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Abstract. Let Λ be a subfamily of the moduli space of degree D ≥ 2 polynomials defined by a
finite number of parabolic relations. Let Ω be a bounded stable component of Λ with the property
that all critical points are attracted by either the persistent parabolic cycles or by attracting cycles
in C. We construct a positive semi-definite pressure form on Ω and show that it defines a path
metric on Ω. This provides a counterpart in complex dynamics of the pressure metric on cusped
Hitchin components recently studied by Kao and Bray-Canary-Kao-Martone.

1. Introduction

Let S be a closed surface of genus at least 2. The Teichmüller space T (S) of S, which parametrizes
the hyperbolic structures on S, carries a number of natural metrics defined from different perspec-
tives, e.g., the Teichmüller metric, the Weil-Petersson metric, and the Thurston metric; see [Hub06;
IT92]. In [Bri10] and [McM08], Bridgeman and McMullen have respectively shown that the Weil-
Petersson metric on T (S) can be reconstructed via thermodynamic formalism. More precisely, they
proved that the Weil-Petersson metric is a constant multiple of the so-called pressure metric.

From the perspective of Sullivan’s dictionary [Sul85], the space of degree D ≥ 2 Blaschke prod-
ucts BD can be viewed as a counterpart of the Teichmüller space T (S) in complex dynamics; see
for instance [Luo23; McM09a; McM09b; McM10]. In [McM08] McMullen, using thermodynamic
formalism, introduced a counterpart of the Weil-Petersson metric on BD, whose construction is
analogous to that of the pressure metric on the Teichmüller space T (S). Nie and the second author
constructed pressure metrics on certain hyperbolic components in the moduli space of degree D ≥ 2
rational maps [HN23a] and polynomial shift loci [HN23b].

If S is a punctured surface of negative Euler characteristic, the Teichmüller space T (S) of S
parametrizes complete hyperbolic structures on S. Denote by π1S the fundamental group of S.
A hyperbolic structure on S can be identified with a discrete faithful representation ρ : π1S →
PSL(2,R) such that the element g ∈ π1S representing a puncture is mapped to a parabolic matrix,
i.e., whose trace squares to 4. Kao [Kao20] constructed pressure metrics on such Teichmüller spaces.
In higher Teichmüller theory, Bray-Canary-Kao-Martone [Bra+23] have studied pressure metrics for
cusped Hitchin components, which are generalizations of Teichmüller spaces of punctured surfaces.
These metrics are expected to be the induced metric on the strata at infinity of the metric completion
of the Hitchin component of a closed surface with its pressure metric [Bra+23; Mas76].

In this paper, as a natural counterpart of cusped Hitchin components in complex dynamics, we
consider Λ-hyperbolic components (see below) Ω in an algebraic family Λ of conjugacy classes of
degree D ≥ 2 polynomials or rational maps defined by a finite number of parabolic relations. We
construct a positive semi-definite pressure form on Ω and show that it defines a path metric on Ω
whenever Λ is polynomial and Ω ⊂ Λ is bounded.

1.1. Statement of results. Let D ≥ 2 be an integer. We denote by ratcmD (resp. polycmD ) the mod-
uli space of degree D rational maps (resp. polynomials) with marked critical points c1, . . . , c2D−2

(resp. c1, . . . , cD−1), i.e., the space of Möbius conjugacy classes of degree D rational maps (resp.
polynomials) whose critical points are marked. Let Λ be an algebraic subfamily of ratcmD (resp.
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polycmD ) with the property that a (possibly empty) subset of the critical points are persistently
attracted by a parabolic periodic point (this property is invariant by the action of Möbius trans-
formations and therefore well-defined on the quotient). We call such Λ a parabolic subfamily of
ratcmD (resp. polycmD ). For every λ ∈ Λ, we denote by fλ a rational map (resp. polynomial) in
the corresponding conjugacy class. Up to renumbering, we denote by c1, . . . , cm the critical points
which are active on Λ. Recall that a critical point c is passive on an open subset Λ0 ⊆ Λ if the
sequence of holomorphic functions {λ 7→ fnλ (c(λ))}n≥1 is a normal family on Λ0. Otherwise, the
critical point is active.

Let Ω be a stable component in Λ; that is, all critical points are passive on Ω, which in this
case is equivalent to asking that none of the possibly active critical points c1, . . . , cm is active on
Ω. We say that a stable component Ω is Λ-hyperbolic if, for every λ ∈ Ω, all the critical points
c1(λ), . . . , cm(λ) are contained in the basin of some attracting cycle of fλ. Λ-hyperbolic components
are the natural generalization of the hyperbolic components of ratcmD or polycmD (which correspond
to the case where m = 2D − 2 and m = D − 1, respectively). Bounded Λ-hyperbolic components
(i.e., those satisfying Ω b Λ) in polycmD are the analogue of hyperbolic components for which all
critical points are attracted to attracting cycles in C, which are the hyperbolic components in the
connectedness locus.

We first show that the construction of the positive semi-definite symmetric bilinear form 〈·, ·〉G in
[HN23a] can be extended to any Λ-hyperbolic stable component Ω, where Λ is a parabolic subfamily
of polycmD or ratcmD . Moreover, 〈·, ·〉G is conformal equivalent to the pressure (pseudo) metric, which
is constructed on Ω in a similar way as McMullen [McM08]; see Section 1.2 for more details.

A priori, the 2-form 〈·, ·〉G is only positive semi-definite. In [HN23a], the authors gave a condition
on a hyperbolic component in the moduli space of degree D rational maps under which the 2-form
is non-degenerate. To obtain this, they used a deep result of Oh-Winter [OW17, Theorem 1.1] on
the asymptotic distribution of repelling multipliers for hyperbolic rational maps. Since our stable
Λ-hyperbolic components are more general than hyperbolic components, this result is unavailable
in our setting. However, we show that 〈·, ·〉G still defines a metric on every bounded Λ-hyperbolic
component Ω of a parabolic subfamily Λ of polycmD . The following theorem is our main result.

Theorem 1.1. Let Λ be a parabolic subfamily of polycmD and Ω b Λ a bounded Λ-hyperbolic com-
ponent. Then the 2-form 〈·, ·〉G defines a metric on Ω.

Before we move on to discuss the ideas of the proofs, we mention related works on pressure metrics
in various contexts in geometry and dynamics. In Teichmüller theory, pressure metrics have been
studied for quasi-Fuchsian spaces of closed surfaces [Bri10; BT08], Teichmüller spaces and quasi-
Fuchsian spaces of punctured surfaces [BCK23; Kao20], and Teichmüller spaces of bordered surfaces
[Xu19]. In higher Teichmüller theory, pressure metrics have been studied for deformation spaces of
Anosov representations [Bri+15] and cusped Hitchin components [Bra+23]. Pressure metrics have
also been defined on the moduli space of metric graphs [Kao17; PS14] and on Culler-Vogtmann
outer spaces [ACR23]. Ivrii [Ivr14] studied the metric completion of B2 with respect to McMullen’s
metric. Lee, Park, and the second author [HLP24] studied the pressure metric on the space of
degree D ≥ 2 quasi-Blaschke products.

Pressure metrics are not inherently non-degenerate, i.e., they are not necessarily Riemannian
metrics. Indeed, the construction of pressure metrics ensures only the positive semi-definiteness of
the associated 2-form. Although pressure metrics are known to be positive definite in most cases,
degeneracy loci are known to exist is several settings; see [Bri10; HLP24].

1.2. Strategy of the proof. In [HN23a], inspired by the works of Bridgeman [Bri10] and McMullen
[McM08], the authors constructed a symmetric bilinear form 〈·, ·〉G on any hyperbolic component
in the moduli space of degree D ≥ 2 rational maps.
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Our first goal in the present paper is to show that their construction, with suitable modifications,
extends to any Λ-hyperbolic component of a parabolic subfamily Λ of ratcmD (or polycmD ). Let Ω be
a Λ-hyperbolic component and Ω̃ a lift of Ω in the parameter space RatcmD . Given λ0 ∈ Ω̃, denote
by Jλ0 the Julia set of fλ0 . As Ω is a stable component, there exists a holomorphic motion for the
Julia sets as the parameter moves in Ω̃. In particular, every λ0 ∈ Ω̃ admits a neighborhood U(λ0)
such that a Hölder-continuous conjugacy Ψλ : Jλ0 → Jλ is well-defined for every λ ∈ U(λ0). We
also observe that log |f ′λ| : Jλ → R is Hölder continuous for every λ ∈ U(λ0).

Fix η ∈ (0, logD). It is not difficult to see that there exists a unique number δη(λ) = δη(fλ) such
that the pressure P of the Hölder continuous function −δη(λ) log |f ′λ| : Jλ → R satisfies

P(−δη(λ) log |f ′λ|) = η.

We call δη(λ) the Bowen number1 as a celebrated result of Bowen [Bow79] states that, for a hyper-
bolic rational map f , the Hausdorff dimension δ(f) of J(f) satisfies P(−δ(f) log |f ′|) = 0. We first
prove (see Proposition 3.1) that the function δη : Ω̃→ R, sending λ to δη(λ), is real-analytic, which
generalizes [Rue82] to our setting. To this end, we adapt the methods described in [SU10; UZ04] in
the context of hyperbolic semi-groups of rational maps and of exponential maps respectively. The
spectral gap property for the transfer operators associated to the weights δη(λ) log |f ′λ| and their
perturbations, as recently established in [BD23; BD24], allows us to deal with the non-uniform
hyperbolicity due to the presence of parabolic points and to adapt those arguments in our context.
Observe that the condition on η is required to apply these results, as the transfer operator does
not have a unique isolated eigenvalue of multiplicity 1 for η = 0 as soon as a map has a parabolic
periodic point.

Once the analyticity of the map δη : Ω̃→ R is established, we consider the map Gλ0 : U(λ0)→ R
given by

Gλ0(λ) ..= δη(λ)Lyλ0(λ),

where Lyλ0 : U(λ0) → R is given by Lyλ0(λ) ..=
∫
Jλ0

log |(fλ ◦ Ψλ)′(z)|dν(z) and ν is the unique
equilibrium state of the Hölder continuous function −δη(λ0) log |f ′λ0 | : Jλ0 → R. As the function
Lyλ0 is real-analytic by standard arguments, so is Gλ0 . Moreover, we show that Gλ0 attains a
minimum at λ0; see Section 4.1. It follows that the Hessian G′′λ0(λ0) : Tλ0Ω̃× Tλ0Ω̃→ R of Gλ0 at
λ0 gives a positive semi-definite symmetric bilinear form on the tangent space Tλ0Ω̃, that we denote
by 〈·, ·〉G and call the Hessian form. This form descends to Ω; see Section 4.2. We use the same
notation for the induced form, which is still positive semi-definite.

We prove in Section 4.4 that 〈·, ·〉G is conformal equivalent to the pressure (pseudo) metric on Ω,
see Section 4.3 for the definition and details. The pressure metric was first considered by [Bri10;
McM08] in the context of (quasi-)Fuchsian spaces and the moduli space of Blaschke products.
Thanks to this equivalence, we can show that a key necessary condition for the degeneration of the
form 〈·, ·〉G at a given [λ0] ∈ Ω and ~v ∈ T[λ0]Ω, proved in [HN23a] in the hyperbolic case, still holds
in our context; see Lemma 4.14. Namely, if [λ0] ∈ Ω and ~v ∈ T[λ0]Ω are such that 〈~v,~v〉G = 0, and
we assume for simplicity that Ω is an open set of some CN , we must have

(1)
d

dt

∣∣∣
t=0

Sn
(

log |f ′λ0+t~v ◦Ψt(x)|
)

= K · Sn
(

log |f ′λ0(x)|
)

for all n-periodic points x in the Julia set of fλ0 and some constant K independent of n and
x. Here, Sn(·) denotes the n-th Birkhoff sum and Ψt is the conjugation between the Julia sets
of fλ0 and fλ0+t~v induced by the holomorphic motion. Establishing (1) relies on the equivalence

1We avoid the name Bowen parameter to avoid confusion, since, in this paper, parameters will mostly refer to
elements in the space of the maps.
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between the Hessian and the pressure forms mentioned above and on the fact that any coboundary is
automatically continuous. Both these ingredients rely on the spectral gap from [BD23; BD24]. The
condition (1) is shown to be too rigid to hold in the hyperbolic case (up to some special exceptions)
in [HN23a], by exploiting the above mentioned result by Oh-Winter [OW17]. Therefore, in that
case, the form is positive definite, and hence it defines a Riemannian metric on all but finitely many
hyperbolic components in ratcmD or polycmD .

In the present case, in order to prove Theorem 1.1, we directly show that the function dG :
Ω× Ω→ R given by

dG(x, y) ..= inf
γ
`(γ), where `(γ) ..=

∫ 1

0

√
〈γ′(t), γ′(t)〉Gdt,

is a distance function, which implies that 〈·, ·〉G defines a path metric on Ω. Here the infimum is
taken over all the C1-paths γ connecting x to y in Ω. A priori, as 〈·, ·〉G is only positive semi-definite,
the function dG is only a pseudo-metric. To show that dG(x, y) > 0 for any x 6= y in Ω, we first
show that 〈·, ·〉G is real-analytic on the unit tangent bundle UTΩ of Ω. In particular, we prove that
the pressure function associated to a 4-parameter family of potentials is jointly real analytic in all
the parameters; see Proposition 5.1. The proof shares a similar framework as that of Proposition
3.1 and again relies on the spectral gap property of the transfer operators and their perturbations.
Thanks to the analyticity of 〈·, ·〉G, an analysis of the possible singular sets for this form shows that,
as soon as dG(x, y) = 0, there exists a C1 path γ joining them with `(γ) = 0; see Section 5.4.

We then proceed to show that any C1 path γ : [0, 1]→ Ω in Ω has strictly positive length. This
is the only point in the paper where we use that Λ is a polynomial family and Ω is a bounded
Λ-hyperbolic component. Namely, we combine the fact that the Lyapunov exponent of the measure
of maximal entropy (which describes the asymptotic value of the multipliers of the periodic points,
thanks to their equidistribution with respect to the measure of maximal entropy [Lyu82; Lyu83a])
is constant on Ω with the fact that (1) should hold true at every point of a possible path with
zero length, taking ~v to be the tangent vector to the path. This forces the absolute values of the
multipliers of all repelling periodic points to have a common level set, something that leads to a
contradiction.

1.3. Organization of the paper. The paper is organized as follows. In Section 2 we present the
preliminary results that we will need, in particular those related to the thermodynamic formalism
and the spectral properties of the transfer operators. In Section 3, we prove the analyticity of the
Bowen function δη. In Section 4, we construct the symmetric bilinear form 〈·, ·〉G on Ω and show
that it is conformal equivalent to the pressure form. We prove Theorem 1.1 in Section 5.

Acknowledgements. The authors would like to thank the University of Pisa and the University
of Oklahoma for the warm welcome and for the excellent work conditions. This project has received
funding from the Programme Investissement d’Avenir (ANR QuaSiDy /ANR-21-CE40-0016, ANR
PADAWAN /ANR-21-CE40-0012-01), from the MIUR Excellence Department Project awarded to
the Department of Mathematics of the University of Pisa, CUP I57G22000700001, and from the
PRIN 2022 project MUR 2022AP8HZ9_001. The first author is affiliated to the GNSAGA group
of INdAM.

2. Preliminaries

In this section, we collect basic definitions in Section 2.1. In Section 2.2 we adapt the main results
of [BD23; BD24] about the spectral properties of transfer operators and their perturbations to our
setting. In Section 2.3, we deduce basic properties of the geometric potential. Finally, we discuss
extensions of analytic functions in Section 2.4.
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2.1. Notations and definitions. Let D ≥ 2 be an integer. Let RatcmD (resp. PolycmD ) be the space
of degree D rational maps (resp. polynomials) with marked critical points c1, . . . , c2D−2 (resp.
c1, . . . , cD−1) and ratcmD (resp. polycmD ) the moduli space obtained from RatcmD (resp. PolycmD ) by
taking the quotient by all Möbius (resp. affine) conjugacies. For every λ ∈ RatcmD (resp. PolycmD ),
we denote by fλ the corresponding rational map (resp. polynomial), by µλ its unique measure of
maximal entropy [FLM83; Lyu82; Lyu83a], and by L(λ) =

∫
log |f ′λ|µλ the Lyapunov exponent of

µλ.

Let Λ be an algebraic subfamily of RatcmD (resp. PolycmD ) with the property that a (possibly
empty) subset of the critical points are persistently attracted by a parabolic periodic point. We say
that such Λ is a parabolic subfamily of RatcmD (resp. PolycmD ). Examples of these subfamilies are the
families Pern(η) for n ∈ N and η root of unity, which are defined as

Pern(η) ..= {λ : ∃x : fnλ (x) = x; f ′λ(x) = η}.

We refer to [Ber13; Mil93; Sil07] for the description and the geometry of these algebraic submani-
folds, and to [BB09; BB11; Duj14; Gau16] for their distribution in the parameter space and their
role in the dynamical understanding of the bifurcation phenomena. Every parabolic subfamily is
then a finite intersection of such families (where RatcmD or PolycmD is thought of as the empty inter-
section). It is clear that the quotient by Möbius or affine conjugacies is well-defined on parabolic
subfamilies, and we will use the same name for the images of these families by the quotient map.
By a slight abuse of notation, we can think of parabolic subfamilies of PolycmD (resp. polycmD ) also
as parabolic subfamilies of RatcmD (resp. ratcmD ), where we allow (and require) the further critical
relation f−1

λ ({∞}) = {∞}.

Recall that a critical point c is called passive on an open subset Λ0 ⊆ Λ if the sequence of
holomorphic functions {λ 7→ fnλ (c(λ))}n≥1 is a normal family on Λ0. Otherwise, the critical point is
called active on Λ0. It follows from the definition and the fact that every parabolic basin contains
at least a critical point that, in any parabolic subfamily Λ given by k parabolic relations, there are
at least k passive critical points on Λ.

Recall [Lyu83b; MSS83] that an open subset Ω ⊂ Λ is in the stability locus of Λ if all critical
points are passive on Ω. We also say that the family is stable on Ω. Ω is a stable component if it is a
connected component of the stability locus. We say that a stable component Ω b Λ is Λ-hyperbolic
if, for every λ ∈ Ω, every critical point cj(λ) such that cj is active on Λ is contained in the basin
of some attracting cycle for fλ. We say that Ω is a bounded Λ-hyperbolic component if we have
Ω b Λ for the topology induced by Λ.

In the sequel, we will need the following simple facts about polynomial bounded Λ-hyperbolic
components. We refer to [Zha22a; Zha22b] for some topological properties of these components in
the case of cubic polynomials.

Lemma 2.1. Let Λ be a parabolic subfamily of polycmD and Ω b Λ a bounded Λ-hyperbolic component.
Then

(1) all the critical points which are active on Λ are contained in the basin of some attracting
cycle in C for every λ ∈ Ω;

(2) L(λ) ≡ logD.

Proof. If some critical point is in the basin of infinity for some λ0 ∈ Ω, the same must be true for
all λ ∈ Ω. It is a standard fact that the map fλ0 can be deformed, staying inside Ω, to make the
modulus of this critical point to become as large as desired. This contradicts the assumption Ω b Λ
and proves (1).
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It follows from (1) that every critical point must have bounded orbit for every λ ∈ Ω (as it can
either be attracted to a parabolic cycle or an attracting cycle in C). Hence, the Green function at
every critical point is equal to 0, and (2) follows from the classical Przyticki formula [Prz85]. �

2.2. Transfer operators. We fix in this section a rational map f of degree D ≥ 2 and two real
numbers q > 2 and 0 < β ≤ 2. We denote by J(f) the Julia set of f . By [BD23; BD24], there
exists a norm ‖ · ‖� for real-valued functions on P1 satisfying the following properties for every
g, h : P1 → R:
(N1) ‖g‖logq . ‖g‖� . ‖g‖Cβ ;
(N2) ‖gh‖� . ‖g‖�‖h‖�;
(N3) ‖f∗g‖� . ‖g‖�,

where the implicit constants are independent of g and h. We denote by ‖ · ‖Cβ the β-Hölder norm,
and by ‖ · ‖logq the q-log-Hölder norm, which is defined as

‖g‖logq
..= ‖g‖L∞ + sup

x∈P1,r>0

(1 + | log r|)q ·
(

sup
B(x,r)

g − inf
B(x,r)

g
)

for every g : P1 → R. When working on P1, we will always use the distance distP1 induced by the
spherical metric. Recall also that the push-forward operator f∗ is defined by

(f∗g)(y) ..=
∑

f(x)=y

g(x)

for every y ∈ P1, where the D preimages of y are counted with multiplicity.

By defining ‖g‖� ..= ‖<g‖� + ‖=g‖�, we see that a norm with the same properties exists also for
complex-valued functions on P1 (see also [BD24, Section 5.3]). We set

B� ..= {g : P1 → C : ‖g‖� <∞}.

By (N1), the space (B�, ‖ · ‖�) is a Banach space and contains all β-Hölder continuous functions.
We denote by L(B�) the space of bounded linear operators on B�. Given a potential (or weight)
φ ∈ B�, the (Ruelle-Perron-Frobenius) transfer operator Lφ : B� → B� is defined by

Lφ(g)(y) ..=
∑

f(x)=y

eφ(x)g(x).

By [BD24], the norm ‖·‖� can be chosen so that Lφ ∈ L(B�) for every φ ∈ B� with maxφ−minφ <
logD. More precisely,
(N4) for any such φ ∈ B� with maxφ−minφ < logD and every ψ ∈ B�, the function t 7→ Lφ+tψ

is analytic as operators in L(B�) for |t| sufficiently small.
Recall that the analyticity of the map t 7→ Lφ+tψ above means that, for every t0 sufficiently small,
there exist operators Lt0,j ∈ L(B�) such that Lφ+tψ =

∑
j≥0(t − t0)jLt0,j/j! for every t in a

neighbourhood of t0. It is not difficult to see that, for every t0 such that max(φ+ t0ψ)−min(φ+
t0ψ) < logD, we can take Lj,t0(·) ..= Lφ+t0ψ(ψj ·), and that we have

‖Lj,t0‖� ≤ ‖Lφ+t0ψ‖� · ‖ψj‖� ≤ cj‖Lφ+t0ψ‖� · ‖ψ‖j�,

where c is the implicit constant in (N2) and ‖Lφ+t0ψ‖� is bounded by the assumption on t0.

Recall that, for every continuous function φ : P1 → R, the topological pressure P(φ) of φ is defined
by

P(φ) ..= sup
m∈Mf

(
hm(f) +

∫
φdm

)
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whereMf is the set of f -invariant probability measures on P1 and hm(f) is the measure-theoretic
entropy of f with respect to the measure m. A measure m = m(φ) ∈ Mσ is called an equilibrium
state of φ if P(φ) = hm(σ) +

∫
φdm.

We say that a bounded linear operator L ∈ L(B�) has a spectral gap if L has an isolated real
eigenvalue κ of multiplicity 1 and the rest of the spectrum of L is contained in a disk of radius
strictly smaller than κ. By [BD24], the norms ‖ · ‖� can be taken to also satisfy this property.
Namely,
(N5) for every φ ∈ B� with maxφ −minφ < logD, the transfer operator Lφ has a spectral gap

with respect to the norm ‖ · ‖�, with the largest eigenvalue equal to eP(φ). Moreover, there
exists a unique equilibrium state µφ associated with φ.

In this paper, we will need to consider (families of) weights φ which are Hölder continuous on
J(f), but not on P1. The definitions of pressure and equilibrium states can also be stated in this
setting. On the other hand, in order to apply the results above, we will need to modify (or directly
define) them outside of J(f). This will be achieved by means of the following elementary lemma,
which also gives a uniform control on the extension, under suitable assumptions. We give the proof
for the reader’s convenience.

Lemma 2.2. Let W1 b W2 ⊂ R` be open sets and {φs : J(f) → R}s∈W2 a family of β-Hölder
continuous functions with the property that s 7→ φs is continuous with respect to the β-Hölder norm.
Assume also that there exists a constant M < +∞ such that maxφs < M for all s ∈W2.

Then, there exists a family {φ̃s : P1 → R}s∈W1 of β-Hölder continuous functions with the property
that s 7→ φ̃s is continuous with respect to the (β/2)-Hölder norm and we have max φ̃s < M and
φ̃s = φs on J(f) for all s ∈W1.

Proof. For a single β-Hölder continuous map φ : J(f)→ R, the classical McShane-Whitney theorem
[McS34; Whi34] gives a β-Hölder continuous extension φ̃ : P1 → R with φ̃ ≤ maxφ. Recall that
such extension is given by the explicit formula

φ̃(z) ..= max
x∈J(f)

(
φ(x)− CdistP1(x, z)β

)
,

where C is a bound for the β-Hölder semi-norm of φ. Observe that the modulus of continuity of φ̃
is the same as that of φ, i.e., by construction, the β-Hölder semi-norm of φ̃ is equal to the β-Hölder
semi-norm of φ. In the following, for simplicity, we denote by ‖ · ‖′

Cβ
the β-Hölder semi-norm, and

observe that we have ‖ · ‖Cβ = ‖ · ‖L∞ + ‖ · ‖′
Cβ

.

Let us now consider a family φs as in the statement. Consider the compact metric spaceW1×P1,
endowed with the product metric of W1 (with the standard Euclidean distance distE) and P1 (with
the spherical distance), and its compact subset W1 × J(f). Define the function Φ: W1 × J(f) by
Φ(s, z) = φs(z). Observe that Φ is β-Hölder continuous, and let C be a bound for its β-Hölder
semi-norm. Consider the McShane-Whitney extension of Φ to W1 × P1, which is given by

Φ̃(s, z) = sup
(t,x)∈W1×J(f)

φs(x)− C
(
(distE(s, t) + distP1(z, x)

)β
.

For s ∈W1, set φ̃s(·) ..= Φ̃(s, ·). The upper bound for these functions as in the statement follows
from the inequality max Φ̃ ≤ max Φ.

We now show the continuity of the family {φ̃s} with respect to the (β/2)-Hölder norm. It follows
from their definition that the φ̃s’s satisfy

(2) ‖φ̃s1 − φ̃s2‖L∞ → 0 as distE(s1, s2)→ 0.
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Given s1, s2 ∈W1 and z1, z2 ∈ P1, we will show the inequality

(3) |φs1(z1)− φs2(z1)− φs1(z2)− φs2(z2)| ≤ 2C(distP1(z1, z2))β/2(distE(s1, s2))β/2.

Together with (2), this inequality implies that we have

‖φs1 − φs2‖Cβ/2 → 0 as distE(s1, s2)→ 0,

and hence the desired continuity with respect to the (β/2)-Hölder norm.

Observe first that, as ‖Φ̃‖′
Cβ
≤ C, we have ‖φ̃s‖′Cβ = ‖Φ̃(s, ·)‖′

Cβ
≤ C for all s ∈ W1 and

‖Φ̃(·, z)‖′
Cβ
≤ C for all z ∈ P1. We need to consider the following two cases.

Case 1: distE(s1, s2) ≥ distP1(z1, z2).

In this case, we can bound the left-hand side of (3) as

|φs1(z1)− φs2(z1)− φs1(z2)− φs2(z2)| ≤ (‖Φ̃(s1, ·)‖′Cβ + ‖Φ̃(s2, ·)‖′Cβ )(distP1(z1, z2))β

≤ 2C(distP1(z1, z2))β

≤ 2C(distE(s1, s2))β/2(distP1(z1, z2))β/2.

Case 2: distE(s1, s2) ≤ distP1(z1, z2).

Reversing the roles of the sj ’s and zj ’s, we now bound the left-hand side of (3) as

|φs1(z1)− φs2(z1)− φs1(z2)− φs2(z2)| ≤ (‖Φ̃(·, z1)‖′Cβ + ‖Φ̃(·, z2)‖′Cβ )(distE(s1, s2))β

≤ 2C(distE(s1, s2))β

≤ 2C(distE(s1, s2))β/2(distP1(z1, z2))β/2.

Hence, (3) holds in either case. The proof is complete. �

Lemma 2.3. Let φ : J(f) → R and φ̃ : P1 → R be continuous functions with φ̃|J(f) = φ and
max φ̃ = maxφ < P(f|J(f), φ). Then φ and φ̃ have the same equilibrium states, which are supported
on J(f). In particular, we have P(f|J(f), φ) = P(f, φ̃).

Proof. It follows from the definitions that any equilibrium state for φ̃ supported on J(f) is also an
equilibrium state for φ. Hence, it is enough to show that we have

hν(f) +

∫
φ̃dν < P(f, φ̃)

for every invariant probability measure ν whose support is outside J(f). Any such invariant measure
necessarily satisfies hν(f) = 0. It then follows from the assumptions that we have∫

φ̃dν ≤ max φ̃ = maxφ < P(f|J(f), φ) ≤ P(f, φ̃).

The assertion follows. �

Combining [BD24] with [IR12, Main Theorem], one can see that the condition maxz∈P1 φ −
minz∈P1 φ < logD can be weakened to maxz∈P1 φ < P(φ) in both (N4) and (N5) (and actually to
maxz∈J(f) φ < P(φ)). More precisely, we have the following lemma.

Lemma 2.4. Let f be a rational map of degree D ≥ 2 and φ : J(f) → R a β-Hölder continuous
function. If the Lyapunov exponent of each equilibrium state of φ is strictly positive, then there
exists a β-Hölder continuous extension φ̃ of φ to P1 such that the transfer operator Lφ̃ : B� → B�
has a spectral gap, and the function t 7→ Lφ̃+tψ is analytic as operators in L(B�) near t = 0 for
every ψ ∈ B�. Here ‖ · ‖� is chosen so that ‖ · ‖� . ‖ · ‖Cβ in (N1).
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Proof. Suppose that the Lyapunov exponent of each equilibrium state of φ is strictly positive. Then,
by [IR12, Main Theorem], the potential φ is hyperbolic, namely, there exists an integer n ≥ 1 such
that maxz∈J(f) Snφ < P(fn, Snφ), where Snφ denotes the n-th Birkhoff sum φ+φ◦f+ · · ·+φ◦fn−1

of φ. Up to replacing f by fn (which does not change the statistical properties in the statement),
we can assume that n = 1, i.e., that we have maxz∈J(f) φ < P(f, φ). Let φ̃ be a β-Hölder continuous
extension of φ as in Lemma 2.2. In particular, we have φ̃ ≤ maxJ(f) φ, which gives φ̃ ≤ P(f, φ) =

P(f, φ̃), where the last equality follows from Lemma 2.3.

We now observe that, in [BD23] and [BD24], the assumption max φ̃ − min φ̃ < logD can be
replaced by max φ̃ < P(f, φ̃) as soon as the last quantity has already been defined (this is not the
case in [BD23; BD24], hence the need for an assumption not directly involving the pressure). In
particular, the same proof as in [BD24] gives the spectral gap for the action of Lφ̃ with respect to
the norm ‖ · ‖� chosen as in the statement, and the other properties. The assertion follows. �

In particular, the above lemmas allow us to apply the machinery of [BD23; BD24] to functions
which are a priori defined only on J(f) (or which are Hölder continuous only on J(f)). More
precisely, for every g : J(f)→ R, define

‖g‖� ..= inf{‖g̃‖� : g̃ : P1 → R, g̃|J(f) = g}

and

(4) B�(J) ..= {g : J(f)→ R : ‖g‖� <∞}.

By Lemma 2.2, every β-Hölder continuous function on J(f) belongs to B�(J). By (N1), every
element of B�(J) is q-log-Hölder-continuous for some q > 2 depending on the choice of the norm
‖ · ‖�. Given φ, g : J(f)→ R, it is clear that we have ‖Lφg‖� ≤ ‖Lφ̃g̃‖� for every extensions φ̃, g̃ of
φ and g. In particular, for every φ ∈ B�(J) with maxφ < P(f, φ), the operator Lφ is bounded and
has a spectral gap on B�(J), with the largest eigenvalue equal to eP(f|J(f),φ) = eP(f,φ̃).

Definition 2.5. Given a continuous function ψ : J(f) → R and an invariant probability measure
m supported on J(f), we define formally

Var(ψ,m) ..= lim
n→∞

1

n

∫
J(f)

∣∣∣∣∣
n−1∑
i=0

ψ ◦ f i(x)

∣∣∣∣∣
2

dm ∈ [0,+∞].

The following proposition is a direct consequence of (N4) and (N5), together with the above
extension lemmas; see for instance [McM08; PP90].

Proposition 2.6. Let {φt}t∈(−1,1) be a smooth path in Cα(J(f),R) for some α ∈ (0, 1). Suppose
that φ0 admits a unique equilibrium state m = m(φ0) and that m has a strictly positive Lyapunov
exponent. Set φ̇0 = dφt/dt|t=0. Then we have

(5)
dP(φt)

dt

∣∣∣∣
t=0

=

∫
J(f)

φ̇0dm.

If the expressions in (5) are equal to zero, then we have

d2P(φt)

dt2

∣∣∣∣
t=0

= Var(φ̇0,m) +

∫
φ̈0dm.

In the statement above and in the rest of the paper, the notation φ̇0 = dφt/dt|t=0 stands for the
function which is defined pointwise as φ̇0(z) = dφt(z)/dt|t=0 for every z ∈ J(f).
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Lemma 2.7. Fix φ, ψ ∈ Cα(J(f)). Suppose that φ admits a unique equilibrium state m = m(φ)
and that m has a strictly positive Lyapunov exponent. Then we have Var(ψ,m(φ)) = 0 if and
only if ψ is C0-cohomologous to 0, i.e., there exists a continuous function h : J(f) → R such that
ψ = h− h ◦ f .

Proof. It is a standard fact that we have Var(ψ,m) = 0 if and only if ψ is a L2(m)-coboundary, i.e.,
if there exists h ∈ L2(m) such that ψ = h−h◦f . In order to conclude the proof, it is enough to show
that a L2-coboundary is a C0-coboundary. The proof is a standard application of the spectral gap
for the norm ‖ · ‖�, see for instance [FMT03, Lemma 3.4 and Corollary 3.5] and [BD24, Proposition
5.9]. �

Finally, let W be an open subset of C` for some ` ≥ 1. We say that a map W 3 w 7→ Lw ∈ L(B�)
is holomorphic if for every w ∈W , there exists L′w ∈ L(B�) such that ||h−1(L(w+h)−Lw)−L′w||� → 0
as h → 0. The following proposition gives a simple condition to ensure that this is the case for
the transfer operators associated to some family of functions ζλ, giving an improvement of (N4)
when the parameter is complex and the dependence of the potential on the parameter is sufficiently
regular.

Proposition 2.8. Let {ζw}w∈W be a family of functions in B� such that
(1) there exists w0 ∈W such that Lyapunov exponent of each equilibrium state of ζw0 is strictly

positive,
(2) the function w 7→ ζw is continuous with respect to ‖ · ‖�;
(3) for every z ∈ J(f), the function W 3 w 7→ ζw(z) is holomorphic.

Then, the map W 3 w 7→ Lζw|J(f) ∈ L(B�(J)) is holomorphic.

Proof. By the first assumption and Lemma 2.4, we have Lζw0
∈ L(B�). It is enough to show that

the map W 3 w 7→ Lζw ∈ L(B�) is continuous as this, together with the third assumption, implies
the holomorphicity of Lw; see for instance [UZ04, Lemma 7.1] or [SU10, Lemma 5.1].

In order to show the continuity of w 7→ Lw, by the property (N3) of the norm ‖ · ‖�, for every
w,w′ ∈W we have

‖(Lw − Lw′)g‖� = ‖f∗
(
(eζw − eζw′ )g

)
‖� . ‖(eζw − eζw′ )g‖�,

where the implicit constant is independent of w,w′. It follows from the above estimates and (N2)
that we have

‖(Lw − Lw′)g‖� . ‖eζw − eζw′‖�‖g‖� . ‖eζw‖�‖1− eζw′−ζw‖�‖g‖� . e‖ζw‖�‖1− eζw′−ζw‖�‖g‖�,
where again the implicit constants are independent of w,w′. The assertion follows from the fact
that et − 1 . t for small t > 0, (N2), and the assumption on the continuity of ζw with respect to
‖ · ‖�. �

2.3. Applications to φ = −θ log |f ′|. When f only has attracting or parabolic periodic points,
the function φ = − log |f ′| is smooth on J(f). Up to redefining it outside of some neighbourhood of
J(f), the results of the previous section apply, up to multiplying it by a sufficiently small constant
(in order to verify the requirement maxφ < P(f, φ)). We then have the following lemmas, which
we will refer to several times in the sequel. They are both well-known (see for example [DU91]), but
we give the proofs to show how they can be deduced from the formalism of the previous section.

Lemma 2.9. Let θ > 0 be such that P(−θ log |f ′|) > 0. Then every equilibrium state of the function
−θ log |f ′| : J(f)→ R has strictly positive Lyapunov exponent.

Proof. We have

(6) 0 < P(−θ log |f ′|) = hν − θLν ,
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where ν is an equilibrium state of −θ log |f ′| and hν and Lν are the measure-theoretic entropy and
the Lyapunov exponent of ν, respectively. Since ν is supported on the Julia set J , its Lyapunov
exponent is non-negative, i.e., we have Lν ≥ 0 [Prz93]. Hence, as θ > 0, (6) implies that hν > 0.
Since the Hausdorff dimension of ν is non-negative and satisfies H.dim(ν) · Lν = hν , this gives
Lν > 0. �

Lemma 2.10. The function θ 7→ P(−θ log |f ′|) is strictly decreasing as θ increases from 0 to the
first zero of the function P(−θ log |f ′|).

Proof. Take θ0 ∈ [0, T ), where T > 0 is the first zero of the function θ 7→ P(−θ log |f ′|). We apply
Proposition 2.6 with φs = −(θ0 +s) log |f ′|, for s in a sufficiently small neighbrouhood of 0. Observe
that φ0 = −θ0 log |f ′|. Since P(φ0) > 0, by Lemmas 2.9 and 2.4 φ0 has a unique equilibrium state
ν = ν(φ0), whose Lyapunov exponent Lν is strictly positive.

By (5), we have

dP(−θ log |f ′|)
dt

∣∣∣∣
θ=θ0

=
dP(φs)

ds

∣∣∣∣
s=0

= −
∫
J(f)

log |f ′|dν = −Lν < 0.

The conclusion follows. �

By [SU03], the pressure function t 7→ P(−t log |f ′|) is actually analytic on the interval between
0 and its first zero. We will reprove this fact in Section 3, where we will show a stronger joint
analyticity property for the pressure function in both t and f .

2.4. Extension of analytic functions. In later sections, we will often need to extend a family
of transfer operators, depending analytically on some real parameters, to a holomorphic family of
transfer operators, in order to apply the perturbation theory on the spectra of the operators. To
achieve this, we will use Lemma 2.11 below. We also refer to [Rug08] for a different method of
extension.

For every integer d ≥ 1, consider the embedding ιd : Cd → C2d given by

(7) (x1 + iy1, . . . , xd + iyd) 7→ (x1, y1, . . . , xd, yd).

Observe, in particular, that Cd is embedded by ιd in C2d as the set of points of real coordinates
(which, in turn, is parametrized by Cd by means of ιd). For every z ∈ C` and every r > 0,
denote by D`(z, r) the `-dimensional polydisk in C` centered at z and with radius r. Observe that,
with the above identification, we have ιd(Dd(0, r)) ⊂ D2d(0, r) and, more generally, ιd(Dd(z, r)) ⊂
D2d(ιd(z), r) for every z ∈ Cd.

Lemma 2.11 ([SU10, Lemma 6.4]). For every M ≥ 0, R > 0, λ0 ∈ Cd, and every complex analytic
function φ : Dd(λ0, R) → C which is bounded in modulus by M , there exists a complex analytic
function φ̃ : D2d(ιd(λ0), R/4)→ C that is bounded in modulus by 4dM and such that the restriction
of φ̃ ◦ ιd to Dd(λ0, R/4) coincides with the real part <(φ) of φ.

3. Analyticity of the Bowen function

We fix in this section a parabolic subfamily Λ of ratcmD . Recall that this implies that a (possibly
empty) subset of the critical points is persistently contained in parabolic basins. In particular, these
critical points are passive on all of Λ. We also fix a Λ-hyperbolic component Ω in Λ. Recall that
we denote by Jλ the Julia set of fλ. Observe also that, for every λ ∈ Ω, the map log |f ′λ| is Hölder
continuous in a neighbourhood of Jλ.

Fix η ∈ (0, logD). Given λ ∈ Ω, define δη(λ) to be the unique real number such that

P(−δη(λ) log |f ′λ|) = η.
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Note that the number δη(λ) exists and is unique as the pressure function t 7→ P(−t log |f ′λ|) is
strictly decreasing as t increases from 0 up to the first zero of P by Lemma 2.10. Moreover, we have
0 < δη(λ) ≤ 2 for every 0 < η < logD and λ ∈ Ω. If Λ and Ω are such that fλ is hyperbolic for
every λ ∈ Ω and we take η = 0, the number δ0(λ) is called the Bowen parameter, as in this case,
Bowen proved that δ0(λ) equals the Hausdorff dimension of the Julia set of fλ; see [Bow79]. In our
case, abusing notation, we call δη(λ) the Bowen number of fλ. The main result of this section is the
following proposition, which generalizes Ruelle’s result [Rue82] to every Λ-hyperbolic component.

Proposition 3.1. The Bowen function δη : Ω→ R given by λ 7→ δη(λ) is real-analytic.

Fix λ0 ∈ Ω and denote ` ..= dimCΩ. In the following, we will work in a chart of Ω centred at
λ0. In particular, we can assume that λ0 = 0 and λ ∈ D`(0, 1). Let R0 < 1 be a real number such
that the map Ψλ : J0 → Jλ conjugating the dynamical systems (J0, f0) and (Jλ, fλ) is well-defined
for all λ ∈ D`(0, R0). For λ ∈ D`(0, R0) and θ ∈ R, consider the potential function φ(θ,λ) : J0 → R
given by

φ(θ,λ)(z)
..= −θ log

∣∣f ′λ ◦Ψλ(z)
∣∣ .

Proposition 3.1 follows from the following proposition. Indeed, once we establish that the function
(θ, λ) 7→ P(φ(θ,λ)) is real-analytic in a neighbourhood of (δη(0), 0), since {η} is a closed set in R
and we have d

dθ

∣∣
θ=δη(λ)

P(−θ log |f ′λ|) < 0 for every λ by Lemma 2.10, it follows from the analytic
implicit function theorem that the function λ 7→ δη(λ) is analytic on Ω.

Proposition 3.2. There exists R > 0 such that the function (θ, λ) 7→ P(φ(θ,λ)) is real-analytic for
(θ, λ) ∈ (δη(0)−R, δη(0) +R)×D`(0, R).

The rest of this section is devoted to the proof of Proposition 3.2. Our proof follows the same
general outline as that of [SU10, Proof of Theorem A] or [UZ04, Proof of Theorem 9.3]. The spectral
gap property for the transfer operators Lφ(θ,λ) with respect to the norm ‖ · ‖� as in Section 2.2 will
allow us to adapt those arguments in our context.

For every z ∈ J0, consider the map

ψz(λ) ..=
f ′λ ◦Ψλ(z)

f ′0(z)
.

It follows from the absolute continuity of the holomorphic motion of the Julia sets that, shrinking
R0 if necessary, for all z ∈ J0 and λ ∈ D`(0, R0), we have

|ψz(λ)− 1| < 1/5.

Then, for every z ∈ J0, there exists a branch of logψz sending 0 to 0 and whose modulus is bounded
by 1/4. Applying Lemma 2.11 to the complex analytic function logψz, we see that the real analytic
function < logψz : D`(0, R0) → R has an analytic extension <l̃ogψz : D2`(0, R

′) → R for some
R′ ∈ (0, R0). Recall that D`(0, R0) is seen as a subset of the points of C2` with real coordinates by
means of the immersion ι` as in (7), and that we have ι`(0) = 0 ∈ C2`.

For (θ, λ) ∈ C×D2`(0, R
′), define ζ(θ,λ) : J0 → C by

ζ(θ,λ)(z)
..= −θ<l̃ogψz(λ) + θ log |f ′0(z)|.

Note that ζ(θ,λ) = φ(θ,λ) for every (θ, λ) ∈ R×D`(0, R
′).

Let β be such that the conjugacy map Ψλ : J0 → Jλ is β-Hölder continuous for all λ ∈ D`(0, R
′).

We first note that the map (θ, λ) 7→ ζ(θ,λ) is continuous with respect to the β-Hölder norm (see for
instance [SU10, Lemma 6.6] for a similar computation). Applying Lemma 2.2 to the families <ζ(θ,λ)

and =ζ(θ,λ), and shrinking R′, gives an extended family C ×D2`(0, R
′) 3 (θ, λ) 7→ ζ̃(θ,λ) : P1 → C
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which is continuous with respect to the β/2-Hölder norm and satisfies ζ̃(θ,λ)(z) = ζ(θ,λ)(z) for every
(θ, λ) ∈ C× ι−1

1 D2`(0, R
′) and z ∈ J0.

Fix a norm || · ||� as in Section 2.2 such that || · ||� . || · ||Cβ/2 and recall that we denote by
B�(J0) the Banach space defined by the norm || · ||� as in (4), and by L(B�(J0)) the space of the
bounded linear operators on (B�(J0), ‖ · ‖�). For (θ, λ) ∈ C × D2`(0, R

′), consider the complex
transfer operator L(θ,λ)

..= L
ζ̃(θ,λ)

.

Lemma 3.3. There exists R′′ ∈ (0, R′) such that the map D`(δη(0), R′′) × D2`(0, R
′′) 3 (θ, λ) 7→

L(θ,λ) ∈ L(B�(J)) is holomorphic.

In the proof of the above lemma, we will use the fact that we have P(φ(δη(λ),λ)) ≡ η > 0 to verify
the assumptions of the lemmas in Section 2.3, and hence of Proposition 2.8. This is the reason why
we take η ∈ (0, logD), rather than η = 0 as in Bowen’s paper [Bow79].

Proof. We verify that the three assumptions of Proposition 2.8 are satisfied when considering the
family of weights ζ̃(θ,λ) instead of ζw.

For (1), since we have P(φ(δη(0),0)) = η > 0, Lemma 2.9 ensures that the desired property holds
at the parameter w0 = (δη(0), 0).

For (2), we observe that, up to choosing R′′ ∈ (0, R′) sufficiently small, the family (θ, λ) 7→ ζ̃(θ,λ)

is continuous with respect to the β/2-Hölder norm by Lemma 2.2. The desired condition then holds
thanks to the bound || · ||� . || · ||Cβ/2 which we required in the choice of ‖ · ‖�.

For (3), for each fixed z ∈ J0, the map (θ, λ) 7→ ζ(θ,λ)(z) is holomorphic by definition.
As all the assumptions of Proposition 2.8 are satisfied, the assertion follows from Proposition

2.8. �

We can now conclude the proof of Proposition 3.2, which also concludes the proof of Proposition
3.1.

End of the proof of Proposition 3.2. We let R′′ be as in Lemma 3.3 and denote by Lζ(θ,λ) ∈ L(B�(J))

the transfer operator associated to (θ, λ) ∈ D`(δη(0), R′′) × D`(0, R
′′). For every (θ, λ) ∈ R ×

D`(λ0, R
′′), the value eP (ζ(θ,λ)) is a simple isolated eigenvalue of the transfer operator Lζ(θ,λ) . It

follows from Lemma 3.3 and the Kato-Rellich perturbation theorem [Kat95] that there exists 0 <
R < R′′ and an analytic function A : D`(δη(0), R) × D2`(0, R) → C such that A(θ, λ) is a simple
isolated eigenvalue for L(θ,λ) for every (θ, λ) ∈ D`(δη(0), R)×D2`(0, R) and eP (ζ(θ,λ)) = A(θ, λ) for
every (θ, λ) ∈ (δη(0) − R, δη(0) + R) × D2`(0, R). The assertion follows by possibly reducing R,
taking the logarithm of the function A, and recalling that D`(0, R) is identified to a subset of C2`

by means of the map ι`. The proof is complete. �

4. The Hessian form 〈·, ·〉G and the pressure form 〈·, ·〉P
We continue to use the notations from the previous section. We fix a Λ-hyperbolic component

Ω of a parabolic family Λ ⊂ ratcmD . In this section, we show that the construction in [HN23a] of a
positive semi-definite symmetric bilinear form 〈·, ·〉G for hyperbolic components in the moduli space
of rational maps can be extended to Ω. To this end, we first construct a positive semi-definite
symmetric bilinear form 〈·, ·〉G on Ω̃, which is a lift of Ω in the parameter space RatcmD and show
that it descends to a positive semi-definite symmetric bilinear form on Ω; see Sections 4.1 and 4.2.
We construct the pressure form 〈·, ·〉P on Ω in Section 4.3 and prove the conformal equivalence of
〈·, ·〉G and 〈·, ·〉P in Section 4.4.
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4.1. The Hessian 2-form 〈·, ·〉G on Ω̃. Recall that Jλ denotes the Julia set of fλ, for λ ∈ Ω̃.
Fix λ0 ∈ Ω̃. Let U(λ0) be a neighborhood of λ0 such that the conjugacy Ψλ : Jλ0 → Jλ is well-
defined for any fλ ∈ U(λ0). Note that we can take U(λ0) = Ω̃ if Ω̃ is simply connected. Fix
η ∈ (0, logD). For simplicity, we denote by ν ..= νη,λ0 the unique equilibrium state on Jλ0 for the
potential −δη(λ0) log |f ′λ0 |. We note that −δη(λ0) log |f ′λ0 | has a unique equilibrium state by the
fact that P(−δη(λ0) log |f ′λ0 |) = η > 0, see Lemmas 2.9 and 2.4.

Definition 4.1. The function Lyλ0 : U(λ0)→ R is defined as

Lyλ0(λ) ..=

∫
Jλ

log |f ′λ|d ((Ψλ)∗ν) =

∫
Jλ0

log |f ′λ ◦Ψλ|dν.

Lemma 4.2. The function Lyλ0 : U(λ0)→ R is harmonic. In particular, it is real-analytic.

Proof. We show that ddcλLyλ0(λ) ≡ 0, where ddcλ denotes the complex Laplacian. Denote by πΩ and
πP1 the natural projection of Ω × P1 onto its factors. With these notations, we see that, formally,
we have

(8) ddcλLyλ0(λ) = (πΩ)∗(dd
c
λ,z log |f ′λ ◦Ψλ| ∧ (πP1)∗ν).

For every z0 ∈ Jλ0 , we have
ddcλ,z log |f ′λ ◦Ψλ(z0)| = 0

since the map λ 7→ f ′λ ◦ Ψλ(z0) is a non-vanishing holomorphic function on Ω for every z0 ∈ Jλ0 .
The assertion follows from Fubini’s theorem, which also justifies that the currents and the equality
in (8) are well-defined. �

Definition 4.3. The function Gλ0 : U(λ0)→ R is defined as

Gλ0(λ) ..= δη(λ)Lyλ0(λ) = δη(λ)

∫
Jλ0

log |f ′λ ◦Ψλ|dν.

Lemma 4.4. The function Gλ0 : U(λ0)→ R is real-analytic.

Proof. The statement follows from Proposition 3.1 and Lemma 4.2. �

Let G : X → R be a smooth real-valued function on an `-dimensional smooth manifold X. The
Hessian of G at x ∈ X with respect to a chart u : U(x)→ R` is the map G′′(u)(x) : TxX ×TxX → R
represented by the 2-form

G′′(u)(x) =
∑̀
i,j=1

∂2G(u)

∂ui∂uj
(x)dui ⊗ duj .

We note that if u : U(x)→ R` and v : V (x)→ R` are two different charts, we haveG′′(u)(x) = G′′(v)(x)

as soon as DG(x) vanishes, where DG(x) is the differential DG(x) : TxX → TG(x)R (which a priori
depends on the coordinate charts, but the condition of its vanishing does not); see [BT08, Section
7]. If x ∈ X is such that DG(x) = 0, then G′′(x) ..= G′′(u)(x) (with respect to any chart u) is a
well-defined symmetric bilinear form G′′(x) : TxX × TxX → R on TxX. Moreover, if x is a local
minimum for G, then G′′(x) is positive semi-definite.

In what follows, we will show that Gλ0 has a minimum at λ0. Therefore we have DGλ0(λ0) = 0

and the Hessian G′′λ0(λ0) : Tλ0Ω̃× Tλ0Ω̃→ R is well-defined at λ0 and is positive semi-definite.

Proposition 4.5. Fix λ0 ∈ Ω̃. We have Gλ0(λ0) ≤ Gλ0(λ) for all λ ∈ U(λ0).
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Proof. Recall that we denote by ν the unique equilibrium state on Jλ0 for the weight−δη(λ0) log |f ′λ0 |.
To ease notation, we also set νλ ..= (Ψλ)∗ν for every λ ∈ U(λ0). Then we have

Ly(ν, fλ) =

∫
Jλ

log |f ′λ|dνλ for all λ ∈ U(λ0).

Since the weight −δη(λ0) log |f ′λ0 | has pressure η with respect to fλ0 and ν = νλ0 is its (unique)
equilibrium state, by the definition of pressure we have

(9) hνλ0 (fλ0) = η + δη(λ0)

∫
Jλ0

log |f ′λ0 |dνλ0 .

Since ν = νλ0 is fλ0-invariant, νλ is fλ-invariant for every λ ∈ U(λ0). Since the measure-theoretic
entropy is invariant under topological conjugacy, it follows that we have

(10) hνλ0 (fλ0) = h(Ψλ)∗νλ0
(fλ) = hνλ(fλ).

Again by the definition of pressure and the identity P (−δη(λ) log |f ′λ|) = η, we have

(11) hνλ(fλ) ≤ η + δη(λ)

∫
Jλ

log |f ′λ|dνλ for all λ ∈ U(λ0).

Combining (9), (10), and (11), we obtain the inequality δη(λ0)Ly(ν, fλ0) ≤ δη(λ)Ly(ν, fλ). The
assertion follows. �

Therefore, the Hessian of Gλ0 at λ0 defines a positive semi-definite symmetric bilinear form 〈·, ·〉G
on the tangent space Tλ0Ω̃ as follows.

Definition 4.6. For every ~u,~v ∈ Tλ0Ω̃, we define

〈~u,~v〉G ..= (G′′λ0(λ0))(~u,~v).

For every ~v ∈ Tλ0Ω̃, we will also denote ‖~v‖G ..=
√
〈~v,~v〉G.

Lemma 4.7. Let γ(t), t ∈ (−1, 1) be a smooth path in U(λ0) with γ(0) = λ0 and γ′(0) = ~v ∈ Tλ0Ω̃.
Then

||~w||2G =
d2

dt2

∣∣∣∣
t=0

Gλ0(γ(t)).

Proof. For every γ as in the statement, we have

d2

dt2

∣∣∣∣
t=0

Gλ0(γ(t)) = G′′λ0(γ(0))(γ′(0), γ′(0)) +DGλ0(γ(0)) · γ′′(0) = G′′λ0(λ0)(~v,~v).

The second equality follows from the identity DGλ0(γ(0)) = DGλ0(λ0) = 0 given by Proposition
4.5. The assertion follows. �

4.2. The Hessian 2-form 〈·, ·〉G on Ω. We now show that the Hessian form 〈·, ·〉G on (the tangent
bundle of) Ω̃ descends to a symmetric bilinear form on (the tangent bundle of) Ω. We first need a
preliminary lemma.

Lemma 4.8. Fix λ0 ∈ Ω̃. If f1, f2 ∈ Ω̃ are Möbius conjugate, then log |f ′1 ◦Ψf1 | and log |f ′2 ◦Ψf2 |
are C0-cohomologous. In particular, we have δη(λf1) = δη(λf2). Here Ψfi : Jλ0 → J(fi), i = 1, 2 is
the conjugacy map.
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Proof. Let g be a Möbius transformation such that f1 = g ◦f2 ◦g−1 and observe that g = Ψf1 ◦Ψ−1
f2

.
Then, for every x ∈ Jλ0 , we have

log |f ′1 ◦Ψf1(x)| = log |f ′1 ◦ g ◦Ψf2(x)| = log |(g ◦ f2 ◦ g−1)′(g ◦Ψf2(x))|
= log |g′(f2 ◦Ψf2(x))|+ log |f ′2(Ψf2(x))|+ log |(g−1)′(g ◦Ψf2(x))|
= log |g′(f2 ◦Ψf2(x))|+ log |f ′2(Ψf2(x))| − log |g′(Ψf2(x))|
= log |g′(Ψf2 ◦ fλ0(x))|+ log |f ′2(Ψf2(x))| − log |g′(Ψf2(x))|.

The first assertion follows by setting h ..= log |g′(Ψf2(x))| and observing that h is continuous as g
has no critical points. As the pressure function only depends on cohomology classes [PP90], we have
P(−t log |f ′1 ◦Ψf1 |) = P(−t log |f ′2 ◦Ψf2 |) for all t ∈ R. Therefore, we have δη(f1) = δη(f2) and the
proof is complete. �

Lemma 4.9. Fix [λ] ∈ Ω and ~v ∈ T[λ]Ω. Let γ(t), t ∈ (−1, 1) be a smooth curve in Ω with
γ(0) = [λ] and γ′(0) = ~v. If γ̃1(t) and γ̃2(t) are two smooth lifts of γ(t) to Ω̃, then we have
Gγ̃1(0)(γ̃1(t)) = Gγ̃2(0)(γ̃2(t)) for every t ∈ (−1, 1).

Proof. Let γ̃1(t) and γ̃2(t) be two lifts of γ(t) to Ω̃ as in the statement. Since the definitions are
local, we may assume that we have γ̃1(t) ⊂ U(γ̃1(0)) and γ̃2(t) ⊂ U(γ̃2(0)) for all t ∈ (−1, 1), where
the neighbourhood U(λ) of λ ∈ Ω̃ is as in the previous section. Since γ̃1(t) and γ̃2(t) are Möbius
conjugate, we have δη(γ̃1(t)) = δη(γ̃2(t)) for every t ∈ (−1, 1) by Lemma 4.8. LetM : Jγ̃2(0) → Jγ̃1(0)

be the Möbius conjugacy map, and νi be the equilibrium state of −δη(γ̃i(0)) log |f ′γ̃i(0)| for i = 1, 2.

We first claim that M∗ν2 = ν1. We compute

hM∗ν2(fγ̃1(0)) +

∫
Jγ̃1(0)

log |f ′γ̃1(t)|d(M∗ν2) = hν2(fγ̃2(0)) +

∫
M−1Jγ̃1(0)

log |f ′γ̃1(t) ◦M |dν2

= hν2(fγ̃2(0)) +

∫
Jγ̃2(0)

log |f ′γ̃2(t)|dν2

= P(−δη(γ̃2(0)) log |f ′γ̃2(0)|) (as ν2 is an equilibrium state)

= P(−δη(γ̃1(0)) log |f ′γ̃1(0)|) (by Lemma 4.8).

Therefore, M∗ν2 is an equilibrium state for −δη(γ̃1(0)) log |f ′γ̃1(0)|. Since −δη(γ̃1(0)) log |f ′γ̃1(0)| has
a unique equilibrium state, this gives the desired equality M∗ν2 = ν1.

It follows from the above that we have

Gγ̃1(0)(γ̃1(t)) = δη(γ̃1(t))

∫
Jγ̃1(0)

log |f ′γ̃1(t)|dν1 = δη(γ̃2(t))

∫
M(Jγ̃2(0))

log |f ′γ̃1(t)|d(M∗ν2)

= δη(γ̃2(t))

∫
Jγ̃2(0)

log |f ′γ̃1(t) ◦M |dν2 = Gγ̃2(0)(γ̃2(t))

for every t ∈ (−1, 1). The assertion follows. �

The above lemma implies that the following definition is well-posed.

Definition 4.10. For every [λ] ∈ Ω and ~v ∈ T[λ]Ω, we define

||~v||G ..= ‖~̃v‖G = ||γ̃′(0)||G

where λ̃ is any representative of [λ], ~̃v is a lift of the tangent vector ~v to Tλ̃Ω̃, and γ̃(t), t ∈ (−1, 1)

is any smooth real 1-dimensional curve in Ω̃ with γ̃(0) = λ̃ and γ′(0) = ~̃v.
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4.3. The pressure 2-form 〈·, ·〉P on Ω. From now on, we will use λ (instead of [λ] as before) to
denote an element of Ω. By abuse of notation, we will refer to fλ and Jλ as the objects corresponding
to λ, even if a priori λ should stand for an equivalence class. This identification is meaningful by
the lemmas in the previous section, as we can choose a lift of representatives of the elements of Ω

in Ω̃.
In this section, we construct the pressure form 〈·, ·〉P on Ω. Fix λ0 ∈ Ω. Since, for every λ ∈ Ω,

the dynamical system (Jλ, fλ) is topologically conjugate to (Jλ0 , fλ0) by means of the holomorphic
motion, we can think of (Jλ0 , fλ0) as a model dynamics for every fλ with λ ∈ Ω. Recall that we
denote by Ψλ : Jλ0 → Jλ the conjugacy map.

For a fixed η ∈ (0, logD), recall that δη(λ) is the unique real number satisfying

P(−δη(λ) log |f ′λ ◦Ψλ|) = η.

Let Cη(Jλ0) be the set of cohomology classes of Hölder continuous functions with pressure η with
respect to fλ0 , that is,

Cη(Jλ0) ..= {φ : φ ∈ Cα(Jλ0 ,R) for some α > 0,P(φ) = η}/ ∼

where φ1 ∼ φ2 if φ1 and φ2 are C0-cohomologous on Jλ0 .

Definition 4.11. The thermodynamic mapping E : Ω→ Cη(Jλ0) is defined by

E (λ) ..= [−δη(λ) log |f ′λ ◦Ψλ|].

The thermodynamic mapping is well-defined by Lemma 4.8.

Fix λ ∈ Ω and E (λ) ∈ Cη(Jλ0). Let ν be the equilibrium state for a representative φ of E (λ),
whose existence and uniqueness are guaranteed by the fact that P(−δη(λ) log |f ′λ ◦ Ψλ|) = η > 0
and Lemmas 2.9 and 2.4. By Proposition 2.6, the tangent space of Cη(Jλ0) at E (λ) can be identified
with

TE (λ)Cη(Jλ0) =

{
ψ : ψ ∈ Cα(Jλ0 ,R) for some α > 0,

∫
Jλ0

ψdν = 0

}
/ ∼,

where we used the fact that, by definition, the pressure is constant on Cη(Jλ0). Following [McM08,
p. 375], we define the pressure form || · ||pm on E (Ω) ⊂ Cη(Jλ0) as follows. Given ψ ∈ TE (λ)Cη(Jλ0),
we define

||[ψ]||2pm ..=
Var(ψ, ν)

η −
∫
Jλ0

φdν
.

Given ~w ∈ TλΩ, let γ(t) = [ft], t ∈ (−1, 1) be a smooth path in Ω with γ(0) = λ and γ′(0) = ~w.
Letting φt be a representative of the class E (γ(t)), we define

(12) ‖~w‖P ..= ||φ̇0||pm =
Var(φ̇0, ν)

η −
∫
Jλ0

φ0dν
.

We call ‖ · ‖P the pressure form on Ω. Observe that || · ||P is positive semi-definite on TλΩ since
we have Var(φ̇0, ν) ≥ 0 and η −

∫
Jλ0

φ0dν > 0.

4.4. Conformal equivalence of 〈·, ·〉G and 〈·, ·〉P on Ω. We continue to denote by λ the elements
of Ω, as explained at the beginning of the previous section.

Fix λ0 ∈ Ω and ~v ∈ Tλ0Ω. Let γ(t), t ∈ (−1, 1) be a smooth path in Ω with γ(0) = λ0 and
~v = γ′(0). Let γ̃(t) be a lift of γ(t) in Ω̃, and denote by ft a map corresponding to γ̃(t).

For every x ∈ Jλ0 and t ∈ (−1, 1), set

g(t, x) ..= −δη(γ̃(t)) log |f ′t ◦Ψγ̃(t)(x)|.
17



Denote by ġ(0, ·) and g̈(0, ·) the real-valued functions on Jλ0 given by

ġ(0, x) =
d

dt

∣∣∣
t=0

g(t, x) and g̈(0, x) =
d2

dt2

∣∣∣
t=0

g(t, x) for all x ∈ Jλ0

and denote by ν the (unique) equilibrium state of g(0, x) = −δη(λ0) log |f ′0|.

Proposition 4.12. We have

||~v||2P =
||~v||2G

η −
∫
Jλ0

g(0, x)dν(x)
.

In particular, the Hessian form || · ||G is conformal equivalent to the pressure form || · ||P .

Proof. By the definition of g(t, x), ~v can be identified with ġ(0, ·). By (12) and Proposition 2.6 (2),
we have

||~v||2P =
Var(ġ(0, x), ν)

η −
∫
Jλ0

g(0, x)dν(x)
=
−
∫
Jλ0

g̈(0, x)dν(x)

η −
∫
Jλ0

g(0, x)dν(x)
.

Hence, it is enough to show that we have

||~v||2G = −
∫
Jλ0

g̈(0, x)dν(x).

By the Definition 4.3 of Gγ̃(0)(γ̃(t)), we have

Gγ̃(0)(γ̃(t)) = δη(γ̃(t))

∫
Jλ0

log |f ′t ◦Ψγ̃(t)|dν = −
∫
Jλ0

g(t, x)dν(x).

The assertion follows from the Definition 4.10 of || · ||G, after taking two derivatives in t in the last
expression. �

Corollary 4.13. The following assertions are equivalent:

(1) ||~v||G = 0;
(2) ||~v||P = 0;
(3) Var(ġ(0, x), ν) = 0;
(4) ġ(0, x) is a C0-coboundary, i.e., it is C0-cohomologous to zero.

Proof. The equivalence between the first three assertions immediately follows from Proposition 4.12.
The equivalence between (3) and (4) follows from Lemma 2.7. �

We conclude this section with the following lemma, which we will need to prove that the forms
introduced so far induce a path metric on Ω.

Lemma 4.14. If ||~v||G = 0, then there exists a constant K ∈ R such that, for every n ∈ N, we have

d

dt

∣∣∣
t=0

Sn
(

log |f ′t ◦Ψγ̃(t)(x)|
)

= K · Sn
(

log |f ′ ◦Ψγ̃(0)(x)|
)

for all n-periodic points x of f in Jλ0 . Here Snφ denotes the Birkhoff sum of φ.

Proof. By the assumption on ||~v||G and Corollary 4.13, the derivative ġ(0, x) of the map g(t, x) =
−δ(ft) log |f ′t ◦ Ψft(x)| is a C0-coboundary. Hence, there exists a continuous function h : Jf0 → R
such that ġ(0, x) = h(x)−h(f0(x)) for every x ∈ Jf0 . Let x ∈ Jf0 be a n-periodic point of f0. Then,

18



we have

0 = h(x)− h(fn0 (x)) = h(x)− h(f0(x)) + h(f0(x))− · · · − h(fn0 (x))

=
d

dt

∣∣∣∣
t=0

g(t, x) +
d

dt

∣∣∣∣
t=0

g(t, f0(x)) + · · ·+ d

dt

∣∣∣∣
t=0

g(t, fn−1
0 (x))

= − d

dt

∣∣∣∣
t=0

δη(ft)Sn
(

log |f ′t ◦Ψft(x)|
)
.

Applying the chain rule and using the inequality δη(f0) > 0, we obtain

d

dt

∣∣∣
t=0

Sn
(

log |f ′t ◦Ψft(x)|
)

= −
d
dt

∣∣
t=0

δη(ft)

δη(f0)
· Sn

(
log |f ′ ◦Ψf (x)|

)
.

Therefore, the assertion follows choosing K ..= d
dt

∣∣
t=0

δη(ft)/δη(f0). �

5. The Hessian form defines a path metric

We prove our main result, Theorem 1.1, in this section. We first prove two preliminary results
in Sections 5.1–5.3 stating that 〈·, ·〉G is real-analytic on the unit tangent bundle UTΩ of Ω, and
that any C1-path in Ω has strictly positive length with respect to 〈·, ·〉G. We conclude the proof of
Theorem 1.1 in Section 5.4.

5.1. Analyticity of 〈·, ·〉G on the unit tangent bundle. We fix in this section a Λ-hyperbolic
component Ω in a parabolic family Λ in ratcmD and we show that the bilinear form 〈·, ·〉G is analytic
on the unit tangent bundle UTΩ of Ω. Recall that this form depends on a parameter η ∈ (0, logD),
which will be fixed throughout this section.

As in Section 4.3, we will think of Ω and Λ as subfamilies of RatcmD , by means of suitable lifts.
We fix λ0 and only work in a sufficiently small neighbourhood of λ0 in Ω. By means of suitable
charts, we can then assume that λ0 = 0 and that D`(0, R0) ⊂ Ω, where ` is the complex dimension
of Ω and Λ.

Let {~vs}s∈D1(0,R0) be a holomorphic family of elements of C` \ {~0}, i.e., we assume that the
map s 7→ ~vs ∈ C` \ {~0} is holomorphic. Observe also that we can identify TλΩ with C` for every
λ ∈ D`(0, R0). Consider the map γ : D`(0, R0)×D1(0, R0)×D1(0, R0)→ C` given by

γ(λ, t, s) = λ+ t~vs.

Up to shrinking R0, we can assume that the image of γ is contained in Ω. Moreover, it is clear from
the definition that γ satisfies

γ(λ, 0, s) = λ and
d

dt

∣∣∣
t=0

γ(λ, t, s) = ~vs ∈ TλΩ for all λ ∈ D`(0, R0) and s ∈ D1(0, R0).

For every (θ, λ, t, s) ∈ R×D`(0, R0)×D1(0, R0)×D1(0, R0), we also define

φ(θ,λ,t,s)
..= −δη(λ) log |f ′λ|+ θ log |f ′γ(λ,t,s) ◦Ψλ,t,s| : Jλ → R

where we denote by Ψλ,t,s : Jλ → Jλ,t,s the conjugacy map induced by the holomorphic motion on
Ω.

Proposition 5.1. There exists 0 < R < R0 such that the map (δη(λ0)−R, δη(λ0)+R)×D`(0, R)×
D1(0, R)×D1(0, R) 3 (θ, λ, t, s) 7→ P(φ(θ,λ,t,s)) is real-analytic.

We will show Proposition 5.1 in Section 5.2. We first deduce the following corollary, giving the
analyticity of the metric || · ||G on the tangent bundle of Ω. For every λ ∈ Ω, we denote by νλ the
unique equilibrium state of −δη(λ) log |f ′λ| : Jλ → R.
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Corollary 5.2. There exists R ∈ (0, R0) such that the map

D`(0, R)×D1(0, R)×D1(0, R) 3 (λ, t, s) 7→ G0(γ(λ, t, s)) = δη(γ(λ, t, s))

∫
Jλ

log |f ′γ(λ,t,s) ◦Ψλ,t,s|dνλ

is real-analytic. Moreover, the map D`(0, R)×D1(0, R) 3 (λ, s) 7→ (G′′λ(λ))(~vs, ~vs) is real-analytic.

Proof. By Propositions 2.6 and 5.1, taking the first derivative with respect to θ of the pressure
function P(φ(θ,λ,t,s)), for every (λ, t, s) ∈ D`(0, R)×D1(0, R)×D1(0, R) we have

d

dθ

∣∣∣
θ=0
P(−δη(λ) log |f ′λ|+ θ log |f ′γ(λ,t,s) ◦Ψλ,t,s|) =

∫
Jλ

log |f ′γ(λ,t,s) ◦Ψλ,t,s|dνλ.

Hence, again by Proposition 5.1, the map

D`(0, R)×D1(0, R)×D1(0, R) 3 (λ, t, s) 7→
∫
Jλ

log |f ′γ(λ,t,s) ◦Ψλ,t,s|dνλ

is real-analytic. By Proposition 3.1 and the definition of γ(λ, t, s), the map

D`(0, R)×D1(0, R)×D1(0, R) 3 (λ, t, s) 7→ G0(γ(λ, t, s)) = δη(γ(λ, t, s))

∫
Jλ

log |f ′γ(λ,t,s) ◦Ψλ,t,s|dνλ

is real-analytic. This gives the first assertion.

Taking two derivatives in t of the function G0(γ(λ, t, s)) and evaluating at t = 0, we see that the
map

D`(0, R)×D1(0, R) 3 (λ, s) 7→ d2

dt2

∣∣∣∣
t=0

G0(γ(λ, t, s)) = (G′′λ(λ))(~vs, ~vs)

is real-analytic. This completes the proof. �

5.2. Proof of Proposition 5.1. We again follow the general strategy as the proof of [SU10, The-
orem A] or [UZ04, Theorem 9.3]. As the arguments are similar to those of the proof of Proposition
3.2, we will just sketch them.

For every z ∈ J0 and λ ∈ Ω, we denote zλ ..= Ψλ(z). For every z ∈ J0 and (λ, t, s) ∈ D`(0, R0)×
D1(0, R0)×D1(0, R0), consider the map

ψz(λ, t, s) ..=
f ′γ(λ,t,s) ◦Ψλ,t,s(zλ)

f ′λ(zλ)
,

where we recall that Ψλ,t,s : Jλ → Jλ,t,s is the conjugacy map. Up to shrinking R0 if necessary, for
all z ∈ J0 and (λ, t, s) ∈ D`(0, R0)×D1(0, R0)×D1(0, R0), we have |ψz(λ, t, s)−1| < 1/5. Then, for
every z ∈ J0, there exists a branch of logψz sending 0 to 0 and whose modulus is bounded by 1/4.
By Lemma 2.11, up to further shrinking R0, the analytic map < logψz : D`(0, R0) × D1(0, R0) ×
D1(0, R0) → R has an analytic extension <l̃ogψz : D2`(0, R0) × D2(0, R0) × D2(0, R0) → C.
Recall that D`(0, R0) (resp. D`(0, R0)) is seen as a subset of the points of C2` (resp. C) with real
coordinates by means of the immersion ι` (resp. ι1) as in (7), and that we have ι`(0) = 0 ∈ C2` and
ι1(0) = 0 ∈ C2.

For (θ, λ, t, s) ∈ C×D2`(0, R0)×D2(0, R0)×D2(0, R0), consider the map ζ(θ,λ,t,s) : J0 → C given
by

ζ(θ,λ,t,s)(z)
..= −δη(λ) log |f ′λ(zλ)| − θ<l̃ogψz(λ, t, s) + θ log |f ′λ(zλ)|

= −θ<l̃ogψz(λ, t, s) + (θ − δη(λ)) log |f ′λ(zλ)|.
Let β be such that the conjugacy maps Ψλ : J0 → Jλ and Ψλ,t,s : Jλ → Jλ,t,s are β-Hölder

continuous for all λ ∈ D`(0, R0) and all (λ, t, s) ∈ D`(0, R0) ×D1(0, R0) ×D1(0, R0), respectively.
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The map (θ, λ, t, s) 7→ ζ(θ,λ,t,s) is then continuous with respect to the β-Hölder norm. Applying
Lemma 2.2 to the families <ζ(θ,λ,t,s) and =ζ(θ,λ,t,s), up to shrinking R0, gives an extended family
C × D2`(0, R0) × D2(0, R0) × D2(0, R0) 3 (θ, λ, t, s) 7→ ζ̃(θ,λ,t,s) : P1 → C which is continuous
with respect to the β/2-Hölder norm and satisfies ζ̃(θ,λ,t,s)(z) = ζ(θ,λ,t,s)(z) for every (θ, λ, t, s) ∈
C× ι−1

`+2(D2`(0, R0)×D2(0, R0)×D2(0, R0)) and z ∈ J0.

Fix a norm || · ||� as in Section 2.2 such that || · ||� . || · ||Cβ/2 and, for (θ, λ, t, s) ∈ C×D2`(0, R0)×
D2(0, R0) ×D2(0, R0), consider the complex transfer operator L(θ,λ,t,s)

..= L
ζ̃(θ,λ,t,s)

. As in Lemma
3.3, there exists 0 < R1 < R0 such that the mapD1(δη(0), R1)×D2`(0, R0)×D2(0, R0)×D2(0, R0) 3
(θ, λ, t, s) 7→ L

ζ̃(θ,λ,t,s)
∈ L(B�(J0)) is holomorphic. As for Proposition 3.2, Proposition 5.1 then

follows from Kato-Rellich perturbation theorem.

5.3. Non-degeneracy along C1 paths. We fix in this section a bounded Λ-hyperbolic component
Ω of a parabolic subfamily Λ in polycmD . Using the metric || · ||G, given a C1 path γ : (0, 1)→ Ω, we
define the length `G(γ) of γ as

`G(γ) ..=

∫ 1

0
‖γ′(t)‖Gdt.

The main result of this section is the following proposition, which states that the metric assigns a
positive length to any (non-trivial) C1 path in Ω. The assumptions on the polynomial family and
on the boundedness of Ω in our main theorem will be used in the proof of this result.

Proposition 5.3. We have `G(γ) > 0 for any non-trivial C1 path γ : (0, 1)→ Ω.

Observe that, if `G(γ) = 0, we must have ‖γ′(t)‖G = 0 for almost every t ∈ (0, 1) (and hence, by
continuity, for all t ∈ (0, 1)). For simplicity, we will say that the metric is degenerate along γ if this
happens. The following lemma, which follows immediately from Lemma 4.14, characterizes when
such a situation can occur.

Lemma 5.4. Let γ : (0, 1) → Ω be a C1 path. Then the metric || · ||G is degenerate along γ if and
only if for every t ∈ (0, 1) and for every n ∈ N, we have

d

dt

∣∣∣
t=0

Sn
(

log |f ′γ(t)(x(γ(t)))|
)

= K(γ(t))Sn
(

log |f ′γ(t)(x(γ(t)))|
)

for every repelling n-periodic point x(γ(t)), where K(γ(t)) ..= δη(γ(0))−1 d
dt

∣∣
t=0

δη(γ(t)).

The following corollary is an immediate consequence of the previous lemma.

Corollary 5.5. Let γ : (0, 1) → Ω be a C1 path along which the metric || · ||G degenerates. Then
the following assertions hold:

(1) for every repelling n-periodic point x and t1, t2 ∈ (0, 1), we have

Sn
(

log |f ′γ(t2)(x(γ((t2)))|
)

= Sn
(

log |f ′γ(t1)(x(γ(t1)))|
)
· eK̃(t2,t1),

where K̃(t2, t1) =
∫ t2
t1
K(γ(t))dt;

(2) for every pair of motions of repelling n-periodic points xi, xj, there exists a positive constant
ai,j such that

Sn
(

log |f ′γ(t)(xi(γ(t)))|
)

= ai,jSn
(

log |f ′γ(t)(xj(γ(t)))|
)

for every t in (0, 1).

We can now prove Proposition 5.3.
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Proof of Proposition 5.3. Suppose by contradiction that we have `G(γ) = 0. Then, the metric must
degenerate along γ. We denote by {xi(λ)}i≥1 the set of maps parametrizing the repelling periodic
points on Ω, and let ni be the period of the corresponding cycle.

Fix s0 ∈ (0, 1) and an index i0. It follows from Corollary 5.5 that, for every i ≥ 1 and every
s ∈ (0, 1), we have

Sni0ni
(

log |f ′γ(s)(xi(γ(s)))|
)

= ai,i0e
K̃(s,s0)Sni0ni

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
for some strictly positive (as both xi(γ(s)) and xi0(γ(s0)) are repelling) constants ai,i0 .

As Ω is bounded, we have L(γ(s)) ≡ logD on Ω by Lemma 2.1. Hence, it follows from the
equidistribution of periodic points with respect to the measure of maximal entropy [Lyu82; Lyu83a]
that, for every s ∈ (0, 1), we have

logD = lim
n→∞

1

ni0n

1

Dni0n

∑
xi : ni=ni0n

ai,i0e
K̃(s,s0)Sni0n

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
= eK̃(s,s0) · lim

n→∞

(
1

Dni0n

∑
xi : ni=n

ai,i0 ·
1

ni0n
Sni0n

(
log |f ′γ(s0)(xi0(γ(s0)))|

))

= eK̃(s,s0) ·

(
lim
n→∞

1

Dni0n

∑
xi : ni=n

ai,i0

)
· 1

ni0
Sni0

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
,

where in the last step we used the identity

Sni0n
(

log |f ′γ(s0)(xi0(γ(s0)))|
)

= nSni0
(

log |f ′γ(s0)(xi0(γ(s0)))|
)
.

We deduce that the function K̃(s, s0) is independent of s. By Corollary 5.5 (1), this shows that
the absolute values of all the multipliers of the xi(γ(s))’s are constant along γ. However, this is
impossible as, by [JX23, Theorem 8.25], there are only finitely many conjugacy classes of rational
maps, not in the locus of (conjugacy classes of) flexible Lattès maps, having the same set of absolute
values of repelling multipliers. Therefore `G(γ) = 0 and the proof is complete. �

Remark 5.6. The conclusion of the proof of Proposition 5.3 can be achieved also without making use
of [JX23]. Indeed, assume as above that the absolute values of all the multipliers of the xi(γ(s))’s are
constant along γ. For every i, the absolute value of the multiplier of xi(λ) is an harmonic function
on Ω. This gives a family of harmonic functions with a non-trivial common level set (possibly
corresponding to a different real value, larger than 1, for each function) which, by the above, must
contain the image of γ. Up to reparametrization, as Λ is algebraic, we can also assume that Λ = C`,
where ` = dimCΛ. It follows from the maximum principle that this common level set cannot be
bounded in Λ (as, otherwise, all the harmonic functions would be constant in the region bounded
by the level set, hence constant there, hence on Λ, which contradicts the choice of Ω as before).
Hence, all of the repelling points stay repelling, with constant modulus of their multiplier, along
some path going to infinity in Λ = C`. This implies that, for every λ belonging to this path, we
have L(λ) = logD. This contradicts the fact that, outside of a compact subset of Λ, all critical
points escape to infinity, which gives L(λ) > logD by the Przyticki formula.

5.4. Proof of Theorem 1.1. In this section we conclude the proof of our main theorem. We will
use the following theorem by Mityagin [Mit15], describing the zero set of a non-trivial real analytic
function.

Theorem 5.7. Let O ⊂ Rl be an open set and ψ : O → R an analytic function not identically
vanishing. Then, the set {ψ = 0} is covered by a countable union of (not necessarily closed) analytic
submanifolds of O.
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In [Mit15], the author only states that, under the assumptions of the theorem, the set {ψ = 0}
has zero Lebesgue measure. However, the proof is constructive and, as already noted in [Kuc16,
Remark 5.23], gives a decomposition of this set as a countable union of smooth submanifolds of real
co-dimension at least 1. As each of these submanifolds (obtained by means of the implicit function
theorem) is in the common zero locus of analytic functions (namely ψ and some of its derivatives),
one can see that these sets are indeed analytic submanifolds.

We now conclude the proof of our main result; that is, we need to show that the function
dG : Ω× Ω→ R given by

dG(x, y) ..= inf
γ

∫ 1

0
‖γ′(t)‖Gdt

is a distance function. Recall that the infimum is taken over all the C1-paths γ connecting x to y
in Ω.

Proof of Theorem 1.1. Let Λ and Ω be as in the statement. Observe that dG is a pseudo-metric;
namely, we have dG(x, x) = 0 and dG(x, y) = dG(y, x) for every x, y ∈ Ω, and dG satisfies the
triangle inequality. We need to show dG(x, y) > 0 for x 6= y ∈ Ω.

By Corollary 5.2, the pseudo-metric dG induced by the Hessian form is described by a collection
of positive semi-definite bilinear forms A1

λ on TλΩ, depending analytically on the point λ ∈ Ω.
Denote by D1(λ) the determinant of the matrix representing A1

λ. By Corollary 5.2, D1 : Ω → R is
real-analytic. It is clear that the pseudo-metric dG is indeed a metric outside of the zero locus S1

of the analytic map D1 : Ω→ R. Hence, it is enough to prove that dG(x, y) > 0 for every x, y ∈ S1.

We first show that we cannot have S1 = Ω. Observe that S1 = Ω means that at every λ ∈ Ω
there is at least one degenerate direction for the metric. For j = 1, . . . , 2` where ` ..= dimCΩ, set

Uj ..= {λ ∈ Ω : ∃~v1, . . . , ~vj ∈ TλΩ linearly independent with ‖~v1‖G = . . . = ‖~vj‖G = 0}.
It is straightforward to see that S1 = U1 ⊇ U2 ⊇ · · · ⊇ U2`. There are two cases to consider.

Case 1: Uj+1 6= Uj for some j ∈ {1, . . . , 2`−1}. Let j? be the minimum j satisfying this property.
Then Uj? \ Uj?+1 contains an open set A of Ω. By the definition of A and the analyticity of the
metric, there exists a j?-dimensional subbundle V ⊂ TΩ on A such that, for every λ ∈ A, ‖ · ‖G is
degenerate on the fiber Vλ. Consider a C1 path γ : (0, 1) → A whose tangent γ′(t) is contained in
Vγ(t) for every t ∈ (0, 1). By construction, we have `G(γ) = 0, contradicting Proposition 5.3.

Case 2: If Uj+1 = Uj for all j = 1, . . . , 2`−1, then U2` = U1 = Ω, meaning that we have ‖·‖G ≡ 0
on the tangent bundle TΩ. Then any C1-path in Ω has length 0, contradicting Proposition 5.3.

Therefore, as S1 6= Ω, the function D1 : Ω → R is not identically zero on Ω and, up to working
locally, we can apply Theorem 5.7 to D1 : Ω → R. It follows that there is a countable collection
{Sj1}j≥1 of connected analytic submanifolds of Ω of real co-dimension at least 1 covering S1. It is
enough to show that dG(x, y) > 0 for any two distinct points x and y belonging to the same real
co-dimension one submanifold in the collection {Sj1}j≥1, say S1

1 .

If dimRΩ = 2, the proof is complete by Proposition 5.3. Indeed, as the submanifold S1
1 is smooth

and one-dimensional, it itself gives a smooth path joining x and y in S1
1 . As the length of this path

is strictly positive by Proposition 5.3, the proof in this case is complete.

We now treat the general case where dimRΩ > 2. By the above argument, S1
1 is an analytic

submanifold, and we need to show that dG(x, y) > 0 for any pair of distinct points x, y ∈ S1
1 .

Observe that any path between x and y not contained in S1
1 must necessarily have a positive length.

Hence, we can restrict ourselves to paths with are contained in S1
1 , whose length can be computed

by considering the restrictions of the pseudo-metric represented by A1
λ to the (real) tangent spaces
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TλS
1
1 . Let D2(λ) be the determinant of the associated matrix of A2

λ on the tangent space TλS1
1 . Then

D2 : S1
1 → R is an analytic function. We argue as above that the zero locus S2 of D2 : S1

1 → R is not
equal to S1

1 , and is covered by a countable collection {Sj2}j≥1 of connected analytic submanifolds of
S1

1 . As before, we can then assume that x and y belong to the same component S1
2 of S2, and that

any continuous path of trivial length joining x and y must be contained in S1
2 , which is an analytic

submanifold of Ω of real dimension dimRΩ− 2.

Working by induction, we see that any continuous path of trivial length between x and y must
be contained in an analytic real one-dimensional submanifold S1

dimRΩ−1, where S
1
j+1 is a component

of the singular locus of the restriction of the pseudo-metric to S1
j . The conclusion now follows from

Proposition 5.3, as in the case where dimRΩ = 2. The proof is complete. �
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