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Abstract. Let f be a polynomial-like map with dominant topological degree dt ≥ 2 and let
dk−1 < dt be its dynamical degree of order k−1. We show that the support of every ergodic
measure whose measure-theoretic entropy is strictly larger than log

√
dk−1dt is supported

on the Julia set, i.e., the support of the unique measure of maximal entropy µ. The proof is
based on the exponential speed of convergence of the measures d−n

t (fn)∗δa towards µ, which
is valid for a generic point a and with a controlled error bound depending on a. Our proof
also gives a new proof of the same statement in the setting of endomorphisms of Pk(C) – a
result due to de Thélin and Dinh – which does not rely on the existence of a Green current.

1. Introduction

The study of the dynamics of holomorphic endomorphisms of complex projective spaces
Pk := Pk(C) is a central topic in complex dynamics, see for instance [15, 24] for an overview
of the subject. Let f : Pk → Pk be an endomorphism of algebraic degree d ≥ 2. There exists
a canonical positive closed f ∗-invariant (1, 1)-current T , called the Green current of f , with
the property that the sequence d−n(fn)∗ω0 converges to T for every smooth positive closed
(1, 1)-form ω0 of mass 1. The current T has strong geometric properties, in particular, it has
Hölder continuous potentials. As a consequence, the measure µ := T∧k is well-defined, and it
is the unique measure of maximal entropy k log d of f [8, 20]. Its support is called the Julia
set of f . By a result of de Thélin and Dinh [9, 12], every ergodic measure whose measure-
theoretic entropy is strictly larger than (k − 1) log d is also supported on the Julia set of f .
Large classes of examples of such measures are constructed and studied in [4, 5, 19, 26, 27].

The proof given in [9, 12] of the above property crucially relies on the existence of the
Green current. In particular, it follows from a delicate induction which makes use of the
successive self-intersections T∧j of the Green current T . It is then unclear how to generalize
this result to more general non-algebraic settings, where a dynamical Green current does
not exist. In this paper, we address this problem in the case of polynomial-like maps with
dominant topological degree. Our proof will in particular also give a new proof of the result
by de Thélin and Dinh, which makes no use of the Green current.

Recall that polynomial-like maps are proper holomorphic maps f : U → V , where U ⋐ V
are open subsets of Ck and V is convex. By definition, every polynomial-like map defines
a ramified covering U → V and the topological degree dt of f is well-defined. For every
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0 ≤ p ≤ k, one can define the dynamical degrees1

dp = dp(f) := lim sup
n→∞

sup
S
∥(fn)∗(S)∥1/nU ,

where the supremum is taken over all positive closed (k−p, k−p)-currents on U whose mass
is less than or equal to 1 see [13, 15] and Definition 2.1 below. Note that we always have
d0 = 1 and dk = dt. By [6], the sequence {dp}0≤p≤k is non-decreasing. Hence, in particular,
we have max0≤p≤k−1 dp = dk−1. We say that f has dominant topological degree2 if dk−1 < dt.
Observe that in this case we always have dt ≥ 2.

Polynomial-like maps with dominant topological degree enjoy many of the dynamical
properties of endomorphisms (however, their study is usually technically more involved,
because of the lack of a naturally defined Green function). In particular, for every such f
there exists a unique measure µ of maximal entropy log dt and a proper analytic set E ⊂ V
such that

(1.1) d−n
t (fn)∗δa → µ for all a ∈ V \

∞⋃
j=0

f j(E),

see [13, 15]. Note that, unlike the case of endomorphisms of Pk, here the set E may not be
f -invariant and hence ∪∞

j=0f
j(E) is not, a priori, an analytic set.

The following is our main result.

Theorem 1.1. Let f : U → V be a polynomial-like map with dominant topological degree.
Every ergodic measure ν whose measure-theoretic entropy satisfies hν(f) > log

√
dk−1dt is

supported on the Julia set J .

The proof of Theorem 1.1 consists of a quantified version of the classical estimate by
Gromov [20] for the topological entropy in terms of the volume growth of suitable analytic
sets in the space of orbits. It is given in Section 3 and exploits in a crucial way an explicit
exponential rate of the convergence (1.1), which we discuss in Section 2. In the same section,
we give a more precise bound log β(f) for the entropy in Theorem 1.1, see also Theorem 3.5.

In the case of endomorphisms of Pk, we have β(f) = dk−1, hence the bound log
√
dk−1dt

can be improved to log dk−1 = (k − 1) log d. In particular, Theorem 1.1 gives an alternative
proof of the result by de Thélin and Dinh mentioned above [9, 12].

Corollary 1.2. Let f be an endomorphism of Pk of algebraic degree d ≥ 2. Every ergodic
measure whose measure-theoretic entropy is strictly larger than (k − 1) log d is supported on
the Julia set.

We refer to Section 4 for further applications and corollaries of Theorem 1.1.

1Sometimes, see for instance [15], these degrees are denoted by d∗p to distinguish them from a different
type of dynamical degree that can also be considered. Since here we will only use one type of dynamical
degree, we will use the simpler notation dp.

2In some references, maps with dk−1 < dt are said to have large topological degree, and the name dominant
is reserved to maps for which max0≤p≤k−1 dp < dt. We use here the name dominant as, by [6], these notions
are equivalent.
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2. Preliminaries

2.1. Polynomial-like maps. A polynomial-like map is a proper holomorphic map f : U →
V , where U ⋐ V are open subsets of Ck and V is convex. Homogeneous lifts to Ck+1

of endomorphisms of Pk give examples of polynomial-like maps. In dimension k = 1, any
polynomial-like map is conjugate to an actual polynomial on the Julia set [17]. However,
in higher dimensions, the class of polynomial-like maps is significantly larger than that of
regular polynomial endomorphisms of Ck (i.e., those extending holomorphically to Pk), see
for instance [15, Example 2.25].

Every polynomial-like map f gives a ramified covering from U to V and the topological
degree dt of f is well-defined. We will always assume that we have dt ≥ 2. The (compact)
set K :=

⋂∞
n=1 f

−n(U) is called the filled-in Julia set of f . It consists of the points whose
orbit is well-defined. The system (K, f) is a true dynamical system.

Definition 2.1. Let f : U → V be a polynomial-like map. For every 0 ≤ p ≤ k define

(2.1) dp = dp(f) := lim sup
n→∞

sup
S
∥(fn)∗(S)∥1/nW ,

where W ⋐ V is an open neighbourhood of K and the supremum in (2.1) is taken over
all positive closed (k − p, k − p)-currents whose mass is less than or equal to 1 on a fixed
neighbourhood W ′ ⋐ V of K. We say that dp is the dynamical degree of order p of f .

Recall that the mass of a positive (p, p)-current S on the open set W is given by ||S||W :=∫
W
S∧ωk−p, where ω is the standard Kähler form of Ck. The definition above is independent

of W,W ′ [13, 15]. Moreover, we have d0 = 1 and dk = dt. In the case of endomorphisms
of Pk of algebraic degree d, the above definitions reduce to dp = dp. We say that f has
dominant topological degree if dk−1 < dt. By [6, Theorem 1.3], the sequence {dp}0≤p≤k is
non-decreasing, hence we have max0≤p≤k−1 dp = dk−1 < dt (and therefore also dt ≥ 2) for
every polynomial-like map with dominant topological degree.

Polynomial-like maps with dominant topological degree enjoy many of the dynamical
properties of endomorphisms. For instance, they admit a unique measure of maximal entropy
log dt [13, 15]. We will denote this measure by µ and define the Julia set J as the support
of µ. Observe that J is a subset of the boundary of K.

2.2. Speed of convergence. Let us fix a polynomial-like map f : U → V with topological
degree dt ≥ 2. By [13, Proposition 3.2.5] see also [15, Proposition 2.15], there exists a
constant 0 < γ < 1 such that

(2.2) |d−n
t (fn)∗ψ − ⟨µ, ψ⟩|≲ γn
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for every function ψ in a given compact family of pluriharmonic functions on V , where the
implicit constant depends only on the family. We will denote by γ0 = γ0(f) the infimum
of the constants γ for which (2.2) holds. Assuming now that f has dominant topological
degree, we set

(2.3) β = β(f) := max {dk−1, γ0dt} .

In the case of endomorphisms of Pk, every pluriharmonic function is constant. Hence,
(2.2) is trivial and we can take β = dk−1 = dk−1, where d is the algebraic degree of the
endomorphism. More generally, in a compact setting, one can take β = dk−1. In our setting,
we have the following weaker bound for β.

Lemma 2.2. Let f : U → V be a polynomial-like map with dominant topological degree dt.
Then we have β(f) ≤

√
dk−1dt.

Proof. It is enough to show that γ0 satisfies γ0 ≤
√
dk−1/dt. Hence, it suffices to show that

(2.2) holds for every γ >
√
dk−1/dt.

Observe that the map ψ 7→
√

∥i∂ψ ∧ ∂̄ψ∥U defines a norm on the space of pluriharmonic
functions on V with ⟨µ, ψ⟩ = 0. Moreover, by the Cauchy-Schwarz inequality, for any such
function we have

0 ≤ i∂(d−n
t (fn)∗ψ) ∧ ∂̄(d−n

t (fn)∗ψ) ≤ d−n
t (fn)∗(i∂ψ ∧ ∂̄ψ).

As i∂ψ ∧ ∂̄ψ is a positive closed (1, 1)-current, the mass of the last term in the above
expression satisfies

∥d−n
t fn

∗ (i∂ψ ∧ ∂̄ψ)∥U≲ d−n
t (d∗)

n∥i∂ψ ∧ ∂̄ψ∥U as n→ ∞

for every d∗ > dk−1. The assertion follows. □

The following result, whose proof in a compact setting is essentially given in [14, Lemme
4.2], gives the estimates for the rate in the convergence (1.1) that we will need. We give the
details of the proof for the reader’s convenience. A more precise version in the setting of
endomorphisms of Pk is given in [16].

Theorem 2.3. Let f : U → V be a polynomial-like map with dominant topological degree
dt and µ its equilibrium measure. Let β be as in (2.3) and take λ such that β < λ < dt.
Then there exists a psh function uλ with uλ < −1 such that for every a ∈ U , ψ ∈ C2(U), and
n ∈ N we have

(2.4) |⟨d−n
t (fn)∗δa − µ, ψ⟩|≤ A∥ψ∥C2(U)

(
λ

dt

)n

|uλ(a)|,

where A is a constant depending on λ but independent of a, ψ, and n.

Proof. By linearity, it is enough to show the assertion in the assumption that ψ is psh
and satisfies ⟨µ, ψ⟩ = 0 and 0 ≤ ddcψ ≤ ddc∥z∥2= ω. Define also the function v0 :=
∥z2∥−⟨µ, ∥z2∥⟩, and observe that it satisfies ⟨µ, v0⟩ = 0. Set also

vn := d−n
t (fn)∗v0 and uλ :=

∞∑
n=0

(
dt
λ

)n

vn − Cλ,
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where the constant Cλ is chosen so that

uλ < −1 and
∑
n̸=n0

(
dt
λ

)n

vn ≤ Cλ for every n0 ∈ N.

Fix λ′ with β < λ′ < λ. As vn ≲ (λ′/dt)
n and ∥vn∥Lp≲ (λ′/dt)

n for any p ≥ 1 (see for
instance [15, Theorem 2.33] and [15, Corollary 2.35]), we have that uλ is a well-defined (i.e.,
not identically equal to −∞) psh function on V . Setting An(ψ) := ⟨d−n

t (fn)∗δa, ψ⟩, we will
show the inequality

|An(ψ)|≲
(
λ

dt

)n

|uλ(a)− 1|.

This will show the assertion, up to replacing uλ by uλ − 1.

By [15, Theorem 2.34], the definition of β, and the choice of λ, for every ϕ ∈ C2(U) with
⟨µ, ϕ⟩ = 0 and n ∈ N we have

|⟨d−n
t (fn)∗ν, ϕ⟩|≲ ∥ϕ∥C2(U)

(
λ

dt

)n

for every smooth probability measure ν compactly supported on V (here the implicit constant
can depend on ν, but is independent of ν if this is taken in a compact family of probability
measures). The mean inequality for psh functions implies that we have An(ψ) ≲ (λ/dt)

n

(where the implicit constant is now independent of a). In order to conclude, we need to
prove a similar bound for −An(ψ).

It follows from the properties at the beginning of the proof that v0 − ψ is psh. Hence, we
can write ψ = v0 − (v0 − ψ) as a difference of psh functions, and we have

−An(ψ) = −An(v0) + An(v0 − ψ).

As an upper bound for An(v0 − ψ) can be found with the same arguments as above, we
only need to prove an upper bound for −An(v0) = −vn(a). By the definition of uλ, we have
(dt/λ)

nvn ≥ uλ for every n ∈ N. It follows that we have

−An(v0) = −vn(a) ≤
(
λ

dt

)n

|uλ|.

The assertion follows. □

The following immediate consequence of Theorem 2.3 will be used to prove Theorem 1.1.

Corollary 2.4. Let f : U → V be a polynomial-like map with dominant topological degree
dt and µ its equilibrium measure. Let β be as in (2.3). Fix an open set U ′ with K ⊆ U ′ ⊆ U
and let ω0 be a smooth probability measure on U ′. For any λ with β < λ < dt there exists a
psh function uλ such that for every ψ ∈ C2(U) and n ∈ N we have

(2.5) |⟨d−n
t (fn)∗ω0 − µ, ψ⟩|≤ A∥ψ∥C2(U)

(
λ

dt

)n ∫
U ′
|uλ|ω0,

where A is a constant independent of ω0, ψ, U
′ and n.

5



3. Proof of Theorem 1.1

3.1. Preparatory lemmas. In this section we prove a couple of technical lemmas that we
will need in the proof of Theorem 1.1. Theorem 2.3 and Corollary 2.4 are not used here.

We fix a polynomial-like map f : U → V and the constant

(3.1) M =M(f) := max
1≤l≤k

max
z∈f−1(U)

∥∇fl(z)∥,

where the fl’s denote the components of f . Recall that we denote by ω the standard Kahler
form on Ck. For every m ∈ N and 1 ≤ i, j ≤ k, we also set

α
(m)
i,j :=

k∑
l=1

∂fm
l

∂zi

∂f̄m
l

∂z̄j
,

where the fm
l ’s denote the components of fm. Observe that the α

(m)
i,j ’s are smooth functions

on f−m(V ) and for every N ≥ m we have

(fm)∗ ω|f−N (U) =
∑

1≤i,j≤k

α
(m)
i,j dzi ∧ dz̄j.

Lemma 3.1. For every 1 ≤ m ≤ N − 1, we have

|α(m)
i,j |f−N (U)≤ k2m−1M2m.

Proof. We claim that for every z ∈ f−N(U), every 1 ≤ m ≤ N − 1, and every 1 ≤ i, j ≤ k
we have

(3.2)

∣∣∣∣∂fm
j (z)

∂zi

∣∣∣∣ ≤ km−1Mm.

For m = 1, (3.2) follows from the definition ofM . Assume now that (3.2) holds for m−1 ≥ 0

instead of m. As fm−N(U) ⋐ f−1(U), we have
∣∣∣∂fj∂zl

(fm−1(z))
∣∣∣ ≤ M for every 1 ≤ j, l ≤ k.

So, for every 1 ≤ i, j ≤ k, we have∣∣∣∣∂fm
j (z)

∂zi

∣∣∣∣ =
∣∣∣∣∣

k∑
l=1

∂fj
∂zl

(
fm−1(z)

) ∂fm−1
l (z)

∂zi

∣∣∣∣∣ ≤
k∑

l=1

∣∣∣∣∂fj∂zl

(
fm−1(z)

)∣∣∣∣ ∣∣∣∣∂fm−1
l (z)

∂zi

∣∣∣∣
≤

k∑
l=1

M · km−2Mm−1 = km−1Mm

on f−N(U). Hence, (3.2) holds for all 1 ≤ m ≤ N − 1. It follows that we have

|α(m)
i,j (z)|=

∣∣∣∣∣
k∑

l=1

∂fm
l

∂zi

∂f̄m
l

∂z̄j

∣∣∣∣∣ ≤
k∑

l=1

∣∣∣∣∂fm
l

∂zi

∣∣∣∣ ∣∣∣∣∂f̄m
l

∂z̄j

∣∣∣∣ ≤ k2m−1M2m,

as desired. □

From now on, for simplicity, given m1 ≤ . . . ≤ mk ∈ N, we will use the notation

(3.3) Ωm1,...,mk
:= (fm1)∗ω ∧ . . . ∧ (fmk)∗ω.

Observe that Ωm1,...,mk
is a smooth volume form on f−mk(V ). We will also denote by φm1,...,mk

the Radon-Nikodym density of Ωm1,...,mk
with respect to ωk. This is a positive smooth
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function on f−mk(V ). The following bound for φm1,...,mk
immediately follows from Lemma

3.1.

Corollary 3.2. There exists a constant C such that, for every 0 ≤ m1 ≤ ... ≤ mk ≤ n ≤
N − 1 we have

φm1,...,mk
≤ C(kM)2kn on f−N(U).

Observe that Ωm1,...,mk
as above satisfies∫

f−mk (V )

Ωm1,...,mk
≲ dmk

t ,

where the implicit constant is independent of m1, . . . ,mk, see for instance [13, 15]. In the
following, we will need the following better bound for the integral above in the case where
m1 = 1.

Lemma 3.3. There exists a function η : N → R with lim supn→∞ η(n)1/n = 1 such that

(3.4)

∫
f−N (V )

Ω0,m′
1,...,m

′
k−1

≤ η(N)(dk−1)
N

for every 1 ≤ m′
1 ≤ . . . ≤ m′

k−1 ≤ N − 1.

Proof. Let X be an analytic subset of V of pure dimension k − 1. There exists a function
η : N → R with lim supn→∞ η(n)1/n = 1 and depending only from the mass of [X] such that

(3.5)

∫
f−N (V )

[X] ∧ (fm′
1)∗ω ∧ . . . ∧ (fm′

k−1)∗ω ≤ η(N) (dk−1)
N

for every 1 ≤ m′
1 ≤ . . . ≤ m′

k−1 ≤ N − 1. The proof of (3.5) follows the strategy used
by Gromov to estimate the topological entropy of endomorphisms of Pk, see for instance
[20], and adapted by Dinh and Sibony [13, 15] to the setting of polynomial-like maps. Since
only minor modifications are needed, we refer to [2, Lemma A.2.6] for a complete proof.
The inequality (3.4) is deduced from (3.5) (by possibly multiplying the function η(n) by a
bounded factor) as ω can be written as an average of currents of integration on (k − 1)-
dimensional analytic sets. □

Finally, we will need the following lemma about the integrals of psh functions.

Lemma 3.4. Let u be a psh function on V . Then, there exists a positive constant A1

depending on u such that for every 0 ≤ m1 ≤ ... ≤ mk ≤ N ∈ N we have∫
f−N (U)

|u|Ωm1,...,mk
≤ A1 +m2

k

∫
f−N (U)

Ωm1,...,mk
.

Proof. For every n ≤ N ∈ N, set
Wn,N := f−N(U) ∩ {u < −n2}.

Then, for all m1, . . . ,mk, N as in the statement and mk ≤ n ≤ N , we have∫
f−N (U)

|u|Ωm1,...,mk
≤

∫
f−N (U)\Wn,N

|u|Ωm1,...,mk
+

∫
Wn,N

|u|Ωm1,...,mk

≤ n2

∫
f−N (U)

Ωm1,...,mk
+

∫
Wn,N

|u|φm1,...,mk
ωk.
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Hence, it is enough to show that the last integral in the above expression is bounded uniformly
in m1, . . . ,mk, n, and N (we will actually show that it tends to 0 if n→ ∞).

As we have Wn,N ⊂ {u < −n2}, by the Skoda estimates for psh functions [25] there exists
α > 0 and n0 ∈ N such that for any n > n0 we have

(3.6)

∫
Wn,N

|u|ωk ≤ C1e
−αn2

,

for some positive constant C1 independent from n. By Corollary 3.2, there exist two constants
C2 and M , independent from m1, . . . ,mk, n, and N such that φm1,...,mk

≤ C2(kM)2kn on
f−n(U) ⊇ f−N(U). We deduce from this estimate and (3.6) that we have∫

Wn,N

|u|φm1,...,mk
ωk ≤ C2(kM)2kn

∫
Wn,N

|u|ωk ≤ C1C2(kM)2kne−αn2

for every n > n0. Choosing A1 := maxn∈NC1C2(kM)2kne−αn2
completes the proof. □

3.2. Proof of Theorem 1.1. We can now prove the following statement, which, by Lemma
2.2, gives a more precise version of Theorem 1.1.

Theorem 3.5. Let f : U → V be a polynomial-like map with dominant topological degree and
β be as in (2.3). Then, every ergodic measure ν whose measure-theoretic entropy satisfies
hν(f) > log β is supported on the Julia set J .

Proof. Fix ν as in the statement and λ with β < λ < ehν(f) ≤ dt. Let F ⊂ U \ J be a
closed set. We are going to show that we have ht(f, F ) ≤ log λ, where ht(f, F ) denotes the
topological entropy of f on F . By the relative variational principle, this implies ν(F ) = 0,
and hence that the support of ν is contained in J , as desired. Observe that we can assume,
with no loss of generality, that we have F ⊂ K.

Let W be an open neighbourhood of F with W ∩ J = ∅. Using Gromov’s contruction
[20] and the same arguments as in the proof of [15, Theorem 1.108] (see also the proof of [2,
Lemma A.2.6]), we have

ht(f, F ) = ht(f, F ∩K) ≤ lov(f,W ) := lim sup
N→∞

1

N
log vol(ΓW

N ),

where, for every N ∈ N, ΓW
N denotes the subset of UN+1 given by

ΓW
N := {(z, f(z), . . . , fN−1(z)), z ∈ W ∩ f−N(U)}.

Note that, for every N ∈ N, we have

vol(ΓW
N ) =

∑
0≤ni≤N−1,

1≤i≤k

∫
W∩f−N (U)

(fn1)∗ω ∧ . . . ∧ (fnk)∗ω.

As the number of terms in the sum is polynomial in N , it is enough to consider separately
each term of the sum on the right-hand side of the above expression. Hence, without loss of
generality, we can assume that we have 0 ≤ n1 ≤ . . . ≤ nk ≤ N − 1 and we need to show the
inequality

lim sup
N→∞

1

N
log

∫
W∩f−N (U)

(fn1)∗ω ∧ ... ∧ (fnk)∗ω ≤ log λ.
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Recall the notation (3.3). We will now consider the smooth form

Ω′
n1,...,nk

:= Ω0,n2−n1,...nk−n1 = ω ∧ (fn2−n1)∗ω ∧ . . . ∧ (fnk−n1)∗ω.

Observe that we have

Ωn1,...,nk
= (fn1)∗(Ω′

n1,...,nk
).

Fix also an open set W̃ with W̃ ⋑ W and W̃ ∩J = ∅ and a smooth function 0 ≤ ψ ≤ 1 with
compact support in W̃ and such that ψ|W= 1. Since µ|W̃= 0, by Corollary 2.4 applied with

U ′ = f−(N−n1)(U) and ω0 = ∥Ω′
n1,...,nk

∥−1
f−(N−n1)(U)

·(Ω′
n1,...,nk

)|f−(N−n1)(U)

there exists a psh function uλ such that∫
f−N (U)

ψΩn1,...,nk
=
∣∣∣〈(fn1)∗(Ω′

n1,...,nk
)− dn1

t ∥Ω′
n1,...,nk

∥f−(N−n1)(U)µ, ψ
〉∣∣∣

≤A∥ψ∥C2(U)λ
n1

∫
f−(N−n1)(U)

|uλ|Ω′
n1,...,nk

,

where A > 0 is a constant independent of n1, . . . , nk, N , and ψ. We deduce from the above
inequality and Lemma 3.4 (applied with mj = nj −n1 for all j, so that Ωm1,...,mk

= Ω′
n1,...,nk

)
that there exists a positive constant A1 (depending on λ, but independent of n1, . . . , nk, N ,
and ψ) such that∫

f−N (U)

ψΩn1,...,nk
≤ A∥ψ∥C2(U)λ

n1

(
A1 +N2

∫
f−N+n1 (U)

Ω′
n1,...,nk

)
.

Recalling the definitions of Ωn1,...,nk
and ψ, we deduce from the above expression that we

have

(3.7)

∫
W∩f−N (U)

(fn1)∗ω ∧ . . . ∧ (fnk)∗ω ≤ A∥ψ∥C2(U)λ
n1

(
A1 +N2

∫
f−N+n1 (U)

Ω′
n1,...,nk

)
.

By Lemma 3.3 (applied with m′
j = nj − n1) we have

(3.8)

∫
f−N+n1 (U)

Ω′
n1,...,nk

=

∫
f−N+n1 (U)

Ω0,n2−n1,...,nk−n1 ≤ η(N)(dk−1)
N−n1 ,

where the function η satisfies limn→∞ η(n)1/n = 1. Combining (3.7) and (3.8), we obtain∫
W∩f−N (U)

(fn1)∗ω ∧ . . . ∧ (fnk)∗ω ≤ A∥ψ∥C2(U)λ
n1(A1 +N2η(N)(dk−1)

N−n1)

≤ η̃(N)λn1(dk−1)
N−n1

≤ η̃(N)λN ,

where the function η̃ (which can depend on λ) satisfies limn→∞ η̃(n)1/n = 1 and in the last
step we used the inequality dk−1 ≤ λ. Consequently, we have

lim sup
N→∞

1

N
log vol(ΓW

N ) ≤ lim sup
N→∞

1

N
log

(
Nkη̃(N)λN

)
≤ log λ,

which gives ht(f, F ) ≤ log λ, as desired. This concludes the proof. □
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4. Further results and remarks

4.1. Hausdorff dimension of the Julia set. In this section we fix a polynomial-like map
f : U → V with dominant topological degree. Let ν be an ergodic probability measure with
hν(f) > log β (where β is as in (2.3)) and denote by

0 < Lk(ν) ≤ Lk−1(ν) ≤ . . . ≤ L1(ν)

its Lyapunov exponents, counting multiplicities. The inequality 0 < Lk(ν) is proved in
[7, Theorem 4.1] (see [10, 19] for the case of endomorphisms). We also have the following
property, originally proved by Dupont for endomorphisms [18, Theorem A]. As the proof is
local, it also applies in our setting.

Theorem 4.1. Let f , ν, and Lj, 1 ≤ j ≤ k be as above. Then for ν-almost all z ∈ V we
have

lim inf
r→0

log ν(B(z, r))

log r
≥ log dk−1

L1(ν)
+
hν(f)− log dk−1

Lk(ν)
,

where B(z, r) is the ball of radius r > 0 and centred at z. In particular, for every Borel set
E ⊂ V with ν(E) > 0, the Hausdorff dimension dimHE of E satisfies

dimHE ≥ log dk−1

L1(ν)
+
hν(f)− log dk−1

Lk(ν)
.

As in [18], the following consequence of Theorem 4.1 gives a lower bound for the Hausdorff
dimension of the Julia set J of f .

Corollary 4.2. Let f be as above and β be as in (2.3). Then, for every ergodic measure ν
whose measure-theoretic entropy satisfies hν(f) > log β, we have

dimHJ ≥ log dk−1

L1(ν)
+
hν(f)− log dk−1

Lk(ν)
.

Proof. Theorem 3.5 implies that ν is supported on J , and hence ν(J) = 1. Therefore, the
assertion follows from Theorem 4.1. □

4.2. Strong stability in families of polynomial-like maps. We consider in this section
a holomorphic family of polynomial-like maps (fτ )τ∈M with dominant topological degree
parametrized by a complex manifold M , see for instance [13, Section 3.8] and [15, Section
2.5]. Recall that all the fτ ’s have the same topological degree dt, which we assume to be at
least 2, and that the map τ 7→ dk−1(fτ ) is upper semicontinuous. We will denote by µτ the
equilibrium measure of fτ . The dynamical stability for such families has been studied in [3],
as a generalization of the theory developed for families of endomorphisms of Pk in [1], see
also [23] and [11, 21, 22] for the case k = 1. Following [1, 3], let us denote by J the set of all
holomorphic maps γ : M → Ck such that γ(τ) belongs to the Julia set of fτ for all τ ∈ M .
Define F : J → J as Fγ(τ) := fτ (γ(τ)).

Definition 4.3. A dynamical lamination for the family (fτ )τ∈M is an F -invariant subset L
of J such that

(1) Γγ ∩ Γγ′ = ∅ for every γ ̸= γ′ ∈ L, where Γγ is the graph of γ in M × Ck;
(2) Γγ ∩GO(Cf ) = ∅ for every γ ∈ L, where Cf is the critical set of the map f : (τ, z) 7→

(τ, fτ (z)), and GO(f) := ∪n,m≥0f
−m(fn(Cf ));

(3) F : L → L is dt-to-1.
10



The dynamical stability of the family (fτ )τ∈M is defined and characterized in [1, 3] by a
number of equivalent conditions, among which there is the existence of a dynamical lamina-
tion L such that µτ ({γ(τ) : γ ∈ L}) = 1 for all τ ∈ M . It was proved in [7] that stability
implies (and is then equivalent to) the existence of a dynamical lamination associated to
any ergodic measure for some fτ0 whose entropy in larger than log dk−1(fτ0) and supported
on the Julia set. The following is another corollary of our main results, which permits to
remove the assumption on the support of the measure in [7, Section 4.3] when the measures
satisfy the stronger bound on their measure-theoretic entropy as in Theorem 3.5.

Corollary 4.4. Let M be a connected and simply connected complex manifold and (fτ )τ∈M
a stable family of polynomial-like maps with dominant topological degree. Fix τ0 ∈ M and
let β(fτ0) be as in (2.3). Then, there exists a dynamical lamination L such that ν({γ(τ0) :
γ ∈ L}) = 1 for every ergodic fτ0-invariant probability measure ν with hν(fτ0) > log β(fτ0).

Proof. By Theorem 3.5, every ergodic fτ0-invariant probability measure ν with hν(fτ0) >
log β(fτ0) is supported in the Julia set Jτ0 of fτ0 . Thus, the conclusion follows from [7,
Corollary 4.5]. □
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