Dati registro
insegnamento: Matematica e
Statistica
corso di studi: Scienze
Biologiche Molecolari (triennale)
anno accademico: 2007-2008
docenti: Giovanni Alberti
(titolare, lezioni), Carlo Carminati
(esercitazioni)
codice insegnamento: AA294
Lezioni di Giovanni Alberti
- 01/10/2007 dalle 11:00 alle 13:00
lezione.
Presentazione del corso: descrizione dei contenuti principali,
modalità d'esame, testi di riferimento, mailing list, orario di
ricevimento. Rilevanza dei ragionamenti di scala in geometria ed in
fisica (e biologia). Alcuni esercizi sui grafici di funzioni.
- 03/10/2007 dalle 14:30 alle 16:30
lezione.
Potenze e radici. Logaritmo in base e. Terminologia di base
delle funzioni: dominio (campo di esistenza), immagine, grafico.
Esercizi di interpretazione geometrica del grafico. Grafici delle
funzioni elementari: lineari, potenze (positive e negative),
esponenziali, logaritmo in base e.
- 08/10/2007 dalle 11:00 alle 13:00
esercitazione.
Test di verifica delle competenze matematiche di base
acquisite in precedenza, articolato su 14 domande a risposta multipla
(in comune con i corsi paralleli).
- 10/10/2007 dalle 14:30 alle 16:30
lezione.
Commenti sui risultati del test di verifica. Misura degli
angoli in radianti. Interpretazione dei numeri reali positivi e
negativi come angoli. Funzioni trigonometriche elementari: seno, coseno
e tangente di un angolo; significato geometrico; identità di base;
grafico di seno e coseno; altre identità utili (e come ricavarle);
valori delle funzioni trigonometriche elementari per alcuni angoli
significativi.
- 15/10/2007 dalle 11:00 alle 13:00
lezione.
Grafico della funzione tangente e valore assoluto. Operazioni
elementari: dato il grafico di f(x) disegnare quello di f(x)+a, f(x+a),
-f(x), f(-x), -f(-x), af(x), f(ax). Esempi di applicazione. Funzione
inversa: definizione astratta, esempi concreti (radice, logaritmo).
Disegno del grafico della funzione inversa a partire da quello di f(x).
- 17/10/2007 dalle 14:30 alle 15:30
lezione.
Notazione per gli intervalli (aperti / chiusi / illimitati a
destra o a sinistra). Funzioni trigonometriche inverse: arcsen e
arctan. Definizioni precise e precauzioni d'uso, grafico. Alcuni
esempi.
- 22/10/2007 dalle 11:00 alle 13:00
lezione.
Descrizione di alcuni problemi tipo per cui si usa la teoria
della probabilità. Discussione dettagliata di un esempio: due giocatori
scommettono in un certo modo sull'esito del lancio di due dadi: come
capire quale dei due vince "in media". Strumenti utili per il calcolo
delle probabilità: formula (con dimostrazione) per il numero delle
sigle di k caratteri presi da un alfabeto di n lettere (disposizioni
con ripetizione). Alcuni esempi di applicazione della formula.
- 24/10/2007 dalle 14:30 alle 16:30
lezione.
Fattoriale di un numero intero. Formula (con dimostrazione)
per il numero delle sigle di k caratteri distinti presi da un alfabeto
di n lettere (disposizioni senza ripetizione). Numero delle
permutazioni di k oggetti. Numero delle combinazioni di k oggetti presi
tra n dati.
- 29/10/2007 dalle 11:00 alle 13:00
lezione.
Richiamo delle formule viste in precedenza per disposizioni,
permutazioni e combinazioni. Esempi di applicazione di queste formule
(calcolare la probabilità che estraendo 4 carte a caso da un mazzo di
52 siano i 4 assi, calcolare la probabilità di indovinare una password
di un certo tipo (in uno o più tentativi).
- 31/10/2007 dalle 12:00 alle 13:00
lezione.
Definizione astratta di probabilità: X spazio degli eventi
elementari, P(x) probabilità di un evento elementare x. Probabilità di
un evento non elementare. Esempi di spazi di eventi elementari e delle
relative probabilità: lancio di un dado (anche truccato), lancio di una
moneta, estrazione di una carta da gioco. Notazione compatta per le
sommatorie.
- 31/10/2007 dalle 14:30 alle 15:30
lezione.
Esempio di probabilità: probabilità uniformi, lancio di due
monete (due diverse versioni). Notazione insiemistica: unione,
intersezione, differenza, complemento. Formula per la probabilità
dell'unione di due eventi (con dimostrazione).
- 05/11/2007 dalle 11:00 alle 13:00
lezione.
Formula per lo sviluppo della potenza del binomio (binomio di
Newton). Definizione formale di probabilità condizionata e di eventi
(probabilisticamente) indipendenti. Vari esempi
(lancio di un dado, lancio di tre monete…) e giustificazione delle
definizioni date.
- 07/11/2007 dalle 14:30 alle 16:30
lezione.
Formula di Bayes. Esempi di applicazione della formula di
Bayes. Spazio degli eventi elementari e distribuzione di probabilità
per due eventi indipendenti. Spazio degli eventi elementari e
distribuzione di probabilità per il lancio di N monete.
- 12/11/2007 dalle 11:00 alle 13:00
lezione.
Variabili aleatorie. Esempio: calcolo della vincita media in
un sistema di scommesse. Definizione generale di variabile aleatoria.
Valore atteso o valor medio di una variabile aleatoria (due formule
equivalenti). Varianza di una variabile aleatoria.
- 14/11/2007 dalle 14:30 alle 16:30 esercitazione.
Simulazione di prova scritta in due parti (compitino di prova).
- 16/11/2007 dalle 14:30 alle 18:00
lezione non tenuta per svolgimento della prima prova in itinere.
- 21/11/2007 dalle 14:30 alle 16:30
lezione.
Varianza di una variabile aleatoria, alcune formule
alternative. Applicazione del concetto di varianza: disuguaglianza di
Chebichev (senza dimostrazione).
- 26/11/2007 dalle 11:00 alle 13:00
lezione.
Proprietà aritmetiche del valore atteso e della varianza.
formule alternative per la varianza. Covarianza. Formula alternativa
per la varianza. Varianza della somma di due variabili aleatorie.
Variabili aleatorie indipendenti. Valore atteso del prodotto di due
variabili aleatorie indipendenti. Varianza della somma di due variabili
aleatorie indipendenti. Alcune dimostrazioni sono state posposte alla
lezione successiva.
- 28/11/2007 dalle 14:30 alle 16:30
lezione.
Completamento delle dimostrazioni delle proprietà di varianza
e covarianza enunciate nella lezione precedente. Dimostrazione della
disuguaglianza di Chebychev.
- 03/12/2007 dalle 11:00 alle 13:00
lezione.
Esempio di applicazione dei risultati dati nelle lezioni
precedenti: percentuale di teste ottenuta lanciando 100 monete: calcolo
della media e della varianza di questa variabile aleatoria. Stima
tramite Chebychev della probabilità che tale percentuale sia inferiore
a 1/4. Estensione del risultato ad un numero arbitrario di monete.
Legge dei grandi numeri (in forma debole) con dimostrazione.
- 05/12/2007 dalle 14:30 alle 16:30
lezione.
Distribuzione di probabilità di una variabile aleatoria. Media
e varianza si calcolano a partire dall'insieme dei valori e dalla
distribuzione di probabilità. Distribuzione di Bernoulli di parametro p
e distribuzione binomiale di parametri p e n (esempi con p diverso da
1/2); calcolo del valore atteso e della varianza per queste
distribuzioni. Distribuzione geometrica; esempio e calcolo del valore
atteso (la varianza viene lasciata per esercizio).
- 10/12/2007 dalle 11:00 alle 13:00
lezione.
Le rette nel piano viste come grafici delle funzioni lineari.
Problema geometrico: determinare il coefficiente angolare della retta
tangente in un punto dato al grafico di una funzione data. Definizione
non rigorosa di limite. La derivata di una funzione intesa come limite
del rapporto incrementale. Esempio: calcolo della derivata di x^2 a
partire dalla definizione. Intepretazione della velocità come derivata
dello spostamento.
- 12/12/2007 dalle 14:30 alle 16:30
lezione.
Calcolo effettivo delle derivate: elenco di regole (derivata
di somma, prodotto, rapporto e composizione di due funzioni) e di
derivate delle funzioni elementari (ax, x^a, 1/x, e^x, a^x, log x, sin
x, cos x, tan x, arcsin x, arctan x). Esempi di calcolo. Prime
dimostrazioni delle regole e delle formule elencate in precedenza.
- 17/12/2007 dalle 11:00 alle 13:00
lezione.
Calcolo delle derivate: dimostrazioni rimanenti delle regole
di derivazione e delle formule per le derivate delle funzioni
elementari date nella lezione precedente (tranne arcsin x, lasciata per
esercizio).
- 19/12/2007 dalle 14:30 alle 16:30
lezione.
Applicazione delle derivate: descrizione qualitativa del
grafico di una funzione. Segno delle derivata e monotonia della
funzione. Esempio: descrizione del grafico di una funzione. Definizione
di punti di massimo e minimo (relativi ed assoluti). Nei punti di
massimo e minimo la derivata si annulla. Ricetta per la ricerca dei
punti di massimo e di minimo (ed elenco di come le cose possono andare
male).
- 18/02/2008 dalle 14:30 alle 16:30
lezione.
Calcolo dei limiti di funzioni. Esempi di limiti semplici e
proprietà elementari dei limiti, limiti problematici ("0/0",
"infinito/infinito", ecc.ecc.). La regola di de L'Hôpital (dimostrata
in un caso semplice). Confronto di potenze, esponenziali e logaritmo
all'infinito, confronto di potenze e logaritmo in zero (dimostrati
usando la regola di de L'Hôpital).
- 20/02/2008 dalle 11:00 alle 13:00
lezione.
Notazione di Landau ("o piccolo"). Funzioni asintoticamente
equivalenti. Principio di sostituzione degli infinitesimi, con alcuni
esempi di applicazione. Sviluppo di Taylor in 0 di una funzione.
Sviluppo di Taylor all'ordine qualunque di exp(x), sin(x), cos(x),
log(1+x), 1/(1+x), sviluppo all'ordine 1 di (1+x)^a (con dimostrazioni
parziali). Espressione del numero "e" come somma infinita.
- 25/02/2008 dalle 14:30 alle 16:30
lezione.
Dimostrazione del principio di sostituzione degli infinitesimi
e della formula per lo sviluppo di Taylor (solo all'ordine 1 e 2).
Parte principale di una funzione infinita o infinitesima in 0 o
all'infinito. Esempi di calcolo della parte principale in 0 usando gli
sviluppi di Taylor.
- 27/02/2008 dalle 11:00 alle 13:00
lezione.
Integrali. Definizione di integrale definito come area.
Calcolo dell'integrale definito di una funzione tramite una primitiva
(Teorema fondamentale del calcolo integrale). Esempi. Strumenti per il
calcolo delle primitive e degli integrali definiti: elenco delle
primitive di alcune funzioni elementari (con verifica) ed elenco di
regole: integrale della somma di due funzioni e del multiplo di una
funzione (con dimostrazione), regola di integrazione per parti (senza
dimostrazione). Esempi.
- 03/03/2008 dalle 14:30 alle 16:30
lezione.
Dimostrazione della formula di integrazione per parti ed
esempi di applicazione. Formula di cambio di variabile (con
dimostrazione), varianti della stessa ed esempi di applicazione.
Calcolo di aree e volumi tramite l'integrazione. Esempi, calcolo del
volume della sfera (a partire dall'area del cerchio).
- 05/03/2008 dalle 11:00 alle 13:00
lezione.
Equazioni differenziali. Esempi: caduta verticale di un peso
(con gravità costante e poi con gravità dipendente dalla posizione),
sale che si scioglie nell'acqua. Il ruolo delle condizioni iniziali
negli esempi presentati. Definizione generale di equazione
differenziale del primo e del secondo ordine: le soluzione dipendono da
uno e due parametri rispettivamente; ruolo delle condizioni iniziali.
Risoluzione delle equazioni del primo ordine a variabili separabili,
con esempi.
- 10/03/2008 dalle 14:30 alle 16:30
lezione.
Soluzioni complesse di un'equazione algebrica di secondo
grado. Equazioni lineari del primo e del secondo ordine a coefficienti
costanti e omogenee: equazione caratteristica e soluzione generale (per
quelle del secondo ordine si distinguono tre casi a seconda le
soluzioni dell'equazione caratteristica siano reali e distinte, reali e
coincidenti, complesse). Soluzione generale delle equazioni lineari
non omogenee a coefficienti costanti conoscendo almeno una soluzione
particolare. Metodi di ricerca delle soluzioni particolari. Esempi.
Motivazioni: decadimento di una sostanza radioattiva, oscillatore
armonico (smorzato e non).
- 12/03/2008 dalle 11:00 alle 13:00
lezione.
Media e scarto quadratico medio di un insieme di dati
numerici. Medie pesate. Media di un campione casuale. Stima
dell'affidabilità di un campione casuale per il calcolo della media
(tramite la disuguaglianza di Chebychev). Definizione di probabilità
per un insieme infinito di eventi elementari (un intervallo di numeri
reali): distribuzione di probabilità, definizione di media e di
varianza di una variabile aleatoria. Alcune distribuzioni di
probabilità significative: uniforme, esponenziale (esempio: decadimento
radioattivo), Gaussiana (motivazione: teorema del limite centrale).