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Abstract. Consider a holomorphic family (fλ)λ∈Λ of polynomial maps on C with the property
that a critical point of fλ is persistently preperiodic to a repelling periodic point of fλ. Let Ω be a
bounded stable component of Λ with the property that, for all λ ∈ Ω, all the other critical points
of fλ belong to attracting basins. In this paper, we introduce a dynamically meaningful geometry
on Ω by constructing a natural path metric on Ω coming from a 2-form 〈·, ·〉G. Our construction
uses thermodynamic formalism. A key ingredient is the spectral gap of adapted transfer operators
on suitable Banach spaces, which also implies the analyticity of 〈·, ·〉G on the unit tangent bundle
of Ω. As part of our construction, we recover a result of Skorulski and Urbański stating that the
Hausdorff dimension of the Julia set of fλ varies analytically over Ω.

1. Introduction

Let S be a closed surface of genus g ≥ 2. The Teichmüller space T (S) of S, which parametrizes
the hyperbolic structures on S, plays a fundamental role in modern mathematics. The topology and
geometry of Teichmüller spaces have been investigated from numerous viewpoints. Ahlfors [Ahl54]
proved that T (S) is homeomorphic to R6g−6. On the other hand, T (S) carries a number of natural
metrics defined from different perspectives, e.g., the Teichmüller metric, the Weil-Petersson metric,
and the Thurston metric; see for instance [Hub06; IT92].

From the perspective of Sullivan’s dictionary [Sul85; McM94; DSU17], stable components (in the
sense of [Lyu83b; MSS83]) of moduli spaces of rational maps (seen as holomorphic dynamical systems
on the Riemann sphere) are the natural counterparts in complex dynamics of Teichmüller spaces of
closed surfaces. This correspondence provides both the motivation and the tools to examine both
the topology and the geometry of such stable components, in parallel to the theories of Teichmüller
spaces.

Ever since McMullen’s [McM08] construction of the Weil-Petersson metric on the space of degree
d ≥ 2 Blaschke products in complex dynamics, there has been an extensive study of Weil-Petersson
metrics on stable components of moduli spaces. Ivrii [Ivr14] studied the completeness properties of
McMullen’s metric for degree 2 Blaschke products. Nie and the second author [HN23] constructed
Weil-Petersson metrics on general hyperbolic components in moduli spaces of rational maps. Lee,
Park, and the second author [HLP24; HLP25] studied the degeneracy loci of the Weil-Petersson
metric on spaces of quasi-Blaschke products. In our earlier paper [BH24], we studied the Weil-
Petersson metric on stable components of polynomials families with a persistent parabolic point.

In this paper, we extend the theory of Weil-Petersson metrics in complex dynamics to stable
components of a Misiurewicz family of polynomials (i.e., a family where some critical point is
persistently preperiodic to some repelling periodic point). The construction of the Weil-Petersson
metric requires a deep analysis of the spectral properties of adapted transfer operators to deal with
the presence of critical points in the Julia sets and the lack of uniform hyperbolicity.

1.1. Statement of results. Denote by PolycmD (resp. RatcmD ) the space of critically marked degree
D ≥ 2 polynomials (resp. rational maps). A not necessarily closed subfamily Λ of PolycmD (resp.
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RatcmD ) is a Misiurewicz family if it is the open subset of a family given by a finite number of critical
relations of the form

fni(ci(λ)) = fni+mi(ci(λ)) = ri(λ),

where ci(λ) is the i-th marked critical point of fλ, ni,mi are positive integers, and each ri(λ) is a
repelling periodic point for every fλ ∈ Λ. The dynamics of a Misiurewicz polynomial fλ ∈ Λ on its
Julia set is not uniformly hyperbolic, due to the presence of critical points. We say that a stable
component Ω b Λ is Λ-hyperbolic if, for every λ ∈ Ω, every critical point cj(λ) such that cj is active
on Λ is contained in the basin of some attracting cycle for fλ.

Our main goal in this paper is to define a Weil-Petersson path-metric on a bounded Λ-hyperbolic
component Ω of a Misiurewicz subfamily Λ of polycmD . To this end, we construct a positive semi-
definite symmetric bilinear form 〈·, ·〉G on each tangent space TλΩ, which will turn out to be equiv-
alent to the pressure 2-form. The construction of 〈·, ·〉G is valid on any Λ-hyperbolic component of
a Misiurewicz subfamily Λ of ratcmD .

As the first step of our construction of the 2-form 〈·, ·〉G, we show that the Hausdorff dimension
function is real-analytic.

Theorem 1.1. Let Ω be a Λ-hyperbolic component of a Misiurewicz subfamily Λ of ratcmD . The
Hausdorff dimension function δ : Ω → (0, 2) sending λ to the Hausdorff dimension of the Julia set
of fλ is real-analytic.

In fact, Theorem 1.1 is obtained as a corollary (see Corollary 3.2) of a stronger analyticity result;
see Theorem 3.1. We also remark that Theorem 1.1 is already known; see for example Skorulski-
Urbanski [SU14]. Our proof of Theorem 3.1, and hence of Theorem 1.1, is very different from
Skorulski-Urbanski’s proof [SU14]. The framework of our proof will be crucial in later parts of the
paper. More details of the proof strategies will be given in Section 1.2.

We then construct the Weil-Petersson metric on each tangent space TλΩ. The construction follows
the general framework of [HN23; BH24].

By construction, the 2-form 〈·, ·〉G may not be non-degenerate; namely, there may exist a non-
zero tangent vector ~v ∈ TλΩ such that 〈~v,~v〉G = 0. For example, in [HLP24; HLP25], Lee, Park
and the second author studied the degeneracy loci of the Weil-Petersson metric on spaces of quasi-
Blaschke products. On the other hand, in [HN23], Nie and the second author gave a sharp condition
under which the Weil-Petersson metric is non-degenerate on (uniformly) hyperbolic components of
rational maps. This result deeply exploited the uniform hyperbolicity and in particular a result
by Oh-Winter [OW17] on the distribution of the multiplier of the periodic points. Even though
we cannot rely on that result in our Misiurewicz setting, we can still prove that 〈·, ·〉G defines a
path-metric on Ω.

Theorem 1.2. Let Ω be a bounded Λ-hyperbolic component of a Misiurewicz subfamily Λ of polycmD .
Then the function dG : Ω× Ω→ R given by

dG(x, y) ..= inf
γ

∫ 1

0
‖γ′(t)‖Gdt

is a distance function. Here the infimum is taken over all the C1-paths γ connecting x to y in Ω.

The above theorem parallels the result we obtained in [BH24] for the case of parabolic families of
polynomials. We note that the analysis in [BH24] does not apply to the case of Misiurewicz maps.
More specifically, for parabolic maps, the geometric potential is Hölder continuous, hence we could
apply the machinery of [BD23; BD24] to the transfer orerator associated to such weights and their
perturbations. For Misiurewicz maps, we will instead consider suitable transfer operators on an
enlarged tower space, where the dynamics becomes expanding.
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1.2. Strategies of the proofs. The main technical difficulty of the paper lies in the proof of
Theorem 3.1, which states that a certain pressure function (t1, λ1, t2, λ2) 7→ P (t1, λ1, t2, λ2) related
to two geometric potentials is real-analytic. As consequences of Theorem 3.1, we obtain Theorem
1.1 as well as the analyticity of the two-form 〈·, ·〉G on the unit tangent bundle of Ω.

To prove Theorem 3.1, we first consider a suitable extension T : T → T of the dynamics to
an enlarged tower space, see Section 3.2, which provides a way to deal with critical points in the
Julia set for a single Misiurewicz map. Since we will work with a stable component of Misiurewicz
maps, we generalize the work of Makarov-Smirnov [MS03] to a holomorphic family of tower maps
{Tλ : Tλ → Tλ}λ∈Ω. A key observation is that the Hölder continuous conjugation between Julia
sets in the same Λ-hyperbolic component extends to a Hölder continous conjugation between the
corresponding tower dynamics; see Lemma 3.9.

For ti ∈ R, λi ∈ Ω, we construct a 4-parameter family of transfer operators Lt1,λ1,t2,λ2 : Cκ(T )→
Cκ(T ) acting on the Banach space of κ-Hölder continuous functions of T . The four parameters of
the transfer operators come from the potential functions; namely, we consider a 4-parameter family
of potentials ζ(t1,λ1,t2,λ2) to define Lt1,λ1,t2,λ2 = Lζ(t1,λ1,t2,λ2)

. In fact, our potential ζ(t1,λ1,t2,λ2) is
of the form ζ(t1,λ1) + ζ(t2,λ2), where each ζ(ti,λi) is a modified version of the geometric potential
−ti log |f ′λi |.

Then an important step is to prove that such transfer operators have a spectral gap for certain
ranges of the parameters; see Proposition 3.12. In particular, the spectral gap property follows from
a Lasota-Yorke type of estimate, which is locally uniform in all the parameters t1, λ1, t2, λ2.

To show that the pressure function is indeed analytic, and not only separately analytic in its
variables, we will employ an extension argument, see for instance [SU10; UZ04]. More specifically,
we show that we can extend the 4-parameter family of potential functions ζt1,λ1,t2,λ2 to complex
parameters t1, λ1, t2, λ2, in such a way that the 4-parameter family of transfer operators Lt1,λ1,t2,λ2

becomes a holomorphic family of operators; see Proposition 3.14 and Lemma 3.17. Then it follows
from the perturbation theory that the eigenvalue, and therefore the pressure, varies real-analytically
with the parameters.

1.3. Organization of the paper. The paper is organized as follows. Section 2 collects basic
facts about Misiurewicz maps and Λ-hyperbolic components. We prove Theorem 3.1 and therefore
Theorem 1.1 in Section 3. We construct the 2-form 〈·, ·〉G and the pressure form in Section 4.
Finally, we prove Theorem 1.2 in Section 5.
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ton, for the support and hospitality through the Summer Collaborators Program. This project has
received funding from the Programme Investissement d’Avenir (ANR QuaSiDy /ANR-21-CE40-
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MIUR Excellence Department Project awarded to the Department of Mathematics of the Univer-
sity of Pisa, CUP I57G22000700001, and from the PHC Galileo project G24-123. The first author
is affiliated to the GNSAGA group of INdAM.

2. Misiurewicz families and Λ-hyperbolic components

Let D ≥ 2 be an integer. Let RatcmD (resp. PolycmD ) be the space of degree D rational maps
(resp. polynomials) with marked critical points c1, . . . , c2D−2 (resp. c1, . . . , cD−1) and ratcmD (resp.
polycmD ) the moduli space obtained from RatcmD (resp. PolycmD ) by taking the quotient by all Möbius
(resp. affine) conjugacies. For every λ ∈ RatcmD (resp. PolycmD ), we denote by fλ the corresponding
rational map (resp. polynomial), by µλ its unique measure of maximal entropy [FLM83; Lyu82;
Lyu83a], and by L(λ) =

∫
log |f ′λ|µλ the Lyapunov exponent of µλ. The following lemma collects

the properties of the function L(λ) that we shall need in the sequel. Observe that, as log |f ′λ| is not
necessarily continuous on the support of µλ, the first assertion is not a direct consequence of the
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equidistribution of the periodic points with respect to µλ [Lyu82], but requires a more quantitive
equidistribution, see for instance [BDM08; BD19]. The second assertion is the classical Przytycki
formula [Prz85] for polynomials.

Lemma 2.1. For every λ ∈ RatcmD , we have
(1) L(λ) = limn→∞D

−n∑
x∈Pern(λ) log |f ′λ(x)|,

where Pern(λ) is the set of periodic points of fλ of (exact or not exact) period n. Moreover, for
every λ ∈ PolycmD , we also have

(2) L(λ) = logD +
∑D−1

j=1 Gλ(cj(λ)),
where Gλ(z) ..= limn→∞D

−n log max{1, |fnλ (z)|} is the Green function of fλ.

Let now Λ0 be an algebraic subfamily of RatcmD (resp. PolycmD ).

Definition 2.2. We say that Λ0 is given by critical relations if it is given by a finite number of
non-trivial equations of the form

fn1
λ (ci1(λ)) = fn2

λ (ci2(λ)).

We say that Λ is a Misiurewicz family if it is the open subset of a family given by a finite number
of critical relations of the form

fni(ci(λ)) = fni+mi(ci(λ)) = ri(λ),

where each ri(λ) is a repelling periodic point for every fλ ∈ Λ and each mi is strictly positive.

We refer to [BB09; BB11; DeM01; Duj14; DF08; GOV19; Oku14] for the description and distri-
bution in the parameter space of these submanifolds and to [Ber13; BBD18; Bia19; Duj14; Lev81]
for their role in the understanding of the bifurcation phenomena and related problems.

It is clear that the quotient by Möbius or affine conjugacies is well-defined on Misiurewicz fam-
ilies, and we will use the same name for the images of these families by the quotient map. By a
slight abuse of notation, we can think of Misiurewicz subfamilies of PolycmD (resp. polycmD ) also as
Misiurewicz subfamilies of RatcmD (resp. ratcmD ), where we allow (and require) the further critical
relation f−1

λ ({∞}) = {∞}.
Let now Λ be a Misiurewicz family and Λ0 the algebraic family given by the associated critical

relations. Recall that a critical point c is called passive on an open subset Λ′ of Λ (or Λ0) if the
sequence of holomorphic functions {λ 7→ fnλ (c(λ))}n≥1 is a normal family on Λ′. Otherwise, the
critical point is called active on Λ′. It follows from the definition that the critical points ci which
are preperiodic to the periodic points ri are passive on Λ (this is true also on Λ0, although it may
be needed to pass to a finite cover to be able to follow the periodic points ri on all Λ0).

Recall [Lyu83b; MSS83] that an open subset Ω of Λ or Λ0 is in the stability locus of the family
if all critical points are passive on Ω. We also say that the family is stable on Ω. We say that Ω is
a stable component if it is a connected component of the stability locus.

Definition 2.3. We say that a stable component Ω b Λ is Λ-hyperbolic if, for every λ ∈ Ω, every
critical point cj(λ) such that cj is active on Λ is contained in the basin of some attracting cycle for
fλ.

We say that Ω is a bounded Λ-hyperbolic component if we have Ω b Λ for the topology induced
by Λ. In this case, if Λ ⊆ PolycmD , all the critical points which are active on Λ are contained in the
basin of some attracting cycle in C (rather than just P1(C)) for every λ ∈ Ω. Observe that in this
case, as all critical points have bounded orbit, by Lemma 2.1 (2) we also have

(1) L(λ) ≡ logD on Ω.
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3. Analyticity of pressure functions

The main goal of this section is to prove Theorem 1.1. As we will see, we in fact prove a stronger
result (see Theorem 3.1) and obtain Theorem 1.1 as a corollary (see Corollary 3.2). To prove
Theorem 3.1, we first generalize the spectral study carried out by Makarov-Smirnov [MS03]. Our
generalization is twofold – we extend the study in [MS03] (which was done for a single Misiurewicz
map) to a stable holomorphic family of Misiurewicz maps, and we consider spectral properties for a
more general 4-parameter family of transfer operators L(t1,λ1,t2,λ2) which encode both the geometric
potential at a given parameter and its perturbation in the direction of another parameter. Then we
combine it with a general method which allows us to deduce analyticity of the pressure function;
see for instance [SU10].

Let Ω be a Λ-hyperbolic component of a Misiurewicz family Λ. We assume for simplicity that
the family is defined by a single critical relation fλ(c(λ)) = r(λ), as the arguments are essentially
the same in the general case.

Fix λ0 ∈ Ω and consider a neighborhood N(λ0) b Ω of λ0. For each λ ∈ N(λ0), we denote by
fλ a representative of the conjugacy class λ and by Jλ the Julia set of fλ. Recall that, by [MSS83;
Lyu83b], there exists a holomorphic motion of the sets Jλ over N(λ0), i.e., a family of conjugations
hλ : Jλ0 → Jλ which depend holomorphically on λ. The family of the maps (hλ)

λ∈N(λ0)
is compact

in the space of γ-Hölder continuous maps from Jλ0 to P1, for some γ depending on N(λ0). We can
take γ → 1 as N(λ0) shrinks to λ0. In particular, we will always assume in what follows that N(λ0)
is sufficiently small so that the associated γ satisfies γ > γ0 for some γ0 < 1 whose precise value will
be chosen when needed. Recall also that all these conjugations can be extended to quasiconformal
homeomorphisms from P1(C) to itself, and so in particular to Hölder continuous maps.

For every t ∈ R and λ ∈ Ω, the pressure function is defined as

(2) p(t, λ) ..= lim sup
n→∞

1

n
log

∑
z∈f−nλ (c(λ))

|(fnλ )′(z)|−t.

We refer to [PRS04] for a number of equivalent definitions and characterizations of the pressure.
For any fixed λ, the function t 7→ p(t, λ) is strictly decreasing. By [McM00], for every λ ∈ Ω, the
unique zero of the map t 7→ p(t, λ) is equal to the Hausdorff dimension of the Julia set of fλ. We
denote this number by δ(λ).

In the following, it will be useful to observe that, thanks to the conjugating maps hλ, we also
have

p(t, λ) = lim sup
n→∞

1

n
log

∑
z∈f−nλ0

(c(λ0))

|(fnλ )′ ◦ hλ(z)|−t

for every t ∈ R and λ ∈ N(λ0). More generally, given t1, t2 ∈ R and λ1, λ2 ∈ Ω, we define a joint
pressure function

(3) P (t1, λ1, t2, λ2) ..= lim sup
n→∞

1

n
log

∑
z∈f−nλ0

(c(λ0))

|(fnλ1
)′(hλ1(z))|−t1 |(fnλ2

)′(hλ2(z))|−t2 .

Observe that we have P (t1, λ1, 0, λ2) = p(t1, λ1) for every t1, λ1, λ2.

The following is the main result of this section. We denote by B(λ,R) the ball of radius R
centered at λ.

Theorem 3.1. For every λ ∈ Ω there exists R > 0 such that the function P (t1, λ1, t2, λ2) is real
analytic on (δ(λ)−R, δ(λ) +R)×B(λ,R)× (−R,R)×B(λ,R).

5



The proof of Theorem 3.1 consists of two steps. The first step is to prove spectral properties
of a 4-parameter family of transfer operators on a tower dynamical system; see Proposition 3.12.
Sections 3.1 and 3.2 contain the setup and preliminary estimates for the tower dynamics, adapted
to a holomorphic family of Misurewicz maps. The study of transfer operators is carried out in
Section 3.3. The second step is to extend the potential function to complex parameters, so that the
4-parameter family of transfer operators can be seen as a holomorphic family of transfer operators.
This step, carried out in Sections 3.4 and 3.5, uses a general framework of Sumi-Urbanski [SU10]
and allows us to apply the Kato-Rellich perturbation theory.

Corollary 3.2. For every λ ∈ Ω there exists R > 0 such that the function p(t, λ) is real analytic
on (δ(λ)−R, δ(λ) +R)×B(λ,R). In particular, the function λ 7→ δ(λ) is analytic on Ω.

Proof. The first assertion is a consequence of Theorem 3.1, applied with t2 = 0. The second assertion
follows from the first one and the implicit function theorem. �

Remark 3.3. The potential functions appearing in (3) are in fact the same used to define and
study the so-called Manhattan curves [Bur93; Sha98]. In [BH25], among other things, we study
the Manhattan curves associated to two hyperbolic rational maps, and more generally holomorphic
endomorphisms of CPk. Theorem 3.1 in particular also shows that the Manhattan curve associated
to two maps in the same Λ-hyperbolic component of a Misiurewicz family is analytic.

3.1. Branched covers and generalized conformal Cantor sets. We first recall the general
setup of [MS03], which describes a model dynamics F : P1 → U0 for every map in Ω. As in [MS03],
for simplicity, we will only consider the case of generalized conformal Cantor sets, which corresponds
to the case where all but one critical points of F escape to infinity. However, the results and the
arguments hold without this assumption. To further simplify things, we will only consider the case
of our interest, i.e., we will assume that the non-escaping critical point c is preperiodic to a repelling
cycle (while c is only assumed to be non-recurrent in [MS03]). Without loss of generality, up to
taking an iterate of the map, we assume that the image of c is a fixed point r, whose multiplier has
modulus equal to χ > 1.

Let U0 be an open Jordan domain in C and P1 a collection of a finite number of open topological
disks whose closures are disjoint and contained in U0. Let F : P1 → U0 be a proper analytic function.
We assume that F is a branched cover of order 2 on a component U1 of P1 and a biholomorphism
on every other component. We assume that the number of components of P1 is equal to D− 1 ≥ 1,
so that F : P1 → U0 is a branched cover of degree D.

Observe that the (unique) critical point c of F belongs to U1. For every n ≥ 2, we set Pn ..=
f−n(U0). The Julia set J(F ) is then given by the intersection ∩nPn, and by assumption we have
c ∈ J(F ). For every n ≥ 0 and x ∈ J(F ), we denote by Pn(x) the component of Pn containing x.
For simplicity, we will also set Un ..= Pn(c). By assumption, we have F (c) = r /∈ U1, and this point
is a fixed repelling point for F . Hence, we can also denote Vn ..= Pn(r) 6= Un. Observe that Vn+1

is mapped univalently by F to Vn and that F : Un+1 → Vn is a branched cover of degree 2. For
every n ≥ 0, we also define the critical annulus Dn

..= Un \Un+1. Hence, {Dn}n≥0 is a collection of
annuli around the critical point c. For every n ≥ 2, Fn is a cover of degree 2 from Dn to U0 \ Vn.
In particular, there exist 2(D− 2) components of Pn in Dn, and, for each of the D− 2 components
of P1 different from U0, two of them are mapped univalently to it.

Example 3.4. Assume that the degree of F is equal to 3. In this case, P1 is given by U1 ∪ V1,
where U1 = P1(c) and V1 = P1(r). The set P2 is given by the following five sets:

• U2 = P2(c), which is mapped by F to V1 with degree 2,
• V2

..= P2(r), which is mapped univalently by F to V1;
• a topological disc W2 ⊂ V1 \ V2, which is mapped univalently by F to U1, and
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• two topological disks Y2,1, Y2,2 ⊂ U1 \ U2, each mapped univalently by F to U1.
More generally, for every n ≥ 2, there exist two components Yn,1, Yn,2 ⊂ Dn−1 and a component
Wn ⊂ Vn−1 \ Vn of Pn which are all mapped univalently by Fn to U1.

Consider now the family (fλ)λ∈N(λ0). The map F is a model for the dynamics of every fλ (to
see this, it is enough to take as U0 any connected open neighborhood of the Julia set J(fλ)). To
simplify the notations, we will assume that λ0 = 0 and, to avoid an extra conjugation in the steps
below, we will directly think of F as the map f0 and U0 as a connected neighborhood of J(f0).
In particular, we have fλ ◦ hλ = hλ ◦ f0 = hλ ◦ F for every z ∈ J(f0) = J(F ) and λ ∈ N(0).
Observe that we restrict to N(0) in order to have uniform estimates for the maps hλ in the sequel.
The critical point c(λ) and the repelling point r(λ) whose relation fλ(c(λ)) = r(λ) defines Ω satisfy
c(0) = c and r(0) = r.

For every λ ∈ N(0), we let χλ be the multiplier of the repelling fixed point r(λ), and we also set
χ̂ ..= infλ∈N(0) |χλ| > 1. The following lemma is a direct consequence of [MS03, Lemma 1] applied
to every fλ with λ ∈ N(0).

Lemma 3.5. For every k ≥ 0, z ∈ Dk, and λ ∈ N(0), we have

diam(hλ(Uk)) ∼ χ
−k/2
λ , |(fkλ )′(hλ(z))| ∼ χk/2λ , and |(fkλ )′′(hλ(z))| . χkλ,

where the implicit constants are independent of k, z, and λ.

3.2. Tower dynamics. We now recall the construction of the tower extension for the model dy-
namics F : P1 → U0. For dynamical systems exhibiting some form of hyperbolicity, the tower
method has been extensively used to make the dynamics uniformly expanding on some auxiliary
tower space, see for instance [Hof80; You98].

We first consider the product U0 × N and its subset

T ..= tk≥1Tk,
where T1

..= (P1, 1) and Tk ..= (Uk, k) for every k ≥ 2 are the floors of the tower. Then, consider
the map T = T0 : T → T ∪ (U0, 1) given by

(4) T : (z, k) 7→

{
(z, k + 1) z ∈ Uk+1

(F k(z), 1) z /∈ Uk+1.

Example 3.6. Consider again the case where d = 3 as in Example 3.4. We see that every point
not on the first floor of T has exactly one preimage under T (given by the corresponding point on
the floor just below it). On the other hand, on the first floor:

• every point in V1 has exactly one preimage in V2;
• every point in U1 has infinitely many preimages: one in W2, and then, for every n ≥ 2, one
in each Yn,1 and Yn,2.

Remark 3.7. Observe that all the points of the form (z, k) with z on the boundary of Uk are mapped
(to the first floor and) to the boundary of V1. In particular, their images are not in T .

Fix now a constant 1 < χ∗ <
√
χ̂. Consider the following metric on T : by definition, points

in different floors have infinite distance, and the distance inside Tk is the usual Euclidean distance
multiplied by the factor (χ∗)

k−1. We will denote by dT the induced distance function on T . Observe,
in particular, that the map F is expanding with respect to this distance. More precisely, for every
(z, k) ∈ T , by Lemma 3.5 we have

T ′(z, k) =

{
χ∗ z ∈ Uk+1

χ1−k
∗ (F k)′(z) & (

√
χ̂/χ∗)

k z /∈ Uk+1.
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Observe that T ′ is differentiable at (z, k), unless z belongs to the boundary of Uk. Observe also
that the diameter of Tk goes to zero exponentially by the choice of χ∗ <

√
χ̂ and Lemma 3.5.

For every λ ∈ N(0), we can similarly construct a tower dynamics Tλ : Tλ → Tλ ∪ (hλ(U0), 1),
where Tλ is the tower defined replacing P1 and Uk with hλ(P1) and hλ(Uk), respectively, and Tλ is
obtained replacing F k with fkλ in the definition (4) of T . By the choice of χ∗, for every λ the map
Tλ is expanding on Tλ. The following lemma is a consequence of [MS03, Lemma 2] applied at every
λ. It essentially follows from Lemma 3.5, as [MS03, Lemma 2] follows from [MS03, Lemma 1].

Lemma 3.8. There is a constant C independent of n and λ such that if Tnλ is defined and differ-
entiable at y, then

|(Tnλ )′′(y)|
|(Tnλ )′(y)|2

≤ C.

The conjugations hλ between F and the fλ’s can be lifted to the towers. More precisely, for every
λ we can consider the map Hλ given by

Hλ((z, k)) ..= (hλ(z), k) for every (z, k) ∈ T .

As the maps hλ are γ-Hölder continuous, the same is true for the restriction of Hλ to each level of
the tower T . On the other hand, because of the dilation of the metric at every floor, the modulus
of continuity of Hλ a priori gets worse and worse as k → ∞. The following lemma shows that,
nevertheless, the maps Hλ are still Hölder continuous on the full tower.

Lemma 3.9. Up to taking N(0) and κ sufficiently small, the family {Hλ}λ∈N(0)
is compact in the

space of κ-Hölder continuous maps.

Proof. Recall that we are assuming that N(0) is so small that all the hλ’s are (uniformly) γ-Hölder
continuous, for some γ > γ0, where γ0 is close to 1.

Fix k ∈ N and take two points x, y ∈ Tk with dT (x, y) < r (recall that points on different floors
have infinite distance). As mentioned above, by the first estimate in Lemma 3.5 and the choice
χ∗ <

√
χ̂, we necessarily have r . χk−1

∗ χ̂−k/2 → 0 as k → ∞. By definition, the points x and
y correspond to points a, b ∈ C whose Euclidean distance is less than χ1−k

∗ r. It follows from the
Hölder-continuity of hλ that we have

|hλ(a)− hλ(b)| ≤ Cγ(χ1−k
∗ r)γ ,

where the constant Cγ is independent of λ ∈ N(0). This implies that we have

dTλ(Hλ(x), Hλ(y)) . χk∗(χ
−k
∗ r)γ = χ

k(1−γ)
∗ rγ ,

where the implicit constant is independent of λ and k.
Taking γ0 sufficiently close to 1, let κ > 0 be sufficiently close to 0 such that χ∗ < χ̂

γ0−κ
2(1−κ) . This

is possible by the condition χ∗ <
√
χ̂. It follows from the above bound for r that we have

χ
k(1−γ)
∗ rγ−κ . χk(1−γ)

∗ (χk∗χ̂
−k/2)γ−κ = χ

k(1−γ)+k(γ−κ)
∗ χ̂−k(γ−κ)/2 = χ

k(1−κ)
∗ χ̂−k(γ−κ)/2 . 1,

where the implicit constant is now independent of k. Hence, we have

dTλ(Hλ(x), Hλ(y)) . rκ,

where again the implicit constant is independent of k. This completes the proof. �
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3.3. Transfer operators. We denote by C(T ) the space of bounded continuous functions g : T →
R endowed with the L∞-norm. For every t1, t2 > 0 and λ1, λ2 ∈ N(0), consider the transfer operator
Lt1,λ1,t2,λ2 : C(T )→ C(T ) defined as

Lt1,λ1,t2,λ2g(x) ..=
∑

T (y)=x

g(y)|Rλ1(y)|−t1 |Rλ2(y)|−t2

where, for every y ∈ Tk and λ ∈ N(0), the value Rλ(y) is defined as

Rλ(y) ..=

{
χ∗ y ∈ Uk+1 × {k}
χ1−k
∗ · |(fkλ )′ ◦ hλ| y /∈ Uk+1 × {k}.

Observe that, thanks to the conjugating maps Hλ, Lt1,λ1,t2,λ2 can be equivalently defined as

Lt1,λ1,t2,λ2g(x) ..=
∑

T (y)=x

g(y)|T ′λ1
(Hλ1(y))|−t1 |T ′λ2

(Hλ2(y))|−t2 .

The second writing has the advantage of allowing us to apply, for every λ1, λ2 ∈ N(0), the uniform
estimates of [MS03] (see Lemmas 3.5 and 3.8).

Observe that the operator Lt1,λ1,t2,λ2 above is well defined (i.e., for every g ∈ C(T ), the value
of Lt1,λ1,t2,λ2g(x) is well defined for every x ∈ T and Lt1,λ1,t2,λ2g is continuous). Indeed, the only
points where Lt1,λ1,t2,λ2g may be not continuous (or not defined) in T ∪ (U0, 1) are on (∂V1, 1),
which is outside T (see Example 3.6 for the case of degree 3 and Remark 3.7).

In [MS03], the authors study the special case where t2 = 0 and λ1 = λ0 and obtain a spectral gap
for this operator on the Banach space of Lipschitz functions on T . As we now allow the parameters
λ1, λ2 to change in N(0), we will need to take into account the distortion given by the holomorphic
motion hλ and the map Hλ (observe that this is necessary even when t2 = 0). To this aim, we
will instead work with the Banach space Cκ(T ) of κ-Hölder continuous functions endowed with the
Hölder norm ‖ · ‖κ. For g ∈ Cκ(T ), we have

‖g‖κ ..= ‖g‖∞ + ‖g‖′κ

where ‖g‖′κ ..= supa,b∈T
|g(a)−g(b)|
dT (a,b)κ is the Hölder constant of g.

Lemma 3.10. For every t1, t2 ∈ R with t1 + t2 > 0 and λ1, λ2 ∈ N(0), the transfer operator
Lt1,λ1,t2,λ2 is a bounded linear operator on both C(T ) and Cκ(T ).

Proof. For simplicity, we will give a proof only in the case where d = 3 (see Examples 3.4 and 3.6),
so that the combinatorics of the problem become simpler. In particular, an explicit description of
the preimages of points in T is given in Example 3.6. The general case can be proved in exactly
the same way. To simplify the notations, we will also denote Lt1,λ1,t2,λ2 by L.

As we saw above, L preserves C(T ). We now show that L is a bounded operator on C(T ). If x
is on the (k + 1)-th floor, then x has only one preimage y under T , which is on the k-th floor of T ,
and y belongs to Uk+1 × {k}. Then we have T ′λ1

(y) = T ′λ2
(y) = χ∗ and

|Lg(x)| = |g(y)| · |Rλ1(y)|−t1 |Rλ2(y)|−t2 ≤ ‖g‖∞χ−(t1+t2)
∗ .

Let us now take x in the first floor. If x ∈ V1 × {1}, then it has one preimages (in V2 × {1}) and
the argument is similar to the one above. If, instead, x belongs to U1 × {1}, then x has countable
preimages, which are as described in Example 3.6. We denote by y the preimage in W2 and, for
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every k ≥ 2, by (yk,1, k) and (yk,2, k) the preimages in Yk,1 × {k} and Yk,2 × {k}, respectively. We
then have

|Lg(x)| ≤‖g‖∞
(
|f ′λ1

(hλ1(y))|−t1 |f ′λ2
(hλ2(y))|−t2

+
∑

k≥2;j=1,2

|χ1−k
∗ (fkλ1

)′(hλ1(yk,j))|−t1 |χ1−k
∗ (fkλ2

)′(hλ2(yk,j))|−t2
)

.‖g‖∞ ·
(
χ−t1λ1

χ−t2λ2
+
∑
k

(χ∗/
√
χλ1)kt1(χ∗/

√
χλ2)kt2

)
. ‖g‖∞,

where in the second step we used Lemma 3.5 and in the last one the assumptions χ∗ <
√
χ̂ and

t1 + t2 > 0.
Therefore, we have ‖Lg‖∞ . ‖g‖∞ for some implicit constant independent of g.

We omit the proof of the boundedness on Cκ(T ) as we will prove a more precise estimate in
Lemma 3.13. �

Definition 3.11. For B = C(T ) or Cκ(T ), we define
(1) ρ(Lt1,λ1,t2,λ2 ,B) to be the spectral radius of Lt1,λ1,t2,λ2 : B → B;
(2) ρess(Lt1,λ1,t2,λ2 ,B) ..= inf{ρ(Lt1,λ1,t2,λ2 −K,B) : rank K <∞};
(3) η(t1, λ1, t2, λ2) ..= ρ(Lt1,λ1,t2,λ2 , C(T )).

The main result of this section is the following proposition which states that, under suitable
conditions, the transfer operator Lt1,λ1,t2,λ2 is quasicompact on Cκ(T ).

Proposition 3.12. If t1, t2 ∈ R with t1 + t2 > 0 and λ1, λ2 ∈ N(0) are such that

(5) P (t1, λ1, t2, λ2) > −(log χ̂/2)(t1 + t2), i.e., eP (t1,λ1,t2,λ2) > χ̂−(t1+t2)/2,

then the following properties hold:
(1) η(t1, λ1, t2, λ2) = eP (t1,λ1,t2,λ2);
(2) ρess(Lt1,λ1,t2,λ2 , C

κ(T )) < ρ(Lt1,λ1,t2,λ2 , C
κ(T )) = η(t1, λ1, t2, λ2);

(3) η(t1, λ1, t2, λ2) is a simple eigenvalue of Lt1,λ1,t2,λ2 in Cκ(T ).

The first assertion can be proved in the same way as in [MS03, Section 2.4], by using Lemma 3.5
instead of [MS03, Lemma 1]. The key point in the proof of Proposition 3.12 is the following lemma,
giving a Lasota-Yorke estimate for the iterated transfer operator with respect to the semi-norm
‖ · ‖′κ. Once Lemma 3.13 is established, the rest of the proof carries on as in [MS03] with minimal
modifications. Assumption (5) is used in that part of the proof. Observe that t1 + t2 > 0 plays the
role of t in [MS03], as in Lemma 3.10.

Lemma 3.13. For all t1, t2 ∈ R with t1 + t2 > 0 and λ1, λ2 ∈ N(0), there exist a sequence cn with
0 < cn → 0 and a constant C > 0 such that for every n ≥ 1, and every g ∈ Cκ(T ), we have

‖Lnt1,λ1,t2,λ2
g‖′κ ≤ cnη(t1, λ1, t2, λ2)n‖g‖′κ + C‖Lnt1,λ1,t2,λ2

|g|‖∞.

Proof. As above, for ease of notation, we will only give the proof for the case where d = 3 and
we will simply denote Lt1,λ1,t2,λ2 by L. We also only consider the restriction to U1 × {1}, as the
estimates are simpler otherwise (since only one preimage is involved and the system is expanding).

The n-th iterate of L is given by

Lng(x) =
∑

Tn(y)=x

g(y) ·

n−1∏
j=0

|Rλ1(T j(y))|−t1 |Rλ2(T j(y))|−t2
 for all g ∈ C(T ).
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Hence, we have

‖Lng‖′κ = sup
a,b∈T

1

dT (a, b)κ
· |Lng(a)− Lng(b)|

= sup
a,b∈T

1

dT (a, b)κ
·
∣∣∣ ∑
Tn(ya)=a

g(ya)
( n−1∏
j=0

|Rλ1(T j(ya))|−t1 |Rλ2(T j(ya))|−t2
)

−
∑

Tn(yb)=b

g(yb)
( n−1∏
j=0

|Rλ1(T j(yb))|−t1 |Rλ2(T j(yb))|−t2
)∣∣∣.

We now recall (see Example 3.6) that we can pair the n-preimages of a and b under Fn depending
on the set of Pn to which they belong. We will then denote these preimages by {ai} and {bi}, meaning
that, for every i0, ai0 and bi0 belong to the same component of Pn. The above expression is then
bounded by I + II + III + IV , where

I ..= sup
a,b∈T

1

dT (a, b)κ
·
∑
i

|g(ai)− g(bi)| ·
( n−1∏
j=0

|Rλ1(T j(ai))|−t1 |Rλ2(T j(ai))|−t2
)
,

II ..= sup
a,b∈T

1

dT (a, b)κ
·
∑
i

|g(bi)| ·
∣∣∣ n−1∏
j=0

|Rλ1(T j(bi))|−t1 −
n−1∏
j=0

|Rλ1(T j(ai))|−t1
∣∣∣ · n−1∏

j=0

|Rλ2(T j(bi))|−t2 ,

III ..= sup
a,b∈T

1

dT (a, b)κ
·
∑
i

|g(bi)| ·
n−1∏
j=0

|Rλ1(T j(bi))|−t1 ·
∣∣∣ n−1∏
j=0

|Rλ2(T j(bi))|−t2 −
n−1∏
j=0

|Rλ2(T j(ai))|−t2
∣∣∣, and

IV ..= sup
a,b∈T

1

dT (a, b)κ
·
∑
i

|g(bi)| ·
n−1∏
j=0

|Rλ1(T j(bi))|−t1 −
n−1∏
j=0

|Rλ1(T j(ai))|−t1
∣∣∣·

∣∣∣ n−1∏
j=0

|Rλ2(T j(bi))|−t2 −
n−1∏
j=0

|Rλ2(T j(ai))|−t2
∣∣∣.

For I, we have

I ≤ ‖Ln1‖∞ · sup
a,b∈T

maxi |g(ai)− g(bi)|
dT (a, b)κ

≤ ‖Ln1‖∞ · sup
a,b∈T

maxi ‖g‖′κ · dT (ai, bi)
κ

dT (a, b)κ

≤ ‖Ln1‖∞ · ‖g‖′κ · cn . η(t1, λ1, t2, λ2)n · ‖g‖′κ · cn
for some cn as in the statement. In the third inequality, we have used the fact that maxi dT (ai, bi) ≤
dT (a, b) · c′n for some c′n > 0 with c′n → 0 as n→∞, since T is expanding.

For II, observe that we have II = 0 if t1 = 0. Otherwise, we compute

II = sup
a,b∈T

1

dT (a, b)κ
·
∑
i

|g(bi)| ·
∣∣|(Tnλ1

)′(Hλ1(ai))|−t1 − |(Tnλ1
)′(Hλ1(bi))|−t1

∣∣ · ∣∣(Tnλ2
)′(Hλ2(bi))

∣∣−t2
. |t1| · sup

a,b∈T

1

dT (a, b)κ
·
∑
i

|g(bi)|

∣∣∣∣∣ (Tnλ1
)′′(Hλ1(bi))

(Tnλ1
)′(Hλ1(bi))|t1+2

∣∣∣∣∣ · ∣∣(Tnλ2
)′(Hλ2(bi))

∣∣−t2 · dT (Hλ(ya), Hλ(yb))

. |t1| · ‖Ln|g|‖∞ · sup
a,b∈T

1

dT (a, b)κ
·max

i

|(Tnλ )′′(Hλ(bi))|
|(Tnλ )′(Hλ(bi))|2

· dT (Hλ(ai), Hλ(bi))

. |t1| · ‖Ln|g|‖∞ · sup
a,b∈T

1

dT (a, b)κ
· dT (a, b)κ = |t1| · ‖Ln|g|‖∞,
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where in the last line we used Lemmas 3.8 and 3.9. For III, we can use the same steps as for II, up
to reversing the role of (t1, λ1) and (t2, λ2). The term IV is similarly bounded by ‖Ln|g|‖∞ using
the same estimates as in II and Lemma 3.8 on both the differences of products inside the sum (in
particular, we have IV = 0 if either t1 = 0 or t2 = 0). The proof is complete. �

3.4. Holomorphicity of complex transfer operators. To prove Theorem 3.1, we will need to
establish the joint analyticity of the pressure function P in all its parameters. To do this, we
will need to consider suitable complex extensions of the operators Lt,λ. This will be done in the
next section. In this section, we collect the definitions and tools that we will need concerning this
extension. Observe that Proposition 3.14 will be used also in Section 5 to prove the analyticity of
the pressure form on the unit tangent bundle.

Let W be an open subset of C` for some ` ≥ 1. We let Lw be a family of operators of the form

Lwg(x) ..=
∑

T (y)=x

eζw(y)g(y),

where ζw : T−1(T )→ C is a complex-valued function. Assuming that, for every w, Lw is a bounded
linear operator on the space Cκ(T ,C) of complex valued κ-Hölder continuous functions on T , we
say that the map W 3 w 7→ Lw is holomorphic if for every w ∈W , there exists a bounded operator
L′w on Cκ(T ) such that ||h−1(Lw+h − Lw)− L′w||κ → 0 as h→ 0.

Proposition 3.14. Let {ζw}w∈W be a family of complex valued functions on T−1(T ). Assume also
that

(1) there exists w0 ∈W such that Lw0 is a bounded operator on Cκ(T ,C);
(2) the family of functions {w 7→

∑
T̂ e

ζw ◦ T̂}w∈W is uniformly continuous with respect to ‖ · ‖κ
on U1 × {1}, where T̂ : U1 × {1} → T−1(U1 × {1}) ranges over all inverse branches of T on
U1 × {1};

(3) the family of functions {ζw}w∈W is uniformly continuous with respect to ‖ · ‖κ on T \ (U1 ×
{1});

(4) for every x ∈ T , the function W 3 w 7→ ζw(x) is holomorphic.
Then, the map W 3 w 7→ Lw is holomorphic (and in particular consists of bounded operators).

Remark 3.15. The third condition in Proposition 3.14 could be replaced by
(3’) the family of functions {eζw ◦ T−1}w∈W is uniformly continuous with respect to ‖ · ‖κ on

T \ (U1 × {1});
which we recognize as the same condition as (2) for points in T \ (U1 × {1}), which have only one
preimage under T .

Proof. As in [BH24, Proposition 2.9], it is enough to show that the mapW 3 w 7→ Lw is continuous
as a family of operators on Cκ(T ,C). This, together with the fourth assumption, implies the
holomorphicity of Lw; see for instance [UZ04, Lemma 7.1] or [SU10, Lemma 5.1].

For every x ∈ U1 × {1}, we have

|(Lw − Lw′)g(x)| =
∣∣∣ ∑
T (y)=x

(
eζw(y) − eζw′ (y)

)
g(y)

∣∣∣ ≤ ‖g‖∞ · ∣∣∣ ∑
T (y)=x

(eζw − eζw′ )(y)
∣∣∣

= ‖g‖∞ ·
∣∣∣(∑

T̂

eζw ◦ T̂ −
∑
T̂

eζw′ ◦ T̂
)

(x)
∣∣∣.

Therefore, we have

‖(Lw − Lw′)g‖L∞(U1×{1}) . ‖g‖∞ ·
∣∣∣∑
T̂

eζw ◦ T̂ −
∑
T̂

eζw′ ◦ T̂
∣∣∣
L∞(U1×{1})

.
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The last term goes to zero as w′ → w thanks to the second assumption. The same steps as above
can be used to show the continuity in L∞(T \ (U1 × {1})), using the third assumption (where the
sum over the inverse branches contains now only one element).

We then check the continuity with respect to the semi-norm ‖ · ‖′κ. As above, we check it on
U1 × {1} using the second assumption, and the check on T \ (U1 × {1}) is completely analogous
(and simpler) using the third assumption.

For every x, x′ ∈ U1 × {1} and w,w′ ∈W , we have

|(Lw − Lw′)g(x)−(Lw − Lw′)g(x′)|

=
∣∣∣ ∑
T (y)=x

eζw(y)g(y)− eζw′ (y)g(y)−
∑

T (y′)=x′

eζw(y′)g(y′)− eζw′ (y′)g(y′)
∣∣∣

≤
∣∣∣∑
T̂

(
eζw(T̂ (x)) − eζw′ (T̂ (x))

)(
g(T̂ (x))− g(T̂ (x′))

)∣∣∣
+ ‖g‖∞ ·

∣∣∣∑
T̂

(eζw(T̂ (x)) − eζw′ (T̂ (x)))− (eζw(T̂ (x′)) − eζw′ (T̂ (x′)))
∣∣∣.

Therefore, we have∥∥((Lw − Lw′)g)|U1×{1}
∥∥′
κ
.
∥∥∥∑

T̂

eζw ◦ T̂ −
∑
T̂

eζw′ ◦ T̂
∥∥∥
L∞(U1×{1})

· ‖g‖′κ

+ ‖g‖∞ ·
∥∥∥(∑

T̂

eζw ◦ T̂ −
∑
T̂

eζw′ ◦ T̂
)
|U1×{1}

∥∥∥′
κ
.

As before, the last term goes to zero as w′ → w thanks to the second assumption. This completes
the proof. �

3.5. Extension of analytic functions. For every integer d ≥ 1, consider the embedding ιd : Cd →
C2d given by

(6) (x1 + iy1, . . . , xd + iyd) 7→ (x1, y1, . . . , xd, yd).

Observe, in particular, that Cd is embedded by ιd in C2d as the set of points of real coordinates
(which, in turn, is parametrized by Cd by means of ιd). For every z ∈ C` and every r > 0,
denote by D`(z, r) the `-dimensional polydisk in C` centered at z and with radius r. Observe that,
with the above identification, we have ιd(Dd(0, r)) ⊂ D2d(0, r) and, more generally, ιd(Dd(z, r)) ⊂
D2d(ιd(z), r) for every z ∈ Cd.

Lemma 3.16 ([SU10, Lemma 6.4]). For every M ≥ 0, R > 0, λ0 ∈ Cd, and every complex analytic
function φ : Dd(λ0, R) → C which is bounded in modulus by M , there exists a complex analytic
function φ̃ : D2d(ιd(λ0), R/4)→ C that is bounded in modulus by 4dM and such that the restriction
of φ̃ ◦ ιd to Dd(λ0, R/4) coincides with the real part <(φ) of φ.

3.6. Proof of Theorem 3.1. In order to prove Theorem 3.1, we will follow the general framework
of [SU10, Proof of Theorem A] and apply Proposition 3.14 to a suitable family of complex operators,
that we now define.

First of all, observe that the map χλ : Ω→ C is holomorphic and takes value in the complement
of D. Hence, log |χλ| is harmonic on Ω, and |χλ| has no maximum in Ω. Since the assertion is
local, it is enough to prove it on any Ω′ b N(0). We fix such Ω′ and also a λ0 ∈ N(0) with
|χλ0 | > supλ∈Ω′ |χλ|. Recall that the holomorphic motion of the Julia sets is γ-Hölder continuous
on N(0). We allow ourself to shrink N(0) during the proof, if the estimates are uniform in Ω′ and
λ0.
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For every y = (z, k) ∈ T and λ ∈ N(0), consider the map

ψy(λ) ..=

1 z ∈ Uk+1 × {k}
ψ̂y(λ) ..=

(fkλ )′◦hλ(z)

(fkλ0
)′◦hλ0

(z)
z /∈ Uk+1 × {k}

and observe that we have |ψy(λ)| = |Rλ(y)/Rλ0(y)| for every y ∈ T . It follows from the choice of
λ0 and Lemma 3.5 that, shrinking N(0) if necessary, for all y ∈ T and λ ∈ Ω′, we have

|ψy(λ)− 1| < 1/5.

Working in chart, we can also assume that Ω′ = D`(0, R0) for some R0 > 0 and ` ..= dimCΩ. Then,
for every k ∈ N and y = (z, k) ∈ Uk×{k}, there exists a branch of log ψ̂y on Ω′ = D`(0, R0) sending 0
to 0 and whose modulus is bounded by 1/4. Applying Lemma 3.16 to the complex analytic function
log ψ̂y, we see that the real analytic function < log ψ̂y : D`(0, R0) → R has an analytic extension

<l̃og ψ̂y : D2`(0, R
′) → R for some R′ ∈ (0, R0) which does not depend on k and whose modulus is

bounded by 4`−1. Recall that D`(0, R0) is seen as a subset of the points of C2` with real coordinates
by means of the immersion ι` as in (6), and that we have ι`(0) = 0 ∈ C2`.

For (t, λ) ∈ C×D2`(0, R
′), define ζ(t,λ) : T → C by

ζ(t,λ)(y) ..=

{
−t logχ∗ z ∈ Uk+1 × {k}

−t<l̃og ψ̂y(λ)− t log(χ1−k
∗ |(fkλ0

)′(hλ0(z))|) z /∈ Uk+1 × {k}.
Observe that we have eζ(t,λ) = R−tλ for every (t, λ) ∈ R×D`(0, R

′).

We want to apply Proposition 3.14 with w = (t1, λ1, t2, λ2) and to the family of operators
L(t1,λ1,t2,λ2) = Lζ(t1,λ2)+ζ(t2,λ2)

. For each x ∈ T , the map (t1, λ1, t2, λ2) 7→
(
ζ(t1,λ1) + ζ(t2,λ2)

)
(x)

is holomorphic by the definition of ζ(t,λ). Moreover, L(δ(0),0,0,0) is a bounded operator on Cκ(T ,C)
by Lemma 3.10. The following lemma gives the second condition in Proposition 3.14. The third
condition can be verified by a similar (and simpler) computation, as only one inverse branch is
involved.

Lemma 3.17. Up to shrinking R′, the family of functions

D1(δ(0), R′)×D2`(0, R
′)×D1(0, R′)×D2`(0, R

′) 3 (t1, λ1, t2, λ2) 7→
∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂

is uniformly continuous with respect to the Hölder norm ‖ · ‖κ on U1 × {1}.

As we will only work on U1×{1}, we will drop the dependence of the norm on this space. Lemma
3.17 will follow from the following two lemmas, giving the continuity with respect to the ‖·‖∞-norm
and the ‖ · ‖′κ-norm, respectively. In all the statements and the proofs below, whenever an inverse
branch T̂ of T is given, we will denote by k = k(T̂ ) the floor which contains the image of T̂ , which
is equal to the iteration exponent as in the definition of T .

Lemma 3.18. Up to shrinking R′, there exists L1 > 0 such that for any λ1, λ2, λ
′
1, λ
′
2 ∈ D2`(0, R

′),
t1, t

′
1 ∈ D1(δ(0), R′), and t2, t′2 ∈ D1(0, R′) we have∥∥∥∑

T̂

e
ζ(t′1,λ

′
1)+ζ(t′2,λ

′
2) ◦ T̂ −

∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂
∥∥∥
∞
≤ L1‖(t′1, λ′1, t′2, λ′2)− (t1, λ1, t2, λ2)‖.

Proof. We will prove a uniform continuity estimate first at fixed t1, t2, λ2 and then at fixed λ1, t2, λ2.
As the problem is essentially symmetric in (t1, λ1) and (t2, λ2) (apart from the ranges of t1 and t2,
see Remark 3.19 below for this issue), this will give the desired continuity. In particular, in all this
proof t2 and λ2 will be fixed.
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First, let us fix t1 ∈ D1(δ(0), R′). For every λ1, λ
′
1 ∈ D2`(0, R

′), we have∣∣∣∑
T̂

e
ζ(t1,λ′1)+ζ(t2,λ2) ◦ T̂ (w)−

∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂ (w)
∣∣∣

≤
∑
T̂

(
eζ(t2,λ2) ◦ T̂ (w)

)
e
−<t1·log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (w)))|) ·
∣∣∣e−t1·< ˜log ψ̂T̂ (w)(λ

′
1) − e−t1·<

˜log ψ̂T̂ (w)(λ1)
∣∣∣

.
∑
T̂

(
eζ(t2,λ2) ◦ T̂ (w)

)
e
−<t1·log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (w)))|) ·
∣∣∣< ˜log ψ̂T̂ (w)(λ

′
1)−< ˜log ψ̂T̂ (w)(λ1)

∣∣∣,
where the implicit constant is independent of t1, λ1, λ

′
1. Since |< ˜log ψ̂T̂ (w)(λ)| ≤ 4`−1 for every

inverse branch T̂ and every λ, by Cauchy’s formula we have

|< ˜log ψ̂T̂ (w)(λ1)−< ˜log ψ̂T̂ (w)(λ
′
1)| . |λ1 − λ′1|,

where the implicit constant is independent of λ1, λ
′
1 and of the branch T̂ (and of t1). As <t1 > 0,

the term e
−<t1·log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (w)))|) is exponentially small for k → ∞, by the choice of λ0. For
similar reasons, the term eζ(t2,λ2) ◦ T̂ (w) is also uniformly bounded. Therefore, we have

(7)
∥∥∥∑

T̂

e
ζ(t1,λ′1)+ζ(t2,λ2) ◦ T̂ −

∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂
∥∥∥
∞
. |λ′1 − λ1|,

where the implicit constant is independent of t1, λ1, λ
′
1 (and of t2, λ2), as desired.

We now fix λ1 and consider the variation in t1. For any λ1 ∈ D2`(0, R
′) and t1, t′1 ∈ D1(δ(0), R′),

we have (in the first step we ignore the term eζ(t2,λ2) ◦ T̂ (w) as it is uniformly bounded, as above)

∣∣∣∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂ (z)−
∑
T̂

e
ζ(t′1,λ1)+ζ(t2,λ2) ◦ T̂ (z)

∣∣∣
.
∑
T̂

e
−<t1< ˜log ψ̂T̂ (z)(λ1) · e−<t1 log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (z)))|)

·
(
1− e(t1−t′1)(< ˜log ψ̂T̂ (z)(λ1)−log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (z)))|)))
. |t1 − t′1|

∑
T̂

e
−<t1 log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (z)))|)∣∣< ˜log ψ̂T̂ (z)(λ1)− log(χ1−k
∗ |(fkλ0

)′(hλ0(T̂ (z)))|)
∣∣,

where in the last step we bounded the factor e−<t1<
˜log ψ̂T̂ (z)(λ1) as in the previous part of the proof.

To conclude, denoting ak := log(χ1−k
∗ |(fkλ0

)′(hλ0(T̂ (z)))|) and observing that ak → ∞ for k → ∞,
we just need to bound the expression∑

T̂

e−<t1ak
∣∣< ˜log ψ̂T̂ (z)(λ1)− ak

∣∣.
As the term < ˜log ψ̂T̂ (z)(λ1) is bounded and t1 belongs to a small neighborhood of δ(0), the expression
in bounded and the desired bound

(8)
∥∥∥∑

T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂ −
∑
T̂

e
ζ(t′1,λ1)+ζ(t2,λ2) ◦ T̂

∥∥∥
∞
. |t1 − t′1|,
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follows, where the implicit constant is independent of t1, t′1, λ1 (and of t2, λ2). The assertion now
follows from (7) and (8). �

Remark 3.19. In the proof of Lemma 3.18, when working with t2 instead of t1, we do not have an
exponential bound for e−<t2 log(χ1−k

∗ |(fkλ0
)′(hλ0

(T̂ (z)))|) as t2 may be equal to 0. On the other hand,
the term e

−<t1 log(χ1−k
∗ |(fkλ0

)′(hλ0
(T̂ (z)))|) is still present (and exponentially small), and can be used to

bound the expressions in the same way as above.

Lemma 3.20. Up to shrinking R′, there exists a constant L2 ≥ 1 such that for any λ1, λ2, λ
′
1, λ
′
2 ∈

D2`(0, R
′), t1, t′1 ∈ D1(δ(0), R′), and t2, t′2 ∈ D1(0, R′), we have∥∥∥∑
T̂

eζ(t1,λ1)+ζ(t2,λ2) ◦ T̂ −
∑
T̂

e
ζ(t′1,λ

′
1)+ζ(t′2,λ

′
2) ◦ T̂

∥∥∥′
κ
≤ L2||(t′1, λ′1, t2, λ′2)− (t1, λ1, t2, λ2)||.

Proof. We first observe that, thanks to Lemma 3.18 and the fact that e−<t1·log(χ1−k
∗ |(fkλ0

)′(hλ0
(T̂ (w)))|)

is exponentially small for k →∞ and eζ(t2,λ2) ◦T̂ (w) is uniformly bounded, it will be enough to prove
a uniform continuity with respect to the κ-Hölder seminorm ‖ · ‖′κ for all terms eζ(t1,λ1) ◦ T̂ . Namely,
we do not need to control the constants in an exponentially small way, as the summable coefficients
are provided by the bounds for ‖ · ‖∞ in Lemma 3.18. We will then prove, for every T̂ , the κ-Hölder
continuity of both the terms in ζ(t1,λ1) ◦ T̂ . The desired bound then follows computing the variation

of the function eζ(t1,λ1)◦T̂ , which we can naturally write as the product of two exponentials, one of
which is uniformly bounded and the other exponentially small in k.

As in Lemma 3.18 we first consider the variation in t1 at a fixed λ1. For every inverse branch T̂
of T on U1 × {1} and every z, w ∈ U1 × {1} we have

(9)
∣∣∣log |(fkλ0

)′(hλ0(T̂ (w)))| − log |(fkλ0
)′(hλ0(T̂ (z)))|

∣∣∣ . d(z, w)γ ,

where the implicit constant is independent of z, w, T̂ and we recall that γ > κ is the Hölder exponent
of the holomorphic motion over N(0). Indeed, observe that both T̂ (z) and T̂ (w) belong to Dk×{k}.
For every λ3 ∈ N(0), by Lemma 3.8 we then have∣∣∣log(fkλ3

)′(hλ1(T̂ (w)))− log(fkλ3
)′(hλ1(T̂ (z)))

∣∣∣ . |(fkλ3
)′′|

|(fkλ3
)′|2

Cγd(z, w)γ . d(z, w)γ ,

which gives (9) taking λ3 = λ1. Applying the above inequality with λ3 = λ1 and λ3 = λ0 and
taking the difference, we obtain

| log ψ̂T̂ (w)(λ1)− log ψ̂T̂ (z)(λ1)| . d(z, w)γ .

We deduce from Lemma 3.16 that we have

(10) |< ˜log ψ̂T̂ (w)(λ1)−< ˜log ψ̂T̂ (z)(λ1)| . 4`d(z, w)γ ,

where again the implicit constants are independent of T̂ , z, w. Together, (9) and (10) give the Hölder
continuity in t1 of the two terms in the definition of ζ(t1,λ1) ◦ T̂ , as desired.

We then consider the variation in λ1 for a fixed t1. Observe that the second term in the definition
of ζ(t1,λ1) does not depend on λ1, hence we only have to prove the continuity in λ1 of its first term,

i.e., of < ˜log ψ̂T̂ (z)(λ1).
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Since by (10) we have |< ˜log ψ̂T̂ (w)(λ1) − < ˜log ψ̂T̂ (z)(λ1)| ≤ 4` · d(z, w)κ, up to shrinking R′, by
Cauchy’s formula, we have

|< ˜log ψ̂T̂ (w)(λ1)−< ˜log ψ̂T̂ (z)(λ1)−< ˜log ψ̂T̂ (w)(λ
′
1) + < ˜log ψ̂T̂ (z)(λ

′
1)| . |λ1 − λ′1| · d(z, w)κ

for any λ1, λ
′
1 ∈ D2`(0, R

′). This gives the desired continuity and completes the proof. �

Lemma 3.17 is then a consequence of Lemmas 3.18 and 3.20. We can now complete the proof of
Theorem 3.1.

Proof of Theorem 3.1. By the above, and in particular by Lemma 3.17, up to shrinking R′ the family
of operators L(t1,λ1,t2,λ2) = Lζ(t1,λ1,t2,λ2)

verifies all the assumptions of Proposition 3.14. Therefore,
by that proposition, the map D`(δ(0), R′)×D2`(0, R

′)×D1(0, R′)×D2`(0, R
′) 3 (t1, λ1, t1, λ2) 7→

L(t1,λ1,t2,λ2) ∈ Cκ(T ) is holomorphic. Thanks to Proposition 3.12, the assertion is now a consequence
of Kato-Rellich perturbation theorem. �

4. The Hessian form 〈·, ·〉G and the pressure form 〈·, ·〉P
Let Ω be a Λ-hyperbolic component of a Misurewicz family Λ ⊂ ratcm

D . In this section, we
construct the Hessian form 〈·, ·〉G and the pressure form 〈·, ·〉P . Thanks to Corollary 3.2, the
construction of the Hessian form 〈·, ·〉G and the pressure form 〈·, ·〉P can be obtained using the
same arguments as in [HN23; BH24]. Here we give their definitions and the main steps of their
constructions for completeness. For simplicity, we will work with a lift of Ω to Ratcm

D and construct
a metric there. It follows from standard arguments that this metric indeed descends to the quotient
(and is degenerate on vectors tangent to the fibers); see [HN23].

Fix λ0 ∈ Ω. Let U(λ0) be a neighborhood of λ0 such that the conjugacy hλ : Jλ0 → Jλ is well-
defined for any fλ ∈ U(λ0). We denote by ν = νλ0 the unique equilibrium state on Jλ0 for the
potential −δ(λ0) log |f ′λ0

|. We note that the existence and uniqueness of ν is guaranteed by [MS03],
see also Proposition 3.12 and [PRS03].

Consider the function Lyλ0
: U(λ0)→ R given by

Lyλ0
(λ) ..=

∫
Jλ

log |f ′λ|d ((hλ)∗ν) =

∫
Jλ0

log |f ′λ ◦ hλ|dν.

We observe that, as the critical points in the Julia set are preserved by the holomorphic motion,
for every z ∈ Jλ0 the holomorphic function λ 7→ f ′λ ◦ hλ(z) is either never zero or constantly equal
to zero. Hence, the same arguments as those in the proof of [BH24, Lemma 4.2] give that Lyλ0

is
harmonic, hence in particular real-analytic.

As a consequence of the analyticity of both Lyλ0
and δ (by Corollary 3.2), we see that also the

function Gλ0 : U(λ0)→ R defined as

Gλ0(λ) ..= δ(λ)Lyλ0
(λ) = δ(λ)

∫
Jλ0

log |f ′λ ◦ hλ|dν

is real-analytic. The same proof as that of [BH24, Proposition 4.5] gives that Gλ0 has a minimum
at λ0. Therefore we have DGλ0(λ0) = 0 and the Hessian G′′λ0

(λ0) : Tλ0Ω×Tλ0Ω→ R is well-defined
at λ0 and it gives a positive semi-definite symmetric bilinear form 〈·, ·〉G on the tangent space Tλ0Ω.
Namely, we can set

〈~u,~v〉G ..= (G′′λ0
(λ0))(~u,~v) for every ~u,~v ∈ Tλ0Ω.

17



For every ~v ∈ Tλ0Ω, we will also denote ‖~v‖G ..=
√
〈~v,~v〉G. A direct computation shows that if

γ(t), t ∈ (−1, 1) is a smooth path in U(0) with γ(0) = λ0 and γ′(0) = ~v ∈ Tλ0Ω, we have

||~w||2G =
d2

dt2

∣∣∣∣
t=0

Gλ0(γ(t)).

This characterization is used to prove that the metric, although defined in Ratcm
D , indeed descends

to the quotient in ratcm
D ; see for instance [BH24, Section 4.2].

Now we recall the construction of the pressure form 〈·, ·〉P . Recall that δ(λ) is the unique real
number satisfying p(δ(λ), λ) = 0. Recall that the pressure function P(φ) is defined as P(φ) ..=
supµ hµ(fλ0) +

∫
J0
φdµ where the supremum is taken over all the fλ0-invariant probability measures

on J0. By [PRS04], the definition of P(−t log |f ′λ|) coincides with p(t, λ) as in (2).
Let C(Jλ0) be the set of cohomology classes of Hölder continuous functions with pressure 0 with

respect to fλ0 , that is,

C(Jλ0) ..= {φ : φ ∈ Cα(Jλ0 ,R) for some α > 0,P(φ) = 0}/ ∼
where φ1 ∼ φ2 if φ1 and φ2 are C0-cohomologous on Jλ0 , i.e., there exists a continuous function
g : Jλ0 → R such that φ1 − φ2 = g − g ◦ fλ0 . For every λ ∈ Ω, we denote by E (λ) the class
[−δ(λ) log |f ′λ ◦ hλ|] ∈ C(Jλ0) and by νλ the unique equilibrium state for any representative φ of
E (λ), whose existence and uniqueness is guaranteed by Proposition 3.12. It is a standard fact (see
for instance [McM08, p. 375]) that the tangent space of C(Jλ0) at E (λ) can be identified with

TE (λ)C(Jλ0) =

{
ψ : ψ ∈ Cα(Jλ0 ,R) for some α > 0,

∫
Jλ0

ψdνλ = 0

}
/ ∼,

where we used the fact that, by definition, the pressure is constant on C(Jλ0). Following [McM08,
p. 375], we define the pressure form || · ||pm on E (Ω) ⊂ C(Jλ0) as

||[ψ]||2pm ..=
Var(ψ, νλ)∫
Jλ0

φdνλ
for every ψ ∈ TE (λ)C(Jλ0),

where

Var(ψ, νλ) ..= lim
n→∞

1

n

∫
Jλ0

(
n−1∑
i=0

ψ ◦ f i(x)

)2

dνλ ∈ [0,+∞].

Finally, we define the pressure form ‖ · ‖P on Ω as the pull-back of || · ||pm by the map E . Namely,
given ~w ∈ TλΩ, let γ(t) ..= [ft], t ∈ (−1, 1) be a smooth path in Ω with γ(0) = λ and γ′(0) = ~w.
Letting φt be a representative of the class E (γ(t)), we define

‖~w‖P ..= ||φ̇0||pm =
Var(φ̇0, νλ0)∫
Jλ0

φ0dνλ0

.

Observe that || · ||P is positive semi-definite on TλΩ since we have Var(φ̇0, νλ) ≥ 0 and
∫
Jλ0

φ0dνλ0 >

0.

A computation as in [BH24, Proposition 4.12] gives the equality

||~w||2P =
||~w||2G∫

Jλ0
φ0dνλ0

.

Namely, the Hessian form 〈·, ·〉G is conformal equivalent to the pressure form 〈·, ·〉P . We also see
that ||~w||G = 0 if and only if ||~w||P = 0, if and only if Var(φ̇0, ν) = 0. It follows from standard
facts in thermodynamical formalism that these conditions are also equivalent to the fact that φ̇0(x)
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is a C0-coboundary, i.e., it is C0-cohomologous to zero. As in [HN23], we deduce from this last
equivalence the following lemma.

Lemma 4.1. If ||~w||G = 0, there exists a constant K ∈ R such that, for every n ∈ N, we have

d

dt

∣∣∣
t=0

Sn
(

log |f ′t ◦ hγ(t)(x)|
)

= K · Sn
(

log |f ′ ◦ hγ(0)(x)|
)

for all n-periodic points x of f in Jλ0. Here Snφ ..= φ+ φ ◦ f + · · ·+ φ ◦ fn−1 denotes the Birkhoff
sum of φ.

Given a C1-path γ : (0, 1)→ Ω, we define the length `G(γ) of γ as

`G(γ) ..=

∫ 1

0
‖γ′(t)‖Gdt.

Proposition 4.2. Let Ω be a bounded Λ-hyperbolic component of a Misiurewicz family Λ in polycmD .
We have `G(γ) > 0 for any non-trivial C1-path γ : (0, 1)→ Ω.

Proof. The proof follows the same arguments as that of [BH24, Proposition 5.3]. We give a sketch
here to show how Lemma 4.1 is used and to highlight that this is the place where we use the
assumption that Ω is a bounded component of a family Λ ⊂ polycmD (which implies that the Lyapunov
exponent of the measure of maximal entropy is constant on Ω; see (1)), as well as the need of the
more refined equidistribution property for the multipliers as in Lemma 2.1 (1).

Suppose by contradiction that we have `G(γ) = 0. We denote by {xi(λ)}i≥1 the set of maps
parametrizing the repelling periodic points on Ω, and let ni be the period of the corresponding
cycle. Fix s0 ∈ (0, 1) and an index i0. It follows from Lemma 4.1 that, for every i ≥ 1 and every
s ∈ (0, 1), we have

Sni0ni
(

log |f ′γ(s)(xi(γ(s)))|
)

= ai,i0e
K̃(s,s0)Sni0ni

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
for some strictly positive (as both xi(γ(s)) and xi0(γ(s0)) are repelling) constants ai,i0 .

As Ω is bounded, the Lyapunov exponent of the measure of maximal entropy is constantly equal
to logD on Ω by (1). Hence, it follows from Lemma 2.1 (1) that, for every s ∈ (0, 1), we have

logD = lim
n→∞

1

ni0n

1

Dni0n

∑
xi : ni=ni0n

ai,i0e
K̃(s,s0)Sni0n

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
= eK̃(s,s0) ·

(
lim
n→∞

1

Dni0n

∑
xi : ni=n

ai,i0

)
· 1

ni0
Sni0

(
log |f ′γ(s0)(xi0(γ(s0)))|

)
.

We deduce that the function K̃(s, s0) is independent of s. This shows that the absolute values of
all the multipliers of the xi(γ(s))’s are constant along γ, which contradicts the rigidity results of
[JX23]. �

5. Analyticity of the metric and a distance function on Ω

The goal of this section is to prove Theorem 1.2. Our proof follows the general framework of
[BH24, Section 5]. For the case of Misiurewicz maps, the main point is to prove that the 2-form
〈·, ·〉G is analytic on the unit tangent bundle of Ω. For every k ∈ N, z ∈ Ck, and r > 0, we denote
by Dk(z, r) the k-dimensional polydisk in Ck centered at z with radius r. Recall that ` ..= dimCΩ.

Let {~vs}s∈D1(0,R0) be a holomorphic family of elements of C` \ {~0}, i.e., we assume that the
map s 7→ ~vs ∈ C` \ {~0} is holomorphic. Observe also that we can identify TλΩ with C` for every
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λ ∈ D`(0, R0). Consider the map γ : D`(0, R0)×D1(0, R0)×D1(0, R0)→ C` given by

γ(λ, t, s) = λ+ t~vs.

Up to shrinking R0, we can assume that the image of γ is contained in Ω. Moreover, it is clear from
the definition that γ satisfies

γ(λ, 0, s) = λ and
d

dt

∣∣∣
t=0

γ(λ, t, s) = ~vs ∈ TλΩ for all λ ∈ D`(0, R0) and s ∈ D1(0, R0).

For every (θ, λ, t, s) ∈ R×D`(0, R0)×D1(0, R0)×D1(0, R0), we also define

φ(θ,λ,t,s)
..= −δ(λ) log |f ′λ|+ θ log |f ′γ(λ,t,s) ◦Ψλ,t,s| : Jλ → R

where we denote by Ψλ,t,s : Jλ → Jλ,t,s the conjugacy map induced by the holomorphic motion on
Ω. Using notations as in Section 3, the pressure of φ(θ,λ,t,s) can be written as

P(φ(θ,λ,t,s)) = P (t1, λ1, t2, λ2)

where λ1 = λ, λ2 = γ(λ, t, s) (which is analytic in the variables), t1 = δ(λ1) (which is analytic in
λ1 and so in λ), and t2 = θ.

Proposition 5.1. There exists 0 < R < R0 such that the map (−R,R) × D`(0, R) × (−R,R) ×
D1(0, R) 3 (θ, λ, t, s) 7→ P(φ(θ,λ,t,s)) is real-analytic. In particular, the map D`(0, R) ×D1(0, R) 3
(λ, s) 7→ (G′′λ(λ))(~vs, ~vs) is real-analytic.

Proof. The first assertion is a direct consequence of Theorem 3.1. The second one conclusion follows
by taking derivatives of the pressure with respect to θ and then along tangent vectors, as in the
proof of [BH24, Corollary 5.2]. This completes the proof. �

We can now give a proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 5.1, the pseudo-metric dG is determined by a family of pos-
itive semi-definite bilinear forms on TλΩ depending analytically on λ ∈ Ω. By the same induction
argument as in [BH24, Section 5.4], we see that any continuous path between two points x and y
having zero length must lie in an analytic real one-dimensional submanifold of Ω. If such a path
existed, it would contradict Proposition 4.2. The assertion follows. �
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