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ABsTrACT. We introduce a notion of stability for equilibrium measures in holomorphic families
of endomorphisms of P* and prove that it is equivalent to the stability of repelling cycles or the
existence of a measurable holomorphic motion of Julia sets. We characterize the corresponding
bifurcations by the strict subharmonicity of the sum of Lyapunov exponents or the instability of
critical dynamics and analyze how repelling cycles may bifurcate. Our methods deeply exploit
the properties of Lyapunov exponents and are based on ergodic theory and on pluripotential
theory.
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1. INTRODUCTION

1.1. Main definitions and results. In the early 1980’s, Mané, Sad and Sullivan [MSS] and Lyu-
bich [Lyl, Ly2] have independently obtained fundamental results on the stability of holomorphic
families (fx)ycj, of rational maps of the Riemann sphere P!. They proved that the parameter
space M splits into an open and dense stability locus and its complement, the bifurcation locus.
They also obtained precise informations on the distribution of hyperbolic parameters which lead
to the so-called hyperbolic conjecture. This conjecture asserts that hyperbolic maps are dense in
the space of rational maps. The works of Douady and Hubbard on the Mandelbrot set provide a
deeper understanding of these questions for the quadratic polynomial family.

In this theory, the finiteness of the critical set and Picard-Montel theorem play a crucial role.
They allow to characterize the stability of a parameter Ay € M by the stability of the critical
orbits of the map fy,. Equivalently, A¢ is in the bifurcation locus if, after an arbitrarily small
perturbation, there exists a repelling cycle capturing a critical orbit. The one-dimensional setting
also permits, by mean of the so-called A-lemma, to build holomorphic motions of Julia sets which
conjugate the dynamics on connected components of the stability locus. The bifurcation locus also
coincides with the closure of the parameters A € M for which the map f\ admits an unpersistent
neutral cycle.

This article deals with bifurcations within holomorphic families of endomorphisms of P* for k& >
1. Let M be connected complex manifold of dimension m. A holomorphic family of endomorphisms
of P* can be seen as a holomorphic mapping

f:MxPF = MxP* | (\z2) = (N A(2)
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second author was also partially supported by the FIRB2012 grant “Differential Geometry and Geometric Function
Theory”.
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where the algebraic degree d of f) is larger than or equal to 2 and does not depend on A. For
instance, M can be the space Hq(PP*) of all degree d holomorphic endomorphisms of P¥, which is
a Zariski open subset in some P¥.

Our main result is Theorem 1.1 below, it asserts that different natural notions of stability
are equivalent and leads to a coherent notion of bifurcation for holomorphic families f in P,
Our arguments exploit some ergodic and pluripotential tools as those developped in the works of
Bedford-Lyubich-Smillie, Fornaess-Sibony, Briend-Duval, Dinh-Sibony on holomorphic dynamics
on P* or C* (see the survey [DS3| for precise references). Let us recall that, for each A\ € M, we
have an ergodic dynamical system (Jy, fx, pa) where uy is the equilibrium measure of fy and Jy is
the topological support of uy called the Julia set. The measure py enjoys a potential interpretation

fix = (ddS g(\, 2) + wrs)”

where g is the Green function of f and wrg the Fubini-Study form on P*. The repelling cycles of
fx equidistribute the measure p) and hence are dense in Jy. However, in higher dimension, some
repelling cycles may belong to the complement of Jy. We denote by L(X) := [, log Jac f dpy the
sum of the Lyapunov exponents of uy. This is a plurisubharmonic function on M which satisfies
L(\) > k%. Let Cy denote the current of integration on the critical set of f taking into account
the multiplicities of f.

Our main result is the following.

Theorem 1.1. Let f : M x P* — M x P* be a holomorphic family of endomorphisms where M
is a simply connected open subset of the space Hq(P*) of endomorphisms of P* of degree d > 2.
Then the following assertions are equivalent:

(A) the repelling J-cycles move holomorphically over M,

(B) the function L is pluriharmonic on M,

(C) f admits an equilibrium web,

(D) f admits an equilibrium lamination,

(E) any Ao € M admits a neighbourhood U such that lim inf, d=*"|(f").Ct|y = 0.

The definitions occuring in (A), (C) and (D) are explained below. These equivalences remain
true when k = 2 for every simply connected manifold M not necessarily included in H4(P?). Idem
for every k > 1 and for every family whose repelling J-cycles are neither persistently resonant nor
persistently undiagonalizable (see Proposition 5.6). It also stays partially true for general families
(see Theorem 1.6).

Theorem 1.1 leads us to define the bifurcation current of a holomorphic family of endomor-
phisms of P¥ as the closed positive current dd$ L, and the bifurcation locus as the support of this
current. The family is stable if its bifurcation locus is empty. This is coherent with the classical
one-dimensional definition, due to DeMarco [deM].

Let us now specify the definitions. A central notion is the set
J = {W : M — P* : 5 is holomorphic and y(\) € Jy for every \ € M} .

The graph {(\,7(A)) A € M} of any element v € 7 is denoted I',. We endow J with the topology
of local uniform convergence and note that f induces a continuous self-map

F:J = J given by F-y(A) := fa(v(N)).
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Definition 1.2. For every A € M, a repelling J-cycle of fx is a repelling cycle which belongs to
Jx. We say that these cycles move holomorphically over M if, for every period n, there exists a
finite subset {pnj, 1 < j < Np} of J such that {p, ;(A), 1 < j < N,} is precisely the set of n
periodic repelling J-cycles of fx for every A € M.

Our notions of equilibrium webs and laminations are as follows.

Definition 1.3. An equilibrium web is a probability measure M on J such that

(1) M is F-invariant and its support is a compact subset of T,
(2) for every A € M the probability measure M) = fj dy(x) AM() is equal to puy.

This notion is related to Dinh’s theory of woven currents and somehow means that the measures
(1) e s are holomorphically glued together. In this article we shall also say that (px)ycj, move
holomorphically when such a web exists.

Definition 1.4. An equilibrium lamination is a subset £ of J such F(L) = L and
(1) Ty Ny =0 for every distinct v,y € L,
(2) pr{y(N),y € L} =1 for every A € M,
(3) T, does not meet the grand orbit of the critical set of f for every v € L,
(4) the map F : L — L is d* to 1.

One can see an equilibrium lamination as a holomorphic motion of the Borel supports of the
measures ). Equilibrium laminations will be extracted from the support of equilibrium webs by
using ergodic theory for the dynamical system (7, F, M).

1.2. Further results and sketch of proofs. The novelty of our approach stays on two specific
features. The first one is the use of a formula for the sum L of Lyapunov exponents to read the
interplay between bifurcations and critical dynamics. Like in dimension one, our proofs crucially
rely on the links between bifurcations and instability in the critical dynamics. However, these
interactions cannot be detected by a simple application of Picard-Montel theorem. We will actually
read them on a fundamental formula due to Bassanelli and the first author [BB1] (see also Pham’s
formula in Theorem 3.3):

(1) ddS L = mar, ((ddiyz g 2) + wrs) " A Cf) .

The second feature is the introduction of equilibrium webs to overcome the lack of A-lemma and
build holomorphic motions of Julia sets. This is a weaker, but natural, notion dealing with the
measures ) rather than with their supports Jy. It should be stressed that equilibrium webs are
actually obtained as limits of discrete measures by mean of a compactness statement which may
be considered as a measurable version of the A-lemma (see Lemma 2.2).

We now wish to specify our approach and summarize the proof of Theorem 1.1. Simultaneously
we shall state some related results.
Using the formula (1) for dd§L we characterize its support by a critical growth condition. This
leads to (B) < (FE). It is known, see [BB1, Theorem 2.2] or [BDM, Theorem 1.5|, that the
holomorphic motion of all repelling J-cycles over M implies the pluriharmonicity of the function L
on M, that is (A) = (B). We give in Proposition 3.5 a stronger statement. Namely, we show that
ddS L is vanishing if f admits an equilibrium web which is a limit of discrete measures supported
on graphs avoiding the critical set of f. This is done in subsection 3.2.
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To show that the vanishing of dd§L is a sufficient condition for stability, we exploit the in-
teractions with the critical dynamics. This is where the Misiurewicz parameters enter into the
picture.

Definition 1.5. One says that A\g € M is a Misiurewicz parameter if there exists a holomorphic
map v from a neighbourhood of Ao into P* such that:

1) v(\) € Jx and is a repelling po-periodic point of fx for some pg > 1,
2) ()\077<A0)) S f”() (Cf) fOT s0me no Z 17
3) the graph T, of v is not contained in 0 (Cy).

We first prove that the pluriharmonicity of L prevents the apparition of such parameters. To do
this, we use again Formula (1) and a dynamical rescaling argument. This is done in subsection 3.3.
To prove that the absence of Misiurewicz parameters implies the existence of an equilibrium web,
we apply our measurable version of the A-lemma to sequences of discrete measures on pull-backs by
™ of a graph of repelling J-cycles avoiding the post-critical set of f (see Proposition 2.3). These
results, which are valid in arbitrary families, are summarized in the following theorem.

Theorem 1.6. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P* of
degree d > 2. Then the following assertions are equivalent:

(a) the function L is pluriharmonic on M,

(b) there are no Misiurewicz parameters in M,

(¢c) the restriction fgype, where B is any sufficently small ball, admits an equilibrium web
M = lim,, M,, and the graph of any v € U,supp M,, avoids the critical set of f.

Among equilibrium webs, those giving no mass to the subset of 7’s in J whose graphs meet
the grand orbit of the critical set of f will play an essential role in the construction of equilib-
rium laminations. Such webs are called acritical (see Definition 2.1). Both Theorem 1.6 and the
implication (A) = (B) in Theorem 1.1 are used to get the following important fact.

Corollary 1.7. Every holomorphic family of endomorphisms f : M x P* — M x P* whose
repelling J-cycles move holomorphically over M admits an equilibrium web which is acritical and
is an ergodic measure on J.

In section 4 we prove that (A) = (D). We use there the Corollary 1.7 and exploit the stochastic
properties of (J,F, M) where M is an acritical and ergodic equilibrium web. We show that the
iterated inverse branches of f are exponentialy contracting near the graph I', of M-almost every
v € J (see Proposition 4.2). This implies that for M-almost every v € J the graph I', does
not intersect any other graph Iy, where v # +' € supp M and allows us to build equilibrium
laminations (see Theorem 4.1).

So far we have established that (4) = (B), (E) < (B) and that (B) = (C") were (C") is a local
version of (C) (see Theorem 1.6). We prove simultaneously that (C') = (C) = (A). To this pur-
pose, we investigate how the apparition of Siegel discs may affect the continuity of A — J) in the
Hausdorff topology. The section 5 is mainly devoted to that study (see in particular Proposition
5.3). By the same argument than in the proof of (b) = (¢) in Theorem 1.6 one gets (D) = (C)
and this ends the proof of Theorem 1.1.

In the last section, we investigate a few properties of bifurcation loci. We first consider the
possibility for a bifurcation locus to have a non-empty interior.
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Theorem 1.8. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P*. The
set of parameters X for which P* coincides with the closure of the post-critical set of fx is dense
in any open subset of the bifurcation locus of f.

We then show that bifurcation loci contain some remarkable elements. Theorem 1.6 says that
Misiurewicz parameters are dense in any bifurcation locus. In the same vein, the bifurcation locus
in Hq(P*) coincides with the closure of the set of endomorphisms which admit repelling J-cycles
which bifurcate either by giving Siegel periodic cycles or repelling cycles outside the Julia set (see
Theorem 6.6). We finally observe that in any stable family, all elements are Lattés maps as soon
as one element is a Lattés map (see Theorem 6.7). This follows from the characterization of such
maps by their Lyapunov exponents ([BL], [BtDp]).

Let us finally mention that bifurcation phenomena in families of Hénon maps of C2? have already
been studied by Bedford, Lyubich and Smillie [BLS] and by Dinh and Sibony [DS5], the sharpest
achievements are due to Dujardin and Lyubich in their recent work on the two dimensional and
dissipative case [DuLyl].

Aknowledgements: We would like to thank Eric Bedford, Xavier Buff, Tien-Cuong Dinh, Romain
Dujardin, Thomas Gauthier, Michael Lyubich, Jasmin Raissy and Nessim Sibony for helpful dis-
cussions or comments on the first draft of this paper.

2. EQUILIBRIUM WEBS

2.1. Definition and construction. Let f : M x P* — M x P* be a holomorphic family of
endomorphisms of P* of degree d > 2. We recall that M is a connected complex manifold of
dimension m and that f(\ z) = (A, fa(2)). Let uy denote the equilibrium measure of f) and
let J) denote the support of uy, this is the Julia set of fy. We want here to define a notion
of holomorphic motion for the family (p)ycy,- To this purpose we consider the set O (M , Pk)
of holomorphic maps from M to P*, endowed with the metric space topology of local uniform
convergence, and the closed subspace

J={ye0 (M,IP”“) : ¥(A) € Jx for every A € M} .
For any probability measure M on O (M , ]P’k) and every A € M we define the measure

M>\ = /57()\) d./\/l(’y)

This is a probability measure on P*¥ which is actually equal to py,M, where the mapping py :
O (M,P*) — P* is given by pr(7) := v(\).

Let us recall that an equilibrium web for f is a F-invariant and compactly supported probability
measure M on J such that M) = u) for every A € M. We shall sometimes say that the measure
wx move holomorphically over M when f admits an equilibrium strucural web. Note that for every
probability measure M on O (M , Pk) and in particular for any equilibrium web f we may define
the curent

WM = /[F’Y] d./\/l(’y)

It has bidimension (m,m) on M x P*¥ and is a woven current following Dinh’s terminology [Di2].
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To construct equilibrium laminations, it will be crucial to deal with equilibrium webs giving no
mass to the subset J; of J whose elements have a graph intersecting the grand orbit of the critical
set of f. This motivates the following definition.

Definition 2.1. An equilibrium web M is said acritical if M (Js) = 0 where Js is given by
Ts:={ye T : IyN(Umzof " (Unzof" (Cf))) # 0}
Equilibrium webs will be obtained as limits of discrete measures on O (M , IP”“). To this purpose

we shall use the following simple tool which somehow plays the role of the classical A-lemma. We
refer to Lemma A.1 for a more general statement.

Lemma 2.2. Let f: M x P¥ — M x P*¥ be a holomorphic family of endomorphisms of P¥. Let
(My)n>1 be a sequence of Borel probability measures on O (M, Pk) such that:

1) lim,(Mpy)x = ux for every A € M,

2) FuMpi1 = M, or Fo My, = M, for every n > 1,

3) there exists a compact KK C O (M, Pk) such that F~Y(K) c K and supp M,, C K.

Then any limit of (X 37| My),, is an equilibrium web.

Proof. Let N,, = %Zl":l M,;. By Assertion 3) (N,),>; is a sequence of Radon probability
measures on the compact metric space K. Banach-Alaoglu and Riesz-Markov theorems ensure
that there exists a subsequence (N, ),~, converging weakly to a Radon probability measure M
on K. By Assertion 2), we have F, N, = N, + &, where the mass of & is less than 2/ny. This
implies that F, M = M as measures on K. Let us extend M to a Borel probability measure M
on O(M,P*) by setting M(A) := M(ANK). Let us verify that M is an equilibrium web. We still
have F, M = M. Indeed, we deduce from FHK) C K:

FoM(A) = M(FHA) NK) > M (FTHANK)) = M(ANK) = M(A)

and the identity follows since f*ﬂ and M are probability measures. From pA*M = paM and
PraxM = limg, pr Ny, = py provided by Assertion 1), we deduce py, M = py. It remains to check

suppM C J. If vo ¢ J then vo(Ao) ¢ supp py, for some A\g € M. Let V; be a neighbourhood of
70 in O(M,P*) such that py, (Vo) C P* \ supp py,. Then

M(Vo) < M (p3,) (920 (V0))) = Page M (o (V0)) =t (P2 (Vo)) = 0
implies that vy ¢ supp M. |

We now explain how Lemma 2.2 is concretely used to produce equilibrium webs. The proof
relies on the equidistribution of preimages of points, see the articles [FS1, BrDv2, DS1] and on the
equidistribution of repelling cycles, see [BrDv1].

Proposition 2.3. Let f: M x P* — M x P* be a holomorphic family of endomorphisms of P* of
degree d.
1) Assume that M is simply connected and that there exists v € O (M, IP"’) such that the graph
I, does not intersect the post-critical set of f. Then an equilibrium web is given by any
timit of (151, gk Sorvper 00
2) Assume that the repelling J-cycle? of f move holomorphically over M. Let (p"vj)lﬁjSNn
be the elements of J given by the motions of these n-periodic cycles. Then an equilibrium

web is given by any limit of (d’%" Z;v:"l 5%’].) .
n
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Proof. 1) The map f™ : (M x P¥) \ =" (Ur<p<n fP(Cy)) = (M x P*) \ (U1<p<n fP(Cy)) is a cov-
ering of degree d*™. Hence, there exist d*” holomorphic graphs I’ such that f™ (I‘(,j,n) =T, 1ie.

kn
F"-ojn =7. Let us set M,, := # ;l:l 1) By construction Fx M, 11 = M, and, for every

o'j,n'
A € M, one has (M,,), = ﬁ Zjdk:l O, (0) = Zf;l(x)zv(/\) dz — px, where the limit comes from
the fact that y(\) ¢ Up>1/Y(Cy,). The family (0j.n) ;. is normal, by a theorem of Ueda [Ued,

Theorem 2.1], and therefore the closure K of U,,>1supp M,, is a compact subset of O (M, IPk). By
construction F~1(K) C K. The conclusion immediately follows from Lemma 2.2.

2) Let us set M,, := # ;V:"l 0p; - The convergence of (M) towards py follows from the
equidistribution of repelling periodic points with respect to the equilibrium measure, see [BrDv2]
(note that the repelling cycles produced there are J-cycles). The normality of the family (pjs")j,n
can be seen by lifting these curves to curves of periodic points of a lift of f to CF*1. Again, one
concludes by using Lemma 2.2. a

2.2. Elementary properties. As it will turn out, equilibrium webs given by the above Proposi-
tion 2.3 are acritical and this property, combined with ergodicity, will be crucial to build equilibrium
laminations. This motivates the following result.

Proposition 2.4. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P*.
If f admits an acritical equilibrium web Mg then f admits an acritical equilibrium web M{, which
is ergodic and such that supp M{, C supp My.

Proof. Let us consider the convex set Py.ep (K) of equilibrium webs of f which are supported in
K, where K := supp (My). Note that F(K) C K since M, is F-invariant. The set Pyep (K) is
a compact metric space for the topology of weak convergence of measures. It is actually closed
in the unit ball Be k) where C(K) is the separable Banach space of continuous functions on K
endowed with the norm of uniform convergence.

We will use Choquet decomposition theorem to find extremal points M’ in Pyep (K) for which
M’ (Ts) = 0 and then prove the ergodicity of M’ by showing that these points are also extremal
in the set Pjny (K) of F-invariant probability measures on K. Let us denote by Ext (Pyep (K)) the
set of extremal points of the compact metric space Pyep (K). By Choquet theorem, there exists a
probability measure vy on Ext (Pyep (K)) such that

My = / Eduy (€).
Ext(Pues(K))

Then

0= Mo (TJs) = E(Ts) do (€)

/EXt(Pweb(]C))
and the set of equilibrium webs £ € Ext (Pyep (K)) for which € (J,) = 0 has full vp-measure.

To conclude the proof we are left to check that any M’ € Ext (Pyes (K)) is extremal in Py, (K).
Assume that M’ = %./\/h + %Mg where M; € Pip, (). Then, as M’ is an equilibrium web for
f we have py = prx (M) = %p,\* (M) + %pm (M) for every A € M. Since py o F = [y o pay,
the probability measures py, (M) are fy-invariant and therefore the ergodicity of py implies that
Pax (M1) = prx (M2) = py for every A € M. This shows that M; and My actually belong to
Puwebr (K) and the identity M’ = M; = My then follows from the fact that M’ is extremal in
Puweb (’C) u
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The following simple dynamical properties of the support of an equilibrium web will be very
useful. We thank R. Dujardin for pointing us this fact.

Lemma 2.5. Let M be a connected complex manifold and f : M xP* — M xP* be a holomorphic
family of endomorphisms of P* which admits an equilibrium web M. Then:
1) the sequence (ff(v(A)))le is normal for every y € supp M,
2) for every (Ao, z0) € M x Jy, there exists v € supp M such that zo = y(Ao),
3) for every (Ao, 20) € M x Jx, such that zy is n-periodic and repelling for f»,, there exists
v € supp M such that zg = v(Ao) and y(N\) is n-periodic for fx for every A € M.

Proof. (1) This follows from f¥(y()\)) = (F?-~) (\) and the fact that M is compactly supported
and F-invariant.

(2) As zp € Jy, and Jy, = supppy, = suppM,,, there exist (v,), C supp M such that
Yn(Xo) = zo. Then, since M is compactly supported, we can take for v any limit of (v,),,-

(3) By the implicit function theorem, there exists a neighbourhood V), of Ay and a holomorphic
map w : Vi, — P* such that w(\g) = 20 and w(\) is n-periodic for fy. We will show that
w coincides on V), with the map v given by the previous item; the conclusion then follows by
analytic continuation. Our argument is local, so we can choose a chart and work on C*. Since 2
is repelling, we can shrink V), and find A > 1, » > 0 such that

(2) [w(A) = X = [/ (wN) = )] = Allwd) - 2|
when X\ € Vy, and |jw(X\) — z|| < 7. On the other hand the first item ensures that (f{"(y(A ), is a
normal family, hence we can shrink again Vy, so that [|w(\) — fY"(v(\))|| < r for every p > 1 and

A € V),. Combining this with Equation (2) we obtain r > [|w(X) — 3" (v(A))|| = AP|jw(X) —~y(N)]|
for every p > 1 and A € V). This implies w(A) = v(\) on V), since A > 1. O

To perform certain computations, we will have to explicitely relate equilibrium webs with posi-
tive horizontal currents (see Lemma 2.8 below). Before doing this, we recall some basic facts about
horizontal currents.

Definition 2.6. Let M be a complex connected manifold. A current R on M x CF+1 is horizontal
if suppR C M x K for some compact subset K C CF+1.

Let us assume that R is a closed, positive, horizontal current of bidimension (m,m) on M x CF+1
where m is the complex dimension of M. Then the slices (R, 7w, A) exist for Lebesgue-almost
every A\ € M and are positive measures on M x C¥*! supported on {\} x C¥*1. The following
basic slicing formula holds for every continuous test function ¢ on M x C**1 and every continuous
(m, m)-test form w on M:

3) /Mm, Tans A) 1 w(N) = (R AT (), 6.

Dinh and Sibony have shown that the slices of such currents do actually exist for every A € M
(see [DS1, theorem 2.1]. Their basic result is as follows, it will be used in the proof of Lemma A.1.

Theorem 2.7. (Dinh-Sibony) Let M be a m-dimensional complex connected manifold and R
be a closed, positive, horizontal current of bidimension (m,m) on M x CF*1. Then the following
properties occur:
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(1) the slice (R, mar, \) exists for every A € M and its mass does not depend on X € M,
(2) the function A — f«:kﬂ (N, 2) (Rymar, A) is psh or = —oo on M for any psh function 1
defined on a neighborhood of suppR.

Let us now state the announced lemma. Let 7 : C¥*1\ {0} — P* be the canonical projection.

Lemma 2.8. Let B be a ball in C™ and let f : B x P¥ — B x P* be a holomorphic family of
endomorphisms of PX. Let K be a compact subset of O (B, IP’k). Then, after shrinking B, one may
associate to any probability measure N supported on K a positive, horizontal (m,m)-bidimensional
current WN on B x C**1 such that , (WN, w5, Ay = N, for every A € B. Moreover, WN depends
continuously on N .

Proof. Let (0;),,<y be holomorphic sections of 7 whose domains of definition ; cover P*. Since
K is a normal family, we may shrink B so that for each 7 € K there exists at least one 1 <i < N
such that I', C B x ;. This allows to define a map

J:IC%O(B,CIHI)
v o(y) =010y

where [ := min{1 < i < N such that ', C Bx;}. Now, for any probability measure N supported
on K we set

Wi = [ [Toi] AN (7).

Then 7T*<W/\/’, B, A) = N, for every A € B by construction. d

2.3. Continuity of Julia sets and equilibrium webs. In Section 5, we will want to compare
the holomorphic motions of the measures (uy)acas with the continuity of their supports Jy in
the Hausdorff sense. To this purpose, we recall a few definitions. Let Comp* (]P’k) be the set of
non-empty compact subsets of P* endowed with the Hausdorff distance and let K, denote the
e-neighbourhood of K € Comp* (P¥). A map E : M — Comp* (P¥) is said upper semi continuous
(u.s.c) at A\g € M if for every € > 0, one has E(A\) C (E()\o)), when A is close enough to Ag. It
is lower semi continuous (l.s.c) at g if for every e > 0, one has E(\g) C (E(X)), when X is close
enough to \g. For every A C M x P* we define (A), := AN ({\} x P¥).

The starting point about continuity of Julia sets stays on the following observations, see also
[DS3, exercises 2.52 and 2.53].

Proposition 2.9. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P*.
The map X — Jy from M to Comp™*(P¥) is l.s.c. If f admits an equilibrium web M and W is
the woven current [,[L5] dM(y), then Jy C (supp WM))\ and the map X — (supp WM))\ from M
to Comp*(P*) is u.s.c.

Proof. The lower semi continuity of J) is a consequence of the existence of continuous local poten-
tials for py. Assume indeed that A — J) is not l.s.c at Ag. Then we may find € > 0 and sequences
An € M, z, € Jy, such that dpr(zp,Jx,) > €. After taking a subsequence we may assume that
Zn = 20 € Jy, and B(zg, £) C B(zn, §) C B(zo,€). If € is small enough, the projection 7 : C**1\
{0} — P* admits a section o on B(zp, 2¢) and the functions uy(z) := G (), o(z)) are local potentials
for the equilibrium measures, which means that the restriction of uy to B(zg,2¢) is the Monge-
Ampére mass (ddgu)\(z))k. Observe that, by the continuity of G, the potentials uy, converge
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locally uniformly to wy,. This implies that liminf, px, (B(20, ) = px, (B(20, §)). The expected
contradiction follows: 0 < 5, (B(z20, §)) < liminf, p, (B(20, $)) < liminf,, px, (B(zn, §)) = 0.

The inclusion Jy C (supp WM) ,, follows directly from the fact that Jx = supp ux and py = My =
J,6 705 dM (7). The upper semi continuity of (supp WM) , Is an elementary general topological
fact (see [Dou, Proposition 2.1]). O

It is now easy to see that the existence of an equilibrium web implies that the Julia sets depend
continuously on the parameter.

Proposition 2.10. Let f : M x P¥ — M x P* be a holomorphic family of endomorphisms of P*.
If f admits an equilibrium web then the map X — Jy from M to Comp* (Pk) s continuous.

Proof. According to Proposition 2.9, it suffices to show that (supp Way), C Jx. This follows from
the following lemma. a

Lemma 2.11. Let f : M x P¥ — M x P* be a holomorphic family of endomorphisms of P*.
Assume that f admits an equilibrium web M. If zo ¢ Jy, then there exist € > 0 and ro9 > 0 such
that M{~y € J : T'yN[B(Xo,¢€) x B(z9,70)] # 0} = 0. Moreover px (B(zo,r0)) = 0 for every
X € B(Ag,€).

Proof. Pick rg > 0 such that py, (B(z0,219)) = 0. As supp M is a normal family, there exists
€ > 0 such that for any v € supp M:

I, N [B(Xo,€) x B(zo,70)] # 0 = ~v(\) € B(z0,2r0) for any A € B(Ag, €).
Let a:= M{y e J : T, N[B(Ao,€) x B(z0,70)] # 0}. Then, for any A € B(Xo,€), we have
a< M{yeT: v(\) € B(zo,2r0)} = ux (B(z0,2r0)) -

Applying this to Ao yields @ = 0 as desired. For every A € B()\g,€) we have uy (B(z0,70)) =
M{ye T : v(\) € B(zo,70)} g = 0. This completes the proof. O

3. STABILITY AND THE SUM OF LYAPUNOV EXPONENTS

In this section we establish a part of Theorem 1.1 ((4) = (B) < (£)) and prove Theorem 1.6
and Corollary 1.7.
Formulas relating the critical dynamics with the sum of Lyapunov exponents are at the heart of
our approach. In [deM], DeMarco proved such a formula for the Lyapunov exponent L(f) of a
rational map f. For a polynomial P of degree d, her formula boils down to the famous Przytycki’s
formula, see [Prz]:

= > Gp(e) +logd.

ceCp

Here Gp := lim, d~"log™ |P"(2)| is the dynamical Green function. We shall use here a similar
formula for the sum of Lyapunov exponents of holomorphic endomorphisms of P¥ which was
obtained by Bassanelli-Berteloot ([BB1, Theorem 4.1]).
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3.1. Formulas for the sum of Lyapunov exponents. To deal with this kind of formulas, the
right framework is that of equilibrium currents for holomorphic families of d-homogeneous non-
degenerate maps. It has been introduced by Pham [Pha] in the more general context of polynomial
like mappings (see also the lecture notes by Dinh and Sibony [DS2, section 2.5]).

Definition 3.1. Let F : M x CFt1 — M x CF*1 be a holomorphic family of d-homogeneous non-
degenerate maps where M is some m-dimensional complex connected manifold. Let £ be a closed,
positive, horizontal current of bidimension (m,m) on M x C**1. We say that £ is an equilibrium
current for F if the slice (€,mpr, A) is equal to the equilibrium measure of Fy for every A € M.

Equilibrium currents always exist, one may dynamically produce them and they do not detect bi-
furcations. For instance, Pham proved that the sequence of smooth forms (d(k%)nF nx (ﬂ'ék +19) )n
converges to such a current for any smooth probability measure # on C¥*1. Note that such currents
are not unique when k > 1.

It is also possible to define equilibrium currents for families of endomorphisms of P* by means
of Green functions. Let us briefly recall their construction. Consider a holomorphic family f :
M x P* — M x P* which admits a lift F: M x C**1 — M x CF*!. The sequence

- 1 -
Ga(0.2) = - log |2
converges locally uniformly on M x CF¥+1\ {0} to a function G which we call the Green function of
F. The function G is psh and Hélder continuous, see [BB1, section 1.2]. Let 7 : C**1\ {0} — P*
be the canonical projection and wgg be the Fubini-Study form on P*. The functions G,, induce
functions g, : M xP* — R by setting g, (), 2) := G, (A, 2)—log | Z ||, for every 7 satisfying (%) = 2.
We have: )
af* (ddg\,z 9n + WFS) = ddi,z In+1 + WFs.

We define similarly g(}, 2) := lim, g, (A, 2), which is equal to G(\, 2) — log || Z ||, and set

gG’Teen = (ddi,zg + wF,S’)k .

This is a current of bidimension (m,m) and, since slicing commutes with the operators d, d°¢, the
measure (Egreen, Tar, A) is equal to the equilibrium measure of fy for every A € M. The current
EGreen will play an important role in our study (see Proposition 3.7). We call it the Green equili-
brum current of f.

Before stating the results of this subsection, we fix a few notations. Let us set D := (k+1)(d—1).
The line bundle Opx (D) over P¥ is seen as the quotient of (CH™\{0}) x C by the relation
(2,2) = (uz,uPz) for every u € C* and its elements are denoted by [, z]. We endow Opx (D) with
the canonical metric

Iz, x]llo := e_D‘10g\|5H|x|

or, for any A € M, with the metric

12, a]llx = =P O a].

Let us set Jp(A, 2) := detdzF\. Then we obtain a family of holomorphic sections of Opr (D) by
setting, for every 7 € CF+1\ {0}:

Jp (N 7(2)) = [2, Jr(\ 2)).
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Observe that
(4) 175 (A, w(2)) [Ix = e P EXA TR (N, 7).

The current Cy := ddS _ log ||J3 (A, 2) [[o is the current of integration on Cy taking account the
topological multiplicities of f, its bidimension is equal to (k, k) where k := k +m — 1.

Theorem 3.2. (Bassanelli-Berteloot) Let f : M x P¥ — M x P* be a holomorphic family of
endomorphisms of P*. Let L(\) be the sum of the Lyapunov exponents of ux. Then

ddiL = TM« (gc;reen A Cf) .

We end this subsection by explaining how Pham [Pha| obtained a more general formula. His
result holds for any equilibrium current of any family of polynomial-like maps, we state it in the
special case of non-degenerate homogeneous maps for sake of simplicity. Let us recall that for
such a family F, the function log |Jz(, Z)| is psh on M x C*+1. Moreover, the sum of Lyapunov
exponents of F\ with respect to its equilibrium measure vy is given by fckﬂ log |Jr (A, 2)| dva(2)
and is equal to L(A) + logd where L()) is the sum of Lyapunov exponents of fy with respect to

Hx-

Theorem 3.3. (Pham) Let F : M xCF*t! — M xC*+! be a holomorphic family of non-degenerate
d-homogeneous maps and let € be an equilibrium current for F. Then:

(1) the current log|Jr| - € has locally finite mass,
(2) dd3 L = mar, (€ A dds, ;Tog | Tr]).

To prove that dd§ L vanishes when repelling J-cycles move holomorphically (subsection 3.2), we
shall actually need the following formula for dd§ L whose proof follows Pham’s arguments.

Proposition 3.4. Let B be an open ball in C™ and let f : B x P* — B x P*¥ be a holomorphic
family of endomorphisms of P*. Assume that f admits an equilibrium web M. Then

ddS.L = 7, (W A ddS, , log || T3 (A, (%)) ||
where WM is the (m,m)-bidimensional current on M x C**t1 associated to M by Lemma 2.8.

Proof. We first check that for every A € B we have

(5) [ 10173 O I (W, ) = LY + logd
CHr

Indeed, since 7r*<WM,7rB, A) = uy, we get

/ log [ 73 (A () [lx (Wt 7, A) = / log 73 (A, 2) [ #ia.
Ck+1 Pk

On the other hand, by Formula (4) and since G identically vanishes on the support of the equi-
librium measure vy of F) and m,vy = ), we have

[0l Oz = [ 108 175 (\m(2) 1 v

= / log |Jr (A, 2)| va = L(N) + logd,
Ck+1

and the identity (5) follows.
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Pham proved that u - R has locally finite mass for every psh function u and every horizontal
current R as soon as [ri1 u(A, ) (R,mp, ) # —oc for some A € M, see [Pha, theorem A.2]. It

thus follows from (5) that the current log ||J& (A, 7(2)) || - Wy is well defined and that its dds, -
is equal to W A ddS, ; log || J3 (A, 7(2)) ||
We conclude by simple computation which relies on integration by parts (to make it rigourous

one should approximate log||J& (A, 7(Z)) ||x by smooth functions). Let ¢ be a (m —1,m — 1) test
form on B. Then

(moa (Wan A dd, 2 Tog [T (0, w(2)) 1) 5 0) = (0g [T (A, 7(2) s - Wit dd < (n5))

= (Wm A7 (dd5e) ; log ||l Jp (A, 7(2)) [Ix)-
By the basic slicing formula (3) and the identity (5), this is equal to

[ (0Fas.ma N 1og 15 O m(@) 1) ddsp = [ Ladso = (da5L.)
B B

This completes the proof. a

3.2. Repelling cycles do not move holomorphically on suppdd§L. Our aim is to establish
the implication (A) = (B) in Theorem 1.1, namely that dd{L = 0 on M if the repelling J-cycles
move holomorphically. We actually prove here a quite more general result.

Proposition 3.5. Let f : M x P* — M x P* be a holomorphic family of degree d > 2 endo-
morphisms of P* which admits an equilibrium web M which is given by M = lim,, M,, where
I'yNCy =0 for any v € Upsupp M,,. Then ddSL =0 on M.

The proof needs the following technical lemma.

Lemma 3.6. Let B be an open ball in C™ and let f : B xP* — B xP* be a holomorphic family of
endomorphisms of P¥. Let Z be a codimension 1 analytic subset of B x P¥ which does not contain
any fiber {\} x P*. Assume that there exists an equilibrium web satisfying M = lim,, M,,, where
I'yNZ =0 for every v € U,supp M,, and every n > ngy. Let B’ be a relatively compact ball in B.
Then, after shrinking B, there exist A >0 and 0 < a < 1 such that

M{’Y €eJ: F’y\B/ NZe 7& (Z)} < A€
for every sufficently small € > 0, where Z, is the e-neighbourhood of Z.

Proof. We can assume that both B and B’ are centered at some Ag. After maybe shrink-
ing B we may find a finite collection (£, h;)1<i<y where the ; are open and cover B x Pk,
the functions h; are holomorphic and bounded by 1 on €; and Z N Q; = {h;, = 0} for any
1 <4 < N. If € is small enough, we may also assume that Z. N Q; C {|h;| < Cie} and, by
Lojasiewicz inequality, that {|h;| < €} C Zc,er for some constants Cq,Ca,7 > 0. Similarly, one
has Z. N ({)\0} X Pk) - (Z n ({)\0} X Pk))cggo for some constants Cs3, 79 > 0.

Since M has compact support in 7, we may shrink B again so that for any v € supp M there
exists at least one 1 <4 < N such that I'y C ;. We shall use the following claim.

Claim: there exists 0 < a < 1 such that supg || < |d(to)|* for every to € B’ and for every
holomorphic function ¢ : B — D*.
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Let v € supp M such that I'y N Z = () and [y, NZ. # 0. Applying the Claim to h; oy with
I, € Q; we obtain that I')| |, C Zg,cre for some constant Cy > 0.
On the other hand, by our assumption on the approximation by M,,, Hurwitz lemma implies that
either I'y C Z or I'y N Z = () for any v € supp M. We thus have

M{yeT Ty, NZ#0<M{veT: T, CZoea}<
My €T : (Mo, 7(N)) € Zeyera} = ping (Zeyera N ({Ao} x PF)) <
Pxo {(Z N ({Ao} x Pk))cg(c4eaf)fo} < Ae®

where the last estimate is due to the fact that p,, has Holder-continuous local potentials and
ZN ({)\0} X Pk) is a proper analytic subset of P*.

It remains to prove the Claim. Let G := {¢ € O(B,H) : ¢(s) = —1 for some s € B’} where
H := {Rz < 0} is the left half plane. Then G is compact for the topology of local uniform conver-
gence, and thus the quantity (—a) := sup,cg sup, g5 Rp(s) satisfies —1 < —a < 0. Let to € B’
and ¢ : B — D* be holomorphic. After a rotation in D* we may assume that |¢(to)| = ¢(to) €]0, 1[.
Let ¢ : B — H be the lift of ¢ by the exponential map, which satisfies ¢(tg) = log ¢(tg) €] — o0, 0].
Then ¢o(t) :== —p(t): p(to) belongs to G and thus R(pg) < —a on B’. This is the desired estimate
since |p| = e®? < ex1o8d(t0) — |p(tg)| . O

PrROOF OF PROPOSITION 3.5: The problem is local and we may therefore take for M a ball
B C C™ and assume that f : B x P — B x P* admits a lifted family F : B x C**1 — B x Ck*!
of d-homogeneous non-degenerate maps. We will apply Lemma 3.6 with Z = Cy. Let B’ be any
relatively compact ball contained in B.

After shrinking B we may use Lemma 2.8 and associate to M the following horizontal curent
on B x Ck+!
Wan= [ Eop) dr(),
According to Proposition 3.4, one has
ddS L = mp. (W A ddS z og | T3 (A, (2) [11).

Using ||J3 (A, w(2)) || = e P CA3) | Jp(), 2)| (see Formula (4)), and the fact that the functions L
and G are psh, we obtain

0 < dd§L = . (W A ddS, ; 1og | Jp|) — Drp. (Wi A dd5, ;G
< 7 (Waa A ddS, ; log | Tr|).
Hence it suffices to show that the current log |Jp| W restricted to B’ x CF is dds, ; closed.
For € < 1 we set log, := x.olog where x. is a convex, smooth, increasing function on R such that
Xe(x) =z if © > loge and x.(—o0) = 2loge. Then log, |Jr| is a decreasing family (when ¢ — 0)

of smooth psh functions which converges to log |Jr|. As lim._,glog, |Jr| Was = log|JF| W we
will actually deal with log, |Jr| Was.
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To this purpose we set U, := {|Jp| < €}, Spm,e := {7y € suppM : T'5(4y,, NUe # 0} and decompose

To o
W as:
Wi =Wa,e + WL,E
where AI/V//\/LE = [;[Coylsp,. dM(y) and W}(AE = W — I/IN//\,LG. Then
log, |Jie| Waq = log, |Jr| Wi, +log, || Wiy.o

and, by construction, the current log, |Jr| Wj/l’e‘B/XCkﬁ—l is ddS ;-closed since log, |/r| = log|JF|
is pluriharmonic on the graphs I', which do not intersect U.. It thus remains to check that
lim, log, |Jr| Way,e = 0. This follows from the estimate

[log, | Tk Wil < |logelM (Sae) S

~

€| log €|

where the last inequality is obtained by observing that there exist b, 8 > 0 such that Sy, C {7 €
J : Ty, N(Cf),.s # 0} and applying Lemma 3.6. O

3.3. Misiurewicz parameters belong to supp dd{L. We establish here the following result.

Proposition 3.7. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P*.
Then the Misiurewicz parameters belong to the support of ddS.L.

Proof. If A\g € M is a Misiurewicz parameter then, by definition, there exists a holomorphic map
7 from a neighbourhood of \q into P¥ such that:

1) v(A\) € Jx and is a repelling pp-periodic point of fy for some py > 1,
2) (Ao, 7(Xo)) € fo(Cy) for some ng > 1,
3) the graph I', of 7 is not contained in f™°(Cy).

Without loss of generality we may assume that po = 1 and that M is a disc D, C C centered
at Ao = 0 with radius p. Moreover, conjugating by (X, z) = (A, Ty (x)(2)) where T’y is a suitable
family of linear automorphisms of P¥ ensures that  is constant equal to z; := v(0). Let us denote
by B, a ball centered at z; and of radius r. Taking p and r sufficiently small finally allows us to
suppose that:

(i) f is injective and uniformly expanding on D, x B,: there exists K > 1 such that
V(A 2) € D, x By, dpr (f(N, 2), f(A\, 21)) > Kdpr(2,21)
(i) (A, 2z1) € f*o(Cy) & A=0.
The fact that y(A) € Jy is crucial but will only be used at the very end of the proof.
We have to show that (dd§L,1p.) > 0 for some 0 < € < p. To this purpose, we will use
the formula dd$L = (7p,)« ((ddi,ngrw)k A Cf> given by Theorem 3.2, where w = wpg.

Let (gn)n be a sequence of smooth functions on P* which converges uniformly to g and satis-
fies éf*(ddizgn + w) = ddf ,gn+1 + w (see subsection 3.1). We shall proceed in three steps.

k
First step: (ddSL,1p,) > d="k([f"(C)] A (ddi’zg + w) J1p.xB,.)-
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Pick (0,z9) € Cy such that f™(0,29) = (0, 21). After reducing € and r, we may find a neigh-
bourhood U of (0, zg) such that the map f™ : U — D, x B, is proper. According to Theorem 3.2,
we have

(dd5.L, 1p,) = ((dd5,.g + )" A Cy,1p, 0mp,) > ((dd5 g +w)" A[Cy], 10).
Using the smooth approximations g,,, we get
(ddS .9 +w)" A [Cyl 1u) = T ((dd, . gntne + )" A [Cy], 10)
= limd """ (1y - [C], ()" (dd .gn +w)")
= lim d ™™ ("), (1o - [Cy]) , (ddS, .90 +)").

Now, as f™ : U — D, x B, is proper, one has (™), (1g[C¢]) > 1p.xB,[f"°(Cf)] which, since
ddS .gn + w is positive, yields

(ddSL,1p,) > limd ™™ (1p p, [/ (Cy)], (dd .gn +w)")

> limd "o ((ddS, g +w) " ALF"(Cp)), b xs, ).

The desired estimate follows by uniform convergence of g, to g.

Second step: Let Ay :=1p, x5, [f"(Cy)] and Api1 :=1p B, f«(Ap). Then
14, A (dds_.g +w)* | = d*[[(1p, x, © f7) Ao A (dd§ .9 +w)" |
< AP Ao A (ddS g +w)" |
We use again the smooth approximations g,. Then:
"Il = (1p.wp, fu(Ap), (ddS gn +w)")
= (A, f* (108, (dd5 .90 +)"))
= d*(Ap, 1p.xp, © f (A5 gn+1 +w)")
= dk<Ap A (ddi’zgnﬂ + w)k J1p.xB, o f)
= d"|(1p,xB, © ) Ap A (ddS, .gns1 +w)" ||

Taking the limits when n tends to infinity yields the conclusion.

||Ap+1 A (ddi,zgn + w)

Third step: (dd$L,1p.) > 0.

By combining the two former steps, one gets:

(6) PO ddS L 1p,) > (| Ap A (ddS g+ w)" .

By (i) and (ii), f is uniformly expanding on D, x B, and (supp Ao) N (D, % {z1}) = {(0, z1)}.
Thus supp A, C D, x B, for some ¢, — 0. Let us momentarily admit that there exists m > 0
such that

(7) Ap = m[{0} x By].
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We then deduce from (6) that, for p large enough, one has:
APt AdS L, 1p,) = T |0} x By] A (ddS g + )|

We conclude by using the fact that z; € Jy: the right hand side is equal to
—/ (ddSg(0,z) +w)" = %MO(BT) > 0.

To complete the proof it remains to establish (7). Let us denote V := D, x B, and V' := f(V).
By assumption f : V — V' is a biholomorphism whose inverse will be denoted by h : V! — V.
According to (i), V C V' and (h|v )’ converges to (), z) — (), z1). We now use (ii). After shrinking
p and r, we may find a Weierstrass polynomial

PN, 2) = A"+ a1 (AT 4 4 ag(2)

such that a;(z1) =0 for 0 < j <m—1and f" (Cy) N (D, x B,) = {¢p = 0}. Observe now that
Ag = lydds _log|¢| and that

Ay = 1y fuAo = Iy h* Ag = 1y (1y o h)ddS , log|v o h| = 1y-ddS , log |y o hl,

where the last equality comes from 2 (V) C V. Similarly we have A, = 1yddS , log|¢ o (hly)" |
and the conclusion follows since 1 o (h|y)” (A, z) — A™. O

3.4. Misiurewicz parameters are dense in supp dd§{ L. We start with the following proposition;
the statement is local since it is based on holomorphic motion of hyperbolic sets.

Proposition 3.8. Let f : B x P* — B x P* be a holomorphic family of endomorphisms of P*
where B is a ball centered at the origin in C™. If B does not contain any Misiurewicz parameter
then, after shrinking B, there exists v € J such that Iy does not intersect the post-critical set of

f-

Every hyperbolic set admits a holomorphic motion which preserves repelling cycles (see subsec-
tion A.2). We need a more precise result concerning the size of such sets and the position of their
motions with respect to Julia sets. Here B, denotes a ball centered at the origin in C™ and of
radius r.

Theorem 3.9. Let f : B x P* — B x P* be a holomorphic family of endomorphisms of P*.
There exist an integer N, a compact hyperbolic set Eg C Jo for f& and a holomorphic motion
h: B, x Ey — P for some 0 < r < 1 such that:

(1) the repelling periodic points of f&¥ are dense in Ey and Ey is not contained in the post-
critical set of f&,

(2) hx(z) € Jy for every X € B, and every z € Ej,

(3) if 2 is periodic repelling for f& then hy(z) is periodic repelling for fi.

The proof of this result requires a few tools. To create hyperbolic sets, we use a classical device
based on the following proposition which is a consequence of [BrDvl] (see also [BDM]). For any
endomorphism fy of P¥ and every A C P*, n > 1 and p > 0, we denote by C, (A, p) the set of
inverse branches g; of f§ defined on A and satisfying g;(4) C A and Lipg; < p.

Proposition 3.10. Let fy be an endomorphism of P¥ of degree d. For every p > 0 there exist a
closed ball A C P* centered on Jy, and o > 0 such that CardCy,(A, p) > adk™.
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To control the size of hyperbolic sets, we use an entropy argument. Our key tool is the following
result which is due to Briend-Duval [BrDv2], de Thélin [deT] and Dinh [Di3] (see also [DS3]
Corollary 1.117).

Theorem 3.11. Let g be an endomorphism of P¥ of degree d. Let r be an ergodic g-invariant
measure with entropy hy, > (k — 1)logd. Then k gives no mass to analytic subsets of dimension
< k —1 and the support of k is included in the Julia set of g.

PRrROOF OF THEOREM 3.9: Let p < 1 and A be a closed ball provided by Proposition 3.10. Let
us fix N large enough such that N’ := Card Cx (4, p) > d*~DN. We denote by gi,...,gn: the
elements of Cn (4, p). Let Ey := Ni>1Ey, where

Ey={gyo...0g,(A): (i1,....,ix) € {L,....,N'}* }.

Let ¥ := {1,... ,N’}N* endowed with the product metric and 2z be a fixed point in A N Jy, for
instance the center of A. The map w : ¥ — Ejy defined by (i1,42,...) = limk_00 giy © ... 0 i\, (2)
is a homeomorphism satisfying f¥ ow = wo s, where s is the left shift acting on ¥. We take for &
the image by w of the uniform product measure on ¥: this is a f~-invariant ergodic measure with
entropy h, =log N’ > (k — 1) logd™, with support Ej.

By construction Ey C Jy,. Indeed, Ey = {limg—o0 giy; ©...0g;,(2) = (1,42,...) € B} and Jy,
is a closed f{¥-invariant set. Also, repelling cycles of f& are dense in Ey. According to Theorem
3.11, Ey = supp k is not contained in the countable union of analytic subsets U,>1f§(Cy,). The
set Ey is hyperbolic for fg' since [(dfg")~"[~" > > 1 on Ey and thus there exists a holomorphic

motion h : B, x Ey — P* which preserves repelling cycles (see Theorem A.4). It remains to show
hx(Ey) C Jy,. For that purpose we use the fact that hy : Ey — Pk is a continuous injective
mapping satisfying hy o f& = f o hy on Ey. Then (hy).x is a f{-invariant ergodic measure
whose support coincides with hy(Ep) and whose metric entropy equals h,. Theorem 3.11 yields
hx(Ep) C Jy, as desired. O

We now use Theorem 3.9 to establish Proposition 3.8.

PROOF PROPOSITION 3.8: Since f/{v and f) have same equilibrium measures and post-critical
sets, we may assume that N = 1. Let Fy C Jy and r €]0, 1] provided by Theorem 3.9. Let us fix
z € Eg \ Up>1f3(Cy,) (see item 1).

Let us set v(A) := ha(z). By item 2 we have v € J. Let us show that

(8) Ly N (Upst f7(Cy)) = 0.

Assume to the contrary that there exists ng > 1 such that I', N f"(Cy) # 0. Note that
v(0) ¢ f™ (Cy). By item 1, there exists a sequence (z,), C Ep of fo-periodic repelling points
which converges to z. Items 2 and 3 assert that hy(zp) € Jx and hx(zp) is a fi-periodic re-
pelling point for every A € B,. As h is continuous, A — hy(z,) converges locally uniformly to
A= ha(z) = v(N). Hence, for p large enough, the graph {(X, hxr(2p)) A € B,} is not contained in
f™(Cy) (consider the parameter A = 0) and, by Hurwitz’s lemma, there exists A, € B, such that
(Ap, ha, (2p)) € f°(Cy). The parameters A, are Misiurewicz and this contradicts our assumption.
O

We can now prove Theorem 1.6 which, in particular, says that Misiurewicz parameters are dense
in the support of dd°L.



DYNAMICAL STABILITY AND LYAPUNOV EXPONENTS FOR HOLOMORPHIC ENDOMORPHISMS OF PF19

PROOF OF THEOREM 1.6: By Proposition 3.7 there are no Misiurewicz parameters in M if
dd$L =0 on M and thus (a) = (b). If there are no Misiurewicz parameters in M then, by Propo-
sitions 3.8 and 2.3, for any parameter A one an find an open open ball B centered at A such that
the restriction f|pypr admits an equilibrium web M = lim,, M,, satisfying I'y N Cy = () for any
v € Upsupp M,,. Thus (b) = (c¢). Finally, (¢) = (a) follows from Proposition 3.5. t

3.5. Proofs of part of Theorem 1.1 and Corollary 1.7. Let f : M x P* — M x P* be a
holomorphic family of endomorphisms of P*. We first establish the implications (A) = (B) < (E)
in Theorem 1.1. If the repelling J-cycles of f move holomorphically then, using the second assertion
of Proposition 2.3, one gets an equilibrium web M of (ux),c,, such that M = lim, M,, and
I',NCf =0 for any v € Upsupp M,,. By Proposition 3.5, this implies that dd§L = 0 on M. This
justifies (A) = (B).

We have the following proposition in the spirit of the proposition 1.26 of [DS3] concerning the
Julia set of a single endomorphism of P*. It implies the equivalence (B) < (E).

Proposition 3.12. Let B be an open ball in C™ and let f : B x P¥ — B x P* be a holomorphic
family of endomorphisms of P of degree d. We endow B x P* with the metric dd§|\|* + wrs and
denote | - |y the mass of currents in U x P¥. The following properties are equivalent.

(1) o € suppdd§L

(2) |€creen A Cylu > 0 for every neighbourhood U of Ag.

(3) liminf, d=**|(f").Cs|ly > 0 for every neighbourhood U of Ao.

(4) limsup,, d~F=D7|(f"),.Cy|y = 400 for every neighbourhood U of Ao.

Proof. The equivalence between 1. and 2. follows from Theorem 3.2, which asserts that dd{L =
TBx (EGreen N Cy). The equivalence between 2. 3. and 4. come from Lemma 3.13 here below. U

Lemma 3.13. There exists a = a(k,m) > 0 such that, for every compact subset U C M :
‘(fn)*cﬂU = O‘dkn‘gGreen A Cf‘U + O(d(kil)n)
Proof. Let us set k :=k+m — 1. Then

()Colo = [ (7)Cy Murs +dd§ NP = [ € () ors +ddg B

Using wit! = 0, we obtain [wps + ddS|\[2]" = Z?:o o whe A (ddS|A[2)F7, where the a;’s are
positive numbers. Since mps o f = was, wWe obtain

(") wrs + dd§ A" Z%( ) whs) A (dd5INR)

Let 7 := ddﬁ\ .9 + wrs so that T* = Eqreen. Using f*T = dT we get (f™)* (wFS) = (d"T —
ddS ,go f")’. Now, using the fact that g is bounded, by extracting the k-th term of the preceding
sum we obtain:

(F") lwrs + dd5 AP = ag d T A (dd§[AP)" 7+ O(d*=0").

We set « := aj. This completes the proof of the lemma. O
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PROOF OF COROLLARY 1.7: By assumption, for every n > 1 we have subsets R,, := {pn; : 1 <
Jj < Ny,} of J such that the p, ;()) are repelling n-periodic points of fy for every A € M. Note
that lim,, d*"N,, = 1. We define a sequence (M,,),, of F-invariant discrete probability measures

on J by setting M,, := N%L Zjvz”l 05, ;1) According to the second assertion of Proposition 2.3,
(M,,),, converges to an equilibrium web M after taking a subsequence. Moreover, there exists a
compact subset K of J such that K C F (K) and supp M,, C K for every n > 1.

Let us now prove that M (Js) = 0. By the implication (4) = (B) of Theorem 1.1 we have
dd°L = 0 and then Theorem 1.6 implies that M does not contain Misiurewicz parameters. We can

now see that for every k € N and every v € supp .M one has:
L, N fH(Cr) #0 =T, C fR(Cy).

Indeed, if this were not the case, by Hurwitz theorem, we could find some 4 € U,supp M, such
that I, N f*(Cy) # 0 and T, is not contained in f¥(Cy). When k = 0 this is clearly impossible
since 7/()\) is a repelling cycle of f) and when k > 1, this is impossible because M does not contain
Misiurewicz parameter.

So, fixing any Ag € M, we get

M({yeT : TN (Uksof*(Cp)) #0}) = M ({y € T : Ty C (Urz0f*(Cp))}) <
M ({7 €J : (Mo,7( o)) € (Ukzofk(cf))}) = Wx, (Ukzof,l\fo (Cfxo)) =0

where the two last equalities come from py,. (M) = py, and the fact that p), does not charge
pluripolar sets in P*. The estimate M (J;) = 0 follows from the F-invariance of M. Finally,
Proposition 2.4 shows that there exists an ergodic equilibrium web Mg such that Mg (Js) = 0. O

4. FROM EQUILIBRIUM WEBS TO EQUILIBRIUM LAMINATIONS

Our goal here is to establish the implication (4) = (D) in Theorem 1.1. We prove the following
more precise result.

Theorem 4.1. Let M be a simply connected complex manifold and f : M x P* — M x P* be a
holomorphic family of endomorphisms of P* of degree d > 2. If the repelling J-cycles of f move
holomorphically over M or if f admits an acritical and ergodic equilibrium web then there exists an
equilibrium lamination L for f. Moreover, f admits a unique equilibrium web M and M (L) = 1.

Given an acritical and ergodic equilibrium web M of f, our strategy will consist in first proving
that the iterated inverse branches in (J,F, M) are exponentially contracting and then exploit
this property to extract an equilibrium lamination out of the support of M. By totally different
methods, Berger and Dujardin ([BgDj]) have recently build measurable holomorphic motions in
the context of polynomial automorphisms of C2.

4.1. On the rate of contraction of iterated inverse branches in (J,F, M). We explain
here how certain stochastic properties of the system (7, F, M) allow to control the rate of con-
traction of the iterated inverse branches of F (see Proposition 4.2). Let us stress that the material
presented in this subsection is not original. We simply adapt to the context of (7, F, M) the tools
which have been first introduced in [BrDv1] by Briend-Duval for the case of a single holomorphic
endomorphism of P*. New arguments however will be inroduced in subsection 4.2.
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Since all our statements here are local we may assume that the parameter space M is an open
subset of C™ which we endow with the euclidean norm.

To study the inverse branches of the map F, it is convenient to transform the system (7, F, M)
into an injective one. This is possible using a classical construction called the natural extension
which we now describe (we refer to [CFS| page 240 for more details).

Recall that K := supp M is a compact subset of 7 and that M (Js) = 0. Setting X := K\ s,
it is not difficult to check that the map F : X — X is onto. We may therefore construct the

natural extension (/’? , F , ﬂ) of the system (X, F, M) in the following way. An element of X
is a bi-infinite sequence ¥ := (--- ,y_;,7- G+ =170, V1 --) of elements v; € X such that
F(v-;) = 7v—;+1 and one defines the map F : X — X by setting

F@) = (- Fo) Flrgn) ).

The map F corresponds to the shift operator and is clearly bijective. There exists a unique
measure M on X such that

(%)« (M) = M
for any projection m; : XX given by 7;(7) = v_;. The ergodicity of M implies the ergodicity

of M. We have thus obtained an invertible and ergodic dynamical system (X , F , M)

For every v € J whose graph I', does not meet the critical set of f, we denote by f, the
injective map which is induced by f on some neighbourhood of I'; and by f.~ ! the inverse branch

of f, which is defined on some neighbourhood of I'(,). Thus, given 7 € X and n € N we may
define the iterated inverse branch f: " of f along 4 and of depth n by

fA ’ Wn Of’Y_zofW_1

Let us stress that fo" is defined on a neighbourhood of I',, with values in a neighbourhood
of I',_,. Moreover, since only a finite number of components of the grand critical orbit of f are
involved for defining fg”, we may always shrink the parameter space M to some 2 € M so that

the domain of definition of f{ " for a fixed 7 contains a tubular neighbourhood of I',; N (Q X Pk)
of the form

Ta(yo,m) := {(\,2) € @ x P* + dpn(z,7%(N)) < n}.
Our goal is to control the size of f5 (Ty, (70,7,(7))) for suitable 7,(¥) > 0 and Uy C M. We

will now explain how this boils down to estimating some kind of Lyapunov exponent. This requires
however to first introduce a few more notations.

To start we need to fix sets of holomorphic charts with bounded distorsions on P*. For any
7 > 0, tehre exists a covering P* = UN , Vi by open sets and a collection of holomorphic maps
¥; : Vi X Bex (0, Rg) — P*
such that v; , := 9;(x,) is a chart of P* satisfying ; ,(0) =  and
9) 7T Ple = 2| < dpr (Yi.0(2), 0 (2)) < €722 = 7]
for every (z,z) € V; x Ber (0, Rp) and every 1 < i < N.
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We will now use these holomorphic charts to express the restrictions of f™ on suitable neighbour-
hoods of graphs I'. Let us fix A in M. Since the family K = supp M is locally equicontinuous,
there exists a relatively compact open ball Wy centered at Ag in M such that:

Vy e K, Ji€ {1,2,---, N} such that y()\) € V; for all A € W,
For all v € K we set
i(y) :=inf{l <i< N : y()\) €V forall A € Wyp}.

Then, for every n > 1 there exists R, €]0, Ro] such that the maps F ,;‘( N given by

n L -1 n
(10) Floy = (i mrmmy) 0 fX o dity A

are well defined and holomorphic on on a fixed neighbourhood of Wy x Bex (0, R,,) for every v € K.
This follows immediately from the uniform continuity of f™ on Wy x P*.

As F;L( N is locally invertible at the origin when v ¢ Js, we may now define functions u, on
X x W, by setting

un (7, A) = log [|(DF5(0)) 7.

Let us stress that (DF™,,(0))~! depends holomorphically on \ € W.

Y(N)

From now on we consider three open balls Uy € V[ € Wy centered at \g in M. Let us introduce
the function r, on X and u, on X by setting

, o 1
(11)  ra(y) i= e 2 Prevo U and 4,(3) = sup un(v0, A) = —=— log 5 (70)-
AEU, 2n

We may now state the announced result.

Proposition 4.2. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P* of
degree d > 2 which admits an acritical and ergodic equilibrium web M.
Assume that the functions u, are M-integrable and that limn%f)? Up dM = L for some L <

—logd

—55 .

Then there exist an integer p > 0, a Borel subset 37 C X such that ﬂ(fi) = 1, a measurable
function 7, : y —10,1] and a constant A > 0 such that:

for every ¥ € ¥ and every n € pN* the iterated inverse branch f:;" is defined on the tubular
neighbourhood Ty, (Yo, 7,(F)) of Ty N (Up x P¥) and

—-n

£57 (Tuy (10,11, (3))) € Ty (Y=, ).
Moreover, the map f{" s Lipschitz with Lip f{" < E}(?)e*”A where l:,(?) >1.

The proof of this proposition is similar to that of Briend-Duval [BrDvl]| and is given in the
Appendix.
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4.2. Estimating a Lyapunov exponent. The main result of this subsection is as follows; it
asserts that the assumptions of Proposition 4.2 are satisfied.

# such

Proposition 4.3. The functions u,, are M\—integrable and there exists a constant L <
that
1 =N —
lim— [ w,dM =1L
non )y

and lim, 2%, (y) = L for./\/l almost everyy € X.

Note that the constant L may be considered as a bound for a Lyapunov exponent of the system
(J,F, M). The combination of Propositions 4.3 and 4.2 will allow us to prove Theorem 4.1.

We keep here the assumptions and the notations introduced in the previous subsection. In the
next Lemma, we list some basic properties of the functions u,, and u,.

Lemma 4.4. Let Uy € Vy € Wy be open balls centered at \g in M. Let x1()\) be the smallest
Lyapunov exponent of the system (Jx, fx,x). The functions w, and u, satisfy the following
properties.
1) wn(v,-) is psh on Wy for every v € X.
) The sequence (Uy,)n is subadditive on Xie. Umtn < Up + Uy © Fr.
3) For any fized A € Wy, we have lim,, un('y, A) = —x1(A) for M-almost every v € X.
)

4) For M-almost every v € X we have lim,, 2, (v,\) = —x1()) for Lebesgue-almost every
A e Wp.

Proof. 1) When v € X is fixed the function u,(7,-) is clearly continuous on Wy and u, (v, ) =

SUD||¢||=1 10g||(DF7"()\)(0))_1 -e||. To see that wu,(v,-) is psh it thus suffices to recall that A —

log [[(DF )(O)) -e|| is psh for each unit vector e € C*.
2) Let v € X and m,n > 1. It follows immediately from (10) that

(12) (DF"(’;)"(O)) . (DF;l(A)(o))

Thus, if 7 € X we have

Um-4n () < log s (DEZ 5 0) 7 IHDERE (000 (0)H)
<log sup [[(DFZ 1)(0))~"|| + log sup ||(DF_7~'"(~/O)()\)(O))71” =T (3) + Um(F"(A)).
xelUyp AeUp
3) By Oseledec Theorem, the subset Jy 1 of Jy \ Cy, defined by

It ={z € L\ Cy, ¢ limy 3 log (D) = —xa (M)}
has full ) measure. As py, (M) = pa, this implies that v(\) € Jy 1 for M-almost every v in
X. Then the assertion follows, using (9).
4) Let us denote by £ the Lebesgue measure on M. Let E be the measurable subset of X' x Wy
given by
1
E:={(v,A)eX xWy: hTan Eun(%)\) =—x1(\)}
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For every A € Wy and every v € X we set
Ai={yeX: (,\)€E} and E,:={ cWy: (v,\) € E}.
We have to show that L(E,) = L(W,) for M-almost every v € X. This immediately follows from
Tonelli’s theorem:
[ ey ame) = [ M@ ac) = £om)
since, according to the above third assertion, ./\/lO (E*) =1 for every A € Wy. O

Our strategy is to transfer the estimates known for the system (J,, fa,, f42,) t0 the system
(X,F, M). This is possible because the graphs I', for v € X must approach the critical set Cy
locally uniformly, a phenomenon which simply relies on the compactness of the closure of X and
the following basic property (see the Claim in subsection 3.2).

Fact There exist 0 < o < 1 such that supy, [p| < [@(A)|* for every X € Vi and every holomor-
phic function ¢ : Wy — C such that 0 < |¢| < 1.

More specifically, the key uniformity property we need is given by the next lemma. In our
proofs, we shall denote the smallest singular value of an invertible linear map L of C* by 6(L). Let
us recall that 6(L) = |[|[L7(|~! and that §(L)||L||*~ > |detL| > 6(L).

Lemma 4.5. Let Uy,Vy,Wy be as in Lemma 4.4. Then there exist « > 0 and ¢ > 0 such that
Lun(v,A) < g%un(%/\g) +logc for every n > 1, every v € X and every \j, A € V.

Proof. By the compactness of X and Vo, we get ¢1 := sup,ex xev, [DFly(0)[[*7" < +oo and
thus |det(DF1()\ (0))] < c16(DF,(»(0)) for every A € VO and every v € X.

Then, as det DF", (0) = H"_Ol det DFy;(,)(0 ) and []/2) 6(DFrs(,)(0)) < 5(DFT,,
Let us set c2 1= supy oy ,cx |detD ) (0)]. When v € &, the holomorphic function ¢()) :=

(0)) we get

1” detDF ”( )( ) is non vanishing and 1ts modulus is bounded by 1 on Wy. Applying the above
stated Fact to , we get 0 < @ < 1 (which only depends on Vj and W) such that:

(14) sup |det DET (0)] < 5"~V |det DET,(0)|%; Vn > 1, ¥y € X, YA € V.

Using successively (14) and (13) we get for any A, A| € Vj
k —a) no oY
[5(DF (X)(o))] < |detDFI 5, (0))] < " det DFT, (0)[* < ¢~ epe |§(DF2 (0 ))} .

Then, applying log and multiplying by _71 we get

1 1 1—
k—un (v, Ay) = a—un(7,A) — a(loger + % logcz)
n

which is the desired estimate with ¢ := ¢; c(1 a)/a O
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The next Lemma gathers the properties of the sequence (uy,), which will be crucial to end our
proof.
Lemma 4.6. Let Uy, Vy,Wy be as in Lemma 4.4. Then the following properties occur.

1) The sequence (%un)n is uniformly bounded from below on X x V.
2) The sequence (%un(% ))n is uniformly bounded on Vy for M-almost every v € X.
3) The functions u, are M\—integrable.

Proof. 1) Using the properties of the smallest singular value we have

1 -1 .
gun(’%)‘) —logé (D Ty (0 )) > Elog|det (D '*/L()\)(O)> |
1 1 n—1
= = Z log |detDF]rj(,Y)()\)(0)|
§=0

and the assertion follows immediately from the definition and the continuity of F,y).

2) We have just seen that un(’y, -) is uniformly bounded from below on V4. By the fourth as-
sertion of Lemma 4.4, for M- almost every v € X there exists A, € Vj such that lim, un('y, Ay) =
—x1(Ay). On the other hand, by Lemma 4.5, we have Tu, (v, )\) < Efun(% Ay) + log ¢ for every

n € N and every A € V; and thus un(fy, ) is uniformly bounded from above on Vj.

3) By the above first assertion, we know that @,, is bounded from below. It thus suffices to show
that [, (5) dM(3) < +00. By Lemma 4.5 we have

[0 aM@) <mtoge+ £ [ un((mo(@).Ne) ARG = nloge+ 2 [ unty.h0) aM()

k - k n
=nlogc+ a/logH(DF;L(AO)(O)) Y dM(y) = nlogc — o /logd(DFW()\O)(O)) dM(7).

Using (13), we thus get

/an(a) A5 )<_5/1og|det(DF oy ()] AM (5 )+%”1ogcl+mogc

k k
=2 [ogldet(D | dM()+ Co = —2 [ log|det(DS, )l [dpaye M)(a) + Co

and the conclusion follows from the integrability of log |det(D f}! )| with respect to py,« M = p,
(see [DS3)). O

We are now ready to establish the main result of this subsection.

PROOF OF PROPOSITION 4.3: We will apply Kingman subadditive ergodic theorem (see [Arn])
to the sequence (). This is possible since the system (.f, ]?, M\) is ergodic, the sequence (),
is subadditive (second assertion of Lemma 4.4) and u; € Ll(/T/l\) (last assertion of Lemma 4.6).
According to this theorem, there exists L € R such that lim, 1%, (5) = L for M-almost every
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5 € X and lim,, % f{gﬂﬁ dM = L. It remains to show that L < #.

Taking into account the fourth assertion of Lemma 4.4 and the second assertion of Lemma 4.6,
we may thus pick 7 € ¥ such that:

~

i) lim, %an(v) =1L,
ii) L, (yo,-) is uniformly bounded on Vj,
iii) lim, %un(%, A) = —x1(}) for Lebesgue-almost every A € Vj.

—logd log d

Assuming that L > , we will reach a contradiction with the fact that x;(\) > <5< for
all A (see [BrDv1] or [DS3]). Recalling that u,(y) = supycp, un(70, ), there exist A, € Uy and
€ > 0 such that \,, — A € Up and nikunk (Y05 Any) > % + €. We may pick r > 0 such that
B(An,,,7) C Vp for all k € N. Then, by the subharmonicity of uy,, (70,) on V; (first assertion of
Lemma 4.4) we get:

—logd Te< unk('YOv/\nk) < 1 unk(’YOa/\)
2 ng |B(Anys 1) B(Any,r) g
which, by Lebesgue dominated convergence theorem, yields
—logd 1
+e< —x1(A)
2 [B(Xo: )| JB(>g1)
and contradicts the fact that x1(\) > % for all A. d

4.3. Proof of Theorem 4.1. According to Corollary 1.7, we only need to consider the case where
f admits an acritical and ergodic equilibrium web M. Let Ky := supp M.

Consider the set
Ly ={yEKo\Ts: ¥ €Ko,Vk € N,Tri(y NIy # 0= F(y) =7}
and assume that
(15) Mo ({y€Ko: Ik €N, IV € Kos.t. Dpugyy NI # B and F*(y) #4'}) = 0.
By construction we have My (£4) =1 and £ satisfies the following properties:

1) ‘C+ cJ \ jsa
%) F(£y)C Ly,
) Vv, v ely : TyNLy #0=vy=7"
The set £ := Uy,>0F ™ (L4) satisfies the same properties and moreover F : £ — L is dF-to-1,
the existence of an equilibrium lamination £ will thus follow from (15).
To prove (15), it is sufficent to show that for any fixed k¥ € N and any A\g € M there exists a
neighbourhood Uy of A\g such that

(16) Mo ({y € Ko : 3y € Ko s.t. T r(yy NIy N (Up x P¥) # 0 and F*(v) #4'}) = 0.

To this purpose, we shall work with the natural extension ()?, f", .//\/l\o> of the system (X, F, M)
and apply Proposition 4.2. We recall that, according to Proposition 4.3, all the assumptions of
Proposition 4.2 are satisfied. Let Uy be a neighbourhood of Ay given by that proposition; we may
assume that Uy is simply connected and that Uy € M. We recall that X C K.
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For any B C Uy, we define the ramification functions Rp by setting
Rp(y) = sup sup dpr (v(A), 7' (V) Yy e J.
’y'E/C():F,Y/‘BﬂFﬂB;ﬁ(D B
Let )A)E ={7¢€ Y Ry, (k) > €}, it then suffices to prove that /\//l\o ()A)e) = 0 for every € > 0
as it follows from the following observation:
Mo ({y€Ko: 3y € Kost. T, NIy N (Ug x P¥) £ G and v, #7'})
=Mo({y€Ko: Ry,(n)>0}) =Mo({yeX: Ry,(v)>0})

= Mo ((3 €Y+ Ru,(w) > 0}) = My (User- I )

Let us proceed by contradiction and assume that /T/l\o (5);) > 0 for some ¢ > 0. Owing to the

equicontinuity of X (we recall that X C supp M) we may cover Uy with finitely many open sets
B; C Uy, say with 1 < i < N, such that

(17) Vv, € X, VYA € B : (A1) =7'(M1) = sup d(v(A),7' (V) <e
€eb;

As Ry, (v) = 0 when maxi<;<ny Rp, () = 0 (by analyticity we have v =+’ on Up if v =+ on
some B;), there exists 1 < j < N and « > 0 such that:

Mo ({? €Y (k) > eand Rp, () > a}) > 0.

Let us set Y, gei={7€ y: Np(Wk) > € and Rp, () > a} Let p be given by Proposition 4.2,
applying Poincaré recurrence theorem to Fp , we find ¥ € ye 4, and an increasing sequence of

integers (nq), with n, € pN such that Fma(3) € Y. .o for every ¢ € N. In particular 7 € Y. and
RB, (Yk—n,) > «a for every ¢ € N. We will reach a contradiction by establishing that

(18) lim Rp, (Yhmp) =0, Vi€ {1,--- N}, v3 € J..

m——+00

To this purpose we shall use Proposition 4.2 to show that Rp, (Yx—n) < e~ "4 when n € pN and

RRS )Aie. Let 4" € Ko such that 7/(A1) = vk—n(A1) for some Ay € B;. Then (F"v)(A1) = v(A1)
and thus, according to (17), supycp, d ((F"7')(A), 7(N)) < € < (k). This means that

(19) F]:n,y/ N (Bz X Pk) C T, (’yk,ﬁp(fy\k)) .
Now, by Proposition 4.2, the inverse branch f5™ of f" is defined on the tube Ty, (V> Ty ()
and maps it biholomorphically into Ty, (vk,m e*"A). As B; C Uy, this yields:

(20) 15" (T, (Vs Tp(Vk))) C T, (Ve e ™).

By construction we have fo"(I';,) = I'y,_, and thus f2" ((F"7)(A1)) = f5" (w(M)) =
Vk—n(A1) =7(A1). This implies that fo " (I'zn,/) = I';s which in turns, by (19) and (20), implies
that supyep, dpr (7 (A), Ye—n(A) < €74, Then (18) follows and (16) is proved.
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We finally prove the uniqueness assertion. Let us fix A € M and, for any Borel subset A of 7,
let us set Ay := {y(\) : v € A}. Then, as A C py ' (Ay) we have

pa(AN) = (DM (AN) = M (py ' (Ar)) = M(A)

for every equilibrium web M of f. On the other hand, it follows from (16) applied for k£ = 0 that

px(Ax) = Mo (p3" (AN)) = Mo(A).

We thus have M(A) > M(A) for any borelian subset A of J and this implies that the measures
M and M must coincide since both are probability measures on 7. O

5. SIEGEL DISCS AND BIFURCATIONS

As it is well known, the Julia sets of any holomorphic family of rational maps of P' depends
continuously on the parameter for the Hausdorff topology if and only if the family is stable. It
is worth emphasizing that discontinuities can be explained by the appearance of Siegel discs, see
[Dou]. We investigate this in higher dimension and, as a consequence, show that the existence
of virtually repelling Siegel periodic points in the Julia set (see Definitions 5.1 and 5.2) is an
obstruction to the existence of an equilibrium web. We finally exploit this fact to end the proof of
Theorem 1.1.

5.1. Siegel discs as obstructions to stability. We define a notion of Siegel disc for endo-
morphisms of P¥ and investigate how they behave with respect to Julia sets. In this subsection,

we endow CF with the norm |z|| := sup; |z and set 1 < ¢ < k — 1. We write z =: (2, 2")
where 2’ 1= (21, -, 2—¢q) € C¥ % and 2" := (2x_g11," - - 2k) € CI. We also set k' := k — g,
etfo .— (eigf),kurl’ .. .ei‘go,k) and etfo . 2 .= (eiao,k/+1 Zhig1, , efok Z)-

Definition 5.1. Let fy be a holomorphic endomorphism of P*. One says that zy € P* is a Siegel
fixed point for fo if fo is holomorphically linearizable at zg and its differential at zy is of the form
(Agz',ew“ ~z") where Ag is an expanding linear map on C* and T, 00 k41, -+ , 00,k are linearly
independant over Q. In other words, there exists a local holomorphic chart 1y : Bp — P* such
that 1 (0) = 2o and

Gy o footho = (Ag? e - 2")

where 6y and Ay are as above. Any set of the form vy ({0'} x B,) where p < R and B, is a ball
centered at the origin in C? is called a local Siegel g-disc of fy centered at z.

Let us consider a holomorphic family f of endomorphisms of P*. If f; admits a Siegel fixed point
2o then, by the implicit function theorem, there exists a unique holomorphic map z(X) defined on
some neighbourhood of 0 in M such that z(0) = zp and z(}\) is fixed by f\. Moreover, there exist
holomorphic functions w;(A) such that w;(0) = € and w;()) is an eigenvalue of dy)fx for
k' +1 < j < k. In this context, we coin the following definition.

Definition 5.2. The Siegel fized point zy is called virtually repelling if there exist a holomorphic
disc 0 : A, = M and positive constants c¢; such that o(0) = 0 and |w; o o(t)| = 1+ ¢;t for
E+1<j<kand —ty <t <ty If, moreover, zo0(t) € J,u) for —tog <t < to the Siegel fived
point zg is called virtually J-repelling.
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Let us observe that if Jy is continuous at Ag and if fy, has a virtually repelling Siegel periodic
point outside Jy,, then A\g must be accumulated by parameters A for which fy has periodic repelling
points outside Jy. Examples of such repelling points have been given by Hubbard-Papadopol [HP,
section 6, example 2] and Fornaess-Sibony [FS2, section 4.1]. The following proposition discusses
the position of Siegel discs with respect to Julia sets. Note that the second item will only be used
in Remark 5.8.

Proposition 5.3. Let f : M x P* — M x P*¥ be a holomorphic family of endomorphisms of P*
such that fx, admits a virtually repelling Siegel fixed point 2.
1) If f admits an equilibrum web then every local Siegel q-disc centered at zy is contained in
P*\ Jy,. In particular zo & Jy, .
2) When q =1, if z9 € Jx, and if X\ — Jy is continuous at \g then any local Siegel q-disc
centered at zo is contained in J,.

The first item of the preceding proposition immediately yields the following result.

Corollary 5.4. Let f: M x P¥ — M x P* be a holomorphic family of endomorphisms of Pk, Let
Up be any neighbourhood of \g in M. If the restriction of f to Uy x P* admits an equilibrium web
then fy, has no virtually repelling Siegel periodic point in Jy,.

The proof of Proposition 5.3 relies on the following technical lemma.

Lemma 5.5. Let g : Ay, X Bg — A, X Brs be a holomorphic map such that g(\, z) = (A, ga(2)),
gx(0) =0 and go(z) = (Agl -2, e7 0. ") where Ag is an expanding linear map on CF. Assume
that %(0) =0 fork'+1<j<kandi+#j. Assume moreover that there exists |ug| =1, tg > 0
and c¢; > 0 such that |ag§712,j(0)| =14c¢t for ' +1<j <k and —tg <t <ty. Then, after taking
R smaller, the following properties occur.

1) There exists arbitrarily small X such that ||ga(2)|| < aol|z|| on Br with 0 < g < 1.

2) Assume k' = k—1. For any 0 < p < Ry < Ry < R, there exists arbitrarily small A
such that, for every a € Bgr, which does not belong to the local stable manifold Sy of gx,
there exists ng such that g%°(a) € {||2'|| < p} x {R1 < ||2”|| < R2} and g5(a) € Bg, for
0 § k S ng — 1.

Proof. We may write gy := (QA,j)1<j<k on the form

k' k
gr; = Z (aij + /\/,L”()\) + )\qij()\, Z)) Zi + A Z Sij(/\, Z)Zi forl < 7 < K
i=1 i=k'+1
gng = (€9 + Mg (N) + Agji(\ 2)) 25 + /\Zsij()" 2)z; fork'+1<j<k
i£j

where (135, ¢;; and s;; are holomorphic on A, x Br and satisfy ¢;;(A,0) = ¢;;(A,0) = 0. By
assumption, we also have s;;(\,0) =0 for &' +1 < j < k and i # j.
By shrinking €y and R, there exists 0 < a; < 1 such that

(21) sup [gx,;(2)| < aalz] on Ae, X Brg.
1< <k

Let us set \; := tug where —tg < t < to and Qj(2) := €% + A\uj; (M) + Migjj (M, 2) and
Rji(2) = |Ae| 2oz [83(Ae, 2)| for k' +1 < j < k. Then, by our assumptions and after taking R
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smaller, we have

it
(22) |th(z)|§1—|—%for —to<t<Oandz€ B
it
(23) Rji(z) < C]THfor —tg<t<tgand z € Bg
it
(24) 1+%§|th(z)\§1+20jtfor0<t<t0 and z € Bp.

It follows from (22) and (23) that |gy, ;(2)] < (1 + %)Hz” for ¥ +1<j <k, —tg<t<0and
z € Br. This and (21) yields the first assertion of the lemma.

Let us now establish the second one. Fix 0 < t < tg so small that (1 + gt:j JR1 < Ry for
k' +1<j<k. Let a € Bg, be outside the local stable manifold of g),. Assume that one cannot
find ng such that g%, (a) € Bg, for 0 <k <ng—1and g°(a) € {||2']| < p} x {||z"]| > R1}. Then,
according to (21), the sequence a, := g} (a) is well defined and ||a;,|| — 0. From (23) and (24) one
gets |any1,;] > (14 C%t)|an,j| - %Ha%” As (an,j)n is bounded and |jal|| — 0, this implies that
a, tends to the origin and contradicts the fact that a does not belong to the local stable manifold
of gx,. Thus ng exists and it remains to check that |a, || < Rz. From (23) and (24) one gets

Jang,i| < (14 2¢58)|ang—15] + G llap, 1| < (1 + ZF) Ry < Ry U

PRrROOF OF PROPOSITION 5.3: We may assume that M = A, and Ay = 0 so that 2 is a

virtually repelling Siegel fixed point of fy. Thus there exists a biholomorphism v : Bg — 1o (Br)
such that 1o(0) = 2o and 15 ' o fo 0 ¥y = (Ag - 2/,e" . ") where Ay is linear and expanding on
C* and 7,600,541, -+ , 00, are linearly independant over Q.
The mapping 1/)0_1 o f/\_1 o1 is well defined on A, x Bp after taking R and ¢ smaller. Since
the €90 are pairwise distinct for &’ +1 < j < k, we may find ¢ linearly independant vectors
V1 (A), - ,up()) in CF and g scalars w4 1(A),- - ,wi(A\) which depend holomorphically on
A € A,, and such that

(25) dy=1(:00) (o' o fit o) (v;(N) = wi(N)v;(N) for K +1 < j < k.

Using basis like (vy,-+ , v, vg+1(A), -+ , vk (X)) we may perform change of coordinates of the
form (X, A(), z)) where A(),-) is affine on C* which, conjugate by 1), yield biholomorphisms
¥y : Br — ¥ (Bg) such that gy := 1/1;1 o f/\_1 o 1 satisfies the assumptions of Lemma 5.5. The

condition %]—;‘j(O) = 0 indeed follows from (25) and the condition |8’g%(0)\ = 1+¢;t follows from

the fact that zg is virtually repelling. To simplify, we shall denote J, the set zﬁ;l (Jx NYx(BRr))-

1) We proceed by contradiction and assume that (0, z() € Jy for 0 < ||z{|| < r < R. According
to Lemma 2.5, there exists a holomorphic map v : A, — P* such that 15" o v(0) = (0, 2{) and
(F™-9), is normal on A.,. We may assume that 7(\) := 1! (v())) is well defined on A.,. Since
Yot o £ oabo (7(0)) = (07, e - 2l/) and (F™ - 7), is normal, after reducing ¢y, we may suppose
that

(26) [93" 0 fRowx (FN) | < 7 on A, forn > 1.
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Let us recall that g\ = w;l o f;l oy. By Lemma 5.5, there exists Ay — 0 and 0 < o < 1 such
that ||gx, (2)]| < axl|z]] on Br. We may thus find a sequence ny — oo such that

" 1
(27) llgxs ()l < £ ll=] on By
From (26) and (27) one gets
e Nk - Nk e r
(28) T = llgxs 0wy o f o n GO | <
which is impossible since limy [|[5(Ax)|| = 1251 > 0.

So far we have shown that the punctured ¢-disc {0’} x {0 < ||z”’|| < R} is contained in J§. Since
Jo is totally invariant and go = (Ag Lo e . ) where Ay is linear and expanding, this implies
that Bg \ {z € Bg : z” =0} C J§. Finally, as uo does not give mass to analytic sets, we get
Bgr C JS.

2) We have to show that (0/,zpx) € Jo if 0 < |zox] < R. Assume, to the contrary, that
(0, zor) ¢ Jo for some 0 < |zpx| < R. Then one may pick a neighbourhood Vj of (0, zox) such that
Vo C (Jo)© and which is of the form

Vo :={||IZ’|| < p} x {R1 < |z&] < Rz and | arg z, — arg zox| < 1}.
Let us now denote by T), r, r, the tube

Tp.rare = {12 < p} x {By <[z] < Ra}.

Since Ay is contracting and 6y /7 irrational, for any z € T), g, r, there exists an integer n such that
g5 (2) € Vo. By the invariance of Julia sets we thus have T}, g, r, C (Jo)°. Let us shrink the tube
Ty Ry ,R,- By assumption, Jy is u.s.c at 0 and therefore

Ty riry C (J1) when A is close enough to 0.

On the other hand, according to the second assertion of Lemma 5.5, we may find parameters A
which are arbitrarily close to 0 and such that Bg, \ S\ C U, (g;‘)_1 T, r,,r, Where Sy denotes the
stable manifold of gx. As uy gives no mass to analytic sets, this and the inclusion T}, r, r, C (J. V)¢
implies the existence of a sequence of parameters Ay, — 0 such that Br, C (Jy,)°. This contradicts
the lower semi continuity of Jy at 0 since 0 ¢ (Jy, ) LS but 0 € Jy by our assumption. d

5.2. End of the proof of Theorem 1.1. In order to obtain Theorem 1.1, it essentially remains
to investigate if the repelling J-cycles of f move holomorphically when f admits an equilibrum
web. To this purpose we shall use Corollary 5.4 and show how a Siegel disc may appear when a
repelling J-cycle fails to move holomorphically.

Proposition 5.6. Let f : M x P* — M x P* be a holomorphic family. If f admits an equilibrium
web then all repelling J-cycles of f which are neither persistently resonant nor persistently undi-
agonalizable move holomorphically. When k = 2, all repelling J-cycles of f move holomorphically.

Let us recall that a periodic point is said to be resonant if its multipliers wq,--- ,wy satisfy a
relation of the form wj™ - - -w,:“’“ —w; = 0 where the m; are integers and my +---+my > 2. Note
that when w; = e for 1 < j < nand n < k then the absence of resonances forces m,60,--- ,0,
to be linearly independant over Q.

We shall use the following Lemma.
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Lemma 5.7. Let wy,--- ,wy : D(0,R) — C be holomorphic functions. Assume that w;(0) # 0
and that there exists A\, — 0 such that mini<j<y |w;(An)| > 1. Assume moreover that there exists
1 < N <k such that

- [w;j(0)] =1 and wj(0) #0 for 1 < j <N,

- Jw;(0)] #1 for N+1<j<k.

Then, after renumbering, there exist an integer 1 < q < k, a disc D(Xo,7) C D(0,R) and a
partition D(Xo,7) = D(Xg,7) UC U D~ (Ao, ) where C is a real analytic arc through Ao and D™
and D~ are open connected subsets of D such that

(1) |lw;| > 1 on DT (X, 7), |lwj] =1 on C and |wj| <1 on D™ (Xg,7) fork—q+1<j <k,
(2) |wj| >1 on D(Xo,r) for1<j<k—qifqg<k—1.

Proof. In the sequel we allow to shrink R without specifying it. Let us set C; := {Jw;| = 1} and
U;r = {|w;| > 1}, U; = {|w;| < 1}. Since we can assume that w’;(0) # 0 when {|w;| = 1} # 0
the subset C; is either empty or a real-analytic arc through 0 in D(0, R). In particular we have

C; =C; if C;NCis strictly bigger than {0}.

Let us set UT = ﬁé“?:lUj*. By assumption, 0 € U+ and therefore Ut is a non-empty open
subset of D(0, R). It is clear that OUT C 9D(0, R) U (U?Zle). On the other hand, we can not
have OUT C {0} U dD(0, R) since otherwise Ut = D(0, R) \ {0} and the subharmonic function
¥P(A) := maxi <<k |w;(A\)| 7! would violate the maximum principle (recall that ¥ (0) > 1). We may
thus pick Ao # 0 such that A\g € Cj, N QU™ for some 1 < jo < k. Observe that \g ¢ U, for
1<i<k.

If C; # Cj, for some 1 < i < k then \g ¢ C; and thus A\ € Ui+. After renumbering we may
therefore find 1 < ¢ < k — 1 such that

)\oeCk,q+1:Ck,q+2:~-~:Ck :ZCand)\erlJrﬁ-“ﬁU;r_q.

For r > 0 sufficently small we have D(Ag,7) C ﬂ]fqu;' and D(Ag, ) \ C has two connected com-
ponents 27 and Q5. For each k — g+ 1 < ¢ <k, one has ; C Uf and Q2 C U; or ; C U, and
Oy C U;‘. Assume for instance that Q; C Ulj—q+1' Then, since \g € OU T, we must have ; C Ui+
and Qy C U, for every k — ¢+ 1 < i < k and we may set D(A\o,r)" := Qq and D(X\g, 7)™ := Q.
O

PROOF OF PROPOSITION 5.6: Let A\g € M. Assume that zy belongs to some p-periodic repelling
J-cycle of fy, which is not persistently resonant and not persistently undiagonalizable. It suffices
to show that the map v : M — P¥, which is the element of J given by Lemma 2.5, enjoys the
property that () € Jy is repelling for every A € M. Let us observe that () is not persistently
resonant and not persistently undiagonalizable for any A € M.

Since M is connected, we have to show that the subset { A\ € M : ~(\) is repelling } is closed
in M. Assume, to the contrary, that this is not true. Then, for arbitrarily small ¢y, one finds a
new holomorphic map 7o : Be, — P* such that yo(\) € Jy is fixed by f} for all A € B, and v0(0)
is not repelling but v(Ao) is repelling for some Ag € B,,. Our aim below is to find A € B, such
that v(Ag) is a virtually repelling Siegel fixed point of ff\’é. Corollary 5.4 then yields a contradiction.

Reducing €y allows to use charts and replace P* by CF. Let us denote wi()),--- ,w(A) the
eigenvalues of A(\) := (f£) (v(\)). There exists a proper analytic subset Z of B, such that
wy, -+ ,wy are holomorphic on B, \ Z. For every n € N we define a function w,, on B, \ Z:
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wn()\) = min2§|m|§n L 1<<k |w1()\)m1 ot wk()\)mk - wJ(A)|

where [m| := my + -+ + my, for any m = (my, - ,my) € N¥. Since the cycle vo()\) is not per-
sistently resonant the functions log w,, are not identically equal to —oo. Moreover, after shrinking
€0, we have logwy, (X)) <logws(A) < C < +00 on B, \ Z and therefore logw,, extends to some psh
function on B¢,. We now define a function B on B, by setting

B(A) := 312 L logwanii (M),

The interest of this function is that, according to Brjuno’s theorem (see [Brj]), f} is holomor-
phically linearizable at () if B(A) > —oo and A(\) is diagonalizable. Let us show that B is
psh on Be,. Since B(\) —2C = :i% 5 (logwan+1(A) — C) is a decreasing limit of psh functions,
the function B is either psh or identically equal to —oo on B.,. Moreover, as v(\g) is a repelling
cycle there exists ng > 1 such that logwsn = logwsne on a neighbourhood Vg of Ay for n > ny.
We deduce that B = 7" | 7 logwan+1(A) + a5 log wne+1 on Vg, this function is therefore not
identically equal to —oo since 7o () is not persistently resonant.

Let us denote by A, the disc in C obtained by intersecting B., with the complex line through
0 and A\g. We may move a little bit A\g so that B is subharmonic on A, the set ZNA,, is discrete
and o (A) is not persistently undiagonalizable on A, . In particular, there exists a discrete subset
Zy of A, such that on A, \ Zp, the cycle vo(A) is diagonalizable and the functions wy, -, wy
are either constant or holomorphic, non-vanishing and with non-vanishing derivatives.

Let us set
VA€ A\ Zo @A) = min (jwr(N)],- -, fwr(A)]) -

This extends to a continuous function on A.,. Moreover ¢(0) < 1 and ¢(XAg) > 1, in particular
© is not constant. We claim that there exists A\ € A, \ Zy such that ¢(A\) < 1. Indeed, if
©>1on A, \ Zy, then ¢ > 1 on A, and therefore the subharmonic function v := ¢! violates
the maximum principle (indeed ¥ < 1 = ¢(0) and this function is not constant). Considering a
continuous path connecting A\g to A1 in A, \ Zy, one finds A\ € A, \ Zp and Ak — Ao such that
©(A2) =1 and ©(\;) > 1. Let us pick a small disc D(Xa, R) contained in A, \ Zo. Then (after
renumbering) the functions wy, - - - , wy, satisfy the assumptions of Lemma 5.7 on D(\g, R). Let ¢
be the integer and C be the real analytic arc in D(Ag, R) which are given by this Lemma. Since
lwj| <1on D~ (Mg, R) for k — g+ 1< j <k and y(\) € Jy, we must have 1 < ¢ <k —1.

Since B is subharmonic on A.,, there exists A € C such that B(Aj) > —oco. Since )\ €
D(M\a, R) C A, \ Zy, the periodic point (X)) is diagonalizable and then, according to Brjuno’s
theorem, it is holomorphically linearizable. Thus v(){) is a Siegel fixed point of ffé and, since
Ay € C, Lemma 5.7 shows that it is virtually repelling as desired. Let us finally explain why we do
not need any assumption on the repelling J-cycle in dimension k& = 2. In that case, the periodic
points y(A\) for A € C are diagonalizable and not persistently resonant since one and only one
of their two multipliers have modulus 1 and, moreover, is not constant. We thus see that B is
subharmonic on A, and we can find again some A € C such that y(Aj) is a virtually repelling
Siegel fixed point of ff\}). O

It would be interesting to know if the continuity of the map A\ — J) on some open subset of
the parameter space is equivalent to the existence of an equilibrium web. This is true when k£ = 1,
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the following remark summarizes the consequences of the above results on this question in higher
dimension.

Remark 5.8. According to Proposition 5.3 and the proof of Proposition 5.6, when k = 2 the
Hausdorff continuity of A — Jx would imply the holomorphic stability if we would know that a
local Siegel disc centered at some virtually repelling Siegel periodic point cannot be contained in the
Julia set.

To deduce Theorem 1.1 from Proposition 5.6, we shall use the following Lemma whose proof is
left to the reader.

Lemma 5.9. Let f : B x P* — B x P* be a holomorphic family where B is an open ball of
the space Hq(P*) of degree d holomorphic endomorphisms of PX. Then every repelling J-cycle is
neither persistently resonant nor persistently undiagonalizable.

PROOF OF THEOREM 1.1: In subsection 3.5 we saw that (4) = (B) < (E). Theorem 1.6
yields (B) = (C’), where (C”) is the assertion : "the restriction fpypr admits an equilibrium web
for any sufficently small ball B". Assume now that (C”) is satisfied. Combining Lemma 5.9 and
Proposition 5.6 one sees that, when M satisfies the assumptions of Theorem 1.1, the repelling
J-cycles locally move holomorphically. This implies that the set

{(\, 2) € M x P* : 2z belongs to some n-periodic and repelling J-cycle of fy}

is an unramified cover of M. As M is simply-connected, we thus get that the repelling J-cycles
move holomorphically over M, hence (C’) = (C). Finally proposition 5.6 yields (C) = (A), and
therefore the properties (A4), (B) and (C) are equivalent. If (D) is satisfied then by definition any
element ~ of the equilibrium lamination belongs to J and satisfies I'y N PCy = (). Then the first
assertion of Proposition 2.3 shows that f admits an equilibrium web. We thus have (D) = (C).
Finally, since by Theorem 4.1 (A) = (D), the proof of Theorem 1.1 is completed. a

6. BIFURCATION LOCI

In view of Theorem 1.1, we define the bifurcation locus and current as follows.

Definition 6.1. Let f : M x P¥ — M x P* be a holomorphic family of endomorphisms of P* of
degree d > 2. Let L()\) be the sum of Lyapunov exponents of fx with respect to its equilibrium
measure. The closed positive current dd§L is called bifurcation current of the family, its support
is the bifurcation locus of the family.

We will exploit here our results to get some informations on these loci.

6.1. On the interior of bifurcation loci. In his work on the persistence of homoclinic tangen-
cies, Buzzard [Buz| found open subsets of the space of degree d endomorphisms of P? (for d large
enough) in which the maps having infinitely many sinks are dense. This lead us to believe that
the bifurcation locus may have a non-empty interior when k£ > 2. We investigate here the relations
between the presence of open subsets in the support of dd§L and the existence of parameters for
which the postcritical set is dense in P*.

Let f: M x P* — M x P* be a holomorphic family of endomorphisms of P*. Let C' denote the
critical set of f and let C'y denote the critical set of f. We set

C*:=Up>1f*(C) and C’ij' = Up>1fY(Cy) for every A € M.
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We define (CT)y := ({A\} x P¥) N C*, observe that {\} x C’i;\r C (CT). Our aim is to show that if

supp dd§ L contains an open subset 2 C M, then {A € Q : Ci‘ = P*} contains a Gs-dense subset
of . This will prove Theorem 1.8.

As a consequence we recover the fundamental result of Mané, Sad and Sullivan [MSS] on the
density of stable parameters for holomorphic families of rational maps. For such families the
bifurcation locus is known to coincide with supp dd§L ([deM]).

Corollary 6.2. Let f : M x P' — M x P' be a holomorphic family of rational maps. Then
supp dd$ L has empty interior.

Proof. Every Ao € supp ddS§ L can be approximated by parameters A for which fy has an attracting
basin, see [Ber, section 4.3.1], which is an open condition in M. On the other hand, as the critical
set is finite, the set C’j\' can not be equal to P! when f, has an attracting basin. According to
Theorem 1.8, this implies that supp dd§ L has empty interior. g

Remark 6.3. We raise the question, for k > 2, of the existence of holomorphic families for which
supp dd§ L has non empty interior. Note that Theorem 1.8 could be useful for finding families for
which supp dd$ L has empty interior.

The proof of Theorem 1.8 relies on a Baire’s category argument based on the continuity prop-
erties of A — Cy" and A\ — (CT),. The notion of semi continuity with respect to the Hausdorff
topology has been discussed in subsection 2.3. We have the following properties, the upper semi
continuity can be found in [Dou, Proposition 2.1], we give the argument for sake of completeness.

Lemma 6.4. The maps A — (CF)y and \ — CTJ\F from M to Comp* (Pk) are respectively upper
and lower semi continuous.

Proof. By definition {(\,2) € M x P* | z € (CT),} is equal to CF, hence is closed in M x P*. In
particular, for every \g € M and € > 0, the set F := {(\,2) € CT , dpr(2,(CT)y,) > €} is a closed
subset of C+. Let us show that 7y (F) is closed in M. Indeed, if A,, € mps(F') converges to A € M
one may pick z, € (CT)y, such that dpx (2, (CF)y,) > € and (2,), converges to some z € P* after
taking a subsequence. Then (\,,2,) € CT converges to ()\,z) € CF satisfying dpx (2, (CF)y,) > €
and thus A € mp(F) as desired. Since Ao ¢ mar(F) it follows that M \ mp(F') contains an open
ball B centered at Ao such that dpx(z,(CF)y,) < € for every z € (CT)y with A € B. This proves
the upper semi continuity.

Let us now prove the lower semi continuity of the map A — CTJ\F Assume to the contrary that it
is not l.s.c at Ay € M. Then there exist € > 0, a sequence (), converging to A¢ and a sequence

(zn)n in C’;’D such that dpr (zy, C’;'") > €. After taking a subsequence (z,), converges to zg € 6’7;'0
Pick & € Cy, and pg > 1 such that dpx (20, f3. (§0)) < §. Let also &, € Cx, such that &, — &.
Then dpr (2n, Cy ) < dpr(2n, f3°(£n)) < § for n large, contradicting dpx (2, C ) > €. O

Lemma 6.4 allows us to prove:

Proposition 6.5. Let f : M x P* — M x P* be a holomorphic family of endomorphisms of P*.
If Ao € suppdd§ L then (C),, = P*.
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Proof. Assume that B(zp,7)N(CF)y, = 0 and let us show that Ao ¢ supp dd§ L. Since A — (CH)x
is upper semi continuous we deduce that B(zp, 5) N (C*)x = 0 when X is sufficently close to Ag.
In particular, the constant graph I'g := {(X\,z0) : A € B(Xo,€)} does not meet U,>1 f™(C) for e

small enough. By the first assertion of Proposition 2.3 and Proposition 3.5, we get dd5L = 0 on
B(Ao, 6) . O

PROOF OF THEOREM 1.8 : The lower semi continuity of A — C’ij implies that
I(B):={A\eM: Ci nB+0}

is an open subset of M for every open ball B C P*. Now let {2 be an open subset of M which is con-
tained in the bifurcation locus. Let us show that I(B) is dense in 2. We may assume that €2 is a ball
in C™. Let A\p € Q and € > 0. Since A¢ € supp dd§ L, Proposition 6.5 implies that (F)AO NB = B.
Thus (Up>1 f"(C)) N (B(Ao, €) x B) # 0 and there exists (A1, 21) € f"(C) N (B(Xo,€) x B). This
shows that Ay € I(B) N B(\g, €) and thus I(B) is open and dense in Q. Now consider a countable
collection B; := B((;,r;) of balls in P¥ whose centers are dense in P¥ and whose radii tend to 0.
According to Baire’s theorem M’ := N;>11(B;) is a dense Gs-subset of Q. We also have C; = PPk
for every A € M'. O

6.2. Remarkable elements in bifurcation loci. Theorem 1.1 and the proof of Proposition 5.6
immediately yield the following result.

Theorem 6.6. A degree d > 2 endomorphism of P belongs to the bifurcation locus in Hq(P*) if
and only if it is accumulated by endomorphisms which admit a virtually J-repelling Siegel periodic
point or a repelling cycle outside the Julia set which becomes a repelling J-cycle after an arbitrarily
small perturbation.

The next theorem shows that isolated Lattés maps belong to the bifurcation locus. We refer to
the articles [Dil], [Du2] for an account on Lattés maps of P*.

Theorem 6.7. Let f : M x Pk — M x P*¥ be a holomorphic family of endomorphisms of P*. If
the family is stable (i.e. ddSL =0 on M) and f», is a Lattés map for some Ao € M then f is a
Lattés map for every A € M.

Proof. By a Theorem of Briend-Duval [BrDvl]| we have L > k#. The articles of Berteloot,

Dupont and Loeb [BL]|, [BtDp| and [Du3| show that L(\) = k% if and only if fy is a Lattés
map. If the family is stable, then the function L is pluriharmonic on M. By the maximum principle
(applied to the harmonic function —L) we thus have L(X) = L()\g) = k’% for all A € M and the
conclusion follows. a

APPENDIX A
A.1. A stronger version of Lemma 2.2.

Lemma A.1. Let f : M xP* — M xP* be a holomorphic family of endomorphisms of P*. Assume
that there exists a sequence of Borel probability measures (My)n>1 on O (M, Pk) such that

1) lim,(M,)x = px for Lebesgue-almost every A € M.
2) FiMpy1 = My or Fo My, = My, for every n > 1.
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3) There exists a compact subset K of O (M, IF”“) such that supp M,, C K C F (K) for every
n>1.

Then any limit M of (£ 37/, My)y satisfies My = px for Lebesgue-almost every X € M.

We shall use the following corollary of Theorem 2.7. It is inspired by [Pha, Proposition 2.1],
one can find a more general version in [DS4, remark 2.2.6].

Lemma A.2. Let (R,)n be a sequence of closed, positive, horizontal current of bidimension (m,m)
on M x CFt1. Assume that lim, R, = R and that suppR,, C M x K for some compact subset
K of C**1. Then, after taking a subsequence, we have lim, (R, 7, A) = (R, 7, A) for almost
every A € M.

PrOOF OF LEMMA A.1 : Let us set V), := %Zl":l M;. We may assume that V,, — V. By
assumption, (V,,), — p for Lebesgue almost every A € M. Let us show that V\ = uy for every
A € M. The problem being local, we may replace M by any small ball B in C™. Let F be a lift
of the family f to M x CF!. Note that for any test function ¢ on P¥  the functions X — (Vy, ¢)
and A — (uy, @) are both continuous. This follows easily from the facts that V is supported on
K which is an equicontinuous family of holomorphic maps and that p\ = m.(ddS ;Gr (A, Z))k+t
where G is the Green function of F' which is continuous on B x C**1. It is thus enough to show
that V) = u, for almost every A € B.

For that purpose we use Lemma 2.8 to associate horizontal currents Wy and Wy to V, and V.
As WV converges towards WV as currents, Lemma A.2 implies that (V,)x — V) for almost every
A € B, hence V) = py for almost every A € B. O

PROOF OF LEMMA A.2: Let 1 be a test function on C**! which will be considered as a
function on M x CFL. We set uy n(A) := (R, mar, A0, ug(N) i= (R, mar, A)o for every A € M.
According to Theorem 2.7, the slice masses ¢, := [{Ry, mar, A)| and ¢ := [(R, mas, A)| do not depend
on A € M. Given a (m,m)-test form w on M, the basic slicing formula (3) gives

(29) hm/ Uy ( N = lirrln<72n A7y(w), ) = (R ATy (w),¥) = /M Uy (A) w(N).

Applying (29) with v = 1 on K, we get ¢ = lim, ¢, and thus C := sup,, ¢, is finite. Taking
C < 400 into account, one sees by using Slutsky’s lemma and a diagonal argument that it suffices
to prove that wy , — uy in L}, (M) for every test function v. Let us first verify this convergence
when 9 is a smooth psh function. By Theorem 2.7, (uy n)n is a sequence of psh functions, which
is locally uniformly bounded on M since |uy | < ¢, supg |1] < C'supg |9|. As such sequences are
relatively compact for the L} . topology, it suffices to show that w, is the unique cluster point of
(Upn)n- Assume that wyn, — v in Lj, (M). According to (29), we have [, uyw = [}, vw for
every (m,m)-test form w on M. Hence v and uy coincide in L}, (M), as desired. This remains
true when 1) is any smooth test function on C**1, as one sees by writing it as a difference of two
smooth psh functions: ¢ = (v + Al|z]|?) — A||z||* with A large enough. d

A.2. Hyperbolic sets and holomorphic motions.

Definition A.3. Let f : B x P¥ — B x P*¥ be a holomorphic family of endomorphisms where B is
a ball centered at the origin in C™. Let Ey be an fo-invariant subset of P*. A holomorphic motion
of Ey over B, C B is a continuous map h : B, x Ey — P* such that :

(1) XA — hx(2) is holomorphic on B, for every z € Ey.
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(2) z > ha(2) is injective on Ey for every X € B,.

(3) hao fo= frohy on Ey for every X € B,.
One says that Ey is a hyperbolic set for fy if it is fo-invariant and if there exists K > 1 such that
|(dfo)~t|7t > K on Ey.

Theorem A.4. Let f : BxPF — B xP* be a holomorphic family of endomorphisms. Let Ey C P*
such that |(dfo)~'|7! > K >3 on Ey. Then there exists a holomorphic motion h : B, x Eg — P*
which preserves repelling cycles.

The proof is based on classical arguments, we refer to [dMvS, chapter 3, section 2.d] for the one
dimensional case. To simplify the exposition we assume that the dilation is larger than 3 on the
hyperbolic set.

Proof. Let ¢(z) :=infxep, |(d.fx)"!|7!, with the convention |(d.fx)"'|™' = 0if z € Cy,. This is
a continuous function on P¥. By taking a smaller p, we may assume that

(30) ¢ > K’ >3 on a 7-neighbourhood (Ej), .

We shall mainly use the lower estimate on Ej itself, the lower bound on (Ey), appears at the end
of the proof. Let § = d(p) := min{(1 +supyep, | frllc2)"" 7}

Lemma A.5. For every (A, z) € B, x Ep,
(1) dpr(fx(2), fa(w)) = (K" = 1)dpr(z,w) for every w € B(z,0),
(2) fr(B(z,¢0)) D B(fx(z),c0) for every 0 < ¢ <1,
(3) if gr.» : B(fr(2),8) — B(z,0) is the inverse map of fx, then Lipgy. < (K’ — 1)1

Proof. Assertions 2 and 3 follow from the first one (use Jordan’s theorem and K’ > 3 for the
second one). So let us prove Assertion 1. We work in local coordinates. For (A, z) € B, x Ey and
w € B(z,0) we have

|Id(C’C - (dzf)\)_l o dUIf/\| < |(dzf)\)_l| ’ |dzf/\ - dwf/\‘
<|(dafn) 7l —w] 67t < 1/K
That implies Lip (Id — (d. fx) " o f) < 1/K’ on B(z,d), which gives in turn

[(d= )7 (£a(2) = fa(w))| = (1 = 1/K")]z — w]
for every w € B(z,6). Hence |fy(2) — fa(w)| > (K’ — 1)|z — w| as desired. O

Lemma A.6. For every (A, z) € B, x Ey, we have B(f\(z),) D B(fo(2),6/2) and the inverse
map g : B(fa(2),0) = B(z,9) given by Lemma A.5 satisfies:

(1) g, is well defined on B(fo(2),d/2),

(2) it satisfies Lipgx,. < (K’ — 1)t on B(fo(2),3/2),

(3) gr.2(B(fo(2),6/2)) C B(2,6/2).

Proof. Let @ := max{|[dxfa(2)|l, (A\,z2) € B, x Eg}. As § is a continuous function of p and
§(0) > 0, we may assume 0 > 2Q)p by taking p small enough. For every A € B, and z € Ej,
d(fr(2), fo(2)) < Qp < §/2. That yields B(fx(2),d) D B(fo(2),6/2). Items 1 and 2 are obvious
from lemma A.5. For item 3, we use gy .(B(fo(2),6/2)) C ga(B(fr(2),9)), which is included in
B(z,6/2) by using lemma A.5(3) and K’ > 3. O
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Let us end the proof of theorem A.4. For (A, z) € B, X Ey we set z, := f{'(z) and
9N =GN0 OGNz -
This is an inverse branch of f{'. Since 21, ,2,—1 € Ep, lemma A.6 yields by induction
g B(zn,0/2) = B(2,6/2) and Lip g} , < (K’ —1)"" on B(zp,0/2).
For (A, z) € B, x Ey let us define

hn(X, 2) = g% . 0 f5'(2) = 9% - (2n)-
The map h,, is continuous in (X, z), holomorphic in A and h, (A, z) € B(z,d/2). Moreover
(31) fxohn(A; 2) = hn1(A, fo(2)).
The sequence (hy), is uniformly Cauchy on B, x Ep. Indeed h,i1(),2) — ha(X,2) = g}, ©
Irzn (Zn1) — g?,z(zn) and we get || hni1 — hy, ||Bpr0 < (6/2) - (K" —1)7" since guz, (2n41) €
B(zp,9/2) by Lemma A.6(3). We define hy(z) for (A, z) € B, x Ey by
ha(z) = lirrln hn(\ 2) = lirrlnggf’z o fi(=).

The map h is continuous in (}, z), holomorphic in A and hy(z) € B(z,6/2). It also follows from
(31) that

(32) Ixohx=hyo fo.

Let us now check that hy is injective. Assume hy(z) = hx(2’). Iterating (32) yields hx(fi(2)) =
ha(fo(2"). As hy(w) € B(w,§/2) for w € Ep, we get d(fi(z), fi(2')) < 6. Then, since
d(fi(2), fi1(z") = (K’ —1)™d(z, 2’) by Lemma A.5(1), we must have z = 2’.

Finally, hy preserves cycles (see (31)) and any periodic hy(z) must be repelling since hy(z) €
B(z,8/2) C (Eyp), and |(df»)~*|~' > 3 on (Ep), (see (30)). This completes the proof of Theorem
Ad. O

A.3. Proof of Proposition 4.2. We work with the notations of Section 4. Let 7, € > 0 such that
—logd + 7 + 2¢ < 0. Recall that the distortion of the charts is controlled by 7, see Equation (9).
Let p > 1 and r,(y) = infaep, [|[(DF?,,,(0)) 71|72, see Equation (11). The next lemma shows that
rp measures the size of tubular neighbourhoods of I', on which f? is invertible and contracting.

y(A)

Lemma A.7. For every small € > 0 there exists Cp(e) > 0 such that for any v € X the map f?
admits an inverse branch (f?);* on the tube Ty, (F(7), Cp(€)rp(7)) which maps T xp(,) N (Ug x P¥)
to 'y N (Uy x P*) and satisfy Lip(f)5 < e t/3r,(y)71/2

Proof. We use a quantitative version of the inverse mapping theorem, see [BrDv2, Lemme 2].
This version is more precise than Lemma A.5. Let M := sup,cy, yex HF,’; and let

Sp(€) := Ry(1 — e~</3)/M. Then for every (y,\) € X x Up:
- (F?,,,)"" is defined on B ((),5p(e)||(DF$(>\)(O))*1H*Q),
- Lip(F? )t < €5 | (DER, (0)) 7.

Now we have to consider the distortion due to the charts. Replacing d,(¢) by a smaller constant
Cp(€) and recalling that 7 controls this distortion, we obtain for every A € M:

- (f7)5, s defined on Bee ((f2(v(N), Cyp(e)[(DFZ ) (0)) 71 72),
S Lip(f7) ;4 < €S (DEF?, (0) -

&) ||C27B(07Rp)




40 F. BERTELOOT, F. BIANCHI, AND C. DUPONT
This completes the proof of the Lemma. O

Let us now prove Proposition 4.2. We recall that @,(7) = —3logr,(y0). By assumption
lim, L [, dM = L with L < —1%4_ Let p > 1 such that L [5G, dM = I’ < L+e By
applying Birkhoff Ergodic Theorem there exists ) C X such that M(Y) =1 and

~ 1 <& ~ . —
~ 1 — m —I(5 = U = !
(33) Vyel, hran . ; Up (]—" ('y)) /2 Up dM =pL'.

Since U, (F (7)) = — 3 log rp(v—n) we deduce from (33) that lim,, 1 logr,(y—,) = 0. In particular
there exists a measurable function 7, : Y —]0,1] such that

Cp(e)rp(v-—n) = ?p(y)ef(nfl)e/z'

We also deduce from (33) that there exists lAp Y5 [1, +o0| such that
H (7”17(%]‘))71/2 < 2;(;)7)67117[/-&-716/6.
j=1

Now, setting 7, :=7) /ZA][,7 one can verify by induction:

- (f?)5™ is defined on Ty, (Y0, (7)),
- Lip(f7);" < 1,(7)enPL/+7+e/2)
- ()57 [Toe (Y0, i ()] € Tvrg (Vo> Cp(€)7p (V= (nt1)))-

See [Dul, Section 1.1.6] for more details. This completes the proof of Proposition 4.2.
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