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Abstract. Let k ≥ 1 be an integer and f a holomorphic endomorphism of Pk(C) of algebraic degree
d ≥ 2. We introduce a volume dimension for ergodic f -invariant probability measures with strictly
positive Lyapunov exponents. In particular, this class of measures includes all ergodic measures
whose measure-theoretic entropy is strictly larger than (k− 1) log d, a natural generalization of the
class of measures of positive measure-theoretic entropy in dimension 1. The volume dimension is
equivalent to the Hausdorff dimension when k = 1, but depends on the dynamics of f to incorporate
the possible failure of Koebe’s theorem and the non-conformality of holomorphic endomorphisms
for k ≥ 2.

If ν is an ergodic f -invariant probability measure with strictly positive Lyapunov exponents, we
prove a generalization of the Mañé-Manning formula relating the volume dimension, the measure-
theoretic entropy, and the sum of the Lyapunov exponents of ν. As a consequence, we give a
characterization of the first zero of a natural pressure function for such expanding measures in
terms of their volume dimensions. For hyperbolic maps, such zero also coincides with the volume
dimension of the Julia set, and with the exponent of a natural (volume-)conformal measure. This
generalizes results by Denker-Urbański and McMullen in dimension 1 to any dimension k ≥ 1.

Our methods mainly rely on a theorem by Berteloot-Dupont-Molino, which gives a precise control
on the distortion of inverse branches of endomorphisms along generic inverse orbits with respect to
measures with strictly positive Lyapunov exponents.

1. Introduction

Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2 and ν an ergodic f -invariant probability
measure whose Lyapunov exponent is strictly positive. Such a measure is necessarily supported on
the Julia set J(f) of f . There is a well-known relation between the Hausdorff dimension HD(ν),
the measure-theoretic entropy hν(f), and the Lyapunov exponent χν(f) of ν; namely, we have

(1.1) HD(ν) =
hν(f)

χν(f)
.

This formula is usually referred to as the Mañé-Manning formula; see [Man84; Mañ88]. Hofbauer
and Raith [HR92] proved a version of (1.1) for piecewise monotone maps on the unit interval with
bounded variation; see also [Led81]. The fact that (1.1) holds in one-dimensional complex dynam-
ics crucially relies on distortion estimates for univalent holomorphic maps coming from Koebe’s
theorem; see Section 1.2.

For smooth dynamical systems in higher dimensions, related formulas are known to hold in a
number of settings. If f : M → M is a diffeomorphism of a compact manifold M and ν is an
ergodic probability measure on M which is absolutely continuous with respect to the Lebesgue
measure, Pesin [Pes77] proved that

hν(f) = χ+
ν (f)
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where χ+
ν (f) is the sum of the non-negative Lyapunov exponents of f counted with multiplicity;

see also [Mañ81]. When M is a surface, Young [You82] proved that

HD(ν) =
hν(f)

χ+
+
hν(f)

|χ−|

when ν is ergodic and χ− < 0 < χ+ are its Lyapunov exponents. This formula has been generalized
to the case of diffeomorphisms in any dimension; see [LY85] and [BPS99]. Such systems display
attracting and repelling directions, and one decomposes the problem into two problems, one for f
(along unstable manifolds) and one for f−1 (along stable manifolds). The Mañé-Manning formula
(1.1) can be seen as a version of Young’s result in (complex) dimension 1 where the system is not
invertible. In this paper, we address the validity of (1.1) in several complex variables, and more
specifically for expanding measures for (non-invertible) holomorphic endomorphisms of projective
spaces in any dimension.

Let k ≥ 1 be an integer and denote Pk ..= Pk(C). If f : Pk → Pk is a holomorphic endomorphism
of algebraic degree d ≥ 2, it is not hard to find examples where (1.1), with χν replaced by the
sum of the Lyapunov exponents of ν (the natural generalization of the expansion rate along generic
orbits), does not hold. For instance, one can consider product self-maps of C2 of the form (z, w) 7→
(z2 + a1, w

2 + a2), where ai ∈ C are such that the measures of maximal entropy of each component
have different Hausdorff dimensions.

In [BD03], Binder-DeMarco proposed a conjectural formula for the Hausdorff dimension of the
measure of maximal entropy µ of an endomorphism of Pk as follows:

HD(µ) =
log d

χ1
+ · · ·+ log d

χk
.

This conjecture has been partially settled [BD03; DD04; Dup11], and also versions of it have
been proposed (and partially proved) for more general invariant measures [DD04; Dup11; Dup12;
dV15; DR20]. In this paper, we introduce a natural dimension VD(ν) for ergodic f -invariant
measures ν with strictly positive Lyapunov exponents and show that this dimension satisfies a
natural generalization of (1.1), where χν is replaced by (two times) the sum of the Lyapunov
exponents.

1.1. Statement of results. Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree
d ≥ 2. The Julia set J(f) of f is the support of the unique measure of maximal entropy of f [Lyu83;
BD01; DS10]. Let M+(f) (resp. M+

J (f)) be the set of ergodic invariant probability measures on
Pk (resp. on J(f)) with strictly positive Lyapunov exponents. The set M+

J (f) contains the set
M+

e (f) of all ergodic probability measures whose measure-theoretic entropy is strictly larger than
(k − 1) log d [deT08; Dup12], which are the natural generalization of the ergodic measures with
strictly positive entropy in dimension 1. Large classes of examples of measures in M+

e (f) were
constructed and studied in [Dup12; UZ13; SUZ14; BD23; BD22].

We introduce a volume dimension for measures ν ∈ M+(f); see Section 1.2 for an overview and
Section 4 for precise definitions. The volume dimension is dynamical in nature and generalizes the
notion of Hausdorff dimension in dimension 1 to higher dimensions to incorporate the failure of
Koebe’s theorem and the non-conformality of holomorphic endomorphisms.

For ν ∈M+(f), we denote by VD(ν) the volume dimension, hν(f) the measure-theoretic entropy,
and Lν(f) the sum of the Lyapunov exponents of ν. The main result of this paper relates these
three quantities and generalizes the Mañé-Manning formula to any k ≥ 1.
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Theorem 1.1. Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. For
every ν ∈M+(f) we have

VD(ν) =
hν(f)

2Lν(f)
.

When k = 1, Theorem 1.1 reduces to the Mañé-Manning formula (1.1), as in this case we have
2 VD(ν) = HD(ν); see Proposition 4.20. The factor 2 = 2k/k is due to the fact that we weight
open sets of covers by their volume instead of their diameter and we have k Lyapunov exponents,
counting multiplicities.

As an application of Theorem 1.1, we study a number of natural dimensions and quantities
associated to an endomorphism f . In dimension 1, these quantities are already defined and well
studied; see for example [DU91a; DU91b; PU10; McM00]. We first define a dynamical dimension
DD+

J (f) of f as

DD+
J (f) ..= sup

{
VD(ν) : ν ∈M+

J (f)
}
.

For k = 1, recall that the pressure function is defined as

P (t) ..= sup
ν
{hν(f)− tχν(f)} ,

where t ∈ R and the supremum is taken over the set of invariant probability measures on J(f).
In fact, the supremum can be taken over ν ∈ M+

J (f) = M+(f). This can be seen by combining
Ruelle’s inequality [Rue78] with a theorem of Przytycki [Prz93] stating that all invariant measures
supported on the Julia set of a rational map have non-negative Lyapunov exponent.

For any k ≥ 1, we define in a similar way a pressure function P+
J (t) as

P+
J (t) ..= sup

{
hν(f)− tLν(f) : ν ∈M+

J (f)
}
.

By the above, we have P+
J (t) = P (t) when k = 1. We remark that, for any k ≥ 2, there may exist

ergodic probability measures ν on J(f) with Lν(f) < 0; see Section 2.4 for examples and further
comments. However, as in the case of k = 1, the pressure function P+

J (t) is still non-increasing and
convex for all k ≥ 1; see Lemma 2.14. We define

p+J (f) ..= inf
{
t > 0: P+

J (t) ≤ 0
}
.

As a consequence of Theorem 1.1, we have the following result which generalizes a theorem due
to Denker-Urbański [DU91a; DU91b] in the case of rational maps to any dimension.

Theorem 1.2. Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. Then
we have

2 DD+
J (f) = p+J (f).

Finally, in the spirit of the celebrated Bowen-Ruelle formula for hyperbolic maps [Bow79; Rue82],
we give an interpretation of p+J (f), when f is hyperbolic (i.e., uniformly expanding on J(f); see
Section 2.1) in terms of (volume-)conformal measures. Given t ≥ 0, we say that a probability
measure ν on J(f) is t-volume-conformal on J(f) if, for every Borel subset A ⊂ J(f) on which f is
invertible, we have

ν(f(A)) =

∫
A
| Jac f |tdν

and define

δJ(f) ..= inf {t ≥ 0: there exists a t-volume-conformal measure on J(f)} .
3



For k = 1, the definitions of t-volume-conformal measures and δJ(f) reduce to those of conformal
measures and conformal dimension for rational maps; see [DU91a; DU91b; McM00; PU10]. In this
case, owing to Bowen [Bow79], one sees that

δJ(f) = p+J (f) = HD(J(f))

for every hyperbolic rational map f on P1(C), and that there exists a unique ergodic measure ν
on J(f) such that HD(ν) = HD(J(f)). We have here the following result in any dimension, which
further motivates the definition of the volume dimension as a natural generalization of the Hausdorff
dimension for all k ≥ 1. Observe that, if f is hyperbolic, every invariant probability measure ν on
J(f) belongs toM+(f).

Theorem 1.3. Let f : Pk → Pk be a hyperbolic holomorphic endomorphism of algebraic degree
d ≥ 2. Then we have

δJ(f) = p+J (f) = 2 VD(J(f))

and there exists a unique ergodic measure ν on J(f) such that VD(ν) = VD(J(f)).

Remark 1.4. As all our arguments will be local, our results apply more generally to the setting
of polynomial-like maps in any dimension, i.e., proper holomorphic maps of the form f : U → V ,
with U b V b Ck and V convex [DS03; DS10]. For a large class of such maps (i.e., those whose
topological degree dominates all the other dynamical degrees [BDR23]), an analogue of the inclusion
M+

e (f) ⊂M+
J (f) in this more general context has been proved in [BR22].

As every endomorphism of Pk lifts to a homogeneous polynomial endomorphism of Ck+1, we
can assume for simplicity that the maps we consider are polynomials. Observe that the Lyapunov
exponents of every lifted measure are the same as those of the original measure, with the addition
of an extra exponent log d. Since log d > 0 when d ≥ 2, this does not change the condition on the
positivity of the Lyapunov exponents.

1.2. Volume dimensions and strategy of the proofs. Let us first recall the idea of the proof
of the Mañé-Manning formula (1.1) in dimension 1. It essentially consists of two steps.

(1) The first step consists of defining a local dimension at a point x by setting

δx ..= lim
r→0

log ν(B(x, r))

log r

(whenever the limit exists), where B(x, r) denotes the balls of radius r centred and x, and
proving that the limit is well-defined and equal to the ratio hν(f)/χν(f) for ν-almost every
x. In particular, ν is exact-dimensional.

(2) The second step is to prove that the Hausdorff dimension of ν must be equal to the common
value of the local dimensions found in the first step [You82].

Let us describe how the one-dimensional setting plays a crucial role in Step (1). By [BK83] and
[Mañ81], for ν-almost every x we have

hν(f) = lim
κ→0

lim
n→∞

− log ν(Bn(x, κ))

n
,

where Bn(x, κ) is the Bowen ball of radius κ and depth n. This is defined as

Bn(x, κ) ..=
{
y : |f j(y)− f j(x)| < κ, 0 ≤ j ≤ n

}
.

The crucial observation is that, for large n, the Bowen ball Bn(x, κ) is comparable (up to precisely
quantifiable errors) to the ball B(x, κ e−nχν(f)) of the same center and radius κ e−nχν(f). Fixing a
κ0 for simplicity, and setting n(r) ∼ | log r|/χν(f), it then follows that

lim
r→0

log ν(B(x, r))

log r
= lim

r→0

− log ν(Bn(r)(x, κ0))

n(r)

n(r)

− log r
=
hν(f)

χν
,
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which in particular shows that δx is well-defined. The precise relation between geometric balls and
Bowen balls is a consequence of Koebe’s theorem and related distortion estimates, which imply
that images of balls by holomorphic maps (and in particular by their inverse branches) are still
comparable to balls. As a consequence, in complex dimension 1, there is a natural interplay between
the Hausdorff dimension and the dynamics of a rational map. Observe in particular that one may
define the Hausdorff dimension of ν by using covers consisting of Bowen balls, indexed over their
depth n, and sending n to infinity; see also [CPZ19].

All the above is in sharp contrast with the higher-dimensional situation, where, due to the lack
of conformality of holomophic maps, preimages of balls can be arbitrarily distorted, and far from
being balls. In the best possible scenario (e.g., for hyperbolic product maps), the preimages of balls
are approximately ellipses whose axes reflect the contraction rate of the inverse branches in the
different directions.

On the other hand, when ν ∈M+(f), a result by Berteloot-Dupont-Molino (see [BDM08; BD19]
and Theorem 2.1 below) states that the best possible scenario described above is actually true,
in an infinitesimal sense, for preimages of balls along generic orbits of ν. More precisely, there
exists an increasing (as ε → 0) measurable exhaustion {Z?ν (ε)}ε of a full-measure subset Z?ν of the
space of orbits for f such that the preimages of sufficiently small balls along orbits in Z?ν (ε) are
approximately ellipses, and the contraction rate for their volume is essentially given (up to further
controllable error terms) by e−nLν(f)+nO(ε). This is a consequence of very refined estimates on the
convexity defect of such preimages. Such property was already exploited in [BB18] to give bounds
on the Hausdorff dimension of the bifurcation locus of families of endomorphisms of Pk [BBD18;
Bia19], and in particular to prove that this is maximal near isolated Lattés maps, i.e., maps for
which all the Lyapunov exponents are equal and minimal, i.e., equal to (log d)/2 [BD99; BD05].

Fix ν ∈ M+(f). Denote by π : Z?ν → Pk the projection associating to any orbit ẑ = {zn}n∈Z its
element z0. For x ∈ π(Z?ν (ε)), κ > 0, andN ∈ N, we consider (when well-defined) the neighbourhood
U = U(N, x, κ, ε) of x satisfying

fN (U) = B(fN (x), κ e−NMε)

where eM is a bound for the expansion of f and we require that fN |U is injective. It follows from
the above result by Berteloot-Dupont-Molino, and by further estimates that we develop in Section
2, that there exist some r(ε) and n(ε) such that, for all x ∈ π(Z?ν (ε)), 0 < κ < r(ε), and N ≥ n(ε)
the sets U(N, x, κ, ε) are indeed well-defined and approximately ellipses, of controlled geometry. We
see these sets U(N, x, κ, ε) as a suitable version of the Bowen balls Bn(x, κ) in any dimension. Let
us set

δx(ε, κ,N) ..=
log ν(U(N, x, κ, ε))

log Vol(U(N, x, κ, ε))
,

where Vol denotes the volume with respect to the Fubini-Study metric. As a first step (which
corresponds to Step (1) above) towards proving Theorem 1.1, we show that every ν ∈ M+(f) is
exact (volume-)dimensional; namely, for ν-almost every x, we have

lim sup
ε→0

lim sup
κ→0

lim sup
N→∞

δx(ε, κ,N) = lim inf
ε→0

lim inf
κ→0

lim inf
N→∞

δx(ε, κ,N) =
hν(f)

2Lν(f)
;

see Theorem 3.2 and Corollary 3.4. We adapt here the approach of Mañé [Mañ88] in higher dimen-
sions, thanks to the distortion estimates developed in Section 2.

Once the local dimension of every ν ∈M+(f) is well-defined as above, we give a global interpre-
tation of this quantity by defining a volume dimension for these measures. The idea is to use the
sets U(N, x, κ, ε) to cover the “slice” X ∩ π(Z?ν (ε)) of every set X ⊆ Z?ν . More precisely, for every
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X ⊆ π(Z?ν ) and ε > 0, setting Xε ..= X ∩ π(Z?ν (ε)), we define the quantity VDε
ν(Xε) as

VDε
ν(Xε) ..= sup {α : Λεα(Xε) =∞} = inf {α : Λεα(Xε) = 0} ,

where
Λεα(Xε) ..= lim

κ→0
lim

N?→∞
inf
{Ui}

∑
i≥1

Vol(Ui)
α.

Here the infimum is taken over the covers consisting of sets Ui of the form Ui = U(Ni, x, κ, ε), for
some x ∈ π(Zν(ε)) and Ni ≥ N?. The volume dimensions of X and ν are then respectively defined
as

VDν(X) ..= lim sup
ε→0

VDε
ν(Xε) and VD(ν) ..= inf {VDν(X) : X ⊆ π(Zν), ν(X) = 1} ,

and the lim supε→0 is actually a limit; see Section 4.2. We prove in Proposition 4.26 a version of
Young’s criterion [You82, Proposition 2.1], relating the local volume dimensions δx with the volume
dimensions VDν(X) and VD(ν). This corresponds to Step (2) above and, together with the exact
volume-dimensionality of ν proved in the first step, completes the proof of Theorem 1.1.

1.3. Organization of the paper. The paper is organized as follows. In Section 2, we derive
from the distortion theorem [BDM08; BD19] the estimates that we will need, and we introduce the
volume-conformal measures and the pressure function t 7→ P+

J (t). We prove the exact dimensionality
of every ν ∈ M+(f) in Section 3. In Section 4, we define and study the volume dimensions of sets
and measures. We conclude the proof of Theorem 1.1 and prove Theorems 1.2 and 1.3 in Section 5.
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2. Definitions and preliminary results

After fixing some notations in Section 2.1, in Section 2.2 we recall the distortion theorem by
Berteloot-Dupont-Molino [BDM08; BD19] and deduce the estimates which will be essential ingre-
dients in the proof of Theorem 1.1. We define and study basic properties about volume-conformal
measures in Section 2.3, and a pressure function in Section 2.4.

2.1. Notations. Let f : Pk → Pk be a holomorphic endomorphism and ν an ergodic f -invariant
probability measure. By Oseledets’ theorem [Ose68], one can associate to ν its Lyapunov exponents
χmin

..= χl < . . . < χ1, where 1 ≤ l ≤ k. For ν-almost every x ∈ Pk, there exists a stratification
in complex linear subspaces {0} =: (Ll+1)x ⊂ (Ll)x ⊂ . . . ⊂ (L1)x = TxPk of the complex tangent
space TxPk such that Dfx(Lj)x = (Lj)f(x) and limn→∞ n

−1 log ||Dfnx v|| = χj for all v ∈ (Lj)x \
(Lj+1)x for all 1 ≤ j ≤ l.

Let us first assume that all the χj ’s are distinct, i.e., that we have l = k and χmin = χk < . . . < χ1.
Then, (Lj)x has dimension k − j + 1 for all 1 ≤ j ≤ k. We denote by O a full measure subset
of the support of ν given by Oseledets’ theorem. Take x ∈ O. Fix a basis (`j)x of the complex
tangent space TxPk with the property that (Lj)x is equal to the span of {(`j)x, . . . , (`k)x}. Denote
by {ej}kj=1 the standard basis of Rk ⊂ Ck. For every r1, . . . , rk ∈ R (sufficiently small), we denote by
Ex(r1, . . . , rk) the image of the unit ball Bk ⊂ Ck (in a given local chart at x) under the composition
e ◦ Φ : Ck → Pk, where e : TxPk → Pk is the standard exponential map and Φ: Ck → TxPk ' Ck is
a linear map such that Φ

(
(ej)x

)
= rj(`j)x.
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If, for all 1 ≤ j ≤ k, the argument rj of Ex is a function φ(j) depending on j, we write

Ex(φ(j)) ..= Ex(φ(1), . . . , φ(k))

for brevity. In particular, we will often have χmin > 0 and take φ(j) of the form φ(j) = c1e
−n(χj±c2ε)

for some n ∈ N, 0 < ε � χmin sufficiently small, and some positive constants c1 (independent of j
and n) and c2 (independent of j, n, and ε). We will call the sets Ex dynamical ellipses in this case.

If l < k, i.e., some Lyapunov exponent χj has multiplicity larger than 1, the above construction
generalizes by taking into account the corresponding rj with the same multiplicity. Namely, we
assign the same rj to all the directions associated to the same Lyapunov exponent which has
multiplicity larger than 1.

Let X ⊆ Pk be a closed invariant set for f . We denote by M+
X(f) the set of all ergodic f -

invariant measures supported on X with strictly positive Lyapunov exponents. We drop the index
X if X = Pk. We say that X is uniformly expanding if there exist η > 1 and C > 0 such that
||Dfnx (v)|| > Cηn||v|| for every x ∈ X, v ∈ TxPk, and n ∈ N. We say that f is hyperbolic if J(f) is
uniformly expanding.

We will consider the Fubini-Study metric on Pk. We will denote by dist the corresponding
distance, and by B(x, r) the open ball centred at x and of radius r. For an open set V ⊂ Pk, we
denote by Vol(V ) the volume of V with respect to the Fubini-Study metric. Given a holomorphic
map g : V → Pk, we denote by Jac g(x) the Jacobian of g at x ∈ V , i.e., the determinant of the
differential Dgx.

We also fix the positive constant M > 0 defined as

(2.1) M ..= log sup
x∈Pk

sup
v∈Ck

||Dfx(v)||
||v||

and observe that eM dominates the Lipschitz constant of f . In particular, we have dist(f(x1), f(x2)) ≤
eM dist(x1, x2) for every x1, x2 ∈ Pk, and f(B(x, r)) ⊆ B(f(x), eMr) for every x ∈ Pk and r > 0.

2.2. Distortion estimates along generic inverse branches. We fix in this subsection a holo-
morphic endomorphism f : Pk → Pk of algebraic degree d ≥ 2 and a measure ν ∈ M+(f). All the
objects and the constants that we introduce in this subsection depend on f and ν. We denote by
χ1 > . . . > χl = χmin > 0 the (distinct) Lyapunov exponents of ν, by k1, . . . , kl their respective
multiplicities, and by Lν = Lν(f) ..=

∑l
j=1 kjχj their sum. Recall that we have Lν =

∫
log | Jac f |dν

by Birkhoff’s ergodic theorem.

Consider the orbit space of f

O ..=
{
x̂ = {xn}n∈Z ∈ (Pk)Z : xn+1 = f(xn) ∀n ∈ Z

}
and the right shift map T : O → O defined as T (x̂) = {xn+1}n∈Z for x̂ = {xn}n∈Z. Given η > 0, a
function φ : O → (0, 1] is said to be η-slow if for any x̂ ∈ O we have

e−ηφ(x̂) ≤ φ(T (x̂)) ≤ eηφ(x̂).

We now recall the construction of the lift ν̂ of ν to O; see [CFS12, Section 10.4] and [PU10,
Section 2.7]. For n ∈ Z, we let πn : O → Pk be the projection map defined by πn(x̂) = xn, where
x̂ = {xn}n∈Z. We write π ..= π0 for brevity. Observe that πn ◦ T = f ◦ πn for all n ∈ Z.

Consider the σ-algebra B̂ on O generated by the sets of the form

An,B ..= π−1n (B) = {x̂ : xn ∈ B}

with n ≤ 0 and B ⊆ Pk a Borel set. For all such sets An,B, set

ν̂(An,B) ..= ν(B).
7



Then, by the invariance of ν and the fact that xn ∈ B if and only if xn−m ∈ f−m(B) with m ≥ 0,
we see that ν̂ is well-defined on the sets An,B as it satisfies ν̂(An,B) = ν̂(An−m,B) for all m ≥ 0.
Similarly, for all m ≥ 0 and Borel sets B0, . . . , B−m ⊆ Pk, we have

ν̂
(
{x̂ : x0 ∈ B0, . . . , x−m ∈ B−m}

)
= ν

(
f−m(B0) ∩ f−m+1(B1) ∩ . . . ∩B−m

)
.

We can then extend ν̂ to a probability measure on B̂, that we still denote by ν̂. By construction, ν̂
is T -invariant and satisfies π∗(ν̂) = ν. As ν is ergodic, one can prove that ν̂ is also ergodic.

Recall that the critical set C(f) of f is the set of points x ∈ Pk at which the differential Dfx is
not invertible. As all the Lyapunov exponents of ν are finite, and their sum is equal to

∫
log |Df |dν,

we have in particular ν(C(f)) = 0. Set

Z ..=
{
x̂ ∈ O : xn /∈ C(f) ∀n ∈ Z

}
.

Then the set Z is T -invariant and satisfies ν̂(Z) = 1. For every x̂ ∈ Z, we denote by f−nx̂ the inverse
branch of fn defined in a neighbourhood of x0 and such that f−nx̂ (x0) = x−n.

The following result is stated in [BD19, Theorem A] (see also [BDM08, Theorem 1.4]) in the
case where ν is the measure of maximal entropy of f . The same statement and proof hold for any
measure in ν ∈ M+(f), as stated at the end of the Introduction – and used in later sections – of
the same paper.

Theorem 2.1. For every 0 < 2η < γ � χmin and ν̂-almost every x̂ ∈ Z, there exist
(1) an integer nx̂ ≥ 1 and real numbers hx̂ ≥ 1 and 0 < rx̂, ρx̂ ≤ 1,
(2) a sequence {ϕx̂,n}n≥0 of injective holomorphic maps

ϕx̂,n : B(x−n, rx̂e
−n(γ+2η))→ Dk(ρx̂enη)

sending x−n to 0 and satisfying

en(γ−2η) dist(u, v) ≤ |ϕx̂,n(u)− ϕx̂,n(v)| ≤ en(γ+3η)hx̂ dist(u, v)

for every n ∈ N and u, v ∈ B(x−n, rx̂e
−n(γ+2η));

(3) a sequence {Lx̂,n}n≥0 of linear maps from Ck to Ck which stabilize each

Hj
..= {0} × . . .× Ckj × . . .× {0},

satisfy

e−nχj+n(γ−η)|v| ≤ |Lx̂,n(v)| ≤ e−nχj+n(γ+η)|v| for all n ∈ N and v ∈ Hj ,

and such that the diagram

B(x0, rx̂) B(x−n, rx̂e
−n(γ+2η))

Dk(ρx̂) Dk(ρx̂enη)

f−nx̂

ϕx̂,0 ϕx̂,n

Lx̂,n

commutes for all n ≥ nx̂.
Moreover, the functions x̂ 7→ h−1x̂ , rx̂, ρx̂ are measurable and η-slow on Z.

In particular, for every n ∈ N and x̂ as in the statement, the inverse branch f−nx̂ is well-defined
on the ball B(x0, rx̂).

Corollary 2.2. With the same assumptions and notations as in Theorem 2.1 and Section 2.1, for
ν̂-almost all x̂ ∈ Z and all t, t1, . . . , tk ∈ (0, 1], n ≥ nx̂, and y, w ∈ B(x0, rx̂), we have

(1) e−n(Lν+10kη) ≤ | Jac f−nx̂ (y)| ≤ e−n(Lν−10kη);
(2) e−20knη ≤ | Jac f−nx̂ (y)| · | Jac f−nx̂ (w)|−1 ≤ e20knη;
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(3) Ex−n(tjrx̂h
−1
x̂ e−n(χj+10η)) ⊂ f−nx̂ (Ex0(tjrx̂)) ⊂ Ex−n(tjrx̂hx̂e

−n(χj−10η));
(4) (trx̂)2ke−2n(Lν+10kη) ≤ Vol(Ex−n(trx̂e

−nχj )) ≤ (trx̂)2ke−2n(Lν−10kη);
(5) (trx̂h

−1
x̂ )2ke−2n(Lν+20kη) ≤ Vol(f−nx̂ (B(x0, trx̂))) ≤ (trx̂hx̂)2ke−2n(Lν−20kη).

Proof. The assertions (1) and (3) follow directly from Theorem 2.1 (2) and (3). The assertion
(2) follows from (1). The assertion (4) follows from the fact that the distances in P(Tx−nPk) '
Pk−1 between the directions associated to distinct Lyapunov exponents at x−n are larger (up to a
multiplicative constant independent of n) than e−5nη, again by Theorem 2.1 (2). This allows one to
compare the volume of Ex−n(trx̂e

−nχj ) with that of an ellipse in Ck, whose axes are parallel to the
coordinate planes. The assertion (5) is a consequence of (3), applied with tj = t for all j = 1, . . . , k,
and (4). �

Definition 2.3. We define Zν ⊆ Z to be the full ν̂-measure set of elements x̂ ∈ Z satisfying the
conditions in Theorem 2.1 and Corollary 2.2. For α > 0, we also define

Zν,α ..=
{
x̂ ∈ Zν : nx̂ < α−1, rx̂ > α, hx̂ < α−1

}
.

It follows from the definition that, as α→ 0, the sets Zν,α increase to Zν . In particular, we have
ν̂(Zν,α)→ 1 as α→ 0.

Corollary 2.4. For every 0 < ε � χmin sufficiently small, there exist Z ′ν(ε) ⊆ Zν , n′(ε) ≥ 1, and
r(ε) ∈ (0, 1) such that

(1) ν̂(Z(ε)) > 1− ε;
(2) nx̂ ≤ n(ε) and rx̂ ≥ r(ε) for all x̂ ∈ Z ′ν(ε);
(3) for all t, t1, . . . , tk ∈ (0, 1], n ≥ n(ε), x̂ ∈ Z ′ν(ε), and y, w ∈ B(x0, r(ε)) we have

(a) e−n(Lν+kε) ≤ | Jac f−nx̂ (y)| ≤ e−n(Lν−kε);
(b) e−knε ≤ | Jac f−nx̂ (y)| · | Jac f−nx̂ (w)|−1 ≤ eknε;
(c) Ex−n(tjr(ε)e

−n(χj+ε)) ⊂ f−nx̂ (Ex0(tjr(ε))) ⊂ Ex−n(tjr(ε)e
−n(χj−ε));

(d) (tr(ε))2ke−2n(Lν+kε) ≤ Vol(Ex−n(tr(ε)e−nχj )) ≤ (tr(ε))2ke−2n(Lν−kε);
(e) (tr(ε))2ke−2n(Lν+kε) ≤ Vol(f−nx̂ (B(x0, tr(ε)))) ≤ (tr(ε))2ke−2n(Lν−kε),

where nx̂, hx̂, and rx̂ are as in Theorem 2.1.

Proof. By choosing α = α(ε) sufficiently small, Corollary 2.2 and the Definition 2.3 of Zν,α give the
existence of a set Z ′′ν (ε) ..= Zν,α(ε) and numbers r(ε), n′(ε) satisfying the properties in the statement,
with (3c) and (3e) replaced by

Ex−n(tjr(ε)α(ε)e−n(χj+ε/2)) ⊂ f−nx̂ (Ex0(tjr(ε))) ⊂ Ex−n(tjr(ε)α(ε)−1e−n(χj−ε/2))

and

(tr(ε)α(ε))2ke−2n(Lν+kε/2) ≤ Vol(f−nx̂ (B(x0, tr(ε)))) ≤ (tr(ε)α(ε)−1)2ke−2n(Lν−kε/2),

respectively. Since all the Lyapunov exponents of ν are strictly positive, the assertion follows up to
increasing n′(ε). �

Lemma 2.5. For every 0 < ε� χmin sufficiently small, there exist n(ε) ∈ N, a subset Zν(ε) ⊆ Z ′ν(ε)
with ν̂(Z ′ν(ε) \ Zν(ε)) < ε, and, for all x̂ ∈ Zν(ε), a sequence {nl}l≥0 = {nl(x̂)}l≥0 such that

(1) n′(ε) ≤ n0 ≤ n(ε);
(2) nl+1 − nl < εnl for all l ≥ 0;
(3) Tnl(x̂) ∈ Z ′ν(ε) for all l ≥ 0,

where Z ′ν(ε) and n′(ε) are as in Corollary 2.4.

A version of Lemma 2.5 is essentially proved in [PU10, Section 11.4] in the case of k = 1. We will
need here to further get a uniform upper bound for the element n0 associated to any x̂ ∈ Zν(ε).
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Proof. We first show the existence of a set Z ′′′ν (ε) ⊆ Z ′ν(ε) with ν̂(Z ′ν(ε) \ Z ′′′ν (ε)) = 0 and, for any
x̂ ∈ Z ′′′ν (ε), of a sequence {nl}l≥0 = {nl(x̂)}l≥0 satisfying (2), (3), and n0 ≥ n′(ε).

For every n ∈ N and x̂ ∈ Z, set Sn(x̂) ..=
∑n−1

j=1 1Z′ν(ε)◦T
j(x̂), where 1V denotes the characteristic

function of V ⊂ Pk. Since ν̂ is ergodic, by Birkhoff’s ergodic theorem there exists a measurable set
Z ′′′ν (ε) ⊆ Z ′ν(ε) such that ν̂(Z ′′′ν (ε)) = ν̂(Z ′ν(ε)) and

(2.2) lim
n→∞

n−1Sn(x̂) = ν̂(Z ′ν(ε)) for every x̂ ∈ Z ′′′ν (ε).

Take x̂ ∈ Z ′′′ν (ε). By (2.2) and the fact that ν̂(Z ′ν(ε)) > 1 − ε, there exists n? = n?(x̂) > 10/ε
such that |n−1Sn(x̂) − ν̂(Z ′ν(ε))| ≤ ε/20 for all n ≥ n?. We define {nl}l≥0 = {nl(x̂)}l≥0 to be the
sequence of integers n ≥ max{n?, n′(ε)} such that Tn(x̂) ∈ Z ′ν(ε).

It follows from the definitions of Sn(x̂) and of the sequence {nl}l≥0 that Snl+1
(x̂) = Snl(x̂) + 1

for all l ≥ 0. Moreover, we also have

Snl(x̂) ≤ nl
(
ν̂(Z ′ν(ε)) + ε/20

)
and Snl+1

(x̂) ≥ nl+1

(
ν̂(Z ′ν(ε))− ε/20

)
for all l ≥ 0.

We deduce from these inequalities that, again for all l ≥ 0,

nl+1

nl
≤

Snl+1
(x̂)

nl
(
ν̂(Z ′ν(ε))− ε/20

) =
Snl(x̂) + 1

nl
(
ν̂(Z ′ν(ε))− ε/20

) ≤ ν̂(Z ′ν(ε)) + ε/20 + 1/nl
ν̂(Z ′ν(ε))− ε/20

.

Hence, since 0 < ε� χmin and nl ≥ n? > 10/ε for all l ≥ 0, we have

nl+1 − nl
nl

≤ ν̂(Z ′ν(ε)) + ε/20 + 1/nl
ν̂(Z ′ν(ε))− ε/20

− 1 ≤ ε/10 + ε/10

1− ε− ε/20
< ε.

This gives the existence of a set Z ′′′ν (ε) with the properties stated at the beginning of the proof.

For every N > n′(ε), set ZNν (ε) ..= {x̂ ∈ Z ′′′ν (ε) : n0(x̂) ≤ N}. The sequence of sets ZNν (ε) is
non-decreasing as N → ∞, and satisfies ∪NZNν (ε) = Z ′′′ν (ε). Fix m? = m?(ε) such that ν̂(Z ′′′ν (ε) \
Zm

?

ν (ε)) < ε. The assertion follows setting Zν(ε) ..= Zm
?

ν (ε) and n(ε) ..= m?. �

Recall that π : O → Pk denotes the projection map defined by π(x̂) = x0, where x̂ = {xn}n∈Z.

Remark 2.6. Observe that the sequence {nl}l≥0 = {nl(x̂)}l≥0 as in Lemma 2.5 only depends on x0 =
π(x̂). In particular, the sequence {nl}l≥0 as in Lemma 2.5 is well-defined for every x ∈ π(Zν(ε)).

Definition 2.7. Given N ≥ 0, x ∈ Pk, κ > 0, and ε > 0, we denote by U = U(N, x, κ, ε) the
(necessarily unique) set U , if it exists, satisfying fN (U) = B(fN (x), κ e−NMε) (where M is as in
(2.1)) and such that fN |U is injective. We call z(U) the center of U .

By Definition 2.7, we have U(N, x0, κ, ε) ..= f−N
TN (ẑ)

(B(fN (x0), κ e
−NMε)) for every x̂ with π(x̂) =

x0 whenever the inverse branch f−N
TN (ẑ)

is well-defined on B(fN (x0), κ e
−NMε). Lemma 2.5 says

that, for all ε > 0 sufficiently small, this happens for every x0 ∈ π(Zν(ε)), 0 < κ < r(ε), and l ≥ 0
if we take N = nl, where the sequence {nl}l≥0 is given by that statement (and depends on x0; see
Remark 2.6). In particular, U(nl, x0, κ, ε) is well-defined under such conditions for all l ≥ 0, and
Corollary 2.4 can be applied with any ŷ such that y0 = fnl(x0) and y−nl = x0 (observe that the
factor e−NMε is not necessary to get this). We now aim at getting similar estimates valid for all
N ≥ n(ε). The factor e−NMε will need to be introduced for this reason.

In the next lemma and in the rest of the paper, we will only consider 0 < ε � χmin sufficiently
small as above, and Z ′ν(ε), Zν(ε), r(ε), and n(ε) will be as in Corollary 2.4 and Lemma 2.5. Similarly,
for every ẑ ∈ Zν(ε) (and z ∈ π(Zν(ε))), the sequence {nl}l≥0 is given by Lemma 2.5 (and Remark
2.6). Recall that all these definitions depend on f and ν ∈M+(f). The sets U(N, x, κ, ε) are as in
Definition 2.7.
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Lemma 2.8. Fix 0 < ε � χmin. Then, for all z ∈ π(Zν(ε)), N ≥ n(ε), and 0 < κ < r(ε), the set
U(N, x, κ, ε) is well-defined and we have

(1) Ez(κ e−N(χj+(2M+1)ε)) ⊆ U(N, x, κ, ε) ⊆ Ez(κ e−N(χj−ε));
(2) κ2ke−2N(Lν+k(2M+1)ε) ≤ Vol(U(N, x, κ, ε)) ≤ κ2ke−2N(Lν−kε);
(3) e−N(2M+1)kε ≤ | Jac fN (y)| · | Jac fN (w)|−1 ≤ eN(2M+1)kε for every y, w ∈ U(N, x, κ, ε),

where M is as in (2.1).

Proof. Fix x ∈ π(Zν(ε)) and 0 < κ < r(ε). Then x corresponds to (at least) an orbit x̂ ∈ Zν(ε) with
π(x̂) = x. By Lemma 2.5 and Remark 2.6, there exists a sequence {nl}l≥0 with n0 ≤ n(ε) and such
that nl+1 < (1 + ε)nl and fnl(x) ∈ π(Z ′ν(ε)) for all l ≥ 0. By Corollary 2.4 (3b), (3c), and (3e), for
all l ≥ 0 and 0 < t ≤ 1 the set

Ũ(nl, x, tκ) ..= f−nlTnl (x̂)

(
B(fnl(x0), tκ)

)
is well-defined and we have

(2.3) Ex(tκ e−nl(χj+ε)) ⊆ Ũ(nl, x, tκ) ⊆ Ex(tκ e−nl(χj−ε)),

(2.4) (tκ)2ke−2nl(Lν+kε) ≤ Vol(Ũ(nl, x, tκ)) ≤ (tκ)2ke−2nl(Lν−kε),

and

(2.5) e−knlε ≤ | Jac fnl(y)| · | Jac fnl(w)|−1 ≤ eknlε for every y, w ∈ Ũ(nl, x, κ).

Consider now any N ≥ n(ε) and fix l? = l?(N) such that nl? ≤ N < nl?+1. Such l? exists since
n0 ≤ n(ε) and nl →∞ as l→∞. It follows from the definition (2.1) of M that

(2.6) B
(
fN (z), κ e−(N−nl? )M

)
⊇ fN−nl?

(
B(fnl? (x), κ e−2(N−nl? )M )

)
and

(2.7) fnl?+1−N
(
B
(
fN (x), κ e−(nl?+1−N)M

))
⊆ B(fnl?+1(x), κ).

It follows from (2.7), the second inequality in (2.3) applied with l = l? + 1 and t = 1, and the fact
that 0 ≤ nl?+1 −N ≤ εnl? ≤ εN , that U(N, x, κ, ε) is well-defined and satisfies

(2.8) U(N, x, κ, ε) ⊆ Ũ(nl?+1, x, κ) ⊆ Ex(κ e−nl?+1(χj−ε)) ⊆ Ex(κ e−N(χj−ε)).

Similarly, from (2.6), the first inequality in (2.3) applied with l = l? and t = e−2(N−nl? )M , and the
fact that 0 ≤ N − nl? ≤ εnl? ≤ εN we deduce that

U(N, x, κ, ε) ⊇ f−nl?Tnl? (x̂)

(
B
(
fnl? (x), κ e−2(N−nl? )M

))
⊇ Ex(κ e−nl? (χj−(2M+1)ε)) ⊇ Ex(κ e−N(χj−(2M+1)ε)),

which completes the proof of the first item.

The second and the third assertions follow from similar arguments, combining (2.6) and (2.7)
with (2.4) and (2.5), respectively. �

The following corollary records a special case of the above lemma when all the Lyapunov exponents
of ν ∈M+(f) are equal.

Corollary 2.9. Assume that all the Lyapunov exponents of ν ∈ M+(f) are equal to χ > 0. Then,
for all 0 < ε� χ, x ∈ π(Zν(ε)), N ≥ n(ε), and 0 < κ < r(ε), we have

(1) B(x, κ e−N(χ+(2M+1)ε)) ⊆ U(N, x, κ, ε) ⊆ B(x, κ e−N(χ−ε));
(2) κ2ke−2kN(χ+(2M+1)ε) ≤ Vol(U(N, x, κ, ε)) ≤ κ2ke−2kN(χ−ε).
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Remark 2.10. If f is hyperbolic, then we have Zν ∩π−1(J(f)) = Z ∩π−1(J(f)) for any ν ∈M+
J (f).

Moreover, observe that any ergodic probability measure on J(f) belongs toM+
J (f). In particular,

we have π(Zν) ⊇ J(f) for any ergodic probability measure on J(f). We also have Zν,α∩π−1(J(f)) =
Zν ∩ π−1(J(f)) for all α sufficiently small, which implies that we can take Z(ε) = Z ′(ε) = Z for all
ε sufficiently small.

More generally, let X ⊆ Pk be a closed invariant uniformly expanding set. Take ν ∈ M+
X(f).

Denoting by OX the set of orbits {xn}n∈Z ∈ XZ, it follows from the definition of ν̂ that ν̂(OX) = 1
and that we can assume that X ⊆ π(Zν(ε)) for all ε > 0. As ν̂(OX) = 1, we can also assume that
π(Zν(ε)) ⊆ X, hence π(Zν(ε)) = X, for all ε > 0.

2.3. Volume-conformal measures. We again fix in this section a holomorphic endomorphism
f of Pk of algebraic degree d ≥ 2, and we let X be a closed invariant set for f . Recall that
f |X : X → X is topologically exact if for any open set U ⊂ Pk with U ∩X 6= ∅ there exists n ≥ 1
such that fn(U) ⊇ X.

Definition 2.11. Given any t ≥ 0, a probability measure µ on X is t-volume-conformal on X if,
for every Borel subset A ⊆ X on which f is invertible, we have

µ(f(A)) =

∫
A
| Jac f |tdµ.

We define

δX(f) ..= inf {t ≥ 0: there exists a t-volume-conformal measure on X} .

Lemma 2.12. Assume that f |X is topologically exact. Let µ be a probability measure on X which
is t-volume-conformal on X for some t ≥ 0. Then

(1) the support of µ is equal to X;
(2) for every r > 0 there exists constants 0 < m− = m−(µ, r) ≤ 1 and 0 < m+ = m+(µ, r) ≤ 1

such that m− ≤ µ(B(x, r)) ≤ m+ for every x ∈ X.

Proof. Assume that there exists a point x ∈ X which does not belong to the support of µ. Take a
small ball B centred at x which is disjoint from the critical set C(f) of f and such that µ(B) = 0.
As f |X is topologically exact, we have X ⊆ fn(B) for some n ≥ 1. Hence, it is enough to prove that
µ(fn(B)) = 0 for all n ∈ N. Since B ∩ C(f) = ∅, this is a consequence of the volume-conformality
of µ and the fact that µ(B) = 0 (we need here to partition B into subsets where fn is injective in
order to apply Definition 2.11). The first assertion follows.

The second assertion is a consequence of the first and the fact that, for every probability measure
µ on Pk and r > 0, there exist constants m± = m±(µ, r) such that (2) holds for every x in the
support of µ. �

Recall that, for every ν ∈ M+(f) and every ε sufficiently small, Zν(ε), r(ε), and n(ε) are given
by Corollary 2.4 and Lemma 2.5, and the sets U(N, x, κ, ε) are defined in Definition 2.7.

Lemma 2.13. Assume that f |X is topologically exact. Fix ν ∈ M+
X(f), t ≥ 0, and 0 < ε � χmin,

where χmin > 0 is the smallest Lyapunov exponent of ν. Then, for every 0 < κ < r(ε), every
t-volume-conformal probability measure µ on X, every x ∈ π(Zν(ε)), and every N ≥ n(ε), the set
U = U(N, x, κ, ε) is well-defined and satisfies

m−(µ, κ e−MNε)

Ctκtk
e−tNk(5M+2)ε ≤ µ(U)

Vol(U)t/2
≤ Ctm+(µ, κ e−MNε)

κtk
etNk(5M+2)ε,

where M is as in (2.1), the constants m− and m+ are as in Lemma 2.12, and C is a positive
constant independent of κ, ε, x, N , ν, µ, and t.
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Proof. Fix x ∈ π(Z(ε)), N ≥ n(ε), and 0 < κ < r(ε). The set U ..= U(N, x, κ, ε) is well-defined by
Lemma 2.8. We denote for simplicity by B the ball B(fN (x), κ e−MNε) = fN (U).

Let µ be any t-volume-conformal probability measure onX. SinceX has a dense orbit, by Lemma
2.12 the support of µ is equal to X. Since fN is injective on U , by Definition 2.11 we have

µ(B) = µ(fN (U)) = µ(fN (U ∩X)) =

∫
U∩X

| Jac fN |tdµ =

∫
U
| Jac fN |tdµ.

We deduce from Lemma 2.8 (3) that

e−tkN(2M+1)ε| Jac fN (x)|tµ(U) ≤ µ(B) ≤ etkN(2M+1)ε| Jac fN (x)|tµ(U).

It follows from the above expression that

(2.9)
e−tkN(2M+1)ε

| Jac fN (x)|t
·m− ≤ µ(U) ≤ etkN(2M+1)ε

| Jac fN (x)|t
·m+,

where m− ..= m−(µ, κ e−MNε) and m+
..= m+(µ, κ e−MNε) are as in Lemma 2.12.

Again by Lemma 2.8 (3), we also have

(2.10)
e−2kN(2M+1)ε Vol(B)

| Jac fN (x)|2
≤ Vol(U) =

∫
B(fN (x),κ e−MNε)

| Jac f−Nẑ |2 ≤ e2kN(2M+1)ε Vol(B)

| Jac fN (x)|2
,

where the integral is taken with respect to the Fubini-Study metric, ẑ is any element in Z such that
z0 = fN (x) and z−N = x, and we observe that f−Nẑ is well-defined on fN (U) by Lemma 2.8.

Combining the inequalities (2.9) and (2.10), we see that
m−

Vol(B)t/2
e−tNk(4M+2)ε Vol(U)t/2 ≤ µ(U) ≤ m+

Vol(B)t/2
etNk(4M+2)ε Vol(U)t/2.

The assertion follows from the last expression by observing that there exists a positive constant C
such that C−2 ≤ Vol(B(x, r))/r2k ≤ C2 for every x ∈ Pk and 0 < r < 1. �

2.4. A pressure for expanding measures. Let f be a holomorphic endomorphism of Pk of
algebraic degree d ≥ 2. For any invariant probability measure ν and t ∈ R, we define

Pν(t) ..= hν(f)− t
∫
| Jac f |dν = hν(f)− tLν(f).

Let X ⊆ Pk be a closed invariant set for f . We define a pressure function P+
X as

(2.11) P+
X (t) ..= sup

{
Pν(t) : ν ∈M+

X(f)
}

and set
p+X(f) ..= inf

{
t : P+

X (t) = 0
}
.

We will drop the index X when X = Pk.

Lemma 2.14. Let X ⊆ Pk be a closed invariant set for f . Assume that M+
X(f) is not empty.

Then we have P+
X (t) <∞ for all t ∈ R and the function t 7→ P+

X (t) is convex and non-increasing.

Proof. Take ν ∈ M+
X(f). As Lν(f) > 0 and the topological entropy of f is bounded by k log d

[Gro03; DS10] we have P+
X (t) ≤ k log d for all t ≥ 0. Take now t < 0. Since the function | Jac f |

is bounded from above by a constant M ′ and hν(f) ≤ k log d, we have P+
X (t) ≤ k log d + |t|M ′ for

every t < 0. Hence, P+
X (t) <∞ for all t ∈ R.

For any given measure ν ∈ M+
X(f), the function t 7→ Pν(t) is non-increasing. It follows from its

definition (2.11) that the function t 7→ P+
X (t) is non-increasing. It is convex as it is a supremum of

affine, hence convex, functions. �
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The following example illustrates that Lemma 2.14 is false (even with X = J(f)) if we take the
supremum over the set of all ergodic probability measures, with no requirement on the Lyapunov
exponents, in the definition (2.11) of the pressure function P+

X (t).

Example 2.15. It is possible to construct endomorphisms f of Pk admitting a saddle fixed point
p0 in the Julia set and with | Jac f(p0)| < 1 (and actually also equal to 0). An example of this
phenomenon is given for instance by Jonsson in [Jon99, Example 9.1], see also [BDM07, Theorem
6.3], [Taf10], and [BT17, Remark 2.6] for further examples. Consider the polynomial self-map f of
C2 defined as

(z, w) 7→
(
z2, w2 + 2(1 + η − z)w

)
,

which extends to P2 as a holomorphic endomorphism. As f preserves the families of the vertical
lines parallel to {z = 0}, for every (z0, w0) ∈ C2 the vertical eigenvalue of Df(z0,w0) is well-defined.
It is immediate to check that, for 0 ≤ η < 1/2, the point p0 = (1, 0) is a saddle fixed point, with
vertical eigenvalue equal to 2η, and Jacobian equal to 4η. In particular, the Jacobian of f at p0
can take any small non-negative value (including 0). The point p0 is in J(f) since J(f) is closed
and, for Lebesgue almost all z0 ∈ S1, the point (z0, 0) belongs to J(f). This follows from a direct
computation of the derivatives which, by Birkhoff’s ergodic theorem, gives that

Dfn(z0,0) ∼
(

2n 0

?
∫ 2π
0 log |1 + η − eiθ|dθ

)
=

(
2n 0
? 2n log |1 + η|

)
,

and the characterization of the Julia set of f given in [Jon99, Corollary 4.4].
Consider the function

PJ(t) ..= sup
ν
Pν(t)

where now the supremum is taken over the set of all invariant probability measures supported on
J(f). If ν0 = δp0 is the Dirac mass at p0, then the function t 7→ Pν0(t) is increasing in t and
Pν0(0) = 0. Hence, for such an endomorphism f , the function PJ(t) is convex but it increases after
some t0 > 0 and has no zeroes.

Remark 2.16. One could define P̃+
J (t) by considering the set of all ergodic probability measures

with positive sum of Lyapunov exponents in the definition of P+
J (t). However, it is unclear to us

how to generalize many of the results in this paper, and in particular Theorem 1.1, to this larger
class of measures. A priori, it could be possible that the first zero of PJ(t) is larger than the first
zero of P+

J (t), but (possibly) equal to the first zero of P̃+
J (t).

3. Exact volume dimension of measures in M+(f)

Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. In this section we
define a pointwise dynamical volume dimension for every measure ν ∈ M+(f) and prove that it is
constant ν-almost everywhere.

Fix a measure ν ∈ M+(f) and let χmin > 0 be the smallest Lyapunov exponent of ν. For every
0 < ε � χmin, we fix Zν(ε), n(ε), and r(ε) as given by Corollary 2.4 and Lemma 2.5. For every
x ∈ π(Zν(ε)), the sequence {nl}l≥0 = {nl(x)}l≥0 is also given by Lemma 2.5; see Remark 2.6. For
x ∈ π(Zν(ε)), 0 < κ < r(ε), and N ≥ n(ε), we define

(3.1) δx(ε, κ,N) ..=
log ν(U(N, x, κ, ε))

log Vol(U(N, x, κ, ε))
,

where U(N, x, κ, ε) is as in Definition 2.7. Observe that, for every ε, x, κ, and N as above, the
definition of δx(ε, κ,N) is well-posed by Lemma 2.8.
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Recall that the set Zν (see Definition 2.3) satisfies Zν = ∪ε>0Zν(ε) up to a ν-negligible set, and
that the family {Zν(ε)}ε>0 is non-decreasing as ε → 0. In particular, ν-almost every x ∈ π(Zν)
belongs to π(Zν(ε)) for every 0 < ε < ε0 for some ε0 = ε0(x). For every such x, we define the upper
and the lower local volume dimension at x as

(3.2) δx ..= lim sup
ε→0

lim sup
κ→0

lim sup
N→∞

δx(ε, κ,N) and δx
..= lim inf

ε→0
lim inf
κ→0

lim inf
N→∞

δx(ε, κ,N),

respectively, where δx(ε, κ,N) is as in (3.1).

Definition 3.1. If δx = δx, we say that δx ..= δx = δx is the local volume dimension of ν at x.
We say that ν ∈ M+(f) is exact volume-dimensional if the local volume dimension δx exists for
ν-almost every x.

The main result of this section is the following theorem. Recall that hν(f), Lν(f), and χmin denote
the measure-theoretic entropy, the sum of the Lyapunov exponents, and the smallest Lyapunov
exponent of ν, respectively.

Theorem 3.2. Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. Take
ν ∈ M+(f) and 0 < ε � χmin. Then, for ν-almost all x ∈ π(Zν(ε)) and all 0 < κ < r(ε), there
exists integers m1(ε, x) ≥ n(ε) and m2(ε, κ) ≥ 0 such that

hν(f)

2Lν(f)
− cε ≤ δx(ε, κ,N) ≤ hν(f)

2Lν(f)
+ cε for all N ≥ m1(ε, x) +m2(ε, κ),

where δx(ε, κ,N) is as in (3.1) and c > 0 is a constant independent of ε, x, and κ.

Remark 3.3. Although Theorem 3.2 is stated for points x ∈ π(Zν(ε)), we can associate to ν̂-almost
every x̂ ∈ Zν(ε) the integer m1(ε, x̂) ..= m1(ε, x0), where, since we have x0 ∈ π(Zν(ε)), the number
m1(ε, x0) is given by Theorem 3.2.

The following consequence of Theorem 3.2 shows that every ν ∈ M+(f) is exact volume-
dimensional.

Corollary 3.4. Let f : Pk → Pk be an endomorphism of algebraic degree d ≥ 2 and take ν ∈
M+(f). For ν-almost every x ∈ Pk, the local volume dimension δx is well-defined and equal to
(2Lν(f))−1hν(f).

Proof. Recall that the family {Zν(ε)}ε>0 is non-decreasing for ε → 0, and that we have Zν =
∪ε>0Zν(ε) up to a ν-negligible set. In particular, for ν-almost every x ∈ Pk there exists ε0 =
ε(x0) > 0 such that x belongs to π(Zν(ε)) for every 0 < ε < ε0. The assertion follows from the
definition (3.2) of the upper and lower volume dimensions and Theorem 3.2. �

The rest of the section is devoted to the proof of Theorem 3.2. We will follow the general strategy
presented in [PU10, Section 11.4] but we will need to use the results in Section 2.2 to replace the
distortion estimates for univalent maps in dimension 1.

3.1. Proof of Theorem 3.2: a reduction. Fix a countable measurable partition P of Pk. Up to
taking the elements of the partition sufficiently small, we can assume that the entropy hν(f,P) of the
partition P satisfies hν(f)− ε ≤ hν(f,P) ≤ hν(f). Recall that, by the Shannon-McMillan-Breiman
Theorem [Par69; Wal00] for ν-almost every x ∈ Pk we have

lim
n→∞

− 1

n
log ν(Pn(x)) =: hν(f,P).

Here Pn is the partition generated by P, f−1P, . . . , f−nP (i.e., the partition whose elements are the
sets of the form P0 ∩ f−1(P1) ∩ . . . ∩ f−n(Pn) for P0, . . . , Pn ∈ P), and Pn(x) denotes the element
of the partition Pn containing x.
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Proposition 3.5. Fix ν ∈ M+(f). For every 0 < ε � χmin there exist two partitions P1 and P2
with hν(f,P1) ≥ hν(f) − ε and four constants bE , bF (independent of ε) and cE , cF > 0 (possibly
depending on ε) such that for ν-almost every x ∈ π(Zν(ε)) there exists an integer m(ε, x) ≥ n(ε)
such that for all n ≥ m(ε, x), we have

E(n) ..= Ex(cEe
−n(χj+bEε)) ⊆ Pn1 (x) and Pn2 (x) ⊆ F (n) ..= Ex(cF e

−n(χj−bF ε)).

We prove the existence of the sequences E(n) and F (n) and partitions P1 and P2 in the next two
subsections. We now show how Theorem 3.2 is a consequence of Proposition 3.5.

Proof of Theorem 3.2 assuming Proposition 3.5. We fix ε > 0 as in the statement, x ∈ π(Zν(ε)),
and 0 < κ < r(ε). For every N ≥ n(ε) and 0 < κ < r(ε), define the integers nE(N,κ) and nF (N,κ)
as

nE(N,κ) ..= min
j

⌊(χj − ε)N + log cE − log κ

χj + bEε

⌋
and

nF (N,κ) ..= max
j

⌈ [χj + (2M + 1)ε)]N + log cF − log κ

χj − bF ε

⌉
,

where bE , bF , cE , cF are as in Proposition 3.5 and we recall that the χj ’s are the Lyapunov exponents
of ν, which are strictly positive. Then, by Lemma 2.8 (1) and (2) and Proposition 3.5, for all
0 < κ < r(ε), we have
(3.3)
PnF (N,κ)2 (x) ⊆ F (nF (N,κ)) ⊆ U(N, x, κ, ε) ⊆ E(nE(N,κ)) ⊆ PnE(N,κ)1 (x) for all N ≥ m(ε, x),

where m(ε, x) is as in Proposition 3.5, and

(3.4) κ2ke−2N(Lν+k(2M+1)ε) ≤ Vol(U(N, x, κ, ε)) ≤ κ2ke−2N(Lν−kε) for all N ≥ n(ε),

where we recall that M is as in (2.1).

It follows from (3.3) and the Shannon-McMillan-Breiman Theorem that there exists m′(ε, x) ≥
m(ε, x) and m′′(ε, κ)� 1 such that

(3.5) (hν(f)−2ε)
(

lim
N→∞

nE(N,κ)

N
−ε
)
≤ − log ν(U(N, x, κ, ε))

N
≤ (hν(f)+ε)

(
lim
N→∞

nF (N,κ)

N
+ε
)

for all N > m′(ε, x) + m′′(ε, κ). We used here the fact that, since κ < r(ε), the integers nE(N,κ)
and nF (N,κ) are bounded below by quantities which are independent of 0 < κ < r(ε). Similarly, it
follows from (3.4) that there exists m′′′(ε, κ)� 1 such that

(3.6) 2(Lν(f)− kε)− ε ≤ − log Vol(U(N, x, κ, ε))

N
≤ 2(Lν(f) + (2M + 1)ε) + ε

for all N > m′′′(ε, κ) + n(ε).

Setting

m1(ε, x) ..= m′(ε, x) ≥ m(ε, x) ≥ n(ε) and m2(ε, κ) ..= max{m′′(ε, κ),m′′′(ε, κ)},

the assertion follows combining (3.5), (3.6), and the definitions of nE(N,κ) and nF (N,κ). �
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3.2. Proof of Proposition 3.5: the existence of E(n) and P1. We will need the following
lemma, see for instance [PU10, Corollary 9.1.10].

Lemma 3.6. Let (X , δ) be a compact metric space, f : X → X a measurable map with respect to
the Borel σ-algebra on X and ν an f -invariant Borel probability measure. Then for every r > 0,
there exists X0 ⊆ X with ν(X0) = 1 and a finite partition P of X into Borel sets of positive measure
ν and of diameter smaller than r such that, for every ε > 0 and every x ∈ X0, there exists an integer
m0 = m0(ε, x) such that

BX (fn(x), e−nε) ⊂ P(fn(x)) for every n ≥ m0,

where BX (y, a) denotes the open ball in X of radius a and center y ∈ X .

Fix 0 < ε� χmin. Let X0, P, and m0(ε, x) be as given by Lemma 3.6 applied with X = Supp ν.
Up to taking r sufficiently small, we can assume that hν(f,P) ≥ hν(f)− ε. Up to replacing Zν(ε)
with π−1(X0) ∩ Zν(ε), we can assume that the conclusion of Lemma 3.6 holds for all x ∈ π(Zν(ε)).

Fix x ∈ π(Zν(ε)). In particular, there exists x̂ ∈ Zν(ε) with π(x̂) = x. Let {nl}l≥0 be the
sequence associated to x̂ by Lemma 2.5. We fix l0 ∈ N such that nl0 ≥ m0(ε, x). Recall that M is
as in (2.1).

Consider an integer n ≥ nl0 and the dynamical ellipse

E(n) ..= Ex
(
Cr(ε)e−n(χj+(M+2)ε)

)
,

where 0 < C < 1 is a constant small enough so that

(3.7) f q(E(n)) ⊂ P(f q(x)) for every q ≤ nl0 .

We now show that f q(E(n)) ⊂ P(f q(x)) for all nl0 ≤ q ≤ n. To this end, fix one such q and
let l? = l?(q) ≥ l0 be such that nl? ≤ q < nl?+1. Since Tnl? (x̂) ∈ Z ′ν(ε) by Lemma 2.5 and
π(Tnl? (x̂)) = fnl? (x), Theorem 2.1 and Corollary 2.4 (3c) imply that there exists a holomorphic
inverse branch gl? ..= f

−nl?
̂fnl? (x)

: B(fnl? (x), r(ε))→ Pk of fnl? such that gl?(fnl? (x)) = x and

Ex
(
r(ε)e−nl? (χj+ε)

)
⊆ gl?

(
B(fnl? (x), r(ε))

)
.

Set
E′(n) ..= Ex

(
r(ε)e−nl? (χj+ε)

)
.

Then E(n) ⊂ E′(n) (by the choice of C and the inequality n ≥ nl?) and Corollary 2.4 (3c) gives

fnl? (E(n)) = fnl?
(
Ex
(
Cr(ε)e−n(χj+(M+2)ε)

))
⊆ Efnl? (x)

(
Cr(ε)e−χj(n−nl? )eεnl?−(M+2)εn

)
.

Since n ≥ nl? , 0 ≤ q − nl? ≤ εnl? (by the definition of the sequence {nl}l≥0 in Lemma 2.5),
0 < Cr(ε) < 1 (as 0 < r(ε) < 1 by Corollary 2.4), q ≤ n, q < nl?+1, and all the χj ’s are strictly
positive, by the definition (2.1) of M and the above expression we deduce that

f q(E(n)) = f q−nl? (fnl? (E(n))) ⊆ Efq(x)
(
Cr(ε)e−χj(n−nl? )eεnl?−(M+2)εne(q−nl? )M

)
⊆ B

(
f q(x), eεnl?e−2εn−Mεneεnl?M

)
= B

(
f q(x), eε(nl?−n)M+ε(nl?−n)−εn

)
⊆ B

(
f q(x), e−εn

)
⊆ B

(
f q(x), e−εq

)
.

As q ≥ nl0 ≥ m0(ε, x), by Lemma 3.6 we have B (f q(x), e−εq) ⊂ P(f q(x)). It follows that
f q(E(n)) ⊂ P(f q(x)) for all nl0 ≤ q ≤ n. Together with (3.7), setting P1 ..= P this inclusion implies
that E(n) ⊆ Pn1 (x), as desired.
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3.3. Proof of Proposition 3.5: the existence of F (n) and P2. We work with the same setting
and notations as in Section 3.2. We need the following lemma, see for instance [PU10, Lemma
11.3.2]. Recall that the entropy of a countable partition P = {Pi} with respect to a probability
measure µ is defined as

Hµ(P) ..=
∑
i

−µ(Pi) log(µ(Pi)).

Lemma 3.7. Let µ be a Borel probability measure on a bounded subset A of a Euclidean space, and
ρ : A → (0, 1] a measurable function such that log ρ is integrable with respect to µ. There exists a
countable measurable partition P of A such that Hµ(P) <∞ and

diam(P(x)) ≤ ρ(x) for µ-almost every x ∈ A.

Recall that C(f) denotes the critical set of f and that ν(C(f)) = 0. For x /∈ C(f), define the
function

(3.8) ρ(x) ..= c r(ε) min
{

1, | Jac f |
}
,

where c < 1 is sufficiently small so that f is injective on the ball B(x, ρ(x)) for every x ∈ Pk \C(f).
Such constant exists because, since the function Jac f(x) is holomorphic in x, there exists a positive
constant c0 such that | Jac f(x)| ≤ c0 · dist(x,C(f)) for every x ∈ Pk. For the same reason, the
function log ρ is integrable with respect to ν, since by assumption the Lyapunov exponents of ν are
not equal to −∞, hence log | Jac f | is integrable with respect to ν.

Consider a partition P given by Lemma 3.7, applied with µ = ν, A = Supp ν, and the function
ρ as in (3.8). In particular, for ν-almost every x ∈ Supp ν we have P(x) ⊂ B(x, ρ(x)). For every
n ≥ 1, define

Vn(x, ρ) ..=

n−1⋂
j=0

f−jB(f j(x), ρ(f j(x))).

It follows from the definition of ρ that f is injective on B(f j(x), ρ(f j(x))) for all x ∈ Pk and
0 ≤ j ≤ n− 1. As a consequence, for every n ≥ 1 and for ν-almost every x ∈ Supp ν, the map fn is
injective on Vn(x, ρ) and Pn(x) ⊂ Vn(x, ρ). It is then enough to show that, for every n > n(ε), the
set Vn(x, ρ) is contained in a set F (n) ..= Ex(cF e

−n(χj−bF ε)), for some bF and cF as in the statement
of Proposition 3.5.

Let l? be the largest index of the sequence {nl}l≥0 given by Lemma 2.5 such that nl? ≤ n − 1

(such l? exists since n > n(ε)). As in Section 3.2, set gl? ..= f
−nl?
̂fnl? (x)

. Then gl? is well-defined on

B(fnl? (x), r(ε)). By the above, and in particular by the injectivity of f on Vn, we have

Vn(x, ρ) ⊂ gl?
(
B(fnl? (x), ρ(fnl? (x)))

)
.

By Corollary 2.4 (3c), we deduce that

Vn(x, ρ) ⊂ Ex
(
Ke−nl? (χj−ε)

)
for some constant K > 0 independent of x and n. Since n− 1 ≤ nl?+1 ≤ (1 + ε)nl? , we deduce that

Vn(x, ρ) ⊂ F ′(n) ..= Ex
(
Ke−(n−1)(1+ε)

−1(χj−ε)
)
.

Set F (n) ..= Ex
(
cF e
−n(χj−bF ε)

)
, where cF ..= K and bF ..= (1 + ε)−1 minj(χj + 1). The assertion

follows.

This concludes the proof of Proposition 3.5 and therefore also the proof of Theorem 3.2.
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4. Volume dimension of measures in M+(f)

Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. The goal of this
section is to define volume dimensions for sets and measures and study their properties. More
specifically, in Sections 4.1 and 4.2 we define and study the volume dimension VD(ν) for measures
ν ∈ M+(f) and VDν(X) for subsets X of the support of ν. In Section 4.3 we prove a criterion to
relate the volume dimension of a set of positive measure to the local volume dimensions defined in
Section 3; see Proposition 4.26. This criterion, together with Theorem 3.2, will allow us to prove
Theorem 1.1 in the next section.

4.1. Definition of volume dimension and first properties. Given ε > 0, κ > 0, N ∈ N, and
W ⊆ Pk, we consider the collection UκN (W, ε) of open subsets of Pk given by

UκN (W, ε) ..= {U ⊂ Pk : ∃x ∈W such that U = U(N, x, κ, ε)}

where U(N, x, κ, ε) is as in Definition 2.7. Recall in particular that each U(N, x, κ, ε) (if it exists) is
an open neighbourhood of x. Given ε > 0 and U ∈

⋃
κ>0,N≥0 UκN (Pk, ε), we denote by N(U), κ(U),

and z(U) the parameters associated to U as in that definition, i.e., such that

fN(U)(U) = B(fN(U)(z(U)), κ(U) e−N(U)Mε),

where M is as in (2.1).

Remark 4.1. Let U1 6= U2 have the same parameters N = N(Ui) and κ = κ(Ui) and assume that
z(U1) and z(U2) satisfy fN (z(U1)) = fN (z(U2)) = w. Then, we necessarily have U1 ∩ U2 = ∅, as
both U1 and U2 correspond to an inverse branch of fN defined on a subset of B(w, κ) containing w.

We fix now ν ∈ M+(f) and let Zν be as in Definition 2.3. We denote as before by χmin > 0 the
smallest Lyapunov exponent of ν. For every 0 < ε� χmin, we fix Zν(ε), n(ε), and r(ε) as given by
Corollary 2.4 and Lemma 2.5.

By Theorem 3.2 and Remark 3.3, for ν̂-almost every x̂ ∈ Zν(ε) and every 0 < κ < r(ε) there exist
positive integers m1(ε, x̂) ≥ n(ε) and m2(ε, κ) ≥ 1 such that the conclusion of Theorem 3.2 holds
for N ≥ m1(ε, x) + m2(ε, κ). For every m ∈ N, consider the set Zν(ε,m) ..= {x̂ ∈ Zν(ε) : n(ε) ≤
m1(ε, x̂) ≤ m}. Since ν̂(Zν(ε) \ Zν(ε,m)) → 0 as m → ∞, for every 0 < ε � χmin there exists
m(ε) ≥ n(ε) such that ν (π(Zν(ε)) \ π(Zν(ε,m(ε)))) < ε. For every 0 < ε� χmin, we define

(4.1) Z?ν (ε) ..= Zν(ε,m(ε)) and Z?ν
..= ∪0<ε�χminZ

?
ν (ε).

By definition, the conclusion of Theorem 3.2 holds for every x ∈ π(Z?ν (ε)), withm1(ε, x) independent
of x. This fact will not be used in this subsection, but will be crucial in the proof of Proposition
4.26. Observe also that ν̂(Z?ν ) = 1 and ν(π(Z?ν )) = 1.

Remark 4.2. As in Remark 2.10, when X is uniformly expanding, for every ν ∈ M+
X(f) we can

assume that Zν = Z?ν = Z?ν (ε) for all 0 < ε� χmin, and that π(Zν) = X.

We first fix 0 < ε � χmin and define a quantity VDε
ν(Y ) for every subset Y ⊆ π(Z?ν (ε)). The

definition will depend on both f and ν.

For 0 < κ < r(ε) and N 3 N? ≥ n(ε), we denote by U(ε, κ,N?) the collection of open sets

(4.2) U(ε, κ,N?) ..=
⋃

N≥N?

UκN (π(Z?ν (ε)), ε).

Lemma 4.3. For every 0 < ε� χmin, 0 < κ < r(ε) and N 3 N? ≥ n(ε), the collection U(ε, κ,N?)
is an open cover of π(Z?ν (ε)).
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Proof. It follows from Lemma 2.8 and the fact that Z?ν (ε) ⊆ Zν(ε) that U(N, x, κ, ε) is well-defined
(and is an open neighbourhood of x) for all x ∈ π(Z?ν (ε)), 0 < κ < r(ε), and N ≥ n(ε). The
assertion follows. �

Definition 4.4. For every 0 < ε � χmin, Y ⊆ π(Z?ν (ε)), and 0 < κ < r(ε), an (ε, κ)-cover of Y is
a countable cover {Ui}i≥1 of Y with the property that Ui ∈ U(ε, κ, n(ε)) for all i. An ε-cover is an
(ε, κ)-cover for some 0 < κ < r(ε).

For every α ≥ 0 and Y ⊆ π(Z?ν (ε)), we define Λεα(Y ) ∈ [0,+∞] as

(4.3) Λεα(Y ) ..= lim sup
κ→0

Λε,κα (Y ), where Λε,κα (Y ) ..= lim
N?→∞

inf
{Ui}

∑
i≥1

Vol(Ui)
α

and the infimum in the second expression is taken over all (ε, κ)-covers {Ui}i≥1 of Y with Ui ∈
U(ε, κ,N?) for all i ≥ 1. Observe that the limit in the second expression above is well-defined, and
equal to a supremum over N? ≥ n(ε), as the U(ε, κ,N?)’s are decreasing collections of covers for
N? → ∞. We will see below that the function α 7→ Λε,κα (Y ) is essentially independent of κ; see
Lemma 4.11. Hence we will be able to use this approximated version of Λεα(Y ) in order to study its
properties.

Lemma 4.5. For every 0 < ε � χmin, 0 < κ < r(ε), and Y ⊆ π(Z?ν (ε)), the following assertions
hold:

(1) the functions α 7→ Λε,κα (Y ) and α 7→ Λεα(Y ) are non-increasing;
(2) if Λε,κα0 (Y ) <∞ (resp. Λεα0

(Y ) <∞) for some α0 ≥ 0, then Λε,κα (Y ) = 0 (resp. Λεα(Y ) = 0)
for all α > α0.

Proof. By the definition (4.3) of Λεα(Y ) and Λε,κα (Y ), it is enough to show the two assertions for
Λε,κα (Y ) for a given κ as in the statement.

The first property is clear from the definition of Λε,κα (Y ) and the fact that, up to taking N?

sufficiently large, we can assume that the volume of all the Ui’s is less than 1 in the definition of
Λε,κα (Y ); see Lemma 2.8 (2). If α1 < α2, then, for every η > 0 and up to taking N? sufficiently
large, for every U ∈ U(ε, κ,N?) we also have

Vol(U)α2 = Vol(U)α1+(α2−α1) ≤ η(α2−α1) ·Vol(U)α1 .

As η can be taken arbitrarily small and Λε,κα1 (Y ) is finite, this gives Λε,κα2 (Y ) = 0. The assertion
follows. �

Because of Lemma 4.5, the following definition is well-posed.

Definition 4.6. For every 0 < ε� χmin and Y ⊆ π(Z?ν (ε)), we set

VDε
ν(Y ) ..= sup{α : Λεα(Y ) =∞} = inf{α : Λεα(Y ) = 0}.

Similarly, for every 0 < κ < r(ε), we also set

VDε,κ
ν (Y ) ..= sup{α : Λε,κα (Y ) =∞} = inf{α : Λε,κα (Y ) = 0}.

Remark 4.7. The definition of VDε,κ
ν (Y ) will not be needed in this section, but Lemma 4.12 will be

used in the proof of Proposition 5.4.

Lemma 4.8. For every 0 < ε� χmin, 0 < κ < r(ε), and Y1 ⊆ Y2 ⊆ π(Z?ν (ε)), we have

VDε,κ
ν (Y1) ≤ VDε,κ

ν (Y2) and VDε
ν(Y1) ≤ VDε

ν(Y2).

Proof. For every 0 < κ < r(ε), every (ε, κ)-cover of Y2 is also an (ε, κ)-cover of Y1. The assertion
follows. �

In the next lemma, we will use the following form of Besicovitch’s covering theorem [Bes45].
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Theorem 4.9. Let n ≥ 1 be an integer. There exists a constant b(n) > 0 such that the follow-
ing claim is true. If A is a bounded subset of Rn, then for any function r : A → (0,∞) there
exists a countable subset {xm : m ∈ N} of A such that the collection of open balls B(A, r) ..=
{B(xm, r(xm)) : m ∈ N} covers A and can be decomposed into b(n) families whose elements are
disjoint.

Lemma 4.10. For every 0 < ε� χmin, 0 < κ < r(ε), and Y ⊆ π(Z?ν (ε)), we have

VDε
ν(Y ) ≤ 1 and VDε,κ

ν (Y ) ≤ 1.

Proof. By Lemma 4.8, it is enough to show the statement for Y = π(Z?ν (ε)). By (4.3) and the
Definition 4.6 of VDε

ν(Y ) and VDε,κ
ν (Y ), it is enough to show that, for any 0 < κ < r(ε) and

N? > n(ε), there exists an (ε, κ)-cover {Ui} of π(Z?ν (ε)) with N(Ui) ≥ N? for all i ≥ 1 and such
that ∑

i

Vol(Ui) < C <∞

for some constant C independent of κ. Indeed, by (4.3), this shows that Λε,κ1 (π(Z?ν (ε))) <∞, which
implies that VDε,κ

ν (π(Z?ν (ε))) ≤ 1. As C is independent of κ, this also gives Λε1(π(Z?ν (ε))) <∞ and
thus VDε

ν(π(Z?ν (ε))) ≤ 1, as desired.

Fix N? ≥ n(ε) and 0 < κ < r(ε). Theorem 4.9 applied with n = 2k, A ..= fN
?
(π(Z?ν (ε))), and

r ≡ κ e−N
?Mε, gives b(2k) collections Bj , 1 ≤ j ≤ b(2k), of disjoint open balls {Bj,l}l≥1 centred

on fN
?
(π(Z?ν (ε))) and of radius r such that A ⊂ ∪j,lBj,l. We work here in local charts; see also

Remark 1.4.
Consider an element Bj?,l? of the collection {Bj,l}j,l. By construction, its center belongs to

fN
?
(Z?ν (ε)). Denote by x1j?,l? , . . . , x

m(j?,l?)
j?,l? the preimages by fN

? of the center of Bj?,l? which
belong to π(Z?ν (ε)). For each 1 ≤ q ≤ m(j?, l?), choose an orbit x̂ = x̂(j?, l?, q) ∈ Z?ν (ε) such that
π0(x̂(j?, l?, q)) = xqj?,l? (observe that πN?(x̂(j?, l?, q)) is necessarily the center of Bj?,l?). The inverse
branch f−N

?

TN? (x̂(j?,l?,q))
is well-defined on the ball Bj?,l? by the choice of the function r and Lemma

2.8. More precisely, the image of each Bj,l under any of such branches is of the form U(N?, x, κ, ε) for
some x ∈ π(Z?ν (ε)). The images associated to the same Bj,l are disjoint; see Remark 4.1. Similarly,
any two such images are also disjoint whenever the corresponding balls Bj0,l0 and Bj1,l1 are disjoint.
Observe that this in particular applies whenever j0 = j1, since each collection Bj consists of disjoint
balls.

By construction, we have

π(Z?ν (ε)) ⊆
b(2k)⋃
j=1

⋃
l≥1

m(j,l)⋃
q=1

f−N
?

TN? (x̂(j,l,q))
(Bj,l).

By the arguments above, we have

b(2k)∑
j=1

∑
l≥1

∑
1≤q≤m(j,l)

Vol
(
f−N

?

TN? (x̂(j,l,q))
(Bj,l)

)
≤ C ′b(2k) Vol(Pk),

where the positive constant C ′ is due to the use of local charts, and is in particular independent of
κ. This completes the proof. �

Observe that, for every 0 < γ < 1, there exists a positive integer θ = θγ with the property that
it is possible to cover any ball of radius r in Pk with a finite number θ of open balls of radius γr
(the constant θ also depends on the dimension k, but we omit this dependence since k is fixed).
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For every 0 < ε� χmin, define also the constant

(4.4) `(ε) ..=
Lν + k(2M + 1)ε

Lν − kε
.

Observe that `(ε) > 1 for all ε as above, and we have `(ε) = 1 +O(ε) for ε→ 0.

Lemma 4.11. Fix 0 < ε � χmin, 0 < κ1 < κ2 < r(ε)/3, and Y ⊆ π(Z?ν (ε)). For every α ≥ 0, we
have

(4.5)
(
κ1/κ

`(ε)
2

)2kα
Λε,κ2α`(ε)(Y ) ≤ Λε,κ1α (Y ) ≤ θ3κ2/κ1

(
κ
`(ε)
1 /κ2

)2kα
Λε,κ2
α`(ε)−1(Y ),

where `(ε) > 1 is as in (4.4) and θ3κ2/κ1 > 0 is as above. In particular, for every 0 < ε � χmin,
Y ⊆ π(Z?ν (ε)), and 0 < κ1 < κ2 < r(ε)/3, we have

(4.6) `(ε)−1 VDε,κ2
ν (Y ) ≤ VDε,κ1

ν (Y ) ≤ `(ε) VDε,κ2
ν (Y ).

Proof. We first show the inequality (κ1/κ
`(ε)
2 )2kΛε,κ2α`(ε)(Y ) ≤ Λε,κ1α (Y ). We can assume that Λε,κ1α (Y ) <

∞. Fix η such that Λε,κ1α (Y ) < η <∞. There exists an (ε, κ1)-cover {Ui}i≥1 of Y , with each Ui of
the form Ui = U(Ni, xi, κ1, ε), such that∑

i≥1
Vol(Ui)

α < η.

For each i ≥ 1, set Vi ..= U(Ni, xi, κ2, ε). Since κ1 < κ2 < r(ε), we have Ui ⊂ Vi for all i, and the
collection {Vi}i≥1 is an (ε, κ2)-cover of Y . Moreover, by Lemma 2.8 (2) and the definition of `(ε),
for every i we have

Vol(Vi)
`(ε)

Vol(Ui)
≤ κ

2k`(ε)
2

κ2k1

e−2Ni(Lν−kε)`(ε)

e−2Ni(Lν+k(2M+1)ε)
=
(
κ
`(ε)
2 /κ1

)2k
.

It follows that ∑
i≥1

Vol(Vi)
α`(ε) <

(
κ
`(ε)
2 /κ1

)2kα
η.

By the choice of η, this shows that Λε,κ2α`(ε)(Y ) ≤ (κ
`(ε)
2 /κ1)

2kαΛε,κ1α (Y ), as desired. By the definition
of VDε,κ

ν (Y ), this also shows the first inequality in (4.6).

We now show the second inequality in (4.5). As above, this also shows the second inequality in
(4.6). We can assume that Λε,κ2α (Y ) < ∞. Fix η such that Λε,κ2α (Y ) < η < ∞. There exists an
(ε, κ2)-cover {Ui}i≥1 of Y , with each Ui of the form Ui = U(Ni, xi, κ2, ε), such that∑

i≥1
Vol(Ui)

α < η.

By Definition 2.7, for each i ≥ 1, we have Ai ..= fNi(Ui) = B(fNi(xi), κ2 e
−NiMε). By the definition

of θ3κ2/κ1 , one can cover any ball Ai with θ3κ2/κ1 open balls of radius (κ1/3)e−NiMε. In particular,
these balls cover fNi(Y ∩ Ui) ⊆ Ai. Up to removing from the collection the balls not intersecting
fNi(Y ∩ Ui) and replacing all the other balls with balls of the same center and radius κ1e−NiMε,
we see that we can cover fNi(Y ∩ Ui) with θ3κ2/κ1 balls of radius κ1e−NiMε and centred at points
of fNi(Y ∩ Ui). For every i, we denote by {Bi,j}1≤j≤Ji (for some 1 ≤ Ji ≤ θ3κ2/κ1), the collection
of the balls of radius κ1 e−NiMε constructed above. By construction, for every i we have

fNi(Y ∩ Ui) ⊆
Ji⋃
j=1

Bi,j .
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For every i, j, set Vi,j ..= gi(Bi,j), where gi is the inverse branch of fNi defined in a neighbourhood
of fNi(zi) that sends fNi(zi) to zi. It follows that, for each i, the collection {Vi,j}1≤j≤Ji is an
(ε, κ1)-cover of Ui ∩ Y . By Lemma 2.8 (2) and the definition of `(ε), for every i and 1 ≤ j ≤ Ji we
have

Vol(Vi,j)
`(ε)

Vol(Ui)
≤ κ

2k`(ε)
1

κ2k2

e−2Ni(Lν−kε)`(ε)

e−2Ni(Lν+k(2M+1)ε)
=
(
κ
`(ε)
1 /κ2

)2k
.

Summing over i and j, we obtain∑
i≥1

Ji∑
j=1

Vol(Vi,j)
α`(ε) ≤

∑
i≥1

(
θ3κ2/κ1

(
κ
`(ε)
1 /κ2

)2kα
Vol(Ui)

α

)
≤ θ3κ2/κ1

(
κ
`(ε)
1 /κ2

)2kα
η.

It follows that Λε,κ1α`(ε)(Y ) ≤ θ3κ2/κ1(κ
`(ε)
1 /κ2)

2kαΛε,κ2α (Y ), as desired. This completes the proof. �

Lemma 4.12. For every 0 < ε� χmin, 0 < κ < r(ε)/3, and Y ⊆ π(Z?ν (ε)), we have

|VDε,κ
ν (Y )−VDε

ν(Y )| ≤ (`(ε)− 1) min
{

VDε
ν(Y ),VDε,κ

ν (Y )
}
≤ `(ε)− 1,

where `(ε) > 1 is as in (4.4).

Proof. Fix 0 < ε � χmin and Y ⊆ π(Z?ν (ε)). It follows from Lemma 4.11 that there exists α0 =
α0(ε, Y ) ∈ [0,+∞] such that

(4.7) α0 ≤ VDε,κ
ν (Y ) ≤ α0`(ε) for every 0 < κ < r(ε).

Take any η > 0. It follows from the definition (4.3) of Λεα(Y ) and Λε,κα (Y ) that Λεα0−η(Y ) = +∞
(assuming α0 > 0 and 0 < η < α0) and Λεα0`(ε)+η

(Y ) = 0 (assuming α0 <∞). Since η is arbitrary,
we deduce from the definition of VDε

ν(Y ) that

(4.8) α0 ≤ VDε
ν(Y ) ≤ α0`(ε).

The first inequality in the statement follows from (4.7) and (4.8). The second one follows from
Lemma 4.10. �

Remark 4.13. In Definition 4.4, we do not require z(Ui) ∈ Y for any of the Ui in an ε-cover of
Y , but we could also define VDε

ν(Y ) (and VDε,κ
ν (Y )) for Y ⊆ π(Z?ν (ε)) by only using sets Ui such

that z(Ui) ∈ Y , rather than z(Ui) ∈ π(Z?ν (ε)), in the definition of Λε,κα (Y ). Denoting by Λ
ε
α(Y )

and VD
ε
ν(Y ) the corresponding quantities, it is straightforward to see that Λεα(Y ) ≤ Λ

ε
α(Y ) for all

α ≥ 0. Hence, we have VDε
ν(Y ) ≤ VD

ε
ν(Y ). On the other hand, take α such that Λεα(Y ) < ∞

and consider an (ε, κ)-cover {Ui}i≥1 of Y for which the value of
∑

i≥1 Vol(Ui)
α is close to the value

of Λεα(Y ). By the definition of Λεα(Y ), we can assume that, for all i, we have Ui ∈ U(ε, κ,N0) for
some κ < r(ε)/3 and some N0 ≥ n(ε). Take i0 such that z(Ui0) /∈ Y . Observe that there must exist
y ∈ Ui0 ∩ Y and that, since κ < r(ε)/3, the set U(N(Ui0), y, 3κ, ε) is well-defined and contains Ui0 .
By similar arguments as in the proof of Lemma 4.11, this shows that Λ

ε,3κ
α/`(ε)(Y ) ≤ 32kα/`(ε)Λε,κα (Y )

for all 0 < κ < r(ε)/3, which gives VD
ε
ν(Y ) ≤ `(ε) VDε

ν(Y ). Similar arguments and estimates hold
for VDε,κ

ν (Y ).

Take now X ⊆ π(Z?ν ), and recall that ν(π(Z?ν )) = 1. For every 0 < ε� χmin, we set

(4.9) Xε ..= X ∩ π(Z?ν (ε)).

Observe that, since Z?ν = ∪0<ε�χminZ
?
ν (ε), we have ∪0<ε�χminX

ε = X.
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Definition 4.14. For every X ⊆ π(Z?ν ), the volume dimension VDν(X) of X is

VDν(X) ..= lim sup
ε→0

VDε
ν(Xε).

Remark 4.15. The limsup in Definition 4.14 is actually a limit; see Section 4.2, and in particular
Corollary 4.24, and Remark 5.1.

Lemma 4.16. For every Y1 ⊆ Y2 ⊆ π(Z?ν ), we have VDν(Y1) ≤ VDν(Y2).

Proof. By Lemma 4.8, for any 0 < ε� χmin we have VDε
ν(Y ε

1 ) ≤ VDε
ν(Y ε

2 ). The conclusion follows
from Definition 4.14. �

Definition 4.17. Take ν ∈M+(f). The volume dimension VD(ν) of ν is

VD(ν) ..= inf
{

VDν(X) : X ⊆ π(Z?ν ), ν(X) = 1
}
.

Lemma 4.18. For every ν ∈ M+(f) and X ⊆ π(Z?ν ), we have VDν(X) ≤ 1. In particular, we
have VD(ν) ≤ 1 for every ν ∈M+(f).

Proof. The statement is an immediate consequence of Lemma 4.10 and Definitions 4.14 and 4.17. �

When X ⊆ Pk is a uniformly expanding closed invariant set for f , by Remark 4.2 we can assume
that π(Z?ν (ε)) = π(Z?ν ) = X for every invariant measure ν on X and every 0 < ε � χmin. In
particular, the following definition is well-posed and defines the term VD(J(f)) in Theorem 1.3.

Definition 4.19. If X ⊆ Pk is uniformly expanding, the volume dimension of X is

VD(X) ..= sup
ν∈M+

X(f)

VDν(X).

We conclude this section with the next proposition, which in particular shows that, when k = 1,
the volume dimension associated to any ν ∈M+(f) is equivalent to the Hausdorff dimension.

Proposition 4.20. If ν ∈M+(f) is such that all the Lyapunov exponents of ν are equal to χ > 0,
then

(1) 2kVDν(X) = HD(X) for all X ⊆ π(Z?ν );
(2) 2kVD(ν) = HD(ν),

where HD(X) and HD(ν) denote the Hausdorff dimension of X and ν, respectively.

Proof. Recall that the Hausdorff dimension of X ⊆ Pk is defined as

HD(X) ..= inf
{
α : Hα(X) = 0

}
, where Hα(X) ..= sup

δ>0
inf
{Bi}

∑
i

(diamBi)
α.

The infimum in the second expression is taken over all countable covers of X by open balls {Bi}
whose diameter is less than δ. The Hausdorff dimension HD(ν) of ν is defined as

(4.10) HD(ν) ..= inf
{

HD(X) : X ⊆ Supp ν, ν(X) = 1
}
.

In order to prove the first assertion, it is enough to show that

`(ε)−1 HD(Xε) ≤ 2kVDε
ν(Xε) ≤ `(ε) HD(Xε) for all X ⊆ π(Z?ν ) and 0 < ε� χmin,

where we recall that Xε is defined as in (4.9) and the constant `(ε) is defined in (4.4). Observe that,
as Lν = kχ, we have `(ε) =

(
χ+ (2M + 1)ε

)
/(χ− ε).

We first prove the inequality HD(Xε) ≤ 2k`(ε) VDε
ν(Xε). Fix α1 > VDε

ν(Xε). By Lemma 4.5, we
have Λεα1

(Xε) = lim supκ→0 Λε,κα1 (Xε) = 0. Therefore, for any η > 0 and up to taking 0 < κ < r(ε)
sufficiently small, there exists an (ε, κ)-cover {Ui}i≥1 of Xε such that

(4.11)
∑
i≥1

Vol(Ui)
α1 < η.
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Setting Ni
..= N(Ui), by Corollary 2.9 (1) and (2) we have

diam(Ui)
2k`(ε)

Vol(Ui)
≤ 22k`(ε)κ2k`(ε)e−2kNi(χ−ε)`(ε)

κ2ke−2kNi(χ+(2M+1)ε)
≤ 22k`(ε)κ2k(`(ε)−1) ≤ 22k`(ε),

where in the last step we used the fact that κ < r(ε) < 1.

For each i, define the ball Vi ..= B(z(Ui), diam(Ui)) of center z(Ui) and radius diam(Ui). Then,
Ui ⊆ Vi and {Vi}i≥1 is a cover of Xε by balls. By the above estimates and (4.11), we have∑

i≥1
diam(Vi)

2k`(ε)α1 =
∑
i≥1

(2 diam(Ui))
2k`(ε)α1 ≤ 24k`(ε)α1

∑
i≥1

Vol(Ui)
α1 < 24k`(ε)α1η.

Therefore, we have HD(Xε) ≤ 2k`(ε)α1 and the conclusion follows by taking α1 ↘ VDε
ν(Xε).

We now prove the inequality 2k`(ε)−1 VDε
ν(Xε) ≤ HD(Xε). Fix α0 such that Hα0(Xε) = 0.

Then, for any η > 0, there exists a cover {Bi = B(xi, ri)}i≥1 of Xε consisting of open balls such
that

(4.12)
∑
i≥1

(2ri)
α0 < η.

Fix any 0 < κ < r(ε). By definition of Hα0(Xε) we can assume that

(4.13) sup
i
ri < κe−n(ε)(χ+(2M+1)ε).

For each i ≥ 1, set

Ni
..=
⌊ log κ− log ri
χ+ (2M + 1)ε

⌋
and Ui ..= U(Ni, xi, κ, ε). Observe that Ni ≥ n(ε) for all i by (4.13), hence every Ui is well-defined
by Lemma 2.8. By Corollary 2.9 (1), for every i we also have

B(xi, ri) ⊆ B(xi, κ e
−Ni(χ+(2M+1)ε)) ⊆ Ui ⊆ B(xi, κ e

−Ni(χ−ε)).

In particular, the collection {Ui}i≥1 is an (ε, κ)-cover of Xε and, for all i, we also have

(4.14) Vol(Ui)
`(ε)/(2k) ≤ κ`(ε)e−Ni(χ+(2M+1)ε) ≤ κ`(ε)e

(
1+

log ri−log κ

χ+(2M+1)ε

)
(χ+(2M+1)ε) ≤ eχ+(2M+1)εri,

where we used the facts that bxc ≥ x− 1 for every x > 0 and that κ < r(ε) < 1.

It follows from (4.12) and (4.14) that∑
i≥1

Vol(Ui)
α0`(ε)/(2k) ≤

∑
i≥1

(
1

2
eχ+(2M+1)ε

)α0

(2ri)
α0 <

(
1

2
eχ+(2M+1)ε

)α0

η.

Therefore, for every 0 < κ < r(ε), we have

(4.15) Λε,κα0`(ε)/(2k)
(Xε) <

(
1

2
eχ+(2M+1)ε

)α0

η <

(
1

2
eχ+(2M+1)ε

)α0

η.

Taking the limsup over κ in the left hand side of (4.15), by (4.3) we obtain Λεα0`(ε)/(2k)
(Xε) < ∞.

Therefore, we have 2k`(ε)−1 VDε
ν(Xε) ≤ HD(Xε). This completes the proof of the first assertion.

We now prove the second assertion. We first show the inequality HD(ν) ≤ 2kVD(ν). For every
X ⊆ π(Z?ν ), we have 2kVDν(X) = HD(X) by the first assertion. By Definition 4.17, we obtain
2kVD(ν) = inf{HD(X) : X ⊆ π(Z?ν ), ν(X) = 1}. By the definition (4.10) of HD(ν), this implies
that HD(ν) ≤ 2kVD(ν).

We now prove the inequality HD(ν) ≥ 2kVD(ν). Take X ⊆ Pk with ν(X) = 1. Since ν(π(Z?ν )) =
1, we have ν(X ∩ π(Z?ν )) = 1. Then, by the first assertion and the monotonicity of the Hausdorff
dimension, we have 2kVD(X ∩ π(Z?ν )) = HD(X ∩ π(Z?ν )) ≤ HD(X). By the definition (4.10) of
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HD(ν), we deduce that inf{2kVD(X ∩ π(Z?ν )) : ν(X) = 1} ≤ HD(ν). By Definition 4.17, this gives
2kVD(ν) ≤ HD(ν) and completes the proof. �

4.2. An equivalent definition of VD(ν). We present here an equivalent definition of the volume
dimension for sets X ⊂ π(Z?ν ). This definition in particular allows us to prove that the lim supε→0

in Definition 4.14 is always a limit; see also Remark 5.1 for sets X ⊆ π(Z?ν ) with ν(X) > 0. The
advantage of this definition is that we will not have the small exponential terms e−NMε in the
definition of the sets of the covers. In particular, we work with sets which are more similar to actual
Bowen balls of fixed radius. On the other hand, the collection of neighbourhoods associated to any
x will in some sense depend on x. This section is not necessary in order to obtain the main results
of the paper.

For every 0 < ε � χmin, 0 < κ < r(ε), l ∈ N, and W ⊆ π(Z?ν (ε)), we consider the collection
Ũκl (W, ε) of open subsets of Pk given by

Ũκl (W, ε) ..=
{
Ũ ⊂ Pk : ∃x ∈W, such that Ũ = Ũ(nl, x, κ)

}
.

Here, {nl}l≥0 is the sequence associated to x ∈ π(Zν(ε)) by Lemma 2.5, and, letting x̂ be any
element of Zν(ε) with x0 = x, we set

Ũ(nl, x, κ) ..= f−nlTnl (x̂)

(
B(fnl(x0), κ)

)
,

where the right hand side of the above expression is well-defined by Corollary 2.4. For every ε and
κ as above and N 3 N? ≥ n(ε), we denote by Ũ(ε, κ,N?) the collection of open sets

Ũ(ε, κ,N?) ..=
⋃

nl≥N?

Ũκl (π(Z?ν (ε)), ε).

For every α ≥ 0 and Y ⊆ π(Z?ν (ε)), we define Λ̃εα(Y ) ∈ [0,+∞] as

(4.16) Λ̃εα(Y ) ..= lim sup
κ→0

Λ̃ε,κα (Y ), where Λ̃ε,κα (Y ) ..= lim
N?→∞

inf
{Ui}

∑
i≥1

Vol(Ũi)
α

and the infimum is taken over all covers {Ũi}i≥1 of Y with Ũi ∈ Ũ(ε, κ,N?) for all i ≥ 1. As in
Lemma 4.5, one can show that, for every 0 < ε� χmin and Y ⊆ π(Z?ν (ε)), the function α 7→ Λ̃εα(Y )

is non-increasing and that, if Λ̃εα0
(Y ) < ∞ for some α0 ≥ 0, then Λ̃εα(Y ) = 0 for all α > α0. As a

consequence, the following definition is well-posed.

Definition 4.21. For every 0 < ε� χmin and Y ⊆ Z?ν (ε), we set

ṼD
ε

ν(Y ) ..= sup{α : Λ̃εα(Y ) =∞} = inf{α : Λ̃εα(Y ) = 0}.

Lemma 4.22. For every 0 < ε1 < ε2 � χmin and Y ⊆ π(Z?ν (ε)), we have ṼD
ε1
ν (Y ) = ṼD

ε2
ν (Y ).

Proof. The statement is clear since the sets Ũ(nl, x, κ) do not depend on ε. �

Lemma 4.23. For every 0 < ε� χmin and Y ⊆ π(Z?ν (ε)) we have

`(ε)−1ṼD
ε

ν(Y ) ≤ VDε
ν(Y ) ≤ β(ε)ṼD

ε

ν(Y ),

where `(ε) > 1 is as in (4.4) and β(ε) ..= Lν+kε
Lν−kε ·

(
minj

χj−ε
χj+(2M+1)ε −

1
n(ε)

)−1.
Observe that β(ε) as in the statement above satisfies β(ε) > 1 for all 0 < ε � χmin and β(ε) =

1 +O(ε) as ε→ 0.
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Proof. We first prove the first inequality. Suppose α ≥ 0 is such that Λεα(Y ) = 0. Then for any
η > 0 and 0 < κ < r(ε), there exists a (κ, ε)-cover {Ui}i≥1 of Y of the form Ui = U(Ni, xi, κ, ε),
with Ni ≥ N? ≥ n(ε) for all i, such that

∑
i≥1 Vol(Ui)

α < η.
For each i ≥ 1, let l(i) be such that nl(i) ≤ Ni < nl(i)+1. Such l(i) exists since, by Lemma 2.5, we

have n0(x) ≤ n(ε) for all x ∈ π(Zν(ε)). For every i, we then have Ui ⊂ Ũi ..= Ũ(nl(i)+1, xi, κ), see
also (2.8) in the proof of Lemma 2.8. In particular, we have {Ũi} ⊂ Ũ(ε, κ,N?) and the sets {Ũi}
form a cover of Y . It follows from the definition of `(ε) that for all i ≥ 1, we have

Vol(Ũ(nl(i)+1, xi, κ))`(ε)

Vol(U(Ni, xi, κ, ε))
≤ κ2k`(ε)e−2nl(i)+1(Lν−kε)`(ε)

κ2ke−2Ni(Lν+k(2M+1)ε)
= κ2k(`(ε)−1)e2(Lν+κε(2M+1))(Ni−nl(i)+1) ≤ 1,

where in the last inequality we used the facts the Ni < nl(i)+1 and κ < r(ε) < 1. In particular, we
have ∑

i≥1
Vol

(
Ũ(nl(i)+1, xi, κ)

)α`(ε) ≤∑
i≥1

Vol(Ui)
α < η,

which gives the inequality Λ̃ε,κα`(ε)(Y ) ≤ Λε,κα (Y ) for any 0 < κ < r(ε). Taking the limsup over κ as

in the definition of Λ̃εα`(ε)(Y ), we obtain Λ̃εα`(ε)(Y ) <∞. By the choice of α, we deduce the desired

inequality ṼD
ε

ν(Y ) ≤ `(ε) VDε
ν(Y ).

We now prove the second inequality. Suppose Λ̃εα(Y ) = 0. Then for any η > 0 and 0 < κ < r(ε),
there exists a cover {Ũi}i≥1 ⊂ Ũ(ε, κ,N?) of Y , which each Ũi of the form Ũi = Ũ(nl(i), xi, κ), such
that

∑
i≥1 Vol(Ũi)

α < η. For each i ≥ 1, set

Ni
..=
⌊
nl(i) ·min

j

χj − ε
χj + (2M + 1)ε

⌋
.

From the definition of Ni and Lemma 2.8, for all i ≥ 1, we have

Ũ(nl(i), xi, κ) ⊂ U(Ni, xi, κ, ε).

It follows that, for every i ≥ 1, we have

Vol(U(Ni, xi, κ, ε))
β(ε)

Vol(Ũ(nl(i), xi, κ))
≤ κ2kβ(ε)e−2Ni(Lν−kε)β(ε)

κ2ke−2nl(i)(Lν+kε)
≤ 1,

where in the last step we used the facts that κ < r(ε) < 1 and that, since nl(i) ≥ n(ε) for all i ≥ 1
and brc ≥ r − 1 for all r > 0, we have

Ni
Lν − kε
Lν + kε

β(ε) ≥
nl(i) ·minj

χj−ε
χj+(2M+1)ε − 1

minj
χj−ε

χj+(2M+1)ε −
1
n(ε)

≥ nl(i).

Therefore, we have ∑
i≥1

Vol(U(Ni, xi, κ, ε))
αβ(ε) ≤ η,

which gives the inequality Λε,καβ(ε)(Y ) ≤ Λ̃ε,κα (Y ) for any 0 < κ < r(ε). Taking the limsup over κ as
in the definition of Λεαβ(ε)(Y ), we obtain Λεαβ(ε)(Y ) = 0. By the choice of α, we have VDε

ν(Y ) ≤
β(ε)ṼD

ε

ν(Y ). The proof is complete. �

Thanks to Lemma 4.23, one can see that the lim supε→0 in the Definition 4.6 is actually a limit.
Recall that, for every X ⊆ π(Z?ν ), we denote Xε ..= X ∩ π(Z?ν (ε)).
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Corollary 4.24. For every X ⊆ π(Z?ν ), we have

VDν(X) = lim
ε→0

VDε
ν(Xε).

Proof. For every X ⊆ π(Z?ν ), set ṼDν(X) ..= limε→0 ṼD
ε

ν(Xε). The limit is well-defined and equal
to the supremum over 0 < ε � χmin since, for every 0 < ε1 < ε2 � χmin, we have ṼD

ε1
ν (Xε2) =

ṼD
ε2
ν (Xε2) by Lemma 4.22 and ṼD

ε1
ν (Xε1) ≥ ṼD

ε1
ν (Xε2) since Xε1 ⊇ Xε2 . It follows from Lemma

4.23 that limε→0 VDε
ν(Xε) is well-defined and equal to ṼDν(X). The assertion follows. �

Remark 4.25. A further possible (equivalent) way to define the volume dimension is the following.
Take ν ∈M+(f). Fix 0 < ε� χmin and take Y ⊆ π(Z?ν (ε)). For every α ≥ 0, define

Λ̌εα(Y ) ..= lim sup
κ→0

Λ̌ε,κα (Y ), where Λ̌ε,κα (Y ) ..= lim
N?→∞

inf
{Ui}

∑
i≥1

e−2N(Ui)Lν(f)ακ2kα,

and the infimum is taken over all countable covers {Ui}i≥1 ⊂ U(ε, κ,N?) of Y . Recall that Lν(f)
denotes the sum of the Lyapunov exponents of ν. As in Lemma 4.5, one can prove that, for every
0 < ε� χmin and Y ⊆ π(Z?ν (ε)), the function α 7→ Λ̌εα(Y ) is non-increasing in α, and that if Λ̌εα0

(Y )

is finite, then Λ̌εα(Y ) = 0 for all α > α0. Hence, the quantity

V̌D
ε
ν(Y ) ..= inf

{
α : Λ̌εα(Y ) = 0

}
= sup

{
α : Λ̌εα(Y ) =∞

}
is well-defined for all 0 < ε� χmin and Y ⊆ π(Z?ν (ε)). For every 0 < ε� χmin, define the constants

`−(ε) ..=
Lν(f)− kε
Lν(f)

and `+(ε) ..=
Lν(f) + (2M + 1)kε

Lν(f)
.

Observe that, for all 0 < ε� χmin, we have `−(ε) < 1 < `+(ε) and `−(ε), `+(ε)→ 1 as ε→ 0. One
can show in this case that, for every 0 < ε� χmin and Y ⊆ π(Z?ν (ε)), we have

(4.17) `−(ε) VDε
ν(Y ) ≤ V̌D

ε
ν(Y ) ≤ `+(ε) VDε

ν(Y ).

Take now X ⊆ π(Z?ν ). As before, setting Xε ..= X ∩ π(Z?ν (ε)) for every 0 < ε � χmin, we can
define

V̌Dν(X) ..= lim sup
ε→0

VDε
ν(Xε) and

V̌D(ν) ..= inf
{

V̌Dν(X) : X ⊆ π(Z?ν ) and ν(X) = 1
}
.

It follows from (4.17), applied with Y = Xε, that V̌Dν(X) = VDν(X) for all X ⊆ π(Z?ν ), and that
V̌D(ν) = VD(ν).

4.3. From local volume dimensions to volume dimensions. Fix a measure ν ∈ M+(f) and
0 < ε � χmin. For x ∈ π(Z?ν (ε)), 0 < κ < r(ε), and N ≥ n(ε) recall that δx(ε, κ,N) is defined in
(3.1) and well-defined by Lemma 2.8. The integer m1(ε, x) in Theorem 3.2 is uniformly bounded
from above for all x ∈ π(Z?ν (ε)) by the definition (4.1) of Z?ν (ε). This fact is crucial in the proof of
the next statement. Recall that a measure is non-atomic if it does not assign mass to points.

Proposition 4.26. Let f be a holomorphic endomorphism of Pk of algebraic degree d ≥ 2 and take
ν ∈M+(f). Assume that ν is non-atomic. Fix α1, α2 ≥ 0 and 0 < ε� χmin. Let Y ⊆ π(Z?ν (ε)) be
such that ν(Y ) > 0. Suppose that for every 0 < κ < r(ε) there exists m = m(ε, κ) ≥ n(ε) such that

(4.18) α1 ≤ δx(ε, κ,N) ≤ α2 for all x ∈ Y and N ≥ m(ε, κ).

Then, we have
α1 ≤ VDε

ν(Y ) ≤ α2.
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Proof. The proof of the proposition essentially follows the arguments in [You82, Proposition 2.1].
Recall that, for every 0 < κ < r(ε) and N? ≥ 0, the collection U(ε, κ,N?) is defined in (4.2) and is
a cover of Y ; see Lemma 4.3. Define the quantity

α(Y, ν) ..= inf
{
α : lim

N?→∞
inf
U ′

∑
U∈U ′

ν(U)α = 0
}
,

where the infimum is taken over all the sub-covers U ′ ⊂ U(ε, κ,N?) of Y . Since ν is non-atomic and
ν(Y ) > 0, we have α(Y, ν) = 1; see [Bil65, Section 14]. We use here the fact that, for every fixed
0 < κ < r(ε), the sets U(N, x, κ, ε) shrink to {x} as N →∞; see Lemma 2.8.

Fix α > 1, 0 < κ < r(ε), N? ≥ m(ε, κ), and η > 0. Since α(Y, ν) = 1, there exists a cover
U0 ⊂ U(ε, κ,N?) of Y such that ∑

U∈U0

ν(U)α < η.

By the assumption (4.18) and the choice N? ≥ m(ε, κ), for every U ∈ U(ε, κ,N?) we have
Vol(U)α2 ≤ ν(U). Hence, we have∑

U∈U0

Vol(U)α2α ≤
∑
U∈U0

ν(U)α < η.

This shows the inequality Λε,κα2α(Y ) < η for any 0 < κ < r(ε). Therefore, we have lim supκ→0 Λε,κα2α(Y ) =
Λεα2α(Y ) < η. Taking α↘ 1, we obtain the inequality VDε

ν(Y ) ≤ α2.

For the other inequality, again by the assumption (4.18), for all 0 < κ < r(ε) and N? ≥ m(ε, κ)
we have Vol(U)α1 ≥ ν(U) for every U ∈ U(ε, κ,N?). Hence, for any cover U0 ⊂ U(ε, κ,N?), we have∑

U∈U0

Vol(U)α1 ≥
∑
U∈U0

ν(U) ≥ ν(Y ).

Therefore, we have Λε,κα1 (Y ) ≥ ν(Y ) > 0 for any 0 < κ < r(ε), which gives

Λεα1
(Y ) = lim sup

κ→0
Λε,κα1

(Y ) ≥ ν(Y ) > 0.

Hence, we have VDε
ν(Y ) ≥ α1. The proof is complete. �

Remark 4.27. Let ν ∈ M+(f) be non-atomic. Take X ⊆ π(Z?ν ) with ν(X) > 0. Setting Xε ..=
X ∩ π(Z?ν (ε)), assume that for every 0 < ε � χmin and 0 < κ < r(ε) there exists m = m(ε, κ) and
α0
1, α

0
2 ∈ R such that

(4.19) α1(ε) ≤ δx(ε, κ,N) ≤ α2(ε) for all x ∈ Xε and N ≥ m(ε, κ)

for some functions α1(ε) = α0
1 + O(ε) and α2(ε) = α0

2 + O(ε). Applying Proposition 4.26 to Xε

instead of Y we see that, for every 0 < ε � χmin, we have α1(ε) ≤ VDε
ν(Xε) ≤ α2(ε), which gives

α0
1 ≤ VDν(X) ≤ α0

2.

5. Proofs of Theorems 1.1, 1.2, and 1.3

In this section, f : Pk → Pk is a holomorphic endomorphism of algebraic degree d ≥ 2.
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5.1. Proof of Theorem 1.1. For ν ∈ M+(f), recall that Zν is defined in Definition 2.3 and for
every 0 < ε � χmin (where χmin > 0 is the smallest Lyapunov exponent of ν), the set Z?ν (ε) is
defined in (4.1).

Assume first that ν is atomic. Since ν is ergodic, it gives mass only to a finite number of points,.
hence it satisfies hν(f) = 0. It also follows from the Definition 4.17 of VD(ν) that VD(ν) = 0, since
the support Sν of ν satisfies ν(Sν) = 1 and VDν(Sν) = 0, being finite. Therefore, the conclusion
follows in this case.

We can then assume that ν is non-atomic. By Theorem 3.2 and Proposition 4.26, for every
0 < ε� χmin we have

VDε
ν(π(Z?ν (ε))) ≤ hν(f)

2Lν(f)
+ cε,

where the constant c is independent of ε. By Definition 4.14, taking ε↘ 0, we obtain the inequality
VDν(π(Zν)) ≤ (2Lν(f))−1hν(f). As ν(π(Zν)) = 1, by Definition 4.17, we deduce the inequality
VD(ν) ≤ (2Lν(f))−1hν(f).

In order to prove the reversed inequality, let Y0 ⊆ π(Z?ν ) be such that ν(Y0) = 1. For any
0 < ε� χmin, applying Proposition 4.26 to Y0 ∩ π(Z?ν (ε)), we deduce from Theorem 3.2 that

VDε
ν(Y0 ∩ π(Z?ν (ε))) ≥ hν(f)

2Lν(f)
− cε,

where again the constant c is independent of ε; see also Remark 4.27. By Definition 4.14, we have
the inequality VDν(Y0) ≥ (2Lν(f))−1hν(f). As Y0 is arbitrary, it follows from Definition 4.17 that
VD(ν) ≥ (2Lν(f))−1hν(f). The proof of Theorem 1.1 is complete.

Remark 5.1. Let ν ∈ M+(f) be non-atomic and take X ⊆ π(Z?ν ) with ν(X) > 0. By Remark
4.27 and with similar arguments as in the proof of Theorem 3.2, it follows that the lim supε→0 in
Definition 4.14 is actually a limit.

5.2. Proof of Theorem 1.2. Let X ⊆ Pk be a closed f -invariant set. Define

(5.1) DD+
X(f) ..= sup

{
VD(ν) : ν ∈M+

X(f)
}

and recall that δX(f), P+
X (t), and p+X(f) are defined in Sections 2.3 and 2.4. Theorem 1.2 follows

from the following proposition applied with X = J(f).

Proposition 5.2. We have p+X(f) = 2 DD+
X(f). In particular, the set

{
t : P+

X (t) = 0
}
is non-empty.

Proof. We first prove the inequality p+X(f) ≥ 2 DD+
X(f). We can assume that DD+

X(f) > 0. Fix
0 < t < 2 DD+

X(f). By the definition (5.1) of DD+
X(f), there exists ν ∈M+

X(f) such that VD(ν) >
t/2. Since VD(ν) = (2Lν(f))−1hν(f) by Theorem 1.1, we have hν(f)/Lν(f) > t. It follows that
hν(f) − tLν(f) > 0; that is, P+

X (t) > 0. Therefore we have p+X(f) > t. Since t is arbitrary, we
obtain p+X(f) ≥ 2 DD+

X(f).

Let us now prove that 2 DD+
X(f) ≥ p+X(f). Suppose that 2 DD+

X(f) < p+X(f). Then there exists
t ∈ (2 DD+

X(f), p+X(f)) such that P+
X (t) > 0. In particular, there exists a measure ν ∈M+

X(f) with
hν(f)− tLν(f) > 0. We deduce from Theorem 1.1 that

VD(ν) =
hν(f)

2Lν(f)
>
t

2
> DD+

X(f).

This contradicts the definition of DD+
X(f). Hence, we have 2 DD+

X(f) ≥ p+X(f).

By Lemma 4.18, we have DD+
X(f) ≤ 1. Since the function t 7→ P+

X (t) is convex and non-
increasing, the equality p+X(f) = 2 DD+

X(f) ≤ 2 implies that the set {t : P+
X (t) = 0} is non-empty.

The proof is complete. �
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Remark 5.3. One can also define
DD+

e (f) ..= sup{VD(ν) : ν ∈M+
e (f)},

P+
e (t) ..= sup{hν(f)− tLν(f) : ν ∈M+

e (f)}, and

p+e (f) ..= inf{t : P+
e (f) ≤ 0},

where we recall that M+
e (f) is the set of ergodic f -invariant measures whose measure-theoretic

entropy is strictly larger than (k − 1) log d. Since M+
e (f) ⊆ M+(f) for every f [deT08; Dup12],

Theorem 1.1 applies in particular to every ν ∈ M+
e (f). The same proof as Proposition 5.2 gives

p+e (f) = 2 DD+
e (f).

5.3. Proof of Theorem 1.3. Recall that if X ⊂ Pk is a uniformly expanding closed invariant set
for f , the volume dimension VD(X) is defined as VD(X) ..= supν∈M+

X(f) VDν(X); see Definition
4.19.

Proposition 5.4. Let X ⊆ Pk be a uniformly expanding closed invariant set for f containing a dense
orbit. We have δX(f) ≥ 2 VD(X). In particular, if f is hyperbolic, we have δJ(f) ≥ 2 VD(J(f)).

Proof. We can assume that a volume-conformal measure on X exists, otherwise we have δX(f) =
+∞ and the assertion is trivial. Let µ be a t-volume-conformal measure on X, for some t ≥ δX(f).
Since X contains a dense orbit, we have Supp µ = X. It suffices to prove the inequality t ≥
2 VDν(X) for any measure ν ∈M+

X(f). By Definition 4.19, this implies that t ≥ 2 VD(X) and the
conclusion follows by taking the infimum over t as above.

Fix ν ∈ M+
X(f). We can assume that VDν(X) > 0, since otherwise the assertion is trivial. In

particular, recalling that all measures inM+(f) are ergodic, we can assume that ν is non-atomic.
Fix a constant γ > 1. Since VDν(X) = lim supε→0 VDε

ν(Xε) by Definition 4.14 and VDν(X) ≤ 1
by Lemma 4.18, we can fix ε0 = ε0(γ) such that VDν(X) ≤ γVDε0

ν (Xε0). As we can assume that
ε0(γ)→ 0 as γ → 1, it is enough to prove that 2 VDε0

ν (Xε0) ≤ t`(ε0), where `(ε) is as in (4.4).

By Remark 4.2, for every 0 < ε� χmin we have Xε = X. In particular, Xε0 = X is compact. Fix
α > 1. As in the proof of Proposition 4.26, since µ(X) > 0, for every η > 0 and 0 < κ < r(ε) there
exists an N? (depending on η and κ) large enough and a cover {Ui}i≥1 ⊂ U(ε, κ,N?) of Xε0 = X
satisfying

(5.2)
∑
i

µ(Ui)
α ≤ η.

As Xε0 = X is compact, we can assume that the cover {Ui} is finite. By Lemma 2.13, we have

(5.3)
∑
i

Vol(Ui)
tα/2 ≤

∑
i

CtακtkαeαtN(Ui)kε(5M+2)

m−(µ, κ e−N(Ui)Mε)α
µ(Ui)

α ≤ CtακtkαeαtN
+kε(5M+2)

m−(µ, κ e−N+Mε)α

∑
i

µ(Ui)
α,

where m− > 0 is as in Lemma 2.12, C < ∞ is as in Lemma 2.13, and N+ is the maximum of the
N(Ui) (we use here that the cover {Ui} is finite). We deduce from (5.2) and (5.3) that∑

i

Vol(Ui)
tα/2 <

CtακtkαeαtN
+kε(5M+2)

m−(µ, κ e−N+Mε)α
η <∞.

This implies that VDε0,κ
ν (Xε0) ≤ tα/2 for all α > 1. Taking α↘ 1, we have VDε0,κ

ν (Xε0) ≤ t/2 for
all 0 < κ < r(ε). By Lemma 4.12, we have VDε0

ν (Xε0) ≤ `(ε0)t/2. The proof is complete. �

The following result implies Theorem 1.3 by taking X = J(f) if f is hyperbolic (since J(f) has
dense orbits).
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Theorem 5.5. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and X ⊆ Pk a closed
invariant uniformly expanding set containing a dense orbit. Then

δX(f) = p+X(f) = 2 VD(X)

and there exists a unique invariant probability measure µX supported on X and such that VD(µX) =
VD(X).

Proof. It follows from the general theory of thermodynamic formalism for uniformly expanding
systems (see for instance [Bow75] and [PU10, Chapters 3 and 6]) that, for every t ∈ R, there
exists a unique invariant probability measure µt on X maximizing the pressure function PX(t) =
supν{hν(f)− tLν(f)}, where the supremum is taken over all invariant measures ν on X. We used
here the fact that, since X is uniformly expanding, the function −t log | Jac f | is Hölder continuous
on X.

Let µX be the invariant measure µt0 associated to t0 = p+X(f). As hµX (f) = p+X(f)LµX (f),
it follows from Theorem 1.1 that we have p+X(f) = 2 VD(µX). Since VD(µX) ≤ VDµX (X) by
Definition 4.17 and VD(X) ..= supν∈M+

X(f) VDν(X) by Definition 4.19, we have

VD(µX) ≤ VD(X).

We deduce from the above and Proposition 5.4 that

p+X(f) = 2 VD(µX) ≤ 2 VD(X) ≤ δX(f).

To complete the proof, we prove the inequality δX(f) ≤ p+X(f) by constructing a t?-volume conformal
measure on X for some t? ≤ p+X(f). Since one can follow Patterson’s [Pat76] and Sullivan’s [Sul83]
constructions of conformal measures, we only sketch the proof and refer to those papers for more
details; see also [PU10, Sections 12.1 and 12.3].

Take x ∈ X. For each m ≥ 0, set
Em ..= f |−mX (x).

Then Em is finite and Em+1 = f |−1X (Em). For all t ≥ 0, consider the sequence {am(t)}m≥1 given by

am(t) ..= log
( ∑
x∈Em

eSmφt(x)
)

where φt(x) ..= −t log | Jac f(x)| and Smφt(x) ..=
∑m−1

j=0 (φt ◦ f j)(x). Let c(t) be defined as

c(t) ..= lim sup
m→∞

am(t)

m
.

As a consequence of the expansiveness of f |X one can prove that

(5.4) c(t) ≤ PX(t) for all t ≥ 0;

see for instance [PU10, Lemmas 12.2.3 and 12.2.4]. Moreover, the function t 7→ c(t) is continuous.
Setting

t? ..= inf{t ≥ 0 : c(t) ≤ 0},
it follows from (5.4) that t? ≤ p+X(f) <∞.

By [PU10, Lemma 12.1.2], there exists a sequence {bm}m≥1 of positive real numbers such that
the quantity

Ms
..=

∞∑
m=1

bme
am−ms
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satisfies Ms <∞ for s > t? and Ms = +∞ for s ≤ t?. For s > t? consider the measure νs defined as

νs ..=
1

Ms

∞∑
m=1

∑
x∈Em

bme
am−msδx.

One can check that any weak limit of the measures νs as s ↘ t? is t?-volume-conformal; see for
instance [PU10, Section 12.1]. The assertion follows. �
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