,j?)− ε for all n sufficiently large.

We only consider in what follows integers n such that in > i? and the sets Uin,j which are con-
tained in Ui?,j? . For all such n, we have µϕ(Ui?,j?) =

∑
j µϕ(Uin,j) and µ′n(Ui?,j?) =

∑
j µ
′
n(Uin,j).

It follows by the definition of µ′n and Lemma 3.1.5 that∣∣µ′n(Ui?,j?)− µϕ(Ui?,j?)
∣∣ ≤∑

j

∣∣µ′n(Uin,j)− µϕ(Uin,j)
∣∣ ≤ i−1

n

∑
j

µϕ(Uin,j) = i−1
n µϕ(U).

The assertion follows.

3.1.2 Holomorphic motions of weighted periodic points

In this section we come back to the topic of bifurcations. We present here the result obtained in
[BB23b], together with my PhD student Maxence Brévard. We postponed the description of this
work since it relies on Theorems 2.2.1 and 3.1.1.

As we saw in Chapter 1, it is still an open question whether the stability of a general family of
endomorphisms in any dimension is equivalent to the motion of all the repelling periodic cycles.
On the other hand, we saw in Theorem 1.1.1 that the stability of a family implies at least a weaker
version of the motion of the repelling cycles, see Definition 1.1.4. The cycles in Definition 1.1.4
can be seen, in some sense, as generic with respect to the measure of maximal entropy. More
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precisely, with the terminology introduced in Section 1.1.1, and owing to the equidistribution of
the repelling periodic cycles with respect to the measure of maximal entropy [BD99], we see in
particular that the fact that the existence of P as in Definition 1.1.4 is equivalent to the other
conditions of stability as in Theorem 1.1.1 leads to the following equidistribution result for periodic
graphs in any stable family.

Theorem 3.1.6 (Bianchi [Bia19a]). Let M be an open connected and simply connected manifold and
(fλ)λ∈M a stable family of endomorphisms of Pk of algebraic degree d ≥ 2. Then, for every M ′ bM
and every n ∈ N∗, there exists a non-empty subset Pn ⊂ J of motions γ of n-periodic points such that
γ(λ) is repelling for all λ ∈M ′ and

lim
n→∞

d−kn
∑
γ∈Pn

δγ =M,

whereM is an equilibrium web.

In [BB23b], we addressed the question of the motion of cycles which similarly equidistribute
invariant measures which are equilibrium states for some suitable weight ϕ, as constructed in
Section 2.2 and [BD23a].

Recall from Section 2.2 that if f is an endomorphism of Pk of algebraic degree d ≥ 2 satisfying
condition (Hf) and ϕ is a real continuous function satisfying condition (Hϕ) in Theorem 2.2.1,
the existence and uniqueness of the equilibrium state µϕ for f follow from Theorem 2.2.1.
By the definition of pressure and the assumption on Ω(ϕ), all these equilibrium states satisfy
hµϕ > log dk−1. We saw in Section 1.4 that, given a stable family (fλ)λ∈M and any λ0 ∈ M , for
any fλ0-invariant measure ν satisfying hν > log dk−1, it is possible to construct an associated web
Mλ0,ν with the property that

(pλ0)∗Mλ0,ν = ν,

as well as the associated lamination. This in particular applies to the equilibrium states as above.
The following is the main result of [BB23b].

Theorem 3.1.7 (Bianchi-Brévard [BB23b]). Let M be an open connected and simply connected
manifold and (fλ)λ∈M a stable family of endomorphisms of Pk of algebraic degree d ≥ 2. Take
λ0 ∈ M and assume that fλ0 satisfies condition (Hf) . Let ϕ : Pk → R satisfy (Hϕ) and let µϕ be
the equilibrium state for fλ0 associated to ϕ. Then, for every M ′ bM and every n ∈ N, there exists
a non-empty subset Pϕ,n ⊂ J of motions γ of n-periodic points such that γ(λ) is repelling for all
λ ∈M ′ and

lim
n→∞

e−nP (ϕ) ∑
γ∈Pϕ,n

e
ϕ(γ(λ0))+···+ϕ(fn−1

λ0
(γ(λ0)))

δγ =Mλ0,µϕ .

Observe that, in particular, Theorem 2.2.1 generalizes to general weights ϕ Theorem 3.1.6 , the
latter corresponding to the case ϕ = 0. It gives a holomorphic motion of a large set of repelling
points, related to the equilibrium state µϕ, in an asymptotic sense in the spirit of Definition 1.1.4
for the case of the measure of maximal entropy.

At the parameter λ0, the equidistribution of repelling periodic points with respect to the
equilibrium state µϕ is given by Theorem 2.2.1. As we saw in Section 3.1.1, the proof follows
the now classical strategy by Briend-Duval [BD99], who showed this result for the measure of
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maximal entropy, which corresponds to the case ϕ = 0. When ϕ 6= 0, as the Jacobian of µϕ is
not constant, the proof requires more precise estimates on the contraction along generic inverse
branches for µϕ, which in turn follow from delicate distortion estimates along inverse branches
due to Berteloot-Dupont-Molino [BD19; BDM08]. In [BB23b], we adapted this strategy in the
setting of the dynamical system (J ,F ,Mλ0,µϕ). This requires to precisely control the contraction
of f on tubes (i.e., tubular neighbourhoods, of uniform radius in λ, of the graphs in M ′ × Pk of
elements of J ) centered atMλ0,µϕ-generic elements of J . The following version of Lemma 3.1.2
is the key point of the construction. The definition of m-nice tubes is given after the statement.

Lemma 3.1.8. For every open subset Ω ⊂M and forMλ0,µϕ-almost every γ ∈ X , there exists η0 > 0
such that, for every 0 < η < η0, the tube TΩ(γ, η) is m-nice.

Given Ω ⊂M , γ ∈ X and η > 0, we denote by TΩ(γ, η) the η-neighbourhood of the graph Γγ of
γ in Ω× Pk, i.e.,

TΩ(γ, η) := {(λ, z) ∈ Ω× Pk : distPk(z, γ(λ)) < η}.

We call such neighbourhood a tube at γ over Ω. Observe that a tube TΩ(γ, η) corresponds to the
ball BΩ(γ, η) in the metric space (J ,distΩ), where the distance distΩ is given by

distΩ(γ1, γ2) := sup
λ∈Ω

distPk(γ1(λ), γ2(λ)).

Given a tube T = TΩ(γ, η), the slice T|λ is the ball B(γ(λ), η) = T ∩ ({λ} × Pk). More generally,
given the image of a tube T by a holomorphic map g : T → Ω× Pk fibered over M , we define the
slice g(T )|λ of g(T ) at λ as g(T ) ∩ ({λ} × Pk).

We fix in what follows two constants 0 < A0 < A1, where A1 is a lower bound for the Lyapunov
exponents of (pλ)∗Mλ0,µϕ . Observe that this lower bound is positive as all these measure the same
measure-theoretic entropy of µϕ, which is strictly larger than (k − 1) log. Given Ω ⊂M , γ ∈ X , a
tube T at γ over Ω, and n ∈ N, we say that a map g : T → g(T ) is an m-good inverse branch of f of
order n on T if

1. g ◦ fn = idg(T );

2. diam f lλ(g(T )|λ) ≤ e−m−(n−l)A0 for all λ ∈ Ω and 0 ≤ l ≤ n.

Given an inverse branch g of f of order n defined on a tube T = T (γ0, η), given any γ ∈ J
with Γγ ∩ (Ω× Pk) ⊂ T we can in particular associate to such inverse branch a map γ′g such that
Γγ′g ⊂ g(T ) and F(γ′g) = γ|Ω. In particular, the association γ 7→ γ′g defines a map G on the ball
BΩ(γ0, η), that we can see as an inverse branch for F over such ball.

Given Ω ⊂M and a tube T at γ ∈ X over Ω, we denote byM(m)
T,n the measure

M(m)
T,n := θ(γ)−1∑

γ′g

eψ(γ′g)+...+ψ(Fn−1(γ′g))θ(γ′g)δγ′g ,

where the sum is over the preimages γ′g of γ associated to m-good inverse branches g of f of
order n on T . Given Ω ⊂ M and m > 1, we say that a tube T at γ ∈ X over Ω is m-nice if
‖M(m)

T,n‖ ≥ 1 − 1/m for all n sufficiently large. We say that a ball BΩ(γ, η) is m-nice if the tube
TΩ(γ, η) is m-nice.
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The idea to prove Theorem 3.1.2 in Section 3.1.1 was to consider the natural extension
(P̂k, f̂ , µ̂ϕ) of the system (Pk, f, µϕ) and to construct good approximations of the disintegration of
the measure µ̂ϕ with respect to a projection P̂k → Pk. This was mainly achieved through Lemma
3.1.3, which gave a control on the contraction of generic inverse branches of f with respect to
µϕ. In the current setting, we need to work with the natural extension (Ĵ , F̂ ,M̂λ0,µϕ) of the
dynamical system (J ,F ,Mλ0,µϕ). This can be defined in a similar way as (Pk, f, µϕ), but now the

underlying space Ĵ is much more complicated than P̂k. This is due to the fact that it is a priori
not true that every element of J has dk preimages under F .

Apart from the technical issues above, the main point is to get an exponential contraction along
(Mλ0,µϕ-generic) inverse branches of F . This is achieved through the following proposition, which
is the counterpart of Lemma 3.1.3 in this setting. I had established a version of it in the case of the
measure of maximal entropy in my PhD thesis (see [BBD18, Propositions 4.2 and 4.3]) as a key
point to prove the existence of an equilibrium lamination, and the general case has essentially the
same proof. We had already used it with Rakhimov in the following form in the proof of Theorem
1.4.3.

Proposition 3.1.9. For every open set Ω b M and 0 < A < A1 there exists a Borel subset Ŷ ⊆ Ĵ
with M̂λ0,µϕ(Ŷ) = 1, and two measurable functions η̂A : Ŷ →]0, 1] and l̂A : Ŷ → [1,+∞[ which
satisfy the following properties.

For every γ̂ ∈ Ŷ and every n ∈ N∗ the iterated inverse branch f−n
γ̂

is defined and Lipschitz-

continuous on the tubular neighbourhood TΩ(γ0, η̂A(γ̂)) of the graph Γγ0 ∩ (Ω× Pk) of γ0, and we
have

f−n
γ̂

(TΩ(γ0, η̂A(γ̂))) ⊂ TΩ(γ−n, e−nA) and L̃ip(f−n
γ̂

) ≤ l̂A(γ̂)e−nA,

where L̃ip(f−n
γ̂

) := supλ∈Ω Lip
(
(f−n
γ̂

)|B(γ0(λ),η̂A)
)
.

Once Lemma 3.1.8 is established, the proof of Theorem 3.1.7 follows the same lines as that of
Theorem 3.1.1 (up to a couple of further technical issues due to the more complicated underlying
space J ).

3.2 Degeneration of quadratic polynomial endomorphisms to a
Hénon map

The work [BO20], joint with Yûsuke Okuyama, originated from a questions by Charles Favre. The
original goal was to study an algebraic family of regular quadratic polynomial endomorphisms
of C2 parametrized by a punctured open disk and degenerating to a Hénon map at the puncture.
For one dimensional meromorphic families of rational functions, such degenerations towards
rational functions of lower (topological) degrees had already been intensively studied, see for
instance [DeM16; FG18; DO18]. Favre had recently introduced a general framework to study
such degenerations for holomorphic endomorphisms of Pk in [Fav20] and we provided the first
concrete study in dimension k higher than 1. As a consequence of our estimates, we could also
study the geometry of the bifurcation locus in the space of quadratic holomorphic endomorphisms
of P2, in the sense of Theorem 1.1.1 and Definition 1.1.2, near the degeneration parameters.
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The geometry of the bifurcation locus near the line at infinity of the moduli spaceM2 ∼= C2 of
quadratic rational functions on P1 had been studied in [BG15a], and I had also just studied the
parallel problem near the hyperplane at infinity of the natural parameter space ∼= C3 of quadratic
polynomial skew products on C2 in [AB23] with Matthieu Astorg, as was described in Section 1.3,
see Theorem 1.3.1.

In the rest of this section, we fix a constant c ∈ C∗ and a polynomial p(w) = w2 +c1w+c2 ∈ C[w].
For each ordered pair

(g, h) ∈ C[z, w]× C[z, w] such that deg g = 2, gzz ∈ C∗, and deg h ≤ 2, (3.5)

we focus on the algebraic family

ft(z, w) = ft(z, w; g, h) =
(

w
cz + p(w)

)
+ t

(
g(z, w)
h(z, w)

)
, t ∈ D, (3.6)

of quadratic polynomial endomorphisms of C2 parametrized by D; we also set the constants
gzz/2! =: Gg = G ∈ C∗ and hzz/2! =: Hh = H ∈ C, respectively, and set

g̃(z, w) := g(z, w)−Gz2.

For t = 0, the map f0(z, w) = (w, cz + p(w)) is a Hénon map and is independent of (g, h). For
every 0 < |t| � 1, ft is a regular quadratic polynomial endomorphism of C2, that is, it extends to a
holomorphic endomorphism of P2 (see, e.g., [BJ00]). In particular, if 0 < |t| � 1, then ft admits
a unique maximal entropy measure µft , whose support Jft is compact in C2, and the sum L(ft)
of the two individual Lyapunov exponents χ1(ft) ≥ χ2(ft)(indeed ≥ log

√
2 [BD99]) of ft with

respect to µft is given by

L(ft) =
ˆ

C2
log |det(Dft)|µft ∈ R.

For simplicity, in this section we will call L(ft) the Lyapunov exponent of ft with respect to µft . Here
and below, we fix the trivialization of the tangent bundle TC2 of C2 induced by the orthonormal
frame (∂z, ∂w) of TC2, and identify the derivative df of a polynomial endomorphism f ∈ (C[z, w])2

of C2 with the M(2,C)-valued function p 7→ (Df)p on C2, where (Df)p is the Jacobian matrix of
f at p ∈ C2, by convention.

We regard the set of all (g, h) as in (3.5) as (C∗ × C5)× C6, parametrizing it by the coefficients
of g, h to mention the local uniformity of estimates on (g, h). Set Dr := {|t| < r} and D∗r := {0 <
|t| < r} for each r > 0, as usual.

3.2.1 Degeneration of the Lyapunov exponent

Our first interest was in the asymptotic behaviour of L(ft) as t→ 0, where ft = ft(z, w; g, h), for
each (g, h) as in (3.5). Such a behaviour had been studied for meromorphic families of rational
functions on P1 by DeMarco [DeM16]. In our situation, it follows from Favre’s generalization
[Fav20] of DeMarco’s estimate that there is a non-negative constant α such that

L(ft) = α log |t|−1 + o
(
log |t|−1) as t→ 0
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and that the constant α is characterized as the non-archimedean Lyapunov exponent associated to
the meromorphic family (ft)t∈D∗ , regarding this family as a single rational function defined over a
valued field of formal Laurent series at t = 0. The function t 7→ L(ft)− α log |t|−1 is continuous
and subharmonic on 0 < |t| � 1 (see, e.g., [DS10a] for more details), and is a potential of the
bifurcation current (indeed measure) on 0 < |t| � 1 associated to the family (ft) in the sense of
Theorem 1.1.1 and [BBD18].

In the following, it is convenient to say that the pair (g, h) (or the associated (G,H) = (Gg, Hh))
is non-exceptional if ∣∣∣∣HG

∣∣∣∣ 6= |c|.
Our first main result answered affirmatively Favre’s general question [Fav20, Problem 1] in our
context by establishing the continuous (and indeed harmonic) extendibility of the potential
t 7→ L(ft) − α log |t|−1 across t = 0, with the concrete value α = 1/2, for any non-exceptional
(g, h).

Theorem 3.2.1 (Bianchi-Okuyama [BO20]). The following assertions hold.
(i) Pick (g0, h0) as in (3.5). If (g0, h0) is non-exceptional, i.e., |Hh0/Gg0 | 6= |c|, then for every

β ∈ (0, 1) so small that {
|Hh0/Gg0 | < C(β; g0, h0)|c| if |Hh0/Gg0 | < |c|
|Hh0/Gg0 | > C(β; g0, h0)|c| if |Hh0/Gg0 | > |c|,

there exist r0 ∈ (0, 1) and an open neighborhood Ω0 of (g0, h0) in (C∗ × C5)× C6 such that

log
(1− β) · 4

∣∣|H/G| − C(β; g, h)|c|
∣∣1/2

|G|1/2
≤ L(ft)−

1
2 log |t|−1 ≤ log

(1 + β) · 4
(
|H/G|+ |c|

)1/2
|G|1/2

for every (g, h)∈ Ω0 and every t ∈ D∗r0 . We recall here that ft = ft(z, w; g, h) and (G,H) = (Gg, Hh).
Moreover, for every β ∈ (0, 1) and every non-exceptional (g, h), we set

C(β; g, h) :=
{

(1 + β)−1/2 if |H/G| < |c|,
(1− β)−1/2 if |H/G| > |c|.

In particular, for every non-exceptional (g, h), the non-archimedean Lyapunov exponent α associated
to the meromorphic family (ft)t∈D∗ equals 1/2.

(ii) Pick a non-exceptional (g, h). Then for the algebraic family (ft)t∈D∗ in (3.6) associated to
this (g, h), the continuous and subharmonic function t 7→ L(ft) − (1/2) log |t|−1 is harmonic on
0 < |t| � 1 and extends harmonically across t = 0, satisfying

lim
t→0

(
L(ft)−

1
2 log |t|−1

)
= log

4 max
{
|c|, |H/G|

}1/2

|G|1/2
.

Notice that a similar continuous extendability result had already been obtained for meromorphic
families of polynomials in one variable by Favre–Gauthier [FG18] (see also [GY17] for cubic
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polynomials in one variable) and that examples of discontinuity at t = 0 had been obtained in
[DO18] for meromorphic families of rational functions on P1.

The main idea to prove Theorem 3.2.1 is to get quantitative estimates on the distance between
the critical set and the Julia set as the family degenerates. This, in turn, gives estimates of the
Lyapunov exponent. I give below an overview of the estimates that lead to the first item of
the Theorem for an explicit choice of the parameter involved (possibly the simplest ones). The
estimates for the general case and for the regularity in the second item are more refined, but
essentially similar.

Let us first recall a simple computation from dimension 1. Consider the family ft(z) = z2 + t−1,
and its degeneration as t→ 0 (in particular, we assume here that t can be taken arbitrarily close
to 0). Classical estimates give that the Julia set of ft is contained in the ball B(0, |2t|−1). Moreover,
for |t| sufficiently small, it is also possible to prove that every point in the ball B(0, |2t|−1/2) escapes
to infinity. Hence, the Julia set Jt of fλ is contained in the annulus {|2t|−1 ≤ |z| ≤ |2t|−1/2}. As
f ′t(z) = 2z for every t, we have

log |2t| ≤ min
Jλ

log |f ′t | ≤ L(ft) =
ˆ

log |f ′t |µλ ≤ max
Jt

log |f ′t | ≤ −
1
2 log |2t|,

which gives the estimates

log |t| . L(fλ) . 1
2 log |t|.

where the inequalities are up to additive constants. In particular, the non Archimedean Lyapunov
exponents of the family is at least 1/2 (more precise estimates, for instance a computation of the
Green function at 0, show that this is indeed the value).

Let us now consider the 2-dimensional family ft(z, w) = (w + tz2, z + w2), for t ∈ C∗. We can
see that ft degenerates to the map f0(z, w) := (w, z + w2), which is a Hénon map. The following
lemma gives some estimates on the position of the Julia set of ft. In this case, the lemma can also
be deduced from [Duj17, Lemma 5.2].

Lemma 3.2.2. Fix two constants 0 < γ < 1/2 < α < 1 and set

Vt :=
{

(z, w) ∈ C2 : 1
2 |t| < |z| <

3
2 |t| ,

1
|t|γ

< |w| < 1
|t|α

}
.

Then for t sufficiently small we have f−1
t (Vt) b Vt.

It follows from this lemma that the Julia set of ft is contained in Vt. A straightforward
computation also shows that the critical set does not intersect Vt and thus also the Julia set.

We can now show that, for every 0 < γ < 1/2 < α < 1, we have

γ log 1
|t|

. L(ft) . α log 1
|t|
,

where again the inequalities are up to additive constants. Indeed, since the Julia set is contained
in the set Vt and the Jacobian is given by 4zwt− 1, we have (for every t sufficiently small),

L(ft) =
ˆ

log Jac(ft)µt ≤ sup
Vt

log |4zwt− 1| ≤ log
(∣∣∣∣4 3

2 |t|
1
|t|α
|t|
∣∣∣∣+ 1

)
≤ α log 1

|t|
+ C
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and

L(ft) =
ˆ

log Jac(ft)µt ≥ inf
Vt

log |4zwt− 1| ≥ log
(∣∣∣∣4 1

2 |t|
1
|t|γ
|t|
∣∣∣∣− 1

)
≥ γ log 1

|t|
− C ′.

for some constants C,C ′. The asymptotic behaviour L(ft) ∼ 1
2 log 1

|t| follows.

3.2.2 Accumulation of the bifurcation locus to the Hénon locus

Let us now focus on the family

ft,G,H(z, w) :=
(

w
cz + p(w)

)
+ t

(
Gz2

Hz2

)
, (t, G,H) ∈ D∗ × C∗ × C,

of quadratic polynomial endomorphisms of C2, which are regular for every t ∈ D∗ since the leading
homogeneous term (tGz2, w2 + tHz2) of ft,G,H maps only (0, 0) to (0, 0).

Theorem 3.2.3 (Bianchi-Okuyama [BO20]). The bifurcation locus in the parameter space D∗×C∗×C
of the family (ft,G,H) accumulates to {t = 0} in D× C∗ × C tangentially to the locus |H/G| = |c| in
D∗ × C∗ × C.

The set Hol2(P2) of all quadratic holomorphic endomorphisms of P2 is a Zariski open subset in
PN2 , where N2 = 3 · 4!/(2!2!)− 1 = 17, in the coefficients parametrization, and in turn is regarded
as the parameter space of the holomorphic family of (all) quadratic holomorphic endomorphisms
of P2. We also note that all Hénon maps live in PN2 \Hol2(P2) in the coefficients parametrization.

The following immediate consequence of Theorem 3.2.3 answered affirmatively a question
posed by Johan Taflin.

Corollary 3.2.4. The whole Hénon locus in PN2 \Hol2(P2) is accumulated by the bifurcation locus of
Hol2(P2).

The proof of Theorem 3.2.3 is based on Theorem 3.2.1(i) and is purely analytical. It essentially
follows from the estimate in the second item of Theorem 3.2.1, which allows us to show explicitly
that the Lyapunov function is not harmonic in any neighbourhood of the degenerating parameter.
In former studies, the presence of bifurcations had been established by means of more geometric
arguments, usually by creating Misiurewicz parameters, see, e.g., [BT17; Duj17; BB18a; Taf21;
AB23; Bie19].

3.2.3 Individual Lyapunov exponents

It follows from a result by Pham [Pha05] that, for any holomorphic family (ft)t∈M parametrized by
a complex manifoldM of holomorphic endomorphisms of Pk, if we denote by χ1(ft) ≥ · · · ≥ χk(ft)
all the individual Lyapunov exponents of ft with respect to µft for each t ∈ M , then for every
j ∈ {1, . . . , k}, the function t 7→

∑j
`=1 χ`(ft) on M is plurisubharmonic.

Let us focus on our family (ft) as in (3.6). Recall that the function t 7→ L(ft) ≡ χ1(ft) + χ2(ft)
is continuous and subharmonic on 0 < |t| � 1, so by the above result by Pham, the function
t 7→ χ1(ft) is subharmonic and the function t 7→ χ2(ft) is lower semicontinuous, in general. We
conclude this introduction with the following precision of Theorem 3.2.1(ii).
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Theorem 3.2.5 (Bianchi-Okuyama [BO20]). Pick a non-exceptional (g, h). Then for the algebraic
family (ft)t∈D∗ in (3.6) associated to this (g, h), the functions t 7→ χ1(ft)− 1

2 log |t|−1 and t 7→ χ2(ft)
are harmonic on 0 < |t| � 1 and extend harmonically across t = 0, satisfying

lim
t→0

(
χ1(ft)−

1
2 log |t|−1

)
= log

2 max
{
|c|, |H/G|

}1/2

|G|1/2
and lim

t→0
χ2(ft) = log 2.

The proof of the harmonicity of χ1(ft), χ2(ft) is based on the estimates developed so far and
on the full strength of Berteloot–Dupont–Molino’s approximations, that is, approximations of not
only χ1(ft) + χ2(ft)(= L(ft)) but also χ1(ft) [BDM08, Theorem 1.5].

3.3 Dynamical degrees of Hénon-like and polynomial-like maps

This section mainly describes the content of the paper [BDR23], written in collaboration with
Tien-Cuong Dinh and Karim Rakhimov, see Section 3.3.1. In Section 3.3.2, I also describe the
result from [BR22] that was postponed in Section 1.4.

3.3.1 Monotonicity of dynamical degrees

Let f : X → X be dominant rational self-map of a complex projective manifold, or more generally
a dominant meromorphic self-map of a compact Kähler manifold of dimension k. Let ω be a Kähler
form on X. For any 0 ≤ s ≤ k one can define the sequence λ+

s,n := ‖(fn)∗(ωk−s)‖X of the masses
of the positive closed (k − s, k − s)-currents (fn)∗(ωk−s), and the dynamical degree of order s of f
as

λ+
s := lim sup

n→∞
(λ+
s,n)1/n.

For cohomological reasons, ωk−s could be replaced by any smooth form or some positive closed
current in the same cohomology class. In particular, the sequence (λ+

s,n)n∈N detects the volume
growth of s-dimensional subvarieties (whenever they exist) under the action of fn, for n ∈ N.

It turns out that the sequences (λ+
s,n)n∈N are (almost) sub-multiplicative, hence the lim sup in

the definition above is actually a limit [DS04; DS05b; Gue05; RS97; Ves92], see also [Dan20;
Tru20]. For a precise behaviour of these sequences in a number of settings, see also [BFJ08;
DF21; FW12; Ngu06; Tru14] and references therein. It is also a consequence of the fundamental
Khovanskii-Teissier inequalities that the sequence of the dynamical degrees λ+

s is log-concave, i.e.,
the function s 7→ log λ+

s is concave [DN06; Gro90; Kho79; Tei79]. An immediate consequence of
this property is that there exists 1 ≤ p ≤ k such that

λ+
0 ≤ λ

+
1 ≤ . . . ≤ λ

+
p ≥ . . . ≥ λ+

k−1 ≥ λ
+
k . (3.7)

When X is projective, this means that the growth rate under the action of f of the volumes of
s-dimensional analytic subsets, for s ≤ p, dominates that of (s− 1)-dimensional analytic subsets,
and the reversed property is true for s > p. Moreover, the so-called algebraic entropy log λ+

p of f is
larger than or equal to the (topological) entropy of the system [DS04; DS05b; Gro03; Vu21], see
also [dV10; Yom87] for the reversed inequality.
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Let us stress that the proof of the log-concavity of the sequence of the degrees {λ+
s }0≤s≤k, and as

a consequence that of (3.7), deeply relies on the algebraic setting and on cohomological arguments
(Hodge-Riemann theorem). In particular, it breaks down when considering non-compact or local
situations, even when λ+

k is the degree of maximal value (i.e., when the system is somehow
geometrically expanding). We addressed this problem in [BDR23], with new tools coming from
pluripotential theory.

We consider in this section invertible horizontal-like maps in any dimensions and polynomial-like
maps in any dimensions. In dimension 2, horizontal-like maps were introduced by Hubbard and
Oberste-Vorth in [HO95] and systematically studied by Dujardin in [Duj04], as a generalization
of Hénon automorphisms [BLS93; FS92; Sib99]. For these maps, the properties of dynamical
degrees that we consider in this section are obvious. We will focus on horizontal-like maps in any
dimensions which have been studied in [DNS08; DS06c]. Horizontal-like maps are essentially
holomorphic maps, defined on some bounded (convex, for simplicity) subset D of Ck, that have an
expanding behaviour in p directions and contracting behaviour in the remaining k − p directions.
Such expansion and contraction are of global nature, and these maps are in general not uniformly
hyperbolic. Assuming D = M ×N (with M b Cp and N b Ck−p bounded convex domains), the
map f sends a vertical open subset of D to a horizontal one and, roughly speaking, the vertical
(resp. horizontal) part of the boundary of the first to the vertical (resp. horizontal) part of the
boundary of the second. As a particular case, when p = k the set N reduces to a point and one
recovers the notion of polynomial-like maps, proper holomorphic maps of the form f : U → V , for
some open bounded subsets U b V b Ck, with V convex [DS03; DS10a]. Polynomial-like maps
in dimension 1 were first introduced by Douady and Hubbard in [DH85]. Properties of dynamical
degrees in dimension 1 are obvious.

Horizontal-like and polynomial-like maps can be seen as the building blocks of larger systems
and, in particular, give a good setting to study local dynamical problems in larger dynamical
systems. Small perturbations of such maps still belong to these classes (up to slightly shrinking
the domain of definition), hence we get large classes of examples, and the families are infinite-
dimensional. As examples, perturbations of lifts to Ck+1 of holomorphic endomorphisms of Pk(C)
give examples of polynomial-like maps. Perturbations of complex Hénon automorphisms of C2

[BLS93; FS92; Sib99] give horizontal-like maps with k = 2 and p = 1. Such maps were for instance
considered in [Duj04]. More generally, we call any invertible horizontal-like map a Hénon-like
map. It is known that not all polynomial-like maps are conjugated to, or are small perturbations
of, polynomial endomorphisms, see for instance [DS10a, Example 2.25]. One can deduce a
similar property for horizontal-like maps considering maps of the form (z, w) 7→ (h(z) + εw, ε′z)
on suitable domains, with h a polynomial-like map, see [Duj04]. In particular, one can construct
horizontal-like maps with both attracting and repelling points, something which is not possible for
Hénon maps.

Given a Hénon-like map or a polynomial-like map, one can introduce dynamical degrees as
above. Denoting again by ω the standard Kähler form on Ck, one can roughly define

λ+
s := lim sup

n→∞
(λ+
s,n)1/n, where λ+

s,n := ‖(fn)∗ωk−s‖M ′×N ′ .

Here M ′ b M and N ′ b N are open convex sets slightly smaller than M and N respectively.
In fact, we can show that λ+

s is independent of the choice of D′ := M ′ × N ′. Because of the
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geometry of the problem, these definitions are only given for 0 ≤ s ≤ p. On the other hand, for
Hénon-like maps, since p < k, one can also define the remaining degrees as λ−s (f) := λ+

s (f−1) for
0 ≤ s ≤ k − p (since f−1 is a “vertical-like" map with k − p expanding directions).

Observe that, a priori, the sequences (λ+
s,n)n∈N above do not need to be sub-multiplicative this

time. More importantly, the lack of a Hodge theory means that, a priori, the resulting degree may
change if one replaces ωs with the integration on a given analytic set of dimension k − s, or more
generally with a (positive closed) current of bi-degree (s, s). Hence, for 0 ≤ s ≤ p it is natural to
also introduce the degree

d+
s := lim sup

n→∞
(d+
s,n)1/n, where d+

s,n := sup
S
‖(fn)∗(S)‖M ′×N

and S runs over the set of all horizontal positive closed currents of bi-dimension (s, s) and of mass
1 on D′ := M ′ ×N ′. These definitions are also independent of the choice of D′. As for λ−s , for
Hénon-like maps we can define the remaining dynamical degrees as d−s (f) := d+

s (f−1) for every
0 ≤ s ≤ k−p. By [DNS08], we have λ+

p = λ−k−p = d+
p = d−k−p =: d ∈ N. This is the main dynamical

degree, which is crucial in the construction of Green currents, in particular, to control the mass of
vertical positive closed (p, p)-currents and horizontal positive closed (k − p, k − p)-currents using
an adapted intersection theory, see [DNS08; DS06c]. The other degrees {d+

s }0≤s≤p−1 also play
an important role in [DNS08] to control the norm of the pushforwards of the other horizontal
positive closed currents.

The following theorems are our main results, which in particular answer [DNS08, Question
6.3].

Theorem 3.3.1 (Bianchi-Dinh-Rakhimov [BDR23]). Let 1 ≤ p < k be integers and f be a Hénon-
like map from a vertical open subset of a bounded convex domain D = M × N ⊂ Cp × Ck−p

to a horizontal open subset of D. Then, the sequences {λ+
s }0≤s≤p, {λ−s }0≤s≤k−p, {d+

s }0≤s≤p, and
{d−s }0≤s≤k−p satisfy

λ+
0 ≤ λ

+
1 ≤ . . . ≤ λ

+
p = d = λ−k−p ≥ . . . ≥ λ

−
1 ≥ λ

−
0

and
1 = d+

0 ≤ d
+
1 ≤ . . . ≤ d

+
p = d = d−k−p ≥ . . . ≥ d

−
1 ≥ d

−
0 .

Moreover, we have λ+
p = d+

p ∈ N.

Since log d+
p is equal to the topological entropy ht(f) of f [DNS08], we deduce the following

immediate consequence of Theorem 3.3.1.

Corollary 3.3.2. Let p, k, f be as in Theorem 3.3.1. Then, for all 0 ≤ s+ ≤ p and 0 ≤ s− ≤ k− p we
have

log λ±s± ≤ log d±s± ≤ log d+
p = ht(f).

Theorem 3.3.1 also shows that the assumption d > max(max0≤s≤p−1 d
+
s ,max0≤s≤k−p d

−
s ) can

be weakened to d > max(d+
p−1, d

−
k−p−1) in [DNS08, Theorem 5.4]. This implies that the measure

of maximal entropy for f constructed in [DNS08] is hyperbolic as soon as this last assumption is
satisfied.
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The proof of the monotonicity of the sequence {d+
s }0≤s≤p in Theorem 3.3.1 can be applied

also when f is not invertible. On the other hand, our proof of Theorem 3.3.1 does not give the
monotonicity of the sequence {d−s }0≤s≤k−p when f is not invertible, as well as the monotonicity
of the sequences {λ+

s }0≤s≤p and {λ−s }0≤s≤k−p when p 6= k. The reason is essentially that the
pushforward of smooth forms is not smooth when f is not invertible, which implies that the
definition of the degrees λ+

s and λ−s may a priori depend of the domains of definition. Our proof
of Theorem 3.3.1 also does not give any information on the possible log-concavity of the sequence
{d+

s }0≤s≤p.

When p = k, i.e., f is a polynomial-like map, the problems above can be avoided and, in
particular, the degrees do not depend on the domain of definition [DS03]. As a consequence, we
have the following version of Theorem 3.3.1 for polynomial-like maps.

Theorem 3.3.3 (Bianchi-Dinh-Rakhimov [BDR23]). Let k ≥ 1 be an integer and take open sets
U b V b Ck with V convex. Let f : U → V be a polynomial-like map of topological degree dt. Then
the sequences {λ+

s }0≤s≤k and {d+
s }0≤s≤k satisfy

λ+
0 ≤ λ

+
1 ≤ . . . ≤ λ

+
k = dt and 1 = d+

0 ≤ d
+
1 ≤ . . . ≤ d

+
k = dt.

In particular, all the dynamical degrees of f are smaller than or equal to dt.

As far as we are aware of, the only (non trivial) cases where the monotonicity of the dynamical
degrees could be established until now are of algebraic nature, and such monotonicity is a
consequence of the log-concavity property mentioned above. In a nutshell, in order to establish
the monotonicity of the sequence {d+

s }0≤s≤p, given a (horizontal positive closed) current S of
bi-dimension (s, s) with s < p, one needs to find another current, of bi-dimension (s+ 1, s+ 1)
whose mass growth under iteration bounds the mass growth of S under iteration. This is not a big
problem when S is smooth (which essentially gives the monotonicity of the sequence {λ+

s }0≤s≤p,
whose proof is considerably easier and does not rely on the arguments below). The main problem
arises when S is not smooth, and already in the case where S is given by the integration on an
analytic set. Even considering an analytic set containing the first one, it is not clear at all why the
iterates of the first should behave nicely inside the iterates of the second.

Our solution to the problem can be roughly explained as follows. Given a (horizontal positive
closed) current S in D, we first construct a “holomorphic" family of positive closed currents Sθ
parametrized by θ ∈ D and with S0 ≥ S. We then consider all these currents as the slices of a
unique current R, of bi-dimension (s+ 1, s+ 1), on the space D×D, using the slices D×{θ}. The
candidate to the role of current of bi-dimension (s+ 1, s+ 1) in D would then be R := (πD)∗(R),
where πD : D × D → D is the natural projection. Two difficulties arise here. First, we need to
make sure that R is well-defined and horizontal in D. In order to do this, we suitably modify R
in the space D × D = M ×N × D, in order to make it become horizontal in M × (N × D), i.e.,
to have support contained in M ×K, for some compact subset K of N × D. This makes both
the projection (πD)∗(R) well-defined (since now the projection πD is proper on the support of
R), and horizontal there (since the projection of the support of R on N is relatively compact). In
order to do this, we exploit some results in the theory of the d, ∂, and ddc equations. Observe that,
in order to get all these controls, it is crucial to work with the extra flexibility given by (positive
closed) currents, and not only with analytic subsets.
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Once R is well-defined, we still need to make sure that the growth of the mass of (fn)∗(R)
dominates the growth of the mass of (fn)∗(S). In order to get this, we need to pay extra attention,
and get further estimates, during the construction of R and R. More precisely, we make sure that
the family of deformations Sθ, and the family of the slices Rθ of R with D × {θ} are sufficiently
continuous in a suitable sense. Studying the growth of the mass of (fn)∗(R) in D amounts to
study the mass growth of (Fn)∗(R), where F := (f, id) on D × D. We prove that the sequence of
functions ϕn on D, where ϕn(θ) is the mass of (fn)∗(Rθ) (suitably normalized), is bounded with
respect to a suitable norm (the DSH norm). A now-classical theorem by Skoda then implies that a
large growth of this sequence at θ = 0 must imply a large growth of this sequence for θ sufficiently
close to 0. Going back to currents, this implies a bound (from below) on the growth of the mass of
(fn)∗(Rθ), hence of (Fn)∗(R), and hence of (fn)∗(R). The assertion then follows.

3.3.2 Entropy and dynamical degrees for polynomial like-maps

In this section I briefly come back to the work [BR22] that was described in the Section 1.4. As we
mentioned at the end of that section, the main results of that paper still hold in the more general
setting of families of polynomial-like maps of large topological degree. With the terminology of
the previous section, this means that dt > d+

k−1. By Theorem 3.3.3, this implies that dt > d+
s for

all 0 ≤ s ≤ k − 1.

As mentioned in Section 1.4, Theorem 1.4.3 applies also to families of polynomial-like maps.
However, the proof of Corollary 1.4.4 relies on a result by de Thélin and Dupont, stating that every
measure whose entropy is strictly larger than (k− 1) log d has strictly positive Lyapunov exponents.
We proved in [BR22] the following generalization of such result to the setting of polynomial like
maps.

Theorem 3.3.4 ([Bianchi-Rakhimov [BR22]). ] Let f : U → V be a polynomial-like map of large
topological degree. Let ν be an ergodic f -invariant probability measure satisfying hν(f) > log d+

k−1(f).
Then all the Lyapunov exponents of ν are larger than or equal to (hν(f)− log d+

k−1)/(2m) > 0, where
m is the multiplicity of the smallest Lyapunov exponent of ν.

In the case of endomorphisms of Pk, this result is due to de Thélin [deT08] and Dupont [Dup12].
When ν is the measure of maximal entropy, it is a result of Dinh-Sibony [DS03], see Briend-Duval
[BD99] for the case of endomorphisms of Pk. Although the proof of Theorem 3.3.4 follows the
strategy of the proof of de Thélin and Dupont, because of the lack of a Hodge theory in this setting,
we needed to replace some cohomological arguments when working with polynomial-like maps.
We also could not exploit the linearity of the sequence {d∗p}1≤p≤k of the dynamical degrees.

Theorem 3.3.4 relies on Theorem 3.3.3 in the following sense. A priori, setting d∗(f) :=
max0≤s≤k−1 d

+
s (f), our proof gives that if a measure ν satisfies hν(f) > log d∗(f), then all the

Lyapunov exponents of ν are larger than or equal to (hν(f)− log d∗(f)/(2m) > 0. Theorem 3.3.4
in the form above then follows from the equality d∗(f) = d+

k−1(f) given by Theorem 3.3.3.

Once Theorem 3.3.4 is established, thanks to it we can get the following version of Corollary
1.4.4 for general families of polynomial-like maps of large topological degree.

Corollary 3.3.5. Let M be a connected and simply connected complex manifold and let (fλ)λ∈M be a
stable family of polynomial-like maps of large topological degree. Fix λ0 ∈M and h ∈ R such that
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log d∗k−1(fλ0) < h < log dt and let Mλ0,h be a simply connected open neighbourhood of λ0 such that
log d∗k−1(fλ) < h for any λ ∈Mλ0,h. Then

1. for every ergodic fλ0-invariant probability measure ν0 on Jλ0 such that hν0(fλ0) > h, the
properties (S4’) and (S5’) hold on Mλ0,h;

2. there exists a dynamical lamination L satisfying ν({γ(λ) : γ ∈ L}) = 1 for every λ ∈ Mλ0,h

and every fλ-invariant measure ν such that hν(fλ) > h.

3.4 A Mañé-Manning formula for expanding measures for
endomorphisms of Pk

In the paper [BH23], written with Yan Mary He, we proved a version of the Mañé-Manning
formula in several complex variables. The content of this section is dynamical, but does not rely
on pluripotential techniques.

Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2 and ν an ergodic f -invariant probability
measure whose Lyapunov exponent is strictly positive. Such a measure is necessarily supported on
the Julia set J(f) of f . There is a well-known relation between the Hausdorff dimension HD(ν),
the measure-theoretic entropy hν(f), and the Lyapunov exponent χν(f) of ν; namely, we have

HD(ν) = hν(f)
χν(f) . (3.8)

This formula is usually referred to as the Mañé-Manning formula; see [Man84; Mañ88]. Hofbauer
and Raith [HR92] proved a version of (3.8) for piecewise monotone maps on the unit interval
with bounded variation; see also [Led81]. The fact that (3.8) holds in one-dimensional complex
dynamics crucially relies on distortion estimates for univalent holomorphic maps coming from
Koebe’s theorem; see Section 3.4.2.

For smooth dynamical systems in higher dimensions, related formulas are known to hold in
a number of settings. If f : M → M is a diffeomorphism of a compact manifold M and ν is an
ergodic probability measure on M which is absolutely continuous with respect to the Lebesgue
measure, Pesin [Pes77] proved that

hν(f) = χ+
ν (f)

where χ+
ν (f) is the sum of the non-negative Lyapunov exponents of f counted with multiplicity;

see also [Mañ81]. When M is a surface, Young [You82] proved that

HD(ν) = hν(f)
χ+

+ hν(f)
|χ−|

when ν is ergodic and χ− < 0 < χ+ are its Lyapunov exponents. This formula has been generalized
to the case of diffeomorphisms in any dimension; see [LY85] and [BPS99]. Such systems display
attracting and repelling directions, and one decomposes the problem into two problems, one for f
(along unstable manifolds) and one for f−1 (along stable manifolds). The Mañé-Manning formula
(3.8) can be seen as a version of Young’s result in (complex) dimension 1 where the system is not
invertible. In [BH23], we addressed the validity of (3.8) in several complex variables, and more
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specifically for expanding measures for (non-invertible) holomorphic endomorphisms of projective
spaces in any dimension.

Let k ≥ 1 be an integer and denote Pk := Pk(C). If f : Pk → Pk is a holomorphic endomorphism
of algebraic degree d ≥ 2, it is not hard to find examples where (3.8), with χν replaced by the
sum of the Lyapunov exponents of ν (the natural generalization of the expansion rate along
generic orbits), does not hold. For instance, one can consider product self-maps of C2 of the form
(z, w) 7→ (z2 + a1, w

2 + a2), where ai ∈ C are such that the measures of maximal entropy of each
component have different Hausdorff dimensions.

In [BD03], Binder-DeMarco proposed a conjectural formula for the Hausdorff dimension of the
measure of maximal entropy µ of an endomorphism of Pk as follows:

HD(µ) = log d
χ1

+ · · ·+ log d
χk

.

This conjecture has been partially settled [BD03; DD04; Dup11], and also versions of it have been
proposed (and partially proved) for more general invariant measures [DD04; Dup11; Dup12;
dV15; DR20]. In [BH23], we introduced a natural dimension VD(ν) for ergodic f -invariant
measures ν with strictly positive Lyapunov exponents and show that this dimension satisfies a
natural generalization of (3.8), where χν is replaced by (two times) the sum of the Lyapunov
exponents.

3.4.1 Results

Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. The Julia set J(f)
of f is the support of the unique measure of maximal entropy of f [Lyu83a; BD01; DS10a]. Let
M+(f) (resp. M+

J (f)) be the set of ergodic invariant probability measures on Pk (resp. on J(f))
with strictly positive Lyapunov exponents. The setM+

J (f) contains the setM+
e (f) of all ergodic

probability measures whose measure-theoretic entropy is strictly larger than (k − 1) log d [deT08;
Dup12], which are the natural generalization of the ergodic measures with strictly positive entropy
in dimension 1. We saw in Section 2.2 how to construct large classes of examples of measures in
M+

e (f), see also [Dup12; UZ13; SUZ14].
We introduced a volume dimension for measures ν ∈M+(f); see Section 3.4.2 for an overview

of the construction. The volume dimension is dynamical in nature and generalizes the notion
of Hausdorff dimension in dimension 1 to higher dimensions to incorporate the absence of an
analogue of Koebe’s theorem and the non-conformality of holomorphic endomorphisms.

For ν ∈ M+(f), we denote by VD(ν) the volume dimension, hν(f) the measure-theoretic
entropy, and Lν(f) the sum of the Lyapunov exponents of ν. The main result of [BH23] relates
these three quantities and generalizes the Mañé-Manning formula to any k ≥ 1.

Theorem 3.4.1 (Bianchi-He [BH23]). Let f : Pk → Pk be a holomorphic endomorphism of algebraic
degree d ≥ 2. For every ν ∈M+(f) we have

VD(ν) = hν(f)
2Lν(f) .

When k = 1, Theorem 3.4.1 reduces to the Mañé-Manning formula (3.8), as in this case we can
prove that 2 VD(ν) = HD(ν). The factor 2 = 2k/k is due to the fact that we weight open sets of
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covers by their volume instead of their diameter and we have k Lyapunov exponents, counting
multiplicities.

As an application of Theorem 3.4.1, we can study a number of natural dimensions and quantities
associated to an endomorphism f . In dimension 1, these quantities are already defined and well
studied; see for example [DU91b; DU91c; PU10; McM00a]. We first define a dynamical dimension
DD+

J (f) of f as
DD+

J (f) := sup
{

VD(ν) : ν ∈M+
J (f)

}
.

For k = 1, recall that the pressure function is defined as

P (t) := sup
ν
{hν(f)− tχν(f)} ,

where t ∈ R and the supremum is taken over the set of invariant probability measures on J(f).
In fact, the supremum can be taken over ν ∈M+

J (f) =M+(f). This can be seen by combining
Ruelle’s inequality [Rue78a] with a theorem of Przytycki [Prz93] stating that all invariant measures
supported on the Julia set of a rational map have non-negative Lyapunov exponent.

For any k ≥ 1, we define in a similar way a pressure function P+
J (t) as

P+
J (t) := sup

{
hν(f)− tLν(f) : ν ∈M+

J (f)
}
.

By the above, we have P+
J (t) = P (t) when k = 1. We remark that, for any k ≥ 2, there may exist

ergodic probability measures ν on J(f) with Lν(f) < 0. However, as in the case of k = 1, the
pressure function P+

J (t) is still non-increasing and convex for all k ≥ 1. We define

p+
J (f) := inf

{
t > 0: P+

J (t) ≤ 0
}
.

As a consequence of Theorem 3.4.1, we have the following result which generalizes a theorem
due to Denker-Urbański [DU91b; DU91c] in the case of rational maps to any dimension.

Theorem 3.4.2 (Bianchi-He [BH23]). Let f : Pk → Pk be a holomorphic endomorphism of algebraic
degree d ≥ 2. Then we have

2 DD+
J (f) = p+

J (f).

Finally, in the spirit of the celebrated Bowen-Ruelle formula for hyperbolic maps [Bow79;
Rue82], we give an interpretation of p+

J (f) when f is hyperbolic (i.e., uniformly expanding on
J(f)) in terms of (volume-)conformal measures. Given t ≥ 0, we say that a probability measure ν
on J(f) is t-volume-conformal on J(f) if, for every Borel subset A ⊂ J(f) on which f is invertible,
we have

ν(f(A)) =
ˆ
A
| Jac f |tdν

and define

δJ(f) := inf {t ≥ 0: there exists a t-volume-conformal measure on J(f)} .

For k = 1, the definitions of t-volume-conformal measures and δJ(f) reduce to those of conformal
measures and conformal dimension for rational maps; see [DU91b; DU91c; McM00a; PU10]. In
this case, owing to Bowen [Bow79], one sees that

δJ(f) = p+
J (f) = HD(J(f))
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for every hyperbolic rational map f on P1(C), and that there exists a unique ergodic measure
ν on J(f) such that HD(ν) = HD(J(f)). We have here the following result in any dimension,
which further motivates the definition of the volume dimension as a natural generalization of the
Hausdorff dimension for all k ≥ 1. Observe that, if f is hyperbolic, every invariant probability
measure ν on J(f) belongs toM+(f).

Theorem 3.4.3 (Bianchi-He [BH23]). Let f : Pk → Pk be a hyperbolic holomorphic endomorphism
of algebraic degree d ≥ 2. Then we have

δJ(f) = p+
J (f) = 2 VD(J(f))

and there exists a unique ergodic measure ν on J(f) such that VD(ν) = VD(J(f)).

As in dimension 1, the measure ν in this statement can be characterized as a unique equilibrium
state with respect to the weight −δJ(f)| Jac f |.

3.4.2 Volume dimensions and strategy of the proofs

Let us first recall the idea of the proof of the Mañé-Manning formula (3.8) in dimension 1. It
essentially consists of two steps.

1. The first step consists of defining a local dimension at a point x by setting

δx := lim
r→0

log ν(B(x, r))
log r

(whenever the limit exists), where B(x, r) denotes the balls of radius r centred and x, and
proving that the limit is well-defined and equal to the ratio hν(f)/χν(f) for ν-almost every
x. In particular, ν is exact-dimensional.

2. The second step is to prove that the Hausdorff dimension of ν must be equal to the common
value of the local dimensions found in the first step [You82].

Let us describe how the one-dimensional setting plays a crucial role in Step (1). By [BK83] and
[Mañ81], for ν-almost every x we have

hν(f) = lim
κ→0

lim
n→∞

− log ν(Bn(x, κ))
n

,

where Bn(x, κ) is the Bowen ball of radius κ and depth n. This is defined as

Bn(x, κ) :=
{
y : |f j(y)− f j(x)| < κ, 0 ≤ j ≤ n

}
.

The crucial observation is that, for large n, the Bowen ball Bn(x, κ) is comparable (up to precisely
quantifiable errors) to the ball B(x, κ e−nχν(f)) of the same center and radius κ e−nχν(f). Fixing a
κ0 for simplicity, and setting n(r) ∼ | log r|/χν(f), it then follows that

lim
r→0

log ν(B(x, r))
log r = lim

r→0

− log ν(Bn(r)(x, κ0))
n(r)

n(r)
− log r = hν(f)

χν
,
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which in particular shows that δx is well-defined. The precise relation between geometric balls
and Bowen balls is a consequence of Koebe’s theorem and related distortion estimates, which
imply that images of balls by holomorphic maps (and in particular by their inverse branches) are
still comparable to balls. As a consequence, in complex dimension 1, there is a natural interplay
between the Hausdorff dimension and the dynamics of a rational map. Observe in particular that
one may define the Hausdorff dimension of ν by using covers consisting of Bowen balls, indexed
over their depth n, and sending n to infinity; see also [CPZ19; Pes88].

All the above is in sharp contrast with the higher-dimensional situation, where one cannot expect
to obtain a general relation between geometric balls and Bowen balls. As a result, the notion of
Hausdorff dimension is not intrinsic anymore with respect to the dynamics. If f : M → M is a
C2-diffeomorphism of a smooth compact Riemannian manifold and ν is an ergodic f -invariant
probability measure with non-zero Lyapunov exponents, Pesin [Pes88] introduced a dimension
dimf (ν) relative to the map f and proved that

dimf (ν) = hν(f)
L+
ν (f)

, (3.9)

where L+
ν (f) is the sum of positive Lyapunov exponents of ν; see [Pes88, Theorem 6.4]. Such

dimension is constructed using an analogue of the Bowen balls inside the unstable manifolds of f .
Although it is likely that such formula could be generalized to smooth, not necessarily invertible,
endomorphisms of M (see for instance [QXZ09] for adapted techniques) and expanding measures
(in which case the whole M is an unstable manifold), such Bowen balls carry only a dynamical
information but, a priori, no geometric one. We aimed in [BH23] at proving a version of (3.9)
for endomorphisms of Pk in any dimension k ≥ 1, where furthermore our dimension has a more
geometric interpretation. Our construction is independent of Pesin’s [Pes88] and deeply exploits
the complex setting.

As we mentioned above, in several complex variables, due to the lack of conformality of
holomophic maps, preimages of balls can be arbitrarily distorted, and far from being balls. In the
best possible scenario (e.g., for hyperbolic product maps), the preimages of balls are approximately
ellipses whose axes reflect the contraction rate of the inverse branches in the different directions.
On the other hand, when ν ∈ M+(f), the linearization result by Berteloot-Dupont-Molino
[BDM08; BD19], already encountered several times in this manuscript, states that the best possible
scenario described above is actually true, in an infinitesimal sense, for preimages of balls along
generic orbits of ν. More precisely, there exists an increasing (as ε→ 0) measurable exhaustion
{Z?ν (ε)}ε of a full-measure subset Z?ν of the space of orbits for f such that the preimages of
sufficiently small balls along orbits in Z?ν (ε) are approximately ellipses, and the contraction rate
for their volume is essentially given (up to further controllable error terms) by e−nLν(f)+nO(ε).
This is a consequence of very refined estimates on the convexity defect of such preimages.

Fix ν ∈ M+(f). Denote by π : Z?ν → Pk the projection associating to any orbit ẑ = {zn}n∈Z

its element z0. For x ∈ π(Z?ν (ε)), κ > 0, and N ∈ N, we consider (when well-defined) the
neighbourhood U = U(N, x, κ, ε) of x satisfying

fN (U) = B(fN (x), κ e−NMε)

where eM is a bound for the expansion of f and we require that fN |U is injective. It follows from
the above result by Berteloot-Dupont-Molino that there exist some r(ε) and n(ε) such that, for
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all x ∈ π(Z?ν (ε)), 0 < κ < r(ε), and N ≥ n(ε) the sets U(N, x, κ, ε) are indeed well-defined and
approximately ellipses, of controlled geometry. We see these sets U(N, x, κ, ε) as a suitable version
of the Bowen balls Bn(x, κ) in any dimension. Let us set

δx(ε, κ,N) := log ν(U(N, x, κ, ε))
log Vol(U(N, x, κ, ε)) ,

where Vol denotes the volume with respect to the Fubini-Study metric. As a first step (which
corresponds to Step (1) above) towards proving Theorem 3.4.1, we show that every ν ∈M+(f)
is exact (volume-)dimensional; namely, for ν-almost every x, we have

lim sup
ε→0

lim sup
κ→0

lim sup
N→∞

δx(ε, κ,N) = lim inf
ε→0

lim inf
κ→0

lim inf
N→∞

δx(ε, κ,N) = hν(f)
2Lν(f) .

We adapt here the approach of Mañé [Mañ88] in higher dimensions, thanks to the distortion
estimates developed as a consequence of [BDM08; BD19].

Once the local dimension of every ν ∈ M+(f) is well-defined as above, we give a global
interpretation of this quantity by defining a volume dimension for these measures. The idea is to
use the sets U(N, x, κ, ε) to cover the “slice” X ∩ π(Z?ν (ε)) of every set X ⊆ Z?ν . More precisely,
for every X ⊆ π(Z?ν ) and ε > 0, setting Xε := X ∩ π(Z?ν (ε)), we define the quantity VDε

ν(Xε) as

VDε
ν(Xε) := sup {α : Λεα(Xε) =∞} = inf {α : Λεα(Xε) = 0} ,

where
Λεα(Xε) := lim

κ→0
lim

N?→∞
inf
{Ui}

∑
i≥1

Vol(Ui)α.

Here the infimum is taken over the covers consisting of sets Ui of the form Ui = U(Ni, x, κ, ε), for
some x ∈ π(Zν(ε)) and Ni ≥ N?. The volume dimensions of X and ν are then respectively defined
as

VDν(X) := lim sup
ε→0

VDε
ν(Xε) and VD(ν) := inf {VDν(X) : X ⊆ π(Zν), ν(X) = 1} ,

and the lim supε→0 is actually a limit. We prove a version of Young’s criterion [You82, Proposition
2.1], relating the local volume dimensions δx with the volume dimensions VDν(X) and VD(ν).
This corresponds to Step (2) above and, together with the exact volume-dimensionality of ν proved
in the first step, completes the proof of Theorem 3.4.1.
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