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Chapter 1

1 - D Maximum principle

1.1 Introduction

Let the operator L is defined by

L(u)(x) =−u′′+V (x)u′(x).

The we can consider the Sturm problem

(1.1.1) L(u)(x) = f (x), a < x < b.

Here and below V (x) is C [a,b] function. Given any f ∈C (a,b) we look for clas-

sical solutions to (1.1.1) u ∈C [a,b]∩C 2(a,b).

1.2 Easy and weak maximum principles

Lemma 1.2.1. If u ∈ C [a,b]∩C 2(a,b) is a solution of (1.1.1), then we have the

following properties

a) (EASY MIN principle) if f (x) is continuous POSITIVE function (f (x) > 0 for

any x ∈ (a,b)), then

min(u(a),u(b)) = min
[a,b]

u(x).

b) (EASY MAX principle) if f (x) is continuous NEGATIVE function (f (x) > 0 for

any x ∈ (a,b)), then

max(u(a),u(b)) = max
[a,b]

u(x).
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Proof. We shall prove b) only. If

u(c) = max
[a,b]

u(x)

for some c ∈ (a,b), then in the point c we have

u′(c) = 0,u′′(c) ≤ 0.

Lemma 1.2.2. If u ∈ C [a,b]∩C 2(a,b) is a solution of (1.1.1), then we have the

following properties

a) (WEAK MIN principle) if f (x) is continuous NON-NEGATIVE function (f (x) ≥
0 for any x ∈ (a,b)), then

min(u(a),u(b)) = min
[a,b]

u(x).

b) (WEAK MAX principle) if f (x) is continuous NON-POSITIVE function (f (x) ≤
0 for any x ∈ (a,b)), then

max(u(a),u(b)) = max
[a,b]

u(x).

Remark 1.2.1. A function satisfying L(u)(x) ≤ 0 is called a subsolution. We are

thus asserting a subsolution attains its maximum on the boundary of [a,b]. Sim-

ilarly, if L(u)(x) ≤ 0 holds, u is a supersolution and attains its minimum on the

boundary of [a,b].

Proof. We shall prove only the assertion a). We shall modify u(x) as follows

wε(x) = u(x)−εz(x),

where

z(x) = eRx .

Then wε tends uniformly to u, so min[x1 ,x2] wε(x) tends to min[x1,x2] u(x) for any

interval [x1, x2] ⊆ [a,b].

Choose R > 0 so large that

L(wε) ≥−εz ′′+εV (x)z ′(x) = ε(R2 −V R)eRx > 0

for any x ∈ (a,b). Then the Easy MIN principle implies

min(wε(a), wε(b)) = min
[a,b]

wε(x).

Taking the limit as ε> 0 tends to zero we get

min(u(a),u(b)) = min
[a,b]

u(x).
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1.3 Hopf lemma and strong maximum principle

In order to prepare strong maximum principle we shall start with Hopf Lemma

Lemma 1.3.1. (Hopf ’s Lemma). Assume u ∈C 2(a,b))∩C 1([a,b]), and

Lu = f ≤ 0 in (a,b).

Then we have

a) if

(1.3.2) u(b) > u(x) for all x ∈ (a,b)

then

u′(b) > 0.

b) if

(1.3.3) u(a) > u(x) for all x ∈ (a,b)

then

u′(a) < 0.

Proof. We shall prove only a). Without loss of generality we can assume

a < 0< b.

Then we take

wε(x) = u(x)+εz(x),

where

z(x) = e−Rx2

−e−Rb2

Then z(b) = 0 and

L(z)(x) = e−Rx2 (

−4R2x2 +2R −V xR
)

< 0

for R big enough and x ∈ (b/2,b). In view of (1.3.3) we can find ε> 0 so that

wε(x0) = u(x0) > u(b/2)+εz(b/2) = wε(b/2).

We have also

wε(x0) = u(x0) ≥ u(b)+εz(b) = wε(b).
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Applying the weak maximum principle for wε(x)−wε(b) and the interval [b/2,b]

and we find

max
[b/2,b]

wε−wε(b) ≤ 0

and hence

w ′
ε(b) ≥ 0.

In this way we find

u′(b) ≥−εz ′(b) = εRbe−Rb2

> 0.

Lemma 1.3.2. If u ∈ C [a,b]∩C 2(a,b) is a solution of (1.1.1), then we have the

following properties

a) (STRONG MIN principle) if f (x) is continuous NON-NEGATIVE function (f (x) ≥
0 for any x ∈ (a,b)) and f has minimum in internal point x0 ∈ (a,b), then

is a constant;

b) (STRONG MAX principle) if f (x) is continuous NON-POSITIVE function (f (x) ≤
0 for any x ∈ (a,b))and f has maximum in internal point x0 ∈ (a,b), then

is a constant.

Proof. We shall prove only b). Set

M := max
[a,b]

u

and assuming u is not a constant we can decompose (a,b) as

(a,b) =C ∪V ,

where

C := {x ∈ (a,b) | u(x) = M},

V := {x ∈ (a,b) | u(x) < M}.

Since V is an open set, it is a union of open intervals and we can take such inter-

val (α,β) ⊂ V so that β ∈ C . In this way we can apply Hopf lemma and deduce

u′(β) > 0 and this is a contradiction with the fact that β ∈ (a,b) is maximum

point. The contradiction shows that V is empty.

Problem 1.3.1. If u ∈C [a,b]∩C 2(a,b) is a solution of

(1.3.4) u′′+V (x)u′(x)+W (x)u(x) = f (x), a < x < b,

V (x) and W (x) are C [a,b] functions, W (x) ≤ 0, f (x) is any bounded NON-NEGATIVE

function and if

u(c) = max
[a,b]

u(x)

is POSITIVE for some c ∈ (a,b), then u(x) is a constant.
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Problem 1.3.2. Show that the condition W (x) ≤ 0 in the Problem (1.3.1) can not

be removed.

Problem 1.3.3. Show that the condition u(c) is POSITIVE in the Problem (1.3.1)

can not be removed.

Problem 1.3.4. If u ∈C [a,b]∩C 2(a,b) is a solution of (2.1.1) V (x) and W (x) are

bounded functions, W (x) ≤ 0, f (x) is any bounded NON-NEGATIVE function

and if

u(a) = u(b) = 0,

then u(x) < 0 in (a,b) or u(x) = 0.



8



Chapter 2

Maximum principle in domains

2.1 Introduction

Let Ω⊆R
n be an open domain with boundary ∂Ω.

Let the operator L be defined by

L(u)(x) =−∆u(x)+
n
∑

j=1

V j (x)∂x j
u(x).

Then we can consider the problem

(2.1.1) L(u)(x) = f (x), x ∈Ω.

Here and below V j (x) are C (Ω) function. Given any f ∈C (Ω) we look for classi-

cal solutions to (2.1.1) u ∈C (Ω)∩C 2(Ω).

For simplicity we shall concentrate in this chapter to the case n = 3.

2.2 Easy and weak maximum principles

Lemma 2.2.1. If u ∈ C (Ω)∩C 2(Ω) is a solution of (2.1.1), then we have the fol-

lowing properties

a) (EASY MIN principle) if f (x) is continuous POSITIVE function (f (x) > 0 for

any x ∈Ω), then

min
∂Ω

u = min
Ω

u.

b) (EASY MAX principle) if f (x) is continuous NEGATIVE function (f (x) > 0 for

any x ∈Ω), then

max
∂Ω

u = max
Ω

u(x).

9



10

Proof. We shall prove b) only. If

u(x0) = max
Ω

u(x)

for some x0 ∈Ω, then in the point x0 we have

∇u(x0) = 0,∆u(x0) ≤ 0.

Lemma 2.2.2. If u ∈ C (Ω)∩C 2(Ω) is a solution of (2.1.1), then we have the fol-

lowing properties

a) (WEAK MIN principle) if f (x) is continuous NON-NEGATIVE function (f (x) ≥
0 for any x ∈Ω), then

min
∂Ω

u = min
Ω

u.

b) (WEAK MAX principle) if f (x) is continuous NON-POSITIVE function (f (x) ≤
0 for any x ∈Ω), then

max
∂Ω

u = max
Ω

u.

Remark 2.2.1. A function satisfying L(u)(x) ≤ 0 is called a subsolution. We are

thus asserting a subsolution attains its maximum on the boundary of Ω. Simi-

larly, if L(u)(x) ≤ 0 holds, u is a supersolution and attains its minimum on the

boundary of Ω.

Proof. We shall prove only the assertion a). We shall modify u(x) as follows

wε(x) = u(x)−εz(x),

where

z(x) = eRx1 .

Then wε tends uniformly to u, so minU wε(x) tends to minU u(x) for any open

U ⊆Ω.

Choose R > 0 so large that

L(wε) ≥−ε∆z +ε
n
∑

j=1

V j (x)∂x j
z(x) = ε(R2 −V R)eRx1 > 0

for any x ∈Ω. Then the Easy MIN principle implies

min
∂Ω

wε = min
Ω

wε(x).

Taking the limit as ε> 0 tends to zero we get

min
∂Ω

u = min
Ω

u.
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2.3 Hopf lemma and strong maximum principle

In order to prepare strong maximum principle we shall start with Hopf’s Lemma.

For this we shall assume the boundary of the domain Ω satisfies the ball condi-

tion, i.e.

(H1)

{

for any x0 ∈ ∂Ω there exists a ball B ⊂Ω

so that x0 ∈ ∂B

Lemma 2.3.1. (Hopf ’s Lemma). Assume (H1), u ∈C 2(Ω))∩C 1(Ω), and

Lu = f ≤ 0 in Ω.

If x0 ∈ ∂Ω is such that

(2.3.2) u(x0) > u(x) for all x ∈Ω

then

∂νu(x0) > 0,

where ν(x) is the exterior unit normal at x ∈ ∂Ω.

Proof. Without loss of generality we can assume the ball in the assumption (H1)

is B(0,r ), so that |x0| = r and

ν(x0) = x0/r.

Then we take

wε(x) = u(x)+εz(x),

where

z(x) = e−Rx2

−e−Rr 2

Then z(x0) = 0 and

L(z)(x) = e−Rx2

(

−4R2x2 +2nR −
n
∑

j=1

2V j x j R

)

< 0

for R big enough and x ∈B(0,r )\B(0,r /2). In view of (2.3.2) we can find ε> 0 so

that

wε(x0) = u(x0) > u(x)+εz(x) = wε(x) |x| = r /2.

We have also

wε(x0) = u(x0) ≥ u(x)+εz(x) = wε(x), |x| = r.
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Applyi ng the weak maximum principle for wε(x)−wε(b) and the domain B(0,r )\

B(0,r /2) we find

max
B(0,r )\B(0,r /2)

wε−wε(b) ≤ 0

and hence

∂νwε(x0) ≥ 0.

In this way we find

∂νu(x0) ≥−ε∂νz(x0) = 2εRr e−Rr 2

> 0.

Lemma 2.3.2. If u ∈ C (Ω)∩C 2(Ω) is a solution of (2.1.1), then we have the fol-

lowing properties

a) (STRONG MIN principle) if f (x) is continuous NON-NEGATIVE function (f (x) ≥
0 for any x ∈Ω) and f has minimum in internal point x0 ∈Ω, then it is a

constant;

b) (STRONG MAX principle) if f (x) is continuous NON-POSITIVE function (f (x) ≤
0 for any x ∈Ω)and f has maximum in internal point x0 ∈Ω, then it is a

constant.

Proof. We shall prove only b). Set

M := max
Ω

u

and assuming u is not a constant we can decompose Ω as

Ω=C ∪V ,

where

C := {x ∈Ω | u(x) = M},

V := {x ∈Ω |u(x) < M}.

This means we can find two points P ∈ C and Q ∈ V and connect them with

an arc in Ω. Let R be the closest point on the arc to Q such that u(R) = M and

u(x) < M for all x on the arc between Q and R . Since R is in Ω, we can find y

sufficiently close to R on the arc QR so that

y ∈V , d(y,R) < d(y,∂Ω).

Then we can define the largest open ball B(y,r ) ⊂V so that ∂B(y,r ) has a point

x∗ ∈C . In this way we can apply for B(y,r ) the Hopf lemma and deduce ∂νu(x∗) >
0 and this is a contradiction with the fact u has a maximum in x∗. The contra-

diction shows that V is empty.
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2.4 Maximum principle for Laplace operator with Coulomb

potential

A natural question is to ask if the linear operator

Pω =−∆−
1

|x|
+ω,

satisfies the weak maximum principle in the sense that

(2.4.3) u ∈ H2, Pω(u) = g ≥ 0,=⇒ u ≥ 0.

The above maximum principle is incomplete, since additional behavior of u

and g at infinity has to be imposed, namely, we shall suppose that

(2.4.4) (1+|x|)−M e
p
ω|x|u ∈ H2, (1+|x|)−M e

p
ω|x|g ∈ H2,

for some real number M > 0.

Note, that the energy levels of the hydrogen atom are described by the eigen-

values ωk > 0 of the eigenvalue problem

∆ek(x)+
ek (x)

|x|
=ωk ek(x), ek(x) ∈ H2.

One has

ωk =
1

4(k +1)2
, k = 0,1, ...

and e0(x) = ce−|x|/2,c > 0. The first observation is that all eigenfunctions ek (x),

k ≥ 1, are expressed in terms of Laguerre polynomials of |x|, having exactly k

roots. This fact guarantees that the maximum principle is not valid for ω=ωk .

More precisely, we can show the following.

Lemma 2.4.1. The weak maximum principle 2.4.3 is valid if an only if

ω≥
1

4
.

2.5 Appendix: Maximum principle for subharmonic

functions.

2.5.1 Mean value theorem. Harmonic functions

The Gauss Green identity
∫

Ω

(∆uv −u∆v)d y =
∫

∂Ω
(∂N uv −u∂N v)dS y ,
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enables one to take v(y) = 1/|x − y |, where x ∈Ω and modify the domain Ω as

follows

Ωδ = {y : y ∈Ω, |y −x| ≥ δ}

provided δ> 0 is small.

Taking the limit as δ→ 0 we get

Lemma 2.5.1. (integral representation) If u ∈C 2(Rn) then

u(x) =
1

4π

∫

∂Ω

(

∂N u

|x − y |
−u∂N

(

1

|x − y |

))

dS y

−
1

4π

∫

Ω

∆u

|x − y |
d y.

In the particular case Ω= {|x −x0| < R} we get

Lemma 2.5.2. (Gauss mean value theorem) If u ∈C 2 is a harmonic in {|x−x0| <
R} , then

u(x0) =
1

4πR2

∫

|x−x0 |=R
u(y)dS y .

Problem 2.5.1. (Strong Maximum principle) Let u ∈C (Ω)∩C 2(Ω) be a solution

of

(2.5.5) ∆u = 0, x ∈Ω.

If

u(c) = max
Ω

u(x)

for some c ∈Ω, then u(x) is a constant.

2.5.2 Maximum principle for subharmonic functions

Let Ω be an open subset of Rn and u ∈ L1
l oc

(Ω). Set

(2.5.6) M(u)(x,R) =
1

µ(|y | ≤ R)

∫

|y |≤R
u(x + y)d y

and

(2.5.7) MS(u)(x,R) =
1

µ(Sn−1)

∫

|ω|=1
u(x +Rω)dω

Since µ(|y | ≤ R) =µ(Sn−1)Rn/n, we have the relation

∫R

0
MS(u)(x,r )r n−1dr =

Rn

n
M(u)(x,R).
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Definition 2.5.1. A function u ∈ L1
l oc

is called subharmonic if u(x) ≤ M(u)(x,R)

for any R > 0 such that {y +x; |y | ≤ R} ⊂Ω and for a.e. in x ∈Ω.

Problem 2.5.2. If u ∈C∞(Ω) then u is subharmonic if and only if ∆u ≥ 0.

Hint. If ∆u ≥ 0, then Gauss-Green gives

0 ≤
∫

|y | ≤ R∆u(x + y)d y = cRn−1 d

dR
MS(u)(x,R),

so MS (u)(x,R) ≥ MS (u)(x,0) = u(x) and

M(u)(x,R) = nR−n

∫R

0
MS (u)(x,r )r n−1dr ≥ u(x)nR−n

∫R

0
r n−1dr = u(x).

Problem 2.5.3. If u ∈ L1
l oc

(Ω) then u is subharmonic if and only if ∆u ≥ 0.

Problem 2.5.4. If u ∈C (Ω) is subharmonic, then the condition u(c) = max
Ω

u(x)

for some c ∈Ω implies u = cost .

The function

(2.5.8) M(u)(x) = sup
R>0

M(u)(x,R) = sup
R>0

1

µ(|y | ≤ R)

∫

|y |≤R
u(x + y)d y

is called Hardy - Littlewood MAXIMAL function.

Problem 2.5.5. Show that there exists a constant C > 0 so that for any u ∈C∞
0 (Rn)

‖M(u)‖L2 ≤C‖u‖L2.



16



Chapter 3

Fundamental solution of Laplace

operator in R
n and applications

3.1 Laplace equation in R
n

Among the most important of all partial differential equations are undoubtedly

Laplace’s equation

(3.1.1) ∆u = 0

and Poisson’s equation

(3.1.2) −∆u = f .

In both (3.1.1) and (3.1.2) , x ∈Ω and the unknown is u : Ω̄→ R,u = u(x) where

Ω ⊂ R
n is a given open set. In (3.1.2) the function f : U → R is also given. Re-

member that the Laplacian of u is

∆u =
n
∑

i=1

uxi xi
.

Definition 3.1.1. A C 2 function u satisfying (3.1.1) is called a harmonic func-

tion.

3.2 Decomposition of the Laplace operatore into ra-

dial and angular part

Start with the relation

(3.2.3) |x|2∆= L2 + (n −2)L+∆Sn−1 ,

17
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where

(3.2.4) ∆Sn−1 =
n
∑

j ,k=1

Ω
2
j k ,Ω j k = x j∂k −xk∂ j

and

L = r∂r =
n
∑

j=1

x j∂ j .

Per n = 2 we have

∆S1 = x1∂2 −x2∂1.

Introduce polar coordinates

x1 = r cosφ, x2 = r sinφ.

Then

∂1 =
x1

r
∂r −

x2

x2
1 +x2

2

∂φ = cosφ∂r −
sinφ

r
∂φ

and

∂2 =
x2

r
∂r +

x1

x2
1 +x2

2

∂φ = sinφ∂r +
cosφ

r
∂φ.

So we get

Ω12 = ∂φ

and we find

∆S1 = ∂2
φ.

For n = 3 we have

x1 = r cosφsinθ, x2 = r sinφsinθ, x3 = cosθ.

Then

∂1 =
x1

r
∂r −

x2

x2
1 +x2

2

∂φ−
x3x1

r 2(x2
1 +x2

2)1/2
∂θ =

= cosφsinθ∂r −
sinφ

r sinθ
∂φ−

cosθ

r
∂θ.

∂2 =
x2

r
∂r +

x1

x2
1 +x2

2

∂φ−
x3x2

r 2(x2
1 +x2

2)1/2
∂θ

and

∂3 =
x3

r
∂r +

(x2
1 +x2

2)1/2

r 2
∂θ

Hence,

Ω12 = ∂φ, Ω13 = sinφcotθ∂φ+cosφ∂θ, Ω13 =−cosφcotθ∂φ+ sinφ∂θ.
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Taking the sum of squares, we get

∆S2 = ∂2
θ+

cosθ

sinθ
∂θ +

1

sin2θ
∂2
φ.

We have the following commutator properties

Problem 3.2.1. If [A,B] = AB −B A is the commutator of two operators then we

have

[∂ j , xk ] = δ j k,

[∆,∂ j ] = 0,

[∆, x j ] = 2∂ j ,

[∆,Ω j k ] = 0,

[∆,L] = 2∆.

3.2.1 Spherical harmonics

If Y (ω) is an eigenfunction of ∆Sn−1 , one can introduce

u(x) = |x|M Y

(

x

|x|

)

and see that u(x) is harmonic, i.e. ∆u(x) = 0 if and only if

∆Sn−1Y =−M(M +n −2)Y .

One can take u(x) to be a harmonic homogeneous POLYNOMIAL of order M

(M is a non negative integer) and see that Y (x/|x|) = |x|−M u(x) is an eigenfunc-

tion of ∆Sn−1 with eigenvalue M(M+n−2). The application of Liuoville theorem

shows that M is only integer and u(x) has to be a homogeneous polynomial.
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3.3 Laplace equation in R
n and its fundamental so-

lution

One good strategy for investigating any partial differential equation is first to

identify some explicit solutions and then, provided the PDE is linear, to assem-

ble more complicated solutions out of the specific ones previously noted. Fur-

thermore, in looking for explicit solutions it is often wise to restrict attention to

classes of functions with certain symmetry properties. since Laplace’s equation

is invariant under rotations, it consequently seems advisable to search first for

radial solutions, that is, functions of r = |x| Let us therefore attempt to find a

solution u of Laplace’s equation in Ω=R
n , having the form

u(x) = v(r )

where r = |x| =
(

x2
1 +·· ·+x2

n

)1/2
and v is to be selected (if possible) so that ∆u =

0 holds. First note for i = 1, . . . ,n that

∂r

∂xi
=

1

2

(

x2
1 +·· ·+x2

n

)−1/2
2xi =

xi

r
(x 6= 0)

We thus have

uxi
= v ′(r )

xi

r
,uxi xi

= v ′′(r )
x2

i

r 2
+v ′(r )

(

1

r
−

x2
i

r 3

)

.

for i = 1, . . . ,n, and so

∆u = v ′′(r )+
n −1

r
v ′(r )

Hence ∆u = 0 if and only if

(3.3.5) v ′′+
n −1

r
v ′ = 0.

If v ′ 6= 0, we deduce

log
(

v ′)′ =
v ′′

v ′ =
1−n

r

and hence v ′(r ) = a
r n−1 for some constant a. Consequently if r > 0, we have

v(r )=
{

b logr +c (n = 2)
b

r n−2 +c (n ≥ 3)

where b and c are constants. These considerations motivate the following.
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Definition 3.3.1. The function

(3.3.6) E (x) :=
{ − 1

2π
log |x| (n = 2)

1
n(n−2)|B |

1
|x|n−2 (n ≥ 3)

defined for x ∈R
n , x 6= 0, is the fundamental solution of Laplace’s equation.

Remark 3.3.1. Recall that the volume of the ball B(0,R) in R
n is

|B(0,R)| =
∫R

0
ρn−1dρµ(Sn−1) =

Rnµ(Sn−1)

n

where µ(Sn−1) is the surface area of the unit sphere in R
n .

The reason for the particular choices of the constants in (3.3.6) will be ap-

parent in a moment.

We will sometimes slightly abuse notation and write Φ(x) = Φ(|x|) to em-

phasize that the fundamental solution is radial. Observe also that we have the

estimates

(3.3.7) |DΦ(x)| ≤
C

|x|n−1
,
∣

∣D2
Φ(x)

∣

∣≤
C

|x|n
(x 6= 0)

for some constant C > 0

3.4 Poisson equation

By construction the function x 7→ E (x) is harmonic for x 6= 0. If we shift the

origin to a new point y, the PDE (1) is unchanged; and so x 7→ E (x − y) is also

harmonic as a function of x, x 6= y. Let us now take f : Rn →R and note that the

mapping x 7→ E (x − y) f (y)(x 6= y) is harmonic for each point y ∈ R
n , and thus

so is the sum of finitely many such expressions built for different points y . This

reasoning might suggest that the convolution

u(x) =
∫

Rn E (x − y) f (y)d y

=
{

− 1
2π

∫

R2 log(|x − y |) f (y)d y (n = 2)
1

n(n−2)|B |
∫

Rn
f (y)

|x−y |n−2 d y (n ≥ 3)
(3.4.8)

will solve Laplace equation (3.1.1). However, this is wrong: we cannot just com-

pute

∆u(x) =
∫

Rn
∆x E (x − y) f (y)d y = 0
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Indeed, as intimated by estimate (3.3.7) D2
Φ(x − y) is not summable near the

singularity at y = x, and so the differentiation under the integral sign above is

unjustified (and incorrect). We must proceed more carefully in calculating ∆u

Let us for simplicity now assume f ∈ C 2
c (Rn) ; that is, f is twice continuously

differentiable, with compact support.

Theorem 3.4.1. (Solving Poisson’s equation). Define u by (3.4.8) . Then

(i) u ∈C 2 (Rn)

and

(ii) −∆u = f in R
n We consequently see that (3.4.8) provides us with a for-

mula for a solution of Poisson’s equation (3.1.2) in R
n .

Proof. We have

u(x) =
∫

Rn
E (x − y) f (y)d y =

∫

Rn
E (y) f (x − y)d y

hence

u (x +hei )−u(x)

h
=

∫

Rn
E (y)

[

f
(

x +hei − y
)

− f (x − y)

h

]

d y

where h 6= 0 and ei = (0, . . . ,1, . . . ,0), the 1 in the i th -slot. But

f
(

x +hei − y
)

− f (x − y)

h
→

∂ f

∂xi
(x − y)

uniformly on R
n as h → 0, and thus

∂u

∂xi
(x) =

∫

Rn
E (y)

∂ f

∂xi
(x − y)d y (i = 1, . . . ,n)

Similarly

(3.4.9)
∂2u

∂xi∂x j
(x) =

∫

Kn
E (y)

∂2 f

∂xi∂x j
(x − y)d y (i , j = 1, . . . ,n)

As the expression on the right hand side of eq.PE10 is continuous in the variable

x, we see u ∈C 2 (Rn)

Since E blows up at 0, we will need for subsequent calculations to isolate

this singularity inside a small ball. So fix ε> 0. Then

∆u(x) =
∫

B(0,z)
E (y)∆x f (x − y)d y +

∫

Rm−B(0,t)
E (y)∆x f (x − y)d y

=: Iε+ Jε
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Now

(3.4.10) |Iε| ≤C
∥

∥D2 f
∥

∥

L∞(R−)

∫

B(0,ε)
|E (y)|d y ≤

{

Cε2| logǫ| (n = 2)

Cε2 (n ≥ 3)

An integration by parts yields

(3.4.11)

Jc =
∫

Rn−B(0,c)
E (y)∆y f (x − y)d y

=−
∫

R−−B(0,z)
DE (y) ·D y f (x − y)d y

+
∫

∂B(0,ε)
E (y)

∂ f

∂ν
(x − y)dS(y)

=:Kε+Lε

ν denoting the inward pointing unit normal along ∂B(0,ε). We readily check

(3.4.12) |Lε| ≤ ‖D f ‖L∞(Kn)

∫

∂B(0,ε)
|E (y)|dS(y) ≤

{

Cε| logε| (n = 2)

Cε (n ≥ 3)

We continue by integrating by parts once again in the term Kε, to discover

Kε =
∫

R−−B(0,ε)
∆E (y) f (x − y)d y −

∫

∂B(0,ε)

∂E

∂ν
(y) f (x − y)dS(y)

=−
∫

∂B(0,ε)

∂E

∂ν
(y) f (x − y)dS(y)

since E is harmonic away from the origin. Now DE (y) = −1
n|B |

y

y ′ (y 6= 0) on ∂B(0,ε).

since n|B |εn−1 is the surface area of the sphere ∂B(0,ε), we have

(3.4.13) Kε =−
1

n|B |εn−1

∫

∂B(0,ε)
f (x − y)dS(y)

=− f∂B(z,t) f (y)dS(y) →− f (x) as ε→ 0

(Remember that a slash through an integral denotes an average.) Combining

now (3.4.10)-(3.4.13)and letting ε→ 0, we find −∆u(x) = f (x), as asserted.

3.5 Weak solutions of Poisson equation

Typical example of application of the notion of distribution is the definition of

a weak solution of the Laplace equation.



24

Definition 3.5.1. If u, f are distributions in R
n , then u is a weak solution of the

equation

(3.5.14) −∆u = f , ∆= ∂2
1 +·· ·∂2

n ,

if for any test function ϕ(x) we have

< u,∆ϕ>=−< f ,ϕ> .

3.5.1 Case n = 3

One can verify that

∆

(

1

|x|

)

=−4πδ

in the sense of distributions in R
3. Indeed taking any test function ϕ we apply

Gauss - Green formula for the domain {|x| ≥ ε} and using the fact that

∆

(

1

|x|

)

= 0 |x| 6= 0,

we find

∫

|x|>ε

(

∆

(

1

|x|

))

ϕ(x)d x −
∫

|x|>ε

(

1

|x|

)

∆ϕ(x)d x =

−
∫

|x|=ε
∂r

(

1

|x|

)

ϕ(x)dSx +
∫

|x|=ε

(

1

|x|

)

∂rϕ(x)dSx ,

where here and below

∂r =
n
∑

j=1

x j

|x|
∂ j .

Taking into account the fact that

∂r

(

1

|x|

)

=−
1

|x|2

and introducing spherical coordinate x = εω, |ω| = 1, we find

∫

|x|=ε
∂r

(

1

|x|

)

ϕ(x)dSx =−
∫

|ω|=1
ϕ(εω)dSω,

∫

|x|=ε

(

1

|x|

)

∂rϕ(x)dSx = ε

∫

|ω|=1
∂rϕ(εω)dω
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so taking the limit ε→ 0, we get

lim
ε→0

∫

|x|=ε
∂r

(

1

|x|

)

ϕ(x)dSx =−4πϕ(0),

lim
ε→0

∫

|x|=ε

(

1

|x|

)

∂rϕ(x)dSx = 0,

so we arrive at

−
∫

R3

(

1

|x|

)

∆ϕ(x)d x = 4πϕ(0)

and the identity

(3.5.15) −
1

4π
∆

(

1

|x|

)

= δ.

3.5.2 Case n ≥ 3.

The function

E (x) ∈C∞(Rn \ 0)

satisfying

−∆E = δ

in the sense of distributions is called fundamental solutions of the Laplace op-

erator and they enable one to represent the solution of the Poisson equation

−∆u = f , f ∈C∞
0 ,

as follows

u(x) =
∫

Rn
E (x − y) f (y)d y.

To verify that

u(x) = c

∫

Rn

f (y)

|x − y |n−2
d y

is a weak solution of

∆u = f ,

we consider

uε(x) = c

∫

|x−y |≥ε

f (y)

|x − y |n−2
d y = c

∫

|y |≥ε

f (x − y)

|y |n−2
d y

= c

∫∞

ε

∫

|ω|=1

f (x − rω)

r n−2
r n−1dr.
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One can easily derive that if f ∈ C 2 and has a compact support, then uε ∈ C 2

and

∆uε(x) = c

∫

|y |≥ε

∆y f (x − y)

|y |n−2
d y

Applying the Gauss - Green formula, we find

∆uε(x) = c

∫

|y |≥ε
f (x − y)∆

(

1

|y |n−2

)

d y+

+c

∫

|y |=ε

∂N f (x − y)

|y |n−2
d y −c

∫

|y |=ε
f (x − y)∂N

(

1

|y |n−2

)

d y,

where ∂N =−
∑

j y j /|y |∂ j =−∂r , so we get

∆uε(x) = c

∫

|ω|=1

∂r f (x −εω)

εn−2
εn−1dω− (n −2)c

∫

|ω|=1
f (x −εω)dω

so taking the limit as ε→ 0, we obtain

∆u(x) =−(n −2)cµ(Sn−1) f (x).

So

c =−
1

(n −2)µ(Sn−1)
.

3.6 Mean-value formulas.

Consider now an open set Ω⊂R
n and suppose u is a harmonic function within

Ω. We next derive the important mean-value formulas, which declare that u(x)

equals both the average of u over the sphere ∂B(x,r ) and the average of u over

the entire ball B(x,r ), provided B(x,r ) ⊂ Ω. These implicit formulas involving

u generate a remarkable number of consequences, as we will momentarily see.

Theorem 3.6.1. (Mean-value formulas for Laplace’s equation). If u ∈ C 2(Ω) is

harmonic, then

(3.6.16) u(x) = -

∫

∂B(x,r )
udS = -

∫

B(x,r )
ud y

for each ball B(x,r ) ⊂Ω.

Proof. Set

φ(r ) := -

∫

∂B(x,r )
u(y)dS(y) = -

∫

∂B(0,1)
u(x + r z)dS(z)
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Then

φ′(r ) = -

∫

∂B(0,1)
Du(x + r z) · zdS(z)

and consequently, using Green’s formulas we compute

φ′(r ) = -

∫

∂B(z,r )
Du(y) ·

y −x

r
dS(y)

= -

∫

∂B(x,r )

∂u

∂ν
dS(y)

=
r

n
-

∫

B(x,r )
∆u(y)d y = 0

Hence φ is constant, and so

φ(r ) = lim
t→0

φ(t ) = lim
t→0

-

∫

∂B(x,t)
u(y)dS(y) = u(x)

Observe next that our employing polar coordinates, gives
∫

B(x,r )
ud y =

∫r

0

(∫

∂B(x,s)
udS

)

d s

= u(x)

∫r

0
nα(n)sn−1d s =α(n)r nu(x)

Theorem 3.6.2. THEOREM 3 (Converse to mean-value property). If u ∈ C 2(Ω)

satisfies

u(x) = -

∫

udS

for each ball B(x,r ) ⊂U , then u is harmonic.

Proof. Proof. If ∆u 6= 0, there exists some ball B(x,r ) ⊂Ω such that, say, ∆u > 0

within B(x,r ). But then for φ as above,

0 =φ′(r ) =
r

n
-

∫

B(x,r )
∆u(y)d y > 0

a contradiction.

3.7 Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic func-

tions, all based upon the mean-value formulas. Assume for the following that

Ω⊂R
n is open and bounded.
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3.7.1 Strong maximum principle, uniqueness.

Theorem 3.7.1. (Strong maximum principle). Suppose u ∈C 2(Ω)∩C (O) is har-

monic within Ω.

(i) Then

max
Ω

u = max
∂Ω

u

(ii) Furthermore, if Ω is connected and there exists a point x0 ∈Ω such that

u (x0) = max
Ω

u

then u is constant within Ω. Assertion (i) is the marimum principle for Laplace’s

equation and (ii) is the strong maximum principle. Replacing u by −u, we re-

cover also similar assertions with "min" replacing "max".

Proof. Suppose there exists a point x0 ∈Ω with u (x0) = M := maxΩ u Then for

0< r < dist(x0,∂Ω) , the mean-value property asserts

M = u (x0) = -

∫

B(x0 ,r )
ud y ≤ M

As equality holds only if u ≡ M within B (x0,r ) , we see u(y) = M for all y ∈
B(x,r ). Hence the set {x ∈Ω | u(x) = M} is both open and relatively closed in Ω,

and thus equals Ω if Ω is connected. This proves assertion (ii), from which (i)

follows.

Remark 3.7.1. The strong maximum principle asserts in particular that if Ω is

connected and u ∈C 2(Ω)∩C (Ω̄) satisfies

{

∆u = 0 in Ω

u = g on ∂Ω

where g ≥ 0, then u is positive everywhere in Ω if g is positive somewhere on ∂Ω.

An important application of the maximum principle is establishing the unique-

ness of solutions to certain boundary-value problems for Poisson’s equation.

Theorem 3.7.2. (Uniqueness). Let g ∈C (∂Ω), f ∈C (Ω). Then there exists at most

one solution u ∈C 2(Ω)∩C (Ω̄) of the boundary-value problem

(3.7.17)

{

−∆u = f in U

u = g on ∂U

Proof. If u and ũ both satisfy (3.7.17) one can apply apply Theorem 3.7.1 to the

harmonic functions w :=±(u − ũ)
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3.7.2 Regularity

Now we prove that if u ∈ C 2 is harmonic, then necessarily u ∈ C∞. Thus har-

monic functions are automatically infinitely differentiable. This sort of asser-

tion is called a regularity theorem. The interesting point is that the algebraic

structure of Laplace’s equation ∆u =
∑n

i=1
uxi xi

= 0 leads to the analytic deduc-

tion that all the partial derivatives of u exist, even those which do not appear in

the PDE.

Theorem 3.7.3. THEOREM 6 (Smoothness). If u E C (U ) satisfies the mean-tualue

property (16) for each ball B(x,r ) ⊂U , then

u ∈C∞(U )

Note carefully that u may not be smooth, or even continuous, up to ∂U .

Proof. Proof. Let η be a standard mollifier, as described in $C.4, and recall that

η is a radial function. Set uǫ := ηc ∗u in Uε = {x ∈U | dist(x,∂U ) > ε} As shown

in $C.4,ur ∈ C∞ (Ue) We will prove u is smooth by demonstrating that in fact

u ≡ u f on Uε Indeed if x ∈ Ue, then Thus uǫ ≡ u in Uε, and so u ∈ C∞ (Ue) for

each ǫ> 0.

3.8 Liouville’s Theorem.

Next we see that there are no nontrivial bounded harmonic functions on all of

Rn

THEOREM 8 (Liouville’s Theorem). Suppose u : R" → R is harmonic and

bounded. Then u is constant. Proof. Fix x0 ∈R
n ,r > 0, and apply Theorem 7 on

B (x0,r ) :

|Du (x0)| ≤
C1

r n+1
‖u‖L1(B(z0,r ))

≤
C1α(n)

r
‖u‖L∞(Rn ) → 0

as r → ∞. Thus Du ≡ 0, and so u is constant. THEOREM 9 (Representation

formula). Let f ∈C 2
c (Rn) ,n ≥ 3. Then any bounded solution of

−∆u = f in Rn

has the form

u(x) =
∫

R0
Φ(x − y) f (y)d y +C

(

x ∈Rn
)

for some constant C .
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3.9 Liouville theorem for harmonic functions inR
n,n ≥

3.

The Laplace equation

∆u = f , f ∈C∞
0 ,

has a solution

u(x) = c

∫

Rn

f (y)

|x − y |n−2
d y

provided n ≥ 3 and

c =−
1

(n −2)µ(Sn−1)
.

We shall use this fundamental solution to derive the Liouville theorem. For

simplicity we consider only the case n = 3.

Lemma 3.9.1. (Liouville) If u ∈C 2(Rn) is a harmonic function, i.e. ∆u = 0 in R
n ,

then the condition

max
|x|=R

|u(x)| ≤C

implies u = cost .

Idea of Proof: Take cut off function ϕ(s) such that ϕ(s) = 1 for |s| ≤ 1 and

ϕ(s)= 0 for |s| ≥ 2. Then setting ϕR (x) =ϕ(|x|/R) we have

∆(ϕR u) = 2∇(u∇ϕR)−u∆ϕR ,

since u is harmonic. Applying the formula for the fundamental solution, we get

ϕR (x)u(x) =−
1

4π

∫

R3

2∇(u(y)∇ϕR(y))−u(y)∆ϕR (y)

|x − y |
d y =

=−
1

4π

∫

R3

2(u(y)(x − y)∇ϕR (y))

|x − y |3
d y +

1

4π

∫

R3

u(y)∆ϕR (y)

|x − y |
d y.

Take |x| ∼ R/2. Then |y | ∼ R on the support of ∇ϕR(y). So one can show that

|∇u(x)| ≤
C

|x|
provided |x| ∼ R/2. Since ∇u(x) is also harmonic, applying the maximum prin-

ciple of Lemma 3.9.1 we complete the proof that ∇u = 0.

Problem 3.9.1. (Liouville) If u ∈ C 2(Rn) is a harmonic function, i.e. ∆u = 0 in

R
n , then the condition

max
|x|=R

|u(x)| ≤C (1+|x|)M

implies u(x) is a polynomial.



Chapter 4

Harmonic functions in domains

(ball and semispace) and conformal

transform.

First step in this section is to make change of variables in the Laplace operator.

Indeed, let us take

y → x = F (y)

invertible change of variables in R
n .

Our goal is the compute

∆y u(F (y)).

For the purpose we start with the representation

u(F (y)) =
1

(2π)n

∫

e i<F (y).ξ>û(ξ)dξ.

Since

∆e i<F (y).ξ> =
(

−
∑

k

< ∂k F (y),ξ>< ∂k F (y),ξ>+i <∆F (y),ξ>
)

e i<F (y).ξ>,

we can set

g j m(y) =
∑

k

∂k F j (y)∂k Fm(y)

and obtain

∆e i<F (y).ξ> =
(

−
∑

j m

g j m(y)ξ j ξm + i <∆F (y),ξ>
)

e i<F (y).ξ>.

31
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Using iξk û(ξ) = ˆ∂k u(ξ), we

∆y u(F (y)) =
∑

j m

g j m(y)(∂ j∂mu)(F (y))+<∆F (y), (∇u)(F (y)) > .

In the particular case

F (y) =
y

|y |2

one can verify that we have

(

g j m
)n

j ,m=1
=

I

|y |4
, ∆F (y) =

2y

|y |4
.

Given any u(x) ∈C∞
0 we define

(4.0.1) u∗(y) = |y |−1u(y/|y |2)

Then we can assume n = 3 and derive

(4.0.2) ∆y u∗(y) = |y |−5
∆x u(y/|y |2).

Idea of Proof: Introduce polar coordinates R = |x|, r = |y | and ω = x/|x| =
y/|y |.Then the transform is given by

R =
1

r
.

We have

∆x = ∂2
R +

2

R
∂R +

1

R2
∆ω

∆y = ∂2
r +

2

r
∂r +

1

r 2
∆ω

Note that

R∂R =−r∂r ,

(

∂2
r +

2

r
∂r

)

f

r
=

1

r
∂2

r f ,

so we obtain
(

∂2
r +

2

r
∂r

)

f

r
= R(R2∂R )2 f = R5

(

∂2
R +

2

R
∂R

)

f .

Problem 4.0.1. How can be generalized the conformal low (4.0.2) for dimensions

n ≥ 3.?
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Turning to the Dirichlet problem, we study the boundary value problem

∆u = 0, x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

For the purpose we look for

G(x, y) =
1

4π

(

1

|x − y |
−h(x, y)

)

so that h(x, y) is harmonic with respect to y and on the boundary ∂Ω we have

h(x, y) =
1

|x − y |
, y ∈ ∂Ω.

The Gauss Green identity
∫

Ω

(∆uv −u∆v)d y =
∫

∂Ω
(∂N uv −u∂N v)dS y ,

enables one to take v(y) = 1/|x − y |, where x ∈Ω and modify the domain Ω as

follows

Ωδ = {y : y ∈Ω, |y −x| ≥ δ}

provided δ> 0 is small.

As in Lemma 2.5.1 taking the limit as δ→ 0 we get

u(x) =
1

4π

∫

∂Ω

(

∂N u

|x − y |
−u∂N

(

1

|x − y |

))

dS y

−
1

4π

∫

Ω

∆u

|x − y |
d y.

If we take v(y) = h(x, y) we can use the fact that h(x, y) is more regular than

1/|x − y | and find

0 =
1

4π

∫

∂Ω

(

h(x, y)∂N u −u∂N h
)

dS y

−
1

4π

∫

Ω

h(x, y)∆ud y.

The above relations imply

u(x) =
∫

∂Ω

(

G(x, y)∂N u −u∂N G(x, y)
)

dS y

−
∫

Ω

G(x, y)∆ud y.

Since G(x, y) = 0 on the boundary and since u is harmonic, we get
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Lemma 4.0.1. (Green function) Let u ∈ C 2(Ω) be a harmonic function in the

domain Ω, i.e. ∆u = 0 in Ω. If

G(x, y) =
1

4π

(

1

|x − y |
−h(x, y)

)

where h(x, y) is harmonic with respect to y and on the boundary ∂Ω we have

h(x, y) =
1

|x − y |
, y ∈ ∂Ω,

then the solution to the problem

∆u = 0, x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

is given by

u(x) =−
∫

∂Ω

(

f (y)∂N G(x, y)
)

dS y

Example 4.0.1. Let Ω = {x, |x| < 1}. To construct h(x, y) we consider the exterior

of the domain Ωext = {x, |x| > 1} and use the conformal map

y ∈Ωext →
y

|y |2
∈Ω.

Given any x, |x| < 1 the function

1

|x − y |

is harmonic in Ωext so following (4.0.1) we see that

h(x, y) =
1

|y ||x − y/|y |2|

is harmonic inΩ. Introduce polar coordinates y = rω. Then Lemma 4.0.1 implies

that

u(x) =−
∫

|ω|=1

(

f (ω)∂r G(x,rω)
)

dω

Since

4πG(x,rω) =
1

|x − rω|
−

1

|r x −ω|
and since

∂r
1

|x − rω|
= −

< rω−x,ω>
|x − rω|3
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∂r
1

|r x −ω|
= −

< r x −ω, x >
|r x −ω|3

we obtain taking r = 1

4π∂r G(x,rω) =−
1−|x|2

|x −ω|3
.

Finally, we can write

u(x) =
1−|x|2

4π

∫

|ω|=1

(

f (ω)
dω

|x −ω|3

)

.

and this is the unique solution to the Dirichlet problem

∆u = 0, x ∈Ω

lim
x→∞

u(x) = 0,

u(x) = f (x), x ∈ ∂Ω.

To show that this is a solution really, we take into account the relation

(2Lx +1)

(

1

|x − y |

)

=
(

1−|x|2

|x − y |3

)

, |y | = 1, |x| 6= 1, Lx = x.∇x

as well as the commutator relations

[∆,L] = 2∆.

So from

∆x

(

1

|x − y |

)

= 0

we can derive

∆x

(

(2Lx +1)

(

1

|x − y |

))

=∆x

(

1−|x|2

|x − y |3

)

= 0

so

u(x) =
1−|x|2

4π

∫

|ω|=1

(

f (ω)
dω

|x −ω|3

)

is a harmonic function!!!

Example 4.0.2. Let Ω = {x, |x| > 1}. To construct h(x, y) we consider the interior

of the domain Ωi nt = {x, |x| < 1} and use the conformal map

y ∈Ωext →
y

|y |2
∈Ω.
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Given any x, |x| > 1 the function

1

|x − y |

is harmonic in Ωi nt so following (4.0.1) we see that

h(x, y) =
1

|y ||x − y/|y |2|

is harmonic with respect to y in Ω. Introduce polar coordinates y = rω. Then

Lemma 4.0.1 implies that

u(x) =−
∫

|ω|=1

(

f (ω)∂r G(x,rω)
)

dω

Since

4πG(x,rω) =
1

|x − rω|
−

1

|r x −ω|
and since

∂r
1

|x − rω|
= −

< rω−x,ω>
|x − rω|3

∂r
1

|r x −ω|
= −

< r x −ω, x >
|r x −ω|3

we obtain taking r = 1

4π∂r G(x,rω) =−
1−|x|2

|x −ω|3
.

Finally, we can write

u(x) =
1−|x|2

4π

∫

|ω|=1

(

f (ω)
dω

|x −ω|3

)

.

and this is the unique solution to the Dirichlet problem

∆u = 0, x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

Problem 4.0.2. Let u(x) be a solution to

∆u = 0, |x| > 1

lim
x→∞

u(x) = 0,

u(x) = f (x), |x| = 1.

Show that

|u(x)| ≤
C

1+|x|
max
|x|=1

| f (x)|.
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Problem 4.0.3. Construct the Green function for the domains:

a){x, |x| < R},

b){x, |x| > R},

Answer: a)

u(x) =
R2 −|x|2

4πR

∫

|y |=R

(

f (y)
dS y

|x − y |3

)

.

Problem 4.0.4. Let u(x) be a solution to

∆u = 0, |x| > R

u(x) = f (x), |x| = R .

Show that

|u(x)| ≤
C

1+|x|
max
|x|=R

| f (x)|.

Problem 4.0.5. Construct the Green function for the domain {x ∈R
3, x3 > 0}.

Answer:

u(x) =
x3

2π

∫

R2

(

f (y ′)
d y ′

(|x′− y ′|2 +x2
3)3/2

)

, x′ = (x1, x2).
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Chapter 5

Applications: a priori estimates

5.0.1 Laplace equation in the space R
n.

The equation

∆u(x) = f (x), x ∈R
n

has a unique solution provided

lim
x→∞

u(x) = 0

Taking f (x) ∈ C (Rn) with compact support one can represent the unique

solution as follows (for simplicity we take n = 3.)

u(x) =−
1

4π

∫

K

f (y)

|x − y |
d y,

where here and below K denotes the support of f .

Problem 5.0.1. (smoothing property) If f (x) ∈ C (Rn) has a compact support,

then u(x) ∈C 1(Rn)

Problem 5.0.2. (smoothing property) If f (x) ∈ L∞(Rn) has a compact support,

then u(x) ∈C 1(Rn)

Problem 5.0.3. (smoothing property) If f (x) ∈ C k(Rn) has a compact support,

then u(x) ∈C k+1(Rn)

Problem 5.0.4. (convergence) If fk (x) have a fixed compact support K and tend

uniformly in C k(K ), then

uk(x) =−
1

4π

∫

K

fk (y)

|x − y |
d y,

converge uniformly in C k+1(Rn).

39
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Problem 5.0.5. (smoothing and decay property) If f (x) ∈ C (Rn) has a compact

support, then u(x) ∈C 1(Rn) and

|u(x)| ≤
C‖ f ‖C (K )

1+|x|
.

Problem 5.0.6. ( decay property for f without compact support) If f (x) ∈C (Rn)

has the property

‖(1+|x|)3+ε f ‖L∞(R3) = sup
x∈R3

|(1+|x|)3+ε f (x)| <∞,

then u(x) ∈C 1(Rn) and

|u(x)| ≤
C‖(1+|x|)3+ε f ‖L∞(R3)

1+|x|
.

Problem 5.0.7. (Coulomb behaviour property) If f (x) ∈ C (Rn) is non-negative,

has a compact support and f (x0) > 0 for some point x0 ∈ R
n , then there is a

positive constant C0 so that

|u(x)| ≥
C0

1+|x|
.

Hence u is not square integrable. More precisely, we have

∫

|x|≤R
|u(x)|2d x ≥C R

for R sufficiently large.

5.0.2 Laplace equation in bounded domain with Dirichlet bound-

ary condition.

The general problem

∆u = F, x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

can be solved extending F in R
n and representing u as follows

u = u0 +w,

where

u0(x) =−
1

4π

∫

Ω

F (y)

|x − y |
d y.
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Then w solves

∆w = 0, x ∈Ω

w(x) = g (x), x ∈ ∂Ω.

where

g = f −u0.

Applying the maximum principle we get

‖w‖L∞(Ω) ≤C‖g‖C (∂Ω) ≤C
(

‖ f ‖C (∂Ω) +‖F‖L∞(Ω)

)

.

This estimate guarantees the uniqueness of the solution. The existence is

delicate: needs or sub and supersolutions (Peron method) or methods from

Functional analysis (Friedrich’s extentions). For the concrete domains: interior

or exterior ball, half space we have concrete solutions.

5.0.3 Idea of Peron method

4.8. Metodo di Perron per il problema di Dirichlet su domini generici Ω. Una

volta risolto il problema di Dirichlet su BR(0) si puo’ risolvere il problema di

Dirichlet su una famiglia molto ampia di domini Ω senza bisogno di costruire

la funzione di Green associata (come fatto su BR (0)). Introduciamo le funzioni

subarmoniche

Definition 5.0.1. Una funzione u : Ω→R si dice subarmonica e diremo

u ∈ SUB(Ω)

se u ∈C (Ω) (ossia e’ continua) ed inoltre

∀x ∈Ω ∃r (x) > 0 t.c. u(x) ≤ -

∫

Sr (x)
udσ, ∀r ∈ (0,r (x))

Proposition 5.0.1. Per ogni funzione u ∈ SUB(Ω) si ha max
Ω̄

u = max∂Ωu

Proof. Segue dallo stesso argomento usato per provare il principio del massimo

per funzioni armoniche (usando il teorema della media).

Proposition 5.0.2. Siano u, v ∈ SUB(Ω) allora max{u, v}∈ SUB(Ω)

Proof. E ben noto che max{u, v} e’continua se u e v sono continue. Abbiamo

inoltre per ipotesi

u(x) ≤ -

∫

Sr (x)
udσ≤ -

∫

Sr (x)
max{u, v}dσ
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e v(x) ≤ -
∫

Sr (x) udσ≤ -
∫

Sr (x) max{u, v}dσ quindi

max{u, v}(x) ≤ -

∫

Sr (x)
max{u, v}dσ

Proposition 5.0.3. Se u e’ armonica su Ω allora u ∈ SUB(Ω).

Proof. Abbiamo provato che per ogni funzione armonica vale l’identita’ della

media.

Proposition 5.0.4. Sia un una successione di funzioni armoniche su BR che siano

monotone crescenti ed uniformemente limitate. Allora la funzione u(x), definita

come il limite puntuale di un(x) e’ armonica, ossia u ∈C 2(Ω) e ∆u = 0.

Proof. Basta provare che u(x)e′ continua e u(x) = fSR (x)udσ. A tal fine osservi-

amo che per il principio della media (sia su BR che su SR ) si ha

un(x) = -

∫

SR (x)
un(y)dσ e un(x) = -

∫

BR (x)
un(y)d y

Passando al limite abbiamo che u(x) = -
∫

BR (x) u(y)d y e da questa rappresen-

tazione e facile dedurre che u(x) e’ continua (basta applicare il teorema di Lebesgue

alla successione di funzioni u(y)χBR (xn) dove xn
n→∞→ x ). Passando sempre al

limite (nell’integrale di superficie) si ha u(x) = -
∫

SR (x) u(y)dσ

Proposition 5.0.5. Proposizione 4.10. Sia BR (x0) ⊂Ω e u ∈ SUB(Ω). Sia inoltre

v tale che ∆v = 0 su BR (x0) e v = u su ∂BR (x0) . Allora si ha w ∈ SUB(Ω) dove

w(x) =
{

v(x), x ∈BR (x0)

u(x), x ∈Ω\BR (x0)

Proof. Ovviamente w e’ continua. Per provare che e’ subarmonica consideri-

amo tre casi. Se x ∈Ω\BR (x0) allora essendo u subarmonica si ha

w(x) = u(x) ≤ fSr (x)udσ= fSr (x)wdσ

per r abbastanza piccolo e per x ∈Ω\BR (x0).

Se x ∈BR (x0) invece essendo v armonica su BR (x0) concludiamo

w(x) = v(x) = fSr (x)vdσ= fSr (x)wdσ

per r abbastanza piccolo.

Resta il caso in cui x ∈ ∂BR (x0). Allora osserviamo che u − v ∈ SUB(BR (x0))

ed inoltre
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u−v = 0 su SR (x0). Quindi per la Proposizione 5.0.1 si ha u−v ≤ 0 su BR (x0).

Da cio’ deduciamo

-

∫

Sr (x)
wdσ= -

∫

Sr (x)∩BR (x0)
vdσ+ -

∫

Sr (x)∩Bc
R (x0)

udσ

≥ -

∫

Sr (x)∩BR (x0)
udσ+ -

∫

Sr (x)∩B s
R (x0)

udσ≥ u(x) = w(x)

dove abbiamo usato il fatto che u(x) = w(x) su ∂BR (x0).

Possiamo ora introdurre la candidata soluzione al problema (24)

(5.0.1)

{

∆u = 0, y ∈Ω

u(y) = g (y), y ∈ ∂Ω

dove g (y) ∈C (∂Ω). Nel seguito assumeremo Ω̄ compatto. Definiamo (25)

(5.0.2) v(x) = sup{w(x) | w ∈ SUB(Ω)∩C (Ω̄), w(y) ≤ g (y) ∀y ∈ ∂Ω}.

Osserviamo che l’insieme di funzioni w ∈ S UB(Ω) ∩C (Ω̄) tale che w(y) ≤
g (y) ∀y ∈ ∂Ω e’ non vuoto. Infatti basta osservare che la funzione costante

w(x) = inf∂Ω g soddisfa questa proprieta’. Osserviamo anche che necessaria-

mente v(x) < ∞. A tal fine osserviamo che per la Proposizione 4.6 necessari-

amente w(x) ≤ supy∈∂Ω g (y) per ogni w ∈ S UB(Ω)∩C (Ω̄) tale che w(y) ≤
g (y) ∀y ∈ ∂Ω. Come primo passo provi- amo che ∆v = 0 in Ω. Il secondo

passo consistera’ nell’individuare delle condizioni su Ω che garantiscano v ∈
C (Ω̄), v(y) = g (y) per y ∈ ∂Ω.

Theorem 5.0.1. Teorema 4.11. La funzione v(x) definita in (5.0.2) é armonica

in Ω.

Proof. sia x0 ∈ Ω e sia BR (x0) ⊂ Ω. Selezioniamo quindi wk,x0
(x) tali che

wk,x0
∈ S UB(Ω)∩C (Ω̄) e wk,x0

(y) ≤ g (y) ∀y ∈ ∂Ω ed inoltre wk,x0
(x0)

k→∞→
v (x0) . Allora os- serviamo che siccome v(x) e’definito come sup possiamo as-

sumere le funzioni wn(x) crescenti (se non lo fossero basta lavorare con

sup
i=1,...,n

{

w1,x0 (x), . . . , wn,x0 (x)
}

.

Inoltre possiamo anche assumere che wk,x0
(x) sia armonica su BR (x0) . Infatti

se cosi’ non fosse basterebbe considerare

w̃k,x0
(x) =

{

wk,x0
(x), x ∈Ω\BR (x0)

vk(x), x ∈BR (x0)
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dove ∆vk = 0 e vk(y) = wk,x0
(y) per y ∈ ∂BR (x0) . Allora dalle proprieta’ delle

funzioni subarmoniche si vede che w̃k,x0
(x) ∈S UB(Ω)∩C (Ω̄), inoltre w̃k,x0

(y) ≤
g (y) ∀y ∈ ∂Ω ed anche w̃k,x0

(x) ≥ wk,x0
(x). Questa disuguaglianza e ovvia

in Ω\BR (0) ed e’ anche vera su BR (x0) poiche’ −w̄k,x0
(x)+wk,x0

(x) = −vk (x)+
wk,x0

(x) e’ subarmonica su BR (x0) ed e’ nulla su ∂BR (x0). Quindi per Propo-

sizione 4.6 si ha w̃k,x0
(x) ≥ wk,x0

(x). Riassumendo abbiamo w̃k,x0
(x) armoniche

su BR (x0) ed inoltre w̃k,x0
(x) crescenti rispetto a k. Come conseguenza del Teo-

rema della media e del Teorema di passaggio al limite sotto il segno di integrale

si puo’ provare che il limite puntuale di

funzioni armoniche, crescenti e uniformemente limitate e’ armonica. Per-

tanto abbiamo che detta w̄x0 (x) = limk→∞ w̄k,x0
(x) si ha che w̄x0 (x) e’ armonica

su BR (x0) ed inoltre w̄x0 (x0) = v (x0) Dico che necessariamente (26)

v(x) = w̄x0 (x), ∀x ∈BR (x0)

e questo ci permetterebbe di conclude che v(x) e’ armonica su BR (x0) e quindi

su Ω data l’arbitrarieta’ della palla BR (x0) . Se (26) non fosse vera avremmo

v(y) > w̄x0 (y) per qualche y ∈ BR (x0) e ragionando come sopra potremmo con-

siderare una successione wk,y tali che wk,y (y)
k→∞→ v(y). A meno di consider-

are max
{

wk,y , w̃k,x0

}

possiamo assumere che wk,y (x) ≥ w̄k,x0
(x). Inoltre ragio-

nando come sopra possiamo costruire una ulteriore nuova successione

w̃k,y (x) =
{

wk,y (x), x ∈Ω\BR (x0)

uk(x), x ∈ BR (x0)

dove ∆uk = 0 suBR (x0) e uk = wk,y su ∂BR (x0) Usando il principio del massimo

ed il fatto che wk,y (x) ≥ w̄k,x0
(x) per ogni x ∈Ω e quindi anche per x ∈ ∂BR (x0)

avremo che w̃k,y (x) ≥ w̄k,x0
(x) per ogni x ∈ΩDefinendo quindi w̄ y(x) = limk→∞ w̄k,y (x)

avremo che w̄ y e’ armonica su BR (x0) ed inoltre (27)

v (x0) = w̄ y (x0) ≥ w̄x0 (x0) = v (x0)

La disuguaglianza in (27) segue dal fatto che w̃k,y (x) ≥ w̃k,x0
(x), per ogni x ∈Ω

invece la prima uguaglianza in (27) segue da

v (x0) = lim
k→∞

w̃k,x0 (x0) ≤ lim
k→∞

w̃k,y (x0) = v (x0)

dove nell’ultima uguaglianza abbiamo usato che (data la definizione di v (x0)

come sup) v (x0) ≥ limk→∞ w̃k,y (x0) ≥ limk→∞ w̃k,x0
(x0) = v (x0) . Osserviamo

inoltre che sic- come w̄k,y (x) ≥ w̄k,x0
(x) su BR (x0) e siccome entrambe sono

armoniche e monotone crescenti e’ facile dedurre che i loro limiti puntuali

saranno armonici su BR (x0) ed inoltre w̄ y (x) ≥ w̄x0 (x) su BR (x0) . Siccome da



45

(27) segue che w̄ y (x0) = w̄x0 (x0) ne de- duciamo per il principio del massimo

che w̄ y = ~wx0 suBR (x0) e quindi v(y)= w̄ y (y) = w̄x0 (y), e quindi data l’arbitrarieta’

di y abbiamo

Resta solo da capire se v ∈ C (Ω̄) e se v(y) = g (y) su ∂Ω. Senza ipotesi ul-

teriori su Ω questa proprieta’ e’ falsa ma e’ vera per una ampia classe di aperti

come vedremo di seguito.

5.0.4 Eigenvalues of Laplace equation in bounded domain with

Dirichlet boundary condition.

The general eigenvalue problem

∆u =λu, x ∈Ω

u(x) = 0, x ∈ ∂Ω.

for the case of bounded domain Ω can have only negative eigenvalues. Indeed,

multiplying by u and integrating into Ω we find

−
∫

Ω

|∇u|2 =λ

∫

Ω

|u|2

so if λ ≥ 0 we get u = cost = 0. The fact that λ is real follows from this relation

too.

Any two eigenfunctions ( j = 1,2)

∆u j =λ j u j , x ∈Ω

u j (x) = 0, x ∈ ∂Ω.

we have the orthogonality relation
∫

Ω

u1(x)u2(x)d x = 0.

The set of all eigenfunctions is complete, i.e. if f (x) is orthogonal to all

eigenfunctions, then f = 0. This property needs more details from functional

analysis and we shall stop here this argument.

5.0.5 Application: Nonlinear problem for Laplace equation with

Dirichlet data

Let Ω = {|x| < R} be a bounded domain with smooth boundary ∂Ω = {|x| = R}.

Consider the problem

∆u = F (u), x ∈Ω(5.0.3)

u(x) = f (x), x ∈ ∂Ω.
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where F (u) is a C 1 function, such that

F (u) =O(|u|p )

near u = 0.

Lemma 5.0.1. (small data solutions) Let

p > 1.

There exists ε> 0 such that for any f (x) ∈C (∂Ω) with

max
∂Ω

| f (x)| ≤ ε,

there exists a unique solution u(x) ∈C (Ω)∩C 1(Ω) to the problem

∆u = F (u), x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

Idea of the proof. Let uk be the sequence defined as follows u0 = 0, and

∆uk+1 = F (uk ), x ∈Ω

uk+1(x) = f (x), x ∈ ∂Ω.

Set

Xk = sup
|x|≤R

|uk (x)|.

The the apriori estimates imply

Xk ≤Cε+C X
p

k+1
.

Show that this inequality implies that there exists a constant C0 >C so that

Xk ≤C0ε.

Apply the contraction principle for the sequence uk showing that

Yk = max
|x|≤R

|uk (x)−uk+1(x)|

satisfies

Yk ≤ qYk−1

with some q ∈ (0,1). So uk (x) tends uniformly to a function u(x) Using the Pois-

son formula one can show that ∂ j uk (x) tends uniformly to a function ∂ j u(x) for

x ∈ K , where K is any compact set in Ω.
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5.0.6 Laplace equation in exterior domain with Dirichlet bound-

ary condition.

Let Ω⊂R
3 be the exterior of a compact K with smooth boundary ∂Ω. The gen-

eral problem

∆u = F, x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

has to be considered together with a condition that guarantees the uniqueness

of the solution, i.e.

u(x) = o(1)

as x → ∞. As before the problem can be solved extending F in R
3 and repre-

senting u as follows

u = u0 +w,

where

u0(x) =−
1

4π

∫

Ω

F (y)

|x − y |
d y.

Then w solves

∆w = 0, x ∈Ω

w(x) = g (x), x ∈ ∂Ω.

where

g = f −u0.

Applying the estimates of the previous sections, we get

‖(1+|x|)w‖L∞(Ω) ≤C‖g‖C (∂Ω) ≤C
(

‖ f ‖C (∂Ω) +‖(1+|x|)u0‖L∞(Ω)

)

≤

≤C
(

‖ f ‖C (∂Ω) +‖(1+|x|)3+εu0‖L∞(Ω)

)

.

Problem 5.0.8. Generalize the above argument for n ≥ 3.

This estimate guarantees the uniqueness of the solution. The existence is

delicate: needs or sub and supersolutions (Peron method) or methods from

Functional analysis (Friedrich’s extentions). For the concrete domains: interior

or exterior ball, half space we have concrete solutions.
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5.0.7 Exterior nonlinear problem for Laplace equation with Dirich-

let data

Let Ω = {|x| > R} be an exterior domain with smooth boundary ∂Ω = {|x| = R}.

Consider the problem

∆u = F (u), x ∈Ω(5.0.4)

u(x) = f (x), x ∈ ∂Ω.

where F (u) is a C 1 function, such that

F (u) =O(|u|p )

near u = 0.

Lemma 5.0.2. (small data solutions) Let

p > 3.

There exists ε> 0 such that for any f (x) ∈C (∂Ω) with

max
∂Ω

| f (x)| ≤ ε,

there exists a unique solution u(x) ∈C (Ω)∩C 1(Ω) to the problem

∆u = F (u), x ∈Ω

u(x) = f (x), x ∈ ∂Ω.

Idea of the proof. Let uk be the sequence defined as follows u0 = 0, and

∆uk+1 = F (uk ), x ∈Ω

uk+1(x) = f (x), x ∈ ∂Ω.

Set

Xk = sup
|x|≥R

|(1+|x|)uk (x)|.

The the apriori estimates and the assumption p > 3 imply

Xk ≤Cε+C X
p

k+1
.

Show that this inequality implies that there exists a constant C0 >C so that

Xk ≤C0ε.
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Apply the contraction principle for the sequence uk showing that

Yk = max
|x|≤R

|uk (x)−uk+1(x)|

satisfies

Yk ≤ qYk−1

with some q ∈ (0,1). So uk(x) tends uniformly to a function u(x) Using the Pois-

son formula one can show that ∂ j uk (x) tends uniformly to a function ∂ j u(x) for

x ∈ K , where K is any compact set in Ω. Hence F (uk ) tends uniformly in C 1(K )

and we conclude that u ∈C 2(Ω).

Problem 5.0.9. Generalize the above argument for n ≥ 3.

5.1 Bessel functions and Stoke’s phenomena

The standard Bessel functions Jν(z) are solutions to the differential equation

(5.1.5) z2 d 2

d z2
w(z)+ z

d

d z
w(z)+ (z2 −ν2)w(z) = 0

More precisely, we have the definition of Jν(z) given by

Jν(z) = zν

( ∞
∑

m=0

(−1)m z2m

4mm!Γ(m +1+ν)

)

,(5.1.6)

where zν = eν logz with log z = log |z|+ iarg z being the branch of the logarithm

defined via the choice of arg z. For example the principle branch is with argz ∈
(−π,π). Therefore, Jν(z) is well defined and analytic for |argz| < π and has sin-

gularity at z = 0 when ν is not an integer. The equation (5.1.5) has two linearly

independent solutions Jν(z) and J−ν(z).

Near the origin we have the asymptotic expansion

Jν(z) = zν
(

1+O(|z|2)
)

, z → 0.(5.1.7)

The fact that a solution of an ODE, near an irregular singularity, in differ-

ent sectors of the complex plane in general shows different asymptotic behav-

ior was observed and studied by Stokes and is, therefore, named Stokes’ phe-

nomenon.

More precisely, the asymptotic expansion for the Jν(x) can be found from

section 7.2 in [28]

Jν(z) = c1

(

2

π

)1/2

e−(log |z|+iargz)/2e i (z−πν/2−π/4)
(

1+O
(

|z|−1
))

+(5.1.8)

+c2

(

2

π

)1/2

e−(log |z|+iargz)/2e−i (z−πν/2−π/4)
(

1+O
(

|z|−1
))

,
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where the constants c1,c2 depend on the choice of the sector in the complex

plane.

Indeed, for any integer p we have

(5.1.9) c1 = c2 =
1

2
e ip(2ν+1)π if argz ∈ ((2p −1)π, (2p +1)π)

and

(5.1.10) c1 =
1

2
e i(p+1)(2ν+1)π,c2 =

1

2
e ip(2ν+1)π if argz ∈ (2pπ, (2p +2)π)

due to the Stokes phenomenon (see section 7.2 in [28]).

The proof of these asymptotic expansions can be deduced via the relation

Jν(ze imπ) = e imπνJν(z)(5.1.11)

valid for any integer m. The Neumann function is defined as a linear combina-

tion of J±

Yν(z) =
1

sin(νπ)
(cos(νπ)Jν(z)− J−ν(z)) .(5.1.12)

The Hankel functions are given by

H (1)
ν (z) = Jν(z)+ iYν(z),(5.1.13)

H (2)
ν (z) = Jν(z)− iYν(z).

Their integral representation (see 7.3.6 (28) in [?]) provided argz ∈ (0,π)

πH (1)
ν (z) =−ie−iνπ/2

∫∞
−∞ e iz cosh t e−νt d t =(5.1.14)

=−ie−iνπ/2
∫∞

0 e iz(s+1/s)/2s−ν−1d s

Some partial values of ν=±1/2 give the following result

H−1/2(w) = i H1/2(w)

H1/2(w) =−i

(

2

πw

)1/2

e i w .

In particular we shall need for w = i y with y > 0 the following

(5.1.15) H1/2(i y) =−ie−iπ/4

(

2

πy

)1/2

e−y .

(5.1.16) H−1/2(i y) = e−iπ/4

(

2

πy

)1/2

e−y .
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The modified Bessel functions are combinations of Jν(i z), J−ν(iz) and there-

fore they are solutions to the differential equation

(5.1.17) z2 d 2

d z2
w(z)+ z

d

d z
w(z)− (z2 +ν2)w(z) = 0.

The modified Bessel function Iν(z) is defined by

Iν(z) = e−iνπ/2Jν(iz).(5.1.18)

For ν= 0 we have the expansion near the origin

(5.1.19) I0(z) = 1+O(|z|2).

The relation (5.1.11) implies

Iν(ze imπ) = e imπνIν(z)(5.1.20)

valid for any integer m.

Then two linearly independent solutions to (5.1.17) are Iν(z) and I−ν(z), for

ν 6= 0.

The asymptotics expansion of Iν(z) for |z| → ∞ depends where is Argz,

therefore we have to be careful for Stokes phenomena. If argz ∈ (−π/2,3π/2),

then we have the asymptotics

Iν(z) =
ez

p
2π

e−(log |z|+iargz)/2
(

1+O(|z|−1)
)

+(5.1.21)

+
e−z

p
2π

e−(log |z|+iargz)/2e i(ν+1/2)π
(

1+O(|z|−1)
)

.

From this we take argz ∈ (−π/2+mπ,3π/2+mπ) we get

Iν(z) =
e (−1)m z

p
2π

e−(log |z|+iargz)/2e im(ν+1/2)π
(

1+O(|z|−1)
)

+(5.1.22)

+
e−(−1)m z

p
2π

e−(log |z|+iargz)/2e i(m+1)(ν+1/2)π
(

1+O(|z|−1)
)

.

In this way we conclude

argz ∈ (−π/2+mπ,3π/2+mπ) =⇒ Iν(z) =(5.1.23)

=
e−iargz)/2

p
2π|z|

[

e (−1)m z e im(ν+1/2)π+e−(−1)m z e i(m+1)(ν+1/2)π
]

(

1+O(|z|−1)
)

.
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If argz ∈ (−3π/2+2pπ,π/2+2pπ), p integer, then we take m = 2p −1 and

then we get

Iν(z) =
e−iargz)/2

p
2π|z|

[

e−z e i(2p−1)(ν+1/2)π+eze i2p(ν+1/2)π
](

1+O(|z|−1)
)

.(5.1.24)

The modified Bessel function Kν(z) is defined by

Kν(z) =
π

2 sin(νπ)
(I−ν(z)− Iν(z)) =(5.1.25)

=
π

2 sin(νπ)

(

e iνπ/2J−ν(iz)−e−iνπ/2 Jν(iz)
)

.

Obviously, we have

(5.1.26) Kν(z) = K−ν(z).

We have the following relation between Kν(z) and Hankel functions (see

10.27.8 in [?] ) with −π≤ argz ≤π/2

(5.1.27) Kν(z) =
πi

2
eνiπ/2H (1)

ν (iz).

The differential equation satisfied by Kν(z) is again (5.1.17).

Similarly to (5.1.32) , we have the relations

Kν(ze imπ) = e−imπνKν(z)− iπ
sin(mνπ)

sin(νπ)
Iν(z).(5.1.28)

valid for any integer m.

Near the origin we have the expansion

(5.1.29) K0(z) =−I0(z) log
(z

2

)

+O(1) =− log(z)+O(1), z → 0.

We have the following asymptotic expansion valid if |z| → ∞ and argz ∈
(−3π/2,3π/2) (see relation (20), section 7.23 in [28])

(5.1.30) Kν(z) =
(π

2

)1/2
e−(log |z|+iargz)/2e−z

(

1+O(|z|−1)
)

.

For argw ∈ (π/2,5π/2) we can take w = e i2πz so that

argw ∈ (π/2,5π/2)=⇒ Argz ∈ (−3π/2,3π/2)

use (5.1.32), so we can write

Kν(w) = Kν(e2iπz) =
π

2 sin(νπ)

(

I−ν(e2iπz)− Iν(e2iπz)
)

=
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=
π

2 sin(νπ)

(

e−2iπνI−ν(z)−e2iπνIν(z)
)

and using the asymptotic expansions (5.1.24) for z we arrive at

Kν(w) =
√

π

2

e−i(ar g w)/2

p
|w |

[

2i cos(νπ)ew +e−w
](

1+O(|w |−1)
)

(5.1.31)

Iν(ze imπ) = e imπνIν(z)(5.1.32)

For ν= 1/4 we get

K1/4(z) =
π
p

2
(I−1/4(z)− I1/4(z)) =(5.1.33)

π
p

2

(

e iπ/8 J−1/4(iz)−e−iπ/8 J1/4(iz)
)

.

The modified Bessel function Kν(z) has the integral representation ( see Eq. (16)

in section 7.3.4 in [2])

Γ(ν+1/2)Kν(z) =
√

π

2z
e−z

∫∞

0
e−t tν−1/2

(

1+
t

2z

)ν−1/2

d t(5.1.34)

provided Re(ν) >−1/2, |arg (z)| <π. If z > 0, the a change of variable implies

Γ(ν+1/2)Kν(z) =
p
π

e−z

2ν
zν

∫∞

0
e−tz tν−1/2(2+ t )ν−1/2d t .(5.1.35)

In equivalent way, we can write

p
πe−z

∫∞

0
e−tz tν−1/2(2+ t )ν−1/2d t = z−ν2ν

Γ(ν+1/2)Kν(z).(5.1.36)

5.2 Foundamental solution of the Helmholtz equa-

tion

The Helmholtz equation

(λ−∆)G = δ

with λ>− has a fundamental solution

Gλ,n(x) = (2π)−n

∫

Rn
e−ixξ dξ

λ+|ξ|2
= (2π)−nRe

(∫

Rn
e−ixξ dξ

λ+|ξ|2

)

.
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Here and below λ> 0. Setting

Gn(x) =G1,n(x) = (2π)−n

∫

Rn
e−ixξ dξ

1+|ξ|2
,

we see that

(5.2.37) Gλ,n(x) =λ(n−2)/2Gn(
p
λ|x|).

The main result of the section is the following

Lemma 5.2.1. We have the relation

(5.2.38) Gλ,n(x) = (2π)−n/2λ(n−2)/4 K(n−2)/2(
p
λ|x|)

|x|(n−2)/2
.

Proof. Case: n = 1

In this case, the right side of (5.2.38) is given by

(2π)−1/2|x|1/2K−1/2(
p
λ|x|)

Since

K1/2(|x|) = K−1/2(|x|) =
√

π

2

e−|x|
p
|x|

,

we see that (5.2.38) becomes

(5.2.39) Gλ,1(x) =
1

2
p
λ

e−
p
λ|x|

We have the relation

G1(x) = (2π)−1

∫∞

−∞
e−ixξ dξ

1+ξ2
=

=
1

π

∫∞

0
cos(xξ)

dξ

1+ξ2
= (2π)−1

∫∞

∞
e ixξ dξ

1+ξ2
.

The function K1(x) is even and hence it is sufficient to consider the case x > 0.

A simple application of the Cauchy theorem implies that for any x > 0 we have

the identities

(5.2.40)
1

2πi

∫∞

−∞

e ixz

1+ z2
d z =

i−1

2
e−x

and more generally for any λ> 0 we have

(5.2.41)

∫∞

−∞

e ixz

λ+ z2
d z =

∫∞

−∞

cos(xz)

λ+ z2
d z =

π
p
λ

e−
p
λ|x|
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so

(5.2.42) G1(x) =
e−|x|

2

and hence we have (5.2.39).

Case: n = 2.

We assume x = (0, |x|) and then

G2(x) = (2π)−2

∫∞

−∞

(

∫∞

−∞

e−i |x|ξ2 dξ2

1+ξ2
1 +ξ2

2

)

dξ1.

So applying (5.2.41) with λ= 1+ξ2
1, we find

G2(x) =
∫∞

0

1

2π
√

1+ξ2
1

e
−

√

1+ξ2
1|x|dξ1

Now we make change of variables ξ1 ∈ (0,∞)→ t ∈ (0,∞) defined by

1+ξ2
1 = (1+ t )2, =⇒ ξ1 =

√

t (t +2), ξ1dξ1 = (t +1)d t

and get

G2(x) = (2π)−1e−|x|
∫∞

0
e−t |x|t−1/2(2+ t )−1/2d t

Using (5.1.36), we find

G2(x) =
1

2π3/2
Γ(1/2)K0(|x|).

Using the identity

Γ

(

1

2

)

=
p
π,

we find

(5.2.43) G2(x) = (2π)−1K0(|x|).

Further, (5.2.37) implies

(5.2.44) Gλ,2(x) = (2π)−1K0(
p
λ|x|).

Case: n = 3.

We have the relations

G3(x) = (2π)−2

∫∞

0

(∫π

0
e−i |x|ρ cosθ sinθdθ

)

ρ2dρ

1+ρ2
=
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=
1

(2π)2i|x|

∫∞

0

(

e i |x|ρ−e−i |x|ρ
) ρdρ

1+ρ2
=

1

2π2|x|

∫∞

0
sin(|x|ρ)

ρdρ

1+ρ2
.

A simple application of the Cauchy theorem implies that for any R > 0 we

have the identities

(5.2.45)
1

2πi

∫∞

−∞

e iRz

1+ z2
zk d z =

ik−1

2
e−R .

Hence, we have the relations

πik e−R =
∫∞

−∞

e iRz

1+ z2
zk d z =

=
∫∞

0

e iRz + (−1)k+2e−iRz

1+ z2
zk d z.

Now we can use the fact that

e iRz + (−1)k+2e−iRz =
{

2 cos(Rz), if k is even, z > 0,R > 0;

2i sin(Rz), if k is odd, z > 0,R > 0.

Thus for k even we have

∫∞

0

2 cos(Rz)

1+ z2
zk d z =πik e−R

and we deduce

(5.2.46)

∫∞

0

cos(Rρ)

1+ρ2
ρk d z =

π

2
(−1)k/2e−R .

For k odd we have

(5.2.47)

∫∞

0

sin(Rρ)

1+ρ2
ρk d z =

π

2
(−1)(k−1)/2e−R .

Applying now (5.2.47) with k = 1, we find

(5.2.48) G3(x) =
1

4π|x|
e−|x|.

Then (5.2.37) implies

(5.2.49) Gλ,3(x) =
1

4π|x|
e−

p
λ|x|.

General case n ≥ 3
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Since Gn(x) is a radial function, we can take x = (0, · · · ,0, xn) = (0, · · · ,0, |x|).

We have to compute

G1,n(x) = (2π)−n

∫

Rn
e−ixξ dξ

1+|ξ|2
=

= (2π)−n

∫

Rn−1

(∫∞

−∞
e−i|x|ξn

dξn

1+|ξ′|2 +ξ2
n

)

dξ′.

Applying the identity (5.2.41), we find

∫∞

−∞
e−i|x|ξn

dξn

1+|ξ′|2 +ξ2
n

=
π

√

1+|ξ′|2
e−

p
1+|ξ′|2|x|

and introducing polar coordinates ρ = |ξ′| in Rn−1 we get

G1,n(x) = (2π)−nµ(Sn−2)

∫∞

0

π
√

1+|ρ|2
e−

p
1+|ρ|2|x|ρn−2dρ

Now we make change of variables ρ ∈ (0,∞)→ t ∈ (0,∞) defined by

1+ρ2 = (1+ t )2, =⇒ ρ =
√

t (t +2), ρdρ = (t +1)d t

and get

G1,n(x) = (2π)−nµ(Sn−2)πe−|x|
∫∞

0
e−t |x|t (n−2)/2−1/2(2+ t )(n−2)/2−1/2d t

Using (5.1.36), we find

(5.2.50) G1,n(x) = (2π)−nµ(Sn−2)
p
π2ν

Γ(ν+1/2)
Kν(|x|)
|x|ν

,ν=
n −2

2

Comparing the relation (5.2.48) with (5.2.50) and using the relations

K1/2(|x|) =
√

π

2

e−|x|
p
|x|

, Γ

(

1

2

)

=
p
π, µ(S1) = 2π,

we see that (5.2.50) with n = 3 coincides with (5.2.48).

Since µ(Sn−2) = (2π)(n−1)/2/Γ((n −1)/2), we find

(5.2.51) Gn(x) =G1,n(x) = (2π)−n/2 K(n−2)/2(|x|)
|x|(n−2)/2

.

Further, (5.2.37) implies (5.2.38).
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Now we turn to the case of Helmholtz equation

(−z2 −∆)G= δ

with z = i
p
λ. Its fundamental solution is

G(x) =Gz,n(x) = (2π)−n

∫

Rn
e−ixξ dξ

−z2 +|ξ|2
=G−z2 ,n(|x|).

First we consider the case n = 1. Then for any z with Imz > 0 we have

(5.2.52)

∫∞

−∞

e ixw

−z2 +w 2
d w =

iπ

z
e iz|x|

and therefore

(5.2.53) Gz,1(x) =
i

2z
e iz|x|

From Lemma 5.2.1 we have the relation

Gλ,n(x) = (2π)−n/2λ(n−2)/4 K(n−2)/2(
p
λ|x|)

|x|(n−2)/2

so

Gz,n (x) =G−z2 ,n(|x|) = (2π)−n/2|z|(n−2)/2 K(n−2)/2(−i z|x|)
|x|(n−2)/2

.

Now we use the relation (5.1.27) and find

K(n−2)/2(−i z|x|) =
πi

2
e (n−2)iπ/4H (1)

(n−2)/2
(z|x|)

so

(5.2.54) Gz,n(x) = (2π)−n/2πi

2
|z|(n−2)/2e (n−2)iπ/4

H (1)
(n−2)/2

(z|x|)
|x|(n−2)/2

.

For n = 1 we use

Gz,1(x) = (2π)−1/2πi

2
|z|−1/2e−iπ/4|x|1/2H (1)

−1/2
(z|x|)

and (5.1.16) and find

Gz,1(x) = (2π)−1/2πi

2
|z|−1/2e−iπ/4|x|1/2e−iπ/4

(

2

π|z||x|

)1/2

e iz|x| =

= (2π)−1/2πi

2

(

2

π

)1/2 e iz|x|

z
=

i

2z
e iz|x|

and this relation is compatible with (5.2.53). For n = 2 we have

Gz,2(x) = (2π)−1πi

2
H (1)

0 (z|x|) =
i

4
H (1)

0 (z|x|).

This result is compatible with (5.15) Chapter I.5 in [1].
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5.2.1 Helmholz equation in the space R
3.

The equation

∆u(x)+λ2u = f (x), x ∈R
3

is called Helmholz equation Taking f (x) ∈C (R3) with compact support one can

represent the unique solution as follows

u(x) =−
1

4π

∫

K

e±iλ|x−y | f (y)

|x − y |
d y,

where here and below K denotes the support of f .

One can verify that

(∆+λ2)

(

e±iλ|x−y |

|x|

)

=−4πδ

in the sense of distributions in R
3. Indeed taking any test function ϕ we apply

Gauss - Green formula for the domain {|x| ≥ ε} and using the fact that

(∆+λ2)

(

e±iλ|x|

|x|

)

= 0 |x| 6= 0,

we find

∫

|x|>ε

(

(∆+λ2)

(

e±iλ|x|

|x|

))

ϕ(x)d x −
∫

|x|>ε

(

e±iλ|x|

|x|

)

(∆+λ2)ϕ(x)d x =

−
∫

|x|=ε
∂r

(

e±iλ|x|

|x|

)

ϕ(x)dSx +
∫

|x|=ε

(

e±iλ|x|

|x|

)

∂r ϕ(x)dSx ,

where here and below

∂r =
n
∑

j=1

x j

|x|
∂ j .

Taking into account the fact that

∂r

(

1

|x|

)

=−
1

|x|2

and introducing spherical coordinate x = εω, |ω| = 1, we find

∫

|x|=ε
∂r

(

1

|x|

)

ϕ(x)dSx =−
∫

|ω|=1
ϕ(εω)dSω,

∫

|x|=ε

(

1

|x|

)

∂rϕ(x)dSx = ε

∫

|ω|=1
∂rϕ(εω)dω



60

so taking the limit ε→ 0, we get

lim
ε→0

∫

|x|=ε
∂r

(

e±iλ|x|

|x|

)

ϕ(x)dSx =−4πϕ(0),

lim
ε→0

∫

|x|=ε

(

e±iλ|x|

|x|

)

∂rϕ(x)dSx = 0,

so we arrive at

−
∫

R3

(

e±iλ|x|

|x|

)

(∆+λ2)ϕ(x)d x = 4πϕ(0)

and the identity

−
1

4π
(∆+λ2)

(

e±iλ|x|

|x|

)

= δ.

The function

E±(x) ∈C∞(R3 \ 0)

satisfying

(∆+λ2)E± = δ

in the sense of distributions is called fundamental solutions of the Helmholz

operator and they enable one to represent the solution of the Laplace equation

∆u = f , f ∈C∞
0 ,

as follows

u±(x) =
∫

Rn
E±(x − y) f (y)d y.

The uniqueness of the solution is guaranteed by the radiation condition

u(x) =
e±iλ|x|

|x|
a

(

x

|x|

)

+O

(

1

|x|2

)

at infinity.

Problem 5.2.1. (smoothing property) If f (x) ∈ C (Rn) has a compact support,

then u(x) ∈C 1(Rn)

Problem 5.2.2. (smoothing property) If f (x) ∈ L∞(Rn) has a compact support,

then u(x) ∈C 1(Rn)

Problem 5.2.3. (smoothing property) If f (x) ∈ C k(Rn) has a compact support,

then u(x) ∈C k+1(Rn)
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Problem 5.2.4. (smoothing and decay property) If f (x) ∈ C (Rn) has a compact

support, then u(x) ∈C 1(Rn) and

|u(x)| ≤
C‖ f ‖C (K )

1+|x|
.

Problem 5.2.5. (representation) If f (x) ∈C (R3) satisfies the estimate

| f (x)| ≤ ce−|x|

and u(x) ∈C 2(R3) is a bounded function that is a solution to

−∆u(x)+λ2u = f (x), x ∈R
3,

then

u(x) =−
1

4π

∫

R3

e−λ|x−y | f (y)

|x − y |
d y.

Hint: Apply the max principle and derive the uniqueness.

Problem 5.2.6. (a priori estimate) If f (x) ∈C (R3) satisfies the estimate

| f (x)| ≤ ce−A|x|

and u(x) ∈C 2(R3) is a bounded function that is a solution to

−∆u(x)+λ2u = f (x), x ∈R
3,

with 0<λ< A then

|u(x)| ≤
C e−λ|x|

|x|
.

Problem 5.2.7. (some integrals for radial functions)

∫

§2
F (|x + rω|)dω=

c

|x|r

∫|x|+r

||x|−r |
F (λ)λdλ

Problem 5.2.8. (representation for radial solutions) If f (x) = f (|x|) ∈C (R3) sat-

isfies the estimate

| f (x)| ≤ ce−|x|

and u(x) = u(|x|) ∈C 2(R3) is a bounded radial function that is a solution to

−∆u(x)+λ2u = f (x), x ∈R
3,

then

u(x) =−
c

|x|

∫∞

0
e−r

∫|x|+r

||x|−r |
f (λ)λdλdr =

=
∫|x|

0
e−|x| sinh(λ) f (λ)λdλ+

∫∞

|x|
sinh(|x|)e−λ f (λ)λdλ.



62



Bibliography

[1] S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN, AND H. HOLDEN,

Solvable Models in Quantum Mechanics, Texts and Monographs in

Physics, Springer-Verlag, New York, 1988.

[2] H. Bateman and A.Erdelyi, Higher transcendental functions, Vol.1

and Vol. 2, Mc Graw-Hill Company, INC, New York, Toronto, Lon-

don, 1953 .

[3] J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin, Hei-

delberg, New York, 1976.

[4] H. Brezis, Analyse Functionelle - Theorie et applications, Masson

Editeur, Paris, 1983.

[5] Y. Choquet - Bruhat, C. De Witt - Morette and M. Dillard-Bleick,

Analysis, Manifolds and Physics, North - Holland, Amsterdam,

1982.

[6] L. Evans, Partial differential equations, Graduate Studies in Mathe-

matics, AMS, (2010)

[7] I.Gelfand, G.Shilov, Generalized functions, vol I, Properties and Op-

erations, Academic Press, 1964, New York.

[8] I. Gelfand, M. Graev and Ya. Vilenkin, Generalized Functions, vol.

V, Integral Geometry and Representation Theory, Academic Press,

1966, New York.

[9] V.Georgiev, Lecture notes on Harmonic Analysis, 2019.

[10] S. Helgason, Groups and geometrical transformations, Academic

Press, New York , 1984

63



64

[11] L. Hörmander, The analysis of linear partial differential operators,

vol. I, Distribution Theory and Fourier analysis, Springer - Verlag,

Berlin, New York, Tokyo 1983.

[12] L.Hörmander, The analysis of linear partial differential operators,

vol. III, Pseudodifferential Operators, Springer - Verlag, Berlin, New

York, Tokyo, 1985.

[13] L.Hörmander, On Sobolev spaces associated with some Lie alge-

bras, Report No. 4, Instutut Mittag Leffler(1985)

[14] L. Hörmander, Lectures on Nonlinear Hyperbolic Diffferential

Equations, Mathematiques et Applications 26 Springer (1997).

[15] P. Lax and R. Philips, Scattering Theory, Academic Press, New York,

1967.

[16] Jacques-Louis Lions, and Enrico Magenes Problemes aux limites

non homogenes et applications. Dunod, Paris, 1968.

[17] V. Maz’ya, Sobolev Spaces, Edition of Leningrad Univ., Leningrad,

1985.

[18] R. Racke, Lectures on nonlinear evolution equations. Initial value

problems. Aspects of Mathematics, Friedr. Vieweg & Sohn, Braun-

schweig, 1992. viii+259 pp.

[19] M.Reed and B.Simon, Methods of Modern Mathematical Physics,

vol. I, Functional Analysis, Academic Press, New York 1975.

[20] M. Reed and B.Simon, Methods of Modern Mathematical Physics,

vol. II, Fourier Analysis and Self Adjointness, 1975 Academic Press,

New York, San Francisco , London .

[21] W.Rudin, Functional analysis, McGraw-Hill Book Company, 1973,

New York.

[22] J. Shatah, M. Struwe, Geometric wave equations. Courant Lecture

Notes in Mathematics, 2. New York University, Courant Institute of

Mathematical Sciences, New York, 1998.

[23] I.Sigal, Nonlinear semi – groups. Ann. of Math. 78 No. 2 (1963) 339

– 364.



65

[24] E. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc.

83 (1956) 482–492.

[25] E.Stein, Singular integrals and differential properties of functions,

Princeton Mathematical Series, Princeton Univ. Press, Princeton

1970.

[26] M.Taylor, Pseudodifferential operators, Princeton Mathematical

Series, Princeton Univ. Press, Princeton 1981.

[27] H. Triebel, Interpolation theory, functional spaces, differential op-

erators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

[28] Watson, G. N., A treatise on the theory of Bessel functions, Cam-

bridge Mathematical Library, Reprint of the second (1944) edition,

Cambridge University Press, Cambridge, 1995.

[29] Y. Zhou, Cauchy problem for semilinear wave equations with small

data in four space dimensions J. Diff. Equations 8 (1995) 135–144.

[30] Eb. Zeidler, Applied Functional Analysis, Applications to Mathe-

matical Physics, series: Applied Math. Siences, vol. 108, (Springer

- Verlag, New York) 1995.


