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PREFACE 
 
 
 
This book provides a wide range of problems concerning recent 
achievements in the field of industrial and applied mathematics. The main 
goal is to provide new ideas and research for scientists, who develop and 
study mathematical methods and algorithms, and researchers, who apply 
them for solving real life problems. The book promotes basic research in 
mathematics leading to new methods and techniques useful to industry and 
science. This volume will be a media for the exchange of information and 
ideas between mathematicians and other technical and scientific personnel. 

Main topics are: Numerical Methods and Algorithms; Control Systems 
and Applications; Partial Differential Equations and Applications; 
Neurosciences (Neural Networks); Equations of Mathematical Physics, 
etc.  

Many important real life applications of partial differential equations and 
equations of mathematical physics are presented in the book (Chapters 1, 7 
and 8). More precisely, a non-local version of nonlinear Schrödinger 
equation is studied, which is theoretical description of wave propagation in 
PT-symmetric coupled wave guides and photonic crystals.  Continuity of 
the solution map for the cubic 1D periodic nonlinear wave equation 
(NLW) equation is investigated. The Cauchy problem to the generalized 
sixth order Boussinesq equation is studied. This problem arises in a 
number of mathematical models of physical processes, for example in the 
modeling of surface waves in shallow waters and in the dynamics of 
nonlinear lattices. A family of modified Korteweg-de Vrez (MKDV) 
equation is delivered and it is related to the simple Lie algebra. G-strand 
equations are studied and peakon-antipeakon collisions are solved 
analytically and can be applied in the theory of image registration. The 
three-soliton interactions for the Manakov system are modeled by a 
perturbed complex Toda chain. 

A survey is presented concerning chaotic systems and their application in 
industry (Chapter 3). Receptor-based Cellular Nonlinear Network model 
with hysteresis is studied. Dynamics and stability of this model are studied 
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from the point of view of local activity theory and edge of chaos domain is 
obtained. Continuous feedback control is applied in order to stabilize the 
system. Coupled FitzHugh-Nagumo neural system is studied in this survey 
and stabilization of the discretazed models is proposed which is simple for 
implementations. 

Industrial Applications in mechanics are presented (Chapter 4). Lie-ion 
batteries are widely used currently in automotive industry, in electronic 
devices, etc. The pole scale simulations are provided on 3D CT images of 
the porous electrodes. 

Algorithms in industrial mathematics are investigated (Chapter 5). An 
improved algorithm for generating primitive Pythagorean triples is 
proposed which is based on a well-known construction by Barning and 
Hall. Similar construction is considered in the four-dimensional case of 
Pythagorean quadruples and the generalized case of relatively prime 
quadruples. 

Another topic which is considered in the volume is networks applications 
in industry (Chapter 6). Neural network for classification of plastic and 
non-plastic materials with blasting action after blow up with coherent 
signals in optical range is proposed. Another network application is 
graphical user interface created to study static equation of linear Cellular 
Neural Networks (CNN). An interactive web tool is developed to explore 
associations in networks built with Affymetrix transcriptional profiling 
data and other sources of genomics data. 

Linear algebra applications are considered (Chapter 9). General parametric 
AE-solution set is obtained which appears in various industrial 
applications domain. A review of the main results of the component-wise 
stability of Wang’s parallel partition method is presented for banded and 
tri-diagonal linear systems. 

High performance and scientific topics are included in this volume 
(Chapter 2).The importance of the computing infrastructure is 
unquestionable for the development of modern science. In this chapter an 
approach in the installation and configuration of a high performance with 
grid access is presented. The cluster comprises of large pool of 
computational blades and two powerful GPGPU-enabled servers. The 
Danish Eulerian Model is a powerful and sophisticated air pollution 
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model. Novel developments in the up-to-date parallel implementation of 
the model are presented in this chapter. Field fire model is proposed which 
is based on game modeling using hexagonal cells and rules. Parallel 
version of the algorithm is run on Blue Gene supercomputer. 

The role of this book is very important for promotion of interdisciplinary 
collaboration between applied mathematics and science, engineering and 
technology.  

I would like to thank very much to Dr. Maya Markova for her help in 
preparing this volume. 

 

Sofia, May 2014  Angela Slavova 
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CHAPTER ONE: 

REAL LIFE APPLICATIONS OF PDF 



LOCAL WELL-POSEDNESS FOR THE CUBIC 1D 
PERIODIC SQUARE-ROOT KLEIN GORDON 

EQUATION 

VLADIMIR GEORGIEV AND MIRKO TARULLI  

 
 
 

Introduction 

We consider the Cauchy problems associated with the following 
square-root KG equation  

 (݅ ∂௧ − √−Δ +݉ଶ)ݑ = t	for	ݑଶ|ݑ|ߪ ≥ 0, (1) 

where ݉ > 0, ߪ  = ±1,  and ݐ)ݑ, (ݔ  is 2ߨ -periodic in ݔ . If we have 
solutions ݐ)ݑ, (ݔ ∈ ,0])ܥ ܶ]; ݏ with ,((ߨ0,2)௦ܪ > 1/2, then the equation 
enjoys two conservation laws  

 ∥ (ݐ)ݑ ∥௅మ(଴,ଶగ)=  ݐݏ݊݋ܿ
and  

 ଵଶ ∥ (−Δ +݉ଶ)ଵ/ସ(ݐ)ݑ ∥௅మଶ + ఙସ ∥ (ݐ)ݑ ∥௅రସ =  (2) .ݐݏ݊݋ܿ

Moreover we state 

Definition 1.1 The problem (1) is well-posed in ܪ௦(0,2ߨ) with ݏ ∈ (0,1) 
if for any ܴ > 0 one can find ܶ = ܶ(ܴ) > 0 such that for any initial data (0)ݑ = ݂ ∈ ∥ ௦ withܪ ݂ ∥ுೞ≤ ܴ one can define unique solution ݐ)ݑ, (ݔ ,0])ܥ∋ ܶ];   ௦) so that the solution mapܪ

 ݂ ∈ (ܴ)ܤ = {݃ ∈ ;௦ܪ ∥ ݃ ∥ுೞ≤ ܴ} → ,ݐ)ݑ (ݔ ∈ ,0])ܥ ܶ];  ,(௦ܪ
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is continuous.  

A stronger property is the uniform continuity of the solution map. In this 
direction we have our main result, that is 

Theorem 1.2 If one select ݏ ∈ (1/3,1/2),  then the Cauchy problem 
associated to  

 (߲݅௧ − ߂−√ +݉ଶ)ݑ = ݐ	ݎ݋݂	ݑଶ|ݑ| ≥ 0, (3) 

can not have uniformly continuous solution map in ܪ௦.  

From now let us select ݉ = 1 and indicate by √−Δ + 1 =  Then the .〈௫ܦ〉
above result is valid also for  

 (݅ ∂௧ − ݑ(〈௫ܦ〉 =  ,ݑଶ|ݑ|−
but for this case one expect some blow up effect similar to the one obtained 
in [3]. To explain the idea of the proof, let us look at a solution of the form  

,ݐ)ݑ  (ݔ = ,ݐ)ݑ ;ݔ ,ݏ (ߝ = ,ݐ)ஹ଴ݒ ;ݔ ,ݏ (ߝ + ,ݐ)ఌݓ  (4) ,(ݔ

where ݐ)ݓ, (ݔ = ,ݐ)ఌݓ   satisfies (ݔ

 (݅ ∂௧ − ݓ(|௫ܦ| = ݒ|) + ݒ)ଶ|ݓ + (ݓ − ஹܲ଴(|ݒ|ଶ)ݒ) + ݒ)(௫ܦ)ܵ +  ,(ݓ
  (5) 

with the smoothing operator  

(௫ܦ)ܵ  = 〈௫ܦ〉 −  ,|௫ܦ|
and with zero initial data. In addition we choose ݐ)ݒ, (ݔ = ,ݐ)ஹ଴ݒ  as the ,(ݔ
solution of the modified equation for the NLW (see [2] for more details)  

 ݅(∂௧ − ∂௫)ݒ = ஹܲ଴(ݒ|ݒ|ଶ), 
where ஹܲ଴ is the operator  
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 ஹܲ଴൫∑ 	௞∈ℤ መ݂(݇)݁௜௞௫൯ = መ݂(0) + ∑ 	ஶ௞ୀଵ መ݂(݇)݁௜௞௫. 
We shall construct a family of ݒஹ଴(ݐ, ݆ and for ߝ defined for any positive (ݔ = 0,1 as follows  

,ݐ)ఌ(௝)ݒ  (ݔ = ,ݐ)ஹ଴ݒ ;ݔ ݆, ,ݏ (ߝ = ௔ೕ௘ష೔ഀೕ೟ଵି௖బ௘೔(೟(భషംೕ)శೣ), (6) 

where  

 ܿ଴ = ܿ଴(ߝ) = √1 − ,ߝ ௝ܽ = ௝ܽ(ߝ) = ௝݉ߝ௦ାଵ/ଶ, 0 < ݏ < ଵଶ, (7) 

  

 ௝݉ = ௝݉(ߝ) = 1 + ௝|୪୭୥ఌ| , ݆ = 0,1, (8) 

and with  

௝ߛ  = ௖బమ௔ೕమଵି௖బమ , ௝ߙ − ௝ߛ = ௔ೕమ(ଵି௖బమ)మ. (9) 

We choose ߝ > 0 small and use the fact that ݒఌ(௝)(ݐ, (ݔ = ,ݐ)ஹ଴(௝)ݒ ;ݔ ,ݏ  (ߝ
introduced in (6) could be used in the proof of the fact that solution map is 
not uniformly continuous, that is the statement of the Theorem1.2. Note that 
the relations (7) and (9) imply  

ߛ2  = (ߝ)ߛ = ݉ଶߝଶ௦(1 +  ,((ߝ)ܱ
ߙ  = (ߝ)ߙ = 	݉ଶߝଶ௦ିଵ(1 +  (10) .((ߝ)ܱ

Furthermore we can apply the argument of Section 5 in [1] (see also [5]) so 
we shall obtain the following estimates  

 ∥ ఌ(ଵ)(0,⋅)ݒ − ఌ(ଶ)(0,⋅)ݒ ∥ுೞ(଴,ଶగ)≤ ܥ ଵ|୪୭୥ఌ|, (11) 

 with ܥ > 0 and consequently, for suitable interval of type  
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 ,{|ߝଵିଶ௦|logߝ~ݐ} 
we have  

 ∥ (⋅,ݐ)ఌ(ଵ)ݒ − (⋅,ݐ)ఌ(ଶ)ݒ ∥ுೞ(଴,ଶగ)≥ ܦ > 0, (12) 

 with some ܦ > 0 independent of ߝ > 0. Our main goal is to construct 
functions ݑఌ(ଵ)(ݐ, ,(ݔ ,ݐ)ఌ(ଶ)ݑ  so that (ݔ

,ݐ)ఌ(ଵ)ݑ •   ,(ݔ ,ݐ)ఌ(ଶ)ݑ  are solutions of the square - root KG equation (3) (ݔ
of the form (4),  

  • they have slightly smoother than ܪଵ/ଶ regularity, i.e.  

,ఌ(ଵ)ݑ  ఌ(ଶ)ݑ ∈ ,0])ܥ ;[(ߝ)ܶ  ,((ߨ0,2)௦భܪ
for suitable choices of ݏଵ > 1/2, (ߝ)ܶ > 0,  

  • the functions ݑఌ(ଵ), ݏ ఌ(ଶ) satisfy the estimates (11) and (12) with someݑ ∈ (1/3,1/2).  

The inequalities (11) and (12) for these solutions will imply the conclusion 
of Theorem 1.2. 

Solutions of 1D square - root NLKG system  
as perturbations of Szegö type solutions 

For any function ܽ: ℤ → ℂ we set  

(ݔ)݂(ܦ)ܽ  = ∑ 	௞∈ℤ ܽ(݇) መ݂(݇)݁௜௞௫, 
where መ݂(݇) is the Fourier coefficient of ݂. In particular we have  

(ݔ)݂|ܦ|  = ∑ 	௞∈ℤ |݇| መ݂(݇)݁௜௞௫. (13) 

We have also the partition of unity  
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ܫ  = ାܲ + ଴ܲ + ܲି , (14) 

where  

 ାܲ(݇) = ൜1, 	݂݅	݇	 > 	0;	0, ,݁ݏ݅ݓݎℎ݁ݐ݋	 	 	Pି (݇) = ൜1, 	݂݅	݇ < 0;	0,  ,݁ݏ݅ݓݎℎ݁ݐ݋	
by this we obtain  

|ܦ|  = ܦ ାܲ − ିܲܦ = ( ାܲ − ܲି  (15) .ܦ(

We shall use also the operators  

 ஹܲ଴ = ାܲ + ଴ܲ, ஸܲ଴ = ܲି + ଴ܲ. 
Let use recall from [2] that if one just pick up ݉ = 0, then the square root 
Klein Gordon equation (1) can be transformed into a system  

 2݅(∂௧ − ∂௫)ݑஹ଴ = ܳஹ଴(ݑஹ଴,  (16) ,(ିݑ

 ݅(∂௧ + ∂௫)ିݑ = ,ஹ଴ݑ)ିܳ  .(ିݑ
The system (16) is simplified essentially when ିݑ = 0  and becomes 
simple scalar equation of type  

 ݅(∂௧ − ∂௫)ݒஹ଴ = ஹܲ଴(|ݒஹ଴|ଶݒஹ଴)fort ≥ 0. (17) 

Lemma 2.1 For any ݏ ∈ (1/3,1/2) one can find solutions  

,ݐ)ఌݒ  (ݔ ∈  ,((ߨ0,2)௦ܪ;ℝ)ܥ
to (17) having the form (6), i.e.  

,ݐ)ఌݒ  (ݔ = ,ݐ)ஹ଴ݒ ;ݔ ,ݏ  ,(ߝ
such that ܲି (ఌݒ) = 0.  
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Making the substitution  

ݑ  = ݒ + ,ݓ ,ݐ)ݒ (ݔ = ,ݐ)ఌݒ  (18) ,(ݔ

 in (16) we arrive at the following equation  

 (݅ ∂௧ − ݓ(|௫ܦ| = ݓ) + ݓ)ଶ(ݒ + (ݒ − ݒଶݒ + ܲି (ݒଶݒ) + ݒ)(ܦ)ܵ +  ,(ݓ
                                                                       (19) 

 where  

ݓ)  + ݓ)ଶ(ݒ + (ݒ − ݒଶݒ = ݒݒݓ2 + ଶݒݓ + ݒଶݓ + ݒݓݓ2 +  .ݓଶݓ
  (20) 

It is important to classify all term on the right hand side of (19). First of all 
we notice that the last term, because of the smoothing nature of the operator ܵ(ܦ) (see for instance [4] and reference therein) fulfills  

Lemma 2.2 Assume ఌ݂ ∈ ,[0,1])ܥ ݏ ,ߝ௦), for someܪ = ଵଶ − ,ߝ ߝ > 0, then 
one has  

 ∥ (ܦ)ܵ ఌ݂ ∥ுೌశೞ=∥ 〈௫ܦ〉) − ݂(|௫ܦ| ∥ுೌశೞ≤ ܥ ∥ ఌ݂ ∥ுೞ, 
 for all ܽ ∈ [0,1/2] and with ܥ > 0 independent from ߝ.  

 The above lemma suggests that we can concentrate on the remaining 
terms. Then we have linear combinations of the following: 

  1. Term ݓଶݓ cubic in ݓ.  

  2. Terms ݓଶݒ and ݒݓݓ quadratic in ݓ.  

  3. Terms ݒݒݓ and ݒݓଶ linear in ݓ.  

  4. Term of type ܲି (ݒݒݒ) = ܲି   .(ଶ|ݒ|ݒ)

In this way we have  
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 (݅ ∂௧ − ݓ(|௫ܦ| = ∑ 	ଷ௝ୀଵ ܳ௝(ݒ, (ݓ + ܲି  (21) ,(ݒݒݒ)

where  

 3ܳଵ(ݒ, (ݓ = ݒݒݓ2 +  ଶ, (22)ݒݓ

 ܳଶ(ݒ, (ݓ = ݒଶݓ +  ,ݒݓݓ2
 ܳଷ(ݓ) =  .ݓଶݓ
We can rewrite (21) as 

 

 (݅ ∂௧ − ݓ)(|௫ܦ| + (଴ݓ = ∑ 	ଷ௝ୀଵ ܳ௝(ݒ,  (23) ,(ݓ

where ݓ଴ is a solution to the linear equation  

 (݅ ∂௧ − ଴ݓ(|௫ܦ| = ܲି  (24) .(ݒݒݒ)

Since ݐ)ݒ, (ݔ = ,ݐ)ఌݒ   is a family of smooth solutions, such that (ݔ

 ∥ ఌݒ ∥஼([଴,ଵ];ுሶ ഑)≤ ,௦ିఙߝܥ ∥ ఌݒ ∥஼([଴,ଵ];௅మ)≤  ௦, (25)ߝܥ

and  

 ∥ ఌݒ ∥஼([଴,ଵ];௅ಮ)≤  ௦ିଵ/ଶߝܥ

(see Proposition 5.1), we see that is seems difficult to derive estimate of 
type  

 ∥ ଴ݓ ∥஼([଴,ଵ];ு഑)≤ ఏߝܥ < ∞, (26) 

with some ߪ > 1/2, ߠ > 0. However, we shall overcome this obstacle and 
establish (26) by using suitable modified Bourgain spaces and estimates for ݒ leading to the smoothing property (26). Once, the smoothing property 
(26) is verified, we can follow the approach based on semi-classical 
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estimates and show that (23) has solution ݓ  satisfying better error 
estimates. 

Semi-classical estimates for the solution 

We refer for this Section to the paper [2]. Given any ߪ > 1/2 and any 
smooth function ݐ)ݓ,   consider the semiclassical energy (ݔ

((ݐ)ݓ)ఙ,ఌܧ  = ଵିߝ ∥ ((⋅,ݐ)ݓ ∥௅మଶ + ଶఙିଵߝ ∥ (⋅,ݐ)ݓ ∥ுሶ ഑ଶ , (27) 

by this fact along the section we shall assume  

((ݐ)଴ݓ)ఙ,ఌܧ  =  ,(ఏߝ)ܱ
for some ߝ > 0, ߠ > 0. It is easy to compare this semiclassical norm with 
the standard Sobolev norm. This is given by the 

Lemma 3.1 For any ݏ, 0 < ݏ ≤   ߪ

 ∥ (ݔ)݂ ∥ுೞ≤  ఙ,ఌ(݂). (28)ܧଵ/ଶି௦ඥߝܥ

The construction of Szegö type solutions ݐ)ݒ, (ݔ = ,ݐ)ఌݒ  described in ,(ݔ
the previous section together with (25), guarantees that  

((ݐ)ݒ)ఙ,ఌܧ  ≤  ଶ௦ିଵ. (29)ߝܥ

For the equation (23) we have the following semi-classical estimate. 

Lemma 3.2 For any ߪ ≥ 0 there exists a constant ܥ > 0 so that for any ܶ ∈ (0,1) we have  

 2 ((ݐ)ݓ)ఙ,ఌܧ଴ஸ௧ஸ்ඥ݌ݑݏ ≤ ܥ ((ݐ)଴ݓ)ఙ,ఌܧ଴ஸ௧ஸ்ඥ݌ݑݏ + (30) 

ܥ+  ቀ∑ 	ଷ௝ୀଵ ׬ 	଴் ඥܧఙ,ఌ(ܳ௝(ݐ))	݀ݐቁ. 
Proof. We have the following estimates  
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 ∥ (⋅,ݐ)ݓ ∥௅మ≤ ܥ ∥ (⋅,ݐ)଴ݓ ∥௅మ+ ∑ 	ଷ௝ୀଵ ׬ 	௧଴ ∥ ܳ௝(߬,⋅) ∥௅మೣ ݀߬, 
 ∥ (⋅,ݐ)ݓ ∥ுሶ ഑≤ ܥ ∥ (⋅,ݐ)଴ݓ ∥ுሶ ഑+ ∑ 	ଷ௝ୀଵ ׬ 	௧଴ ∥ ܳ௝(߬,⋅) ∥ுሶ ഑ ݀߬. 
From these estimates we get out (30).  

Thus we need the following 

Lemma 3.3 For any ߪ > 1/2 one can find a constant ܥ = (ߪ)ܥ > 0 so 
that for any ݐ, 0 ≤ ݐ ≤ 1 we have  

 ඥܧఙ,ఌ(ܳଷ(ݐ)) ≤  ൯ଷ/ଶ. (31)((ݐ)ݓ)ఙ,ఌܧ൫ܥ

We have also 

Lemma 3.4 For any ߪ > 1/2 one can find a constant ܥ > 0 so that for 
any ݐ, 0 ≤ ݐ ≤ 1 we have  

 ඥܧఙ,ఌ(ܳଶ(ݐ)) ≤  ௦ିଵ/ଶ. (32)ߝ	((ݐ)ݓ)ఙ,ఌܧܥ

We quote Proposition 5.1 and we can write the following semi-classical 
estimate for the Szegö type solutions ݐ)ݒ, (ݔ = ,ݐ)ఌݒ   (ݔ

 ∥ (⋅,ݐ)ݒ ∥௅ಮ≤ ,௦ିଵ/ଶߝܥ ඥܧఙ,ఌ((ݐ)ݒ) ≤  ௦ିଵ/ଶ. (33)ߝܥ

 In a similar way we find.  

Lemma 3.5 For any ߪ > 1/2 one can find a constant ܥ > 0 so that for 
any ݐ, 0 ≤ ݐ ≤ 1 we have  

 ඥܧఙ,ఌ(ܳଵ(ݐ)) ≤  ଶ௦ିଵ. (34)ߝ	((ݐ)ݓ)ఙ,ఌܧඥܥ

The semi-classical estimate (30) shows that we can set  

 ݃(ܶ) = sup଴ஸ௧ஸ்ඥܧఙ,ఌ((ݐ)ݓ), ଵߝ = ,ଵିଶ௦ߝ ఏߝ =  ଵఏభߝ
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and derive the following estimate  

 ݃(ܶ) ≤ ܥ ቀߝଵఏభ + ׬ 	଴் ݐଷ݀(ݐ)݃ + ׬ 	଴் ଶ(ݐ)݃ ௗ௧√ఌభ + ׬ 	଴் (ݐ)݃ ௗ௧ఌభቁ (35) 

Lemma 3.6 If ݃(ݐ) is a continuous non - negative function satisfying (35) 
with ߠଵ ∈ (0,1/2), then one can find ߝ଴ > 0 so that for 0 < ଵߝ <  ଴ weߝ
have the inequality  

 ݃(ܶ) ≤  ଵఏభ/ଶ (36)ߝܥ2

for  

 0 ≤ ܶ ≤ (ଵߝ)∗ܶ = ఏభఌభଶ 	|logߝଵ|. 
Proof of Theorem 1.2 

In this section, following the spirit of the paper [2], we shall complete the 
proof of Theorem 1.2 provided that the smoothing estimate (26), with some ߪ > 1/2, ߠ > 0, is satisfied. As we already shown in Lemma 3.6 we have 
the estimate  

(ݐ)݃  = sup଴ஸ௦ஸ௧ඥܧఙ,ఌ(ݓఌ(ݏ)) ≤  ଵఏభ/ଶ (37)ߝܥ2

for  

ଵߝ  = ,ଵିଶ௦ߝ ଵߠ = ఏଵିଶ௦ > 0 

and for  

 0 ≤ ݐ ≤ (ଵߝ)∗ܶ = ఏభఌభଶ 	|logߝଵ|. 
Note that the estimate (28) implies  

 ∥ (ݐ)ఌݓ ∥ுೞ≤  ଵ/ଶି௦. (38)ߝܥ
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The substitution (18) yields that for any ߝ ∈ (0,1/2) and for any ݆ = 0,1  

,ݐ)ఌ(௝)ݑ  (ݔ = ,ݐ)ஹ଴(௝)ݒ ;ݔ ,ݏ (ߝ + ,ݐ)ఌ(௝)ݓ  ,(ݔ
is a solution to the equation (3) (with ݉ = 1), i.e. for ݑ = ,ݐ)ఌ(௝)ݑ   solves (ݔ

 (݅ ∂௧−< ௫ܦ ఌ(௝)ݑ(< = ఌ(௝)fortݑఌ(௝)|ଶݑ| ≥ 0, 
with initial data  

,ఌ(௝)(0ݑ  (ݔ = ௔ೕଵି௖బ௘೔ೣ, (39) 

such that  

 ܿ଴ = ܿ଴(ߝ) = √1 − ,ߝ ௝ܽ = ௝ܽ(ߝ) = ቀ1 + ௝|୪୭୥ఌ|ቁ  ௦ାଵ/ଶ. (40)ߝ

Using Lemma 5.2, it is easy to verify that  

 ∥ ఌ(ଵ)(0,⋅)ݑ − ఌ(଴)(0,⋅)ݑ ∥ுೞଶ = ∑ 	௞ஹ଴ 〈݇〉ଶ௦|ܽଵ − ܽ଴|ଶ(1 − ௞(ߝ ≤ ஼|୪୭୥ఌ|మ. 
  (41) 

The estimates (33) show that  

 ∥ (ݐ)ݒ ∥ுೞ≤ ((ݐ)ݒ)ఙ,ఌܧଵ/ଶି௦ඥߝܥ ≤  ଵ. (42)ܥ

Our principal target shall be to establish that for some ܦ > 0 we have  

 ∥ ,ݐ)ஹ଴(ଵ)ݒ ;ݔ ,ݏ (ߝ − ,ݐ)ஹ଴(଴)ݒ ;ݔ ,ݏ ((ߝ ∥ுೞ≥  (43) ,ܦ

for ݐ in a suitable interval, the estimates (37), (38) guarantee that the term  

,ݐ)ఌ(௝)ݒ  (ݔ = ,ݐ)ஹ଴(௝)ݒ ;ݔ ,ݏ  ,(ߝ



Vladimir Georgiev and Mirko Tarulli  
 

13

is dominant in the representation ݑఌ(௝) = ఌ(௝)ݒ +  ఌ(௝) so the estimates (41)ݓ
and (43) will complete the proof of Theorem 1.2. For this we have to verify 
(41) only. To do this we shall concentrate the proof on the estimate of a 
suitable Fourier coefficient in the Fourier expansion of  

,ݐ)ఌ(௝)ݒ  (ݔ = ௔ೕ(ఌ)௘ష೔ഀೕ(ഄ)೟ଵି௖బ(ఌ)௘೔(ೣశ೟షംೕ(ഄ)೟), 
where the parameters ߙ௝(ߝ),   satisfy the asymptotical expansions (ߝ)௝ߛ

(ߝ)௝ߛ2  = ଶ௦ߝ ቆ1 + ௝|୪୭୥ఌ| + ݋ ቀ ଵ|୪୭୥ఌ|ቁቇ, 
(ߝ)௝ߙ  = 	 ଶ௦ିଵߝ ቆ1 + ௝|୪୭୥ఌ| + ݋ ቀ ଵ|୪୭୥ఌ|ቁቇ, (44) 

 as ߝ ↘ 0. One has the following  

Lemma 4.1 For any ݀଴ > 0 one can find constants ܦ, ݀ଵ, ݀ଶ > 0 with ݀ଵ < ݀ଶ < ݀଴ so that for any ߝ ∈ (0,1/2), any ݆ = 0,1 and any integer ݇, 0 ≤ ݇ ≤ (ߝ)ܰ =   the Fourier coefficient ,ߝ/(2݃݋݈)

,ݐ)௞(௝)ܥ  (ߝ = ଵଶగ ׬ 	గିగ ௔బ(ఌ)௘ష೔ഀೕ(ഄ)೟ଵି௖బ(ఌ)௘೔(ೣశ೟షംೕ(ഄ)೟) 	݁ି௜௞௫݀(45) ,ݔ 

satisfies the estimate  

 หܥ௞(ଵ)(ݐ, (ߝ − ,ݐ)௞(଴)ܥ ห(ߝ ≥ 1)ܦ −  ௦ାଵ/ଶ, (46)ߝ௞/ଶ(ߝ

for  

 ݀ଵߝଵିଶ௦|݈ߝ݃݋| ≤ ݐ ≤ ݀ଶߝଵିଶ௦|݈(47) .|ߝ݃݋ 

It is easy to compare the Fourier coefficients in (45) with the standard 
Fourier coefficients  
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ఌ(ఫ)෢ݒ  ,ݐ) ݇) = ଵଶగ ׬ 	గିగ ,ݐ)ఌ(௝)ݒ ݔ௜௞௫݀ି݁	(ݔ = ௔ೕ௔బ ,ݐ)௞(௝)ܥ  .(ߝ
From the fact that  

 ௝ܽ(ߝ) − ܽ଴(ߝ) = ௦ିଵ/ଶߝ ቆ ଵ|୪୭୥ఌ| + ݋ ቀ ଵ|୪୭୥ఌ|ቁቇ, 
thus Lemma 4.1 we gives the following. 

Lemma 4.2 For any ݀଴ > 0 one can find constants ܦ, ݀ଵ, ݀ଶ > 0 with ݀ଵ < ݀ଶ < ݀଴ so that for any ߝ ∈ (0,1/2), any ݆ = 0,1 and any integer ݇, 0 ≤ ݇ ≤ (ߝ)ܰ =   the Fourier coefficients ߝ/(2݃݋݈)

ఌ(ఫ)෢ݒ  ,ݐ) ݇) = ଵଶగ ׬ 	గିగ ,ݐ)ఌ(௝)ݒ  (48) ,ݔ௜௞௫݀ି݁	(ݔ

satisfy the estimate  

 ቚݒఌ(ଵ)෢ ,ݐ) ݇) − ఌ(଴)෢ݒ ,ݐ) ݇)ቚ ≥ 1)ܦ −  ௦ାଵ/ଶ, (49)ߝ௞/ଶ(ߝ

 for  

 ݀ଵߝଵିଶ௦|݈ߝ݃݋| ≤ ݐ ≤ ݀ଶߝଵିଶ௦|݈(50) .|ߝ݃݋ 

To complete the proof of (41) we use Lemma 4.2 and the relations 

 ∥ ,ݐ)ஹ଴(ଵ)ݒ ;ݔ ,ݏ (ߝ − ,ݐ)ஹ଴(଴)ݒ ;ݔ ,ݏ ((ߝ ∥ுೞଶ ≥ 

 ≥ ܥ ∑ 	ே(ఌ)௞ୀ଴ ቚݒఌ(ଵ)෢ ,ݐ) ݇) − ఌ(଴)෢ݒ ,ݐ) ݇)ቚଶ 〈݇〉ଶ௦ ≥ ∑ܦ 	ே(ఌ)௞ୀ଴ ଶ௦ାଵ(1ߝ −  ,௞〈݇〉ଶ௦(ߝ
combined with the following estimate that implies by the way the optimality 
of the one in Lemma 5.2. 

Lemma 4.3 There is a positive constant ܥ > 0 so that for any ݀ > 0, and ߠ ∈ [0,1] and for any ߝ ∈ (0,1/2) we have  
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 ∑ 	ௗ/ఌ௞ୀ଴ (1 + ݇)ఏ(1 − ௞(ߝ ≥ ஼ఌభశഇ. (51) 

Invariant space for Szegö type equation  

In this section we present some known facts about the space where the 
functions (6) are defined. More precisely we see that typical elements in  

ஹ଴ଶܮ  (ߨ0,2) = {݂ ∈ ;(ߨ0,2)ଶܮ ܲି (݂) = ݂ି = 0}, 
are functions of type  

;ݖ)݂  ܿ) = ଵଵି௖௭ , ܿ ∈ ℂ, |ܿ| < 1, ݖ = ݁௜௫. 
Arguing as [1] one can look for solutions to the equation (17) having the 
form  

 ߮௔,௖(ݔ) = ݂ܽ(݁௜௫; ܿ), ܽ ∈ ℂ. 
The solution ݒା(ݐ,   shall be defined by the formula (ݔ

,ݐ)ஹ଴ݒ  (ݔ = ௔బ௘ష೔ഀ೟ଵି௖బ௘೔(೟(భషം)శೣ). (52) 

We choose the parameters ܿ଴, ܽ଴  according to (7), Moreover the 
parameters ߛ,  satisfy the asymptotic expansions given by (10). Our first ߙ
observation about the smooth functions  

,ݐ)ஹ଴ݒ  (ݔ = ,ݐ)ఌݒ (ݔ = ∑ 	ஶ௞ୀ଴  ,௞݁௜௞(௧ା௫)(ݐ)௞ܿ(ݐ)ܽ
is the following. 

Proposition 5.1 For any ݌ ∈ [2,∞] we have the estimate  

 ∥ (⋅,ݐ)ఌݒ ∥௅೛(଴,ଶగ)≤  ௦ିଵ/ଶାଵ/௣. (53)ߝܥ

 For any ߪ ≥ 0  
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 ∥ (⋅,ݐ)ఌݒ ∥ுሶ ഑(଴,ଶగ)≤  ௦ିఙ. (54)ߝܥ

The main ingredient to prove the above Proposition (5.1) is the estimate  

,ݐ)ݒ|  |(ݔ ≤ ∑ 	ஶ௞ୀ଴ ௦ାଵ/ଶ(1ߝ −  ௞/ଶ, (55)(ߝ

 in connection with the following.  

Lemma 5.2 For any ߠ > 0 there is a constant ܥ଴ = (ߠ)ܥ > 0 so that for 
any ߝ ∈ (0,1/2) we have  

 ∑ 	ஶ௞ୀ଴ (1 + ݇)ఏ(1 − ௞(ߝ ≤ ஼బఌభశഇ, (56) 

Furthermore we have 

Lemma 5.3 If ܽ ∈ ℂ and ܿ ∈ ℂ with |ܿ| < 1 then  

(ݔ)ஹ଴ݒ  = ௔ଵି௖௭ , ݖ = ݁௜௫, (57) 

 satisfied the relations  

 ஹܲ଴(ݒஹ଴|ݒஹ଴|ଶ) = ௔|௔|మ(ଵି|௖|మ௖௭)(ଵି௖௭)మ(ଵି|௖|మ)మ, (58) 

 ܲି (ஹ଴|ଶݒ|ஹ଴ݒ) = ∑ 	ஶ௞ୀଵ ௔|௔|మ(ଵି|௖|మ)మ ܿ௞݁ି௜௞௫. (59) 

Smoothing estimates by means of modified Bourgain 
spaces 

The modified Bourgain spaces ܺ±,ఈ,ఊ௦,ఋ  associated with the system (16) and 
then to NLKG equations can be defined as the completion of the space  

 ܵ(ℝ,  ,([ߨ0,2]ஶܥ
with respect to the norms  
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 ∥ ݂ ∥௑±,ഀ,ംೞ,ഃ = ൫׬ 	ℝ ∑ 	௞∈ℤ 〈߬ + ߙ ∓ ݇(1 − |ଶఋ〈݇〉ଶ௦〈(ߛ ሚ݂(߬, ݇)|ଶ൯ଵ/ଶ. 
  (60) 

Here ݏ, ߜ  are fixed, ߙ, ߛ  are parameters depending on ߝ > 0,  and the 
modified symbols are of the form  

 〈߬ + ߙ ∓ ݇(1 −  ,〈(ߛ
where ߙ and ߛ are appropriate parameters associated with the sequences 
defined according to (6) with ଵଷ < ݏ < ଵଶ (then the above spaces and their 
norms might depend on ߝ). The main observation concerning the solutions ݒఌ,௦(ݐ,   is that (ݔ

,ݐ)ఌ,௦ݒ(ݐ)߮  (ݔ ∈ ܺା,ఈ,ఊ௦,ே , 
for any integer ܰ ≥ 1 and for any ߮(ݐ) ∈   ଴ஶ(ℝ). In addition we haveܥ

 ∥ ,ݐ)ఌ,௦ݒ(ݐ)߮ (ݔ ∥௑శ,ഀ(ഄ),ം(ഄ)ೞ,ಿ ≤  ,ேܥ
with some constant ܥே independent of ߝ. We have the following useful 
ancillary tools. 

Lemma 6.1 For any ݏ, 1/4 ≤ ݏ < 1/2, and any real number ܦ ∈ (1/2,1) 
there exists a constant ܥ = ,ݏ)ܥ (ܦ > 0 independent of ߝ > 0 so that  

 ∥ ,ݐ)ఌ,௦ݒ(ݐ)்߮ (ݔ ∥௑శ,ഀ,ംೞ,ವ ≤ ,ݏ)ܥ  ଵି஽, (61)ܶ(ܦ

 i.e.  

׬  	ℝ ݀߬ ∑ 	ஶ௞ୀ଴ 〈߬ + ߙ − ݇(1 − ଶ஽(1〈(ߛ + ݇)ଶ௦|൫்߮ݒఌ,௦൯෫ (߬, ݇)|ଶ ≤   .ଶܶଶିଶ஽ܥ
                                                                      (62) 

Our next step is to evaluate the ܺ௦ିభ,ఋభିଵ norm of the term  

,ݐ)݃  (ݔ = ܲି  .(ఌ,௦|ଶݒ|ఌ,௦ݒ)
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Lemma 6.2 If ݏ ∈ (1/3,1/2) and ݏଵ > 1/2,1 > ଵߜ > 1/2, 0 < ߠ < 1/2, 
satisfy  

ଵݏ  + ଵߜ + ߠ ≤  ,ݏ3
then for any ܶ ∈ (0,1) and any ߮(ݐ) ∈   ଴ஶ(ℝ), we haveܥ

,ݐ)ఌ,௦݃(ݐ)்߮  (ݔ = ߮ ቀ௧்ቁ)ܲି (ఌ,௦|ଶݒ|ఌ,௦ݒ) ∈ ܺ௦ିభ,ఋభିଵ, 
and  

 ∥ ,ݐ)ఌ,௠݃(ݐ)்߮ (ݔ ∥௑షೞభ,ഃభషభ≤  ,ఏߝܥ
with some constant ܥ > 0 independent of ߝ, ,ଵߜ ܶ.  

Finally, we turn to the solution ݓ଴ to the linear equation (24) with zero 
initial data. We already established that  

ܨ  = ߮ ቀ௧்ቁ)ܲି (ఌ|ଶݒ|ఌݒ) ∈ ܺఙି,ఋభିଵ, 
for some ߪ > 1/2, ଵߜ > 1/2. To derive the smoothing property (26), we 
need only the classical estimate 

Lemma 6.3 For any ܶ > 0 and for any ߪ ≥ 0, 1/2 < ଵߜ < 1, one can 
find a constant ܥ = ,ܶ)ܥ (ଵߜ > 0 so that for any  

ܨ  ∈ ܺఙି,ఋభିଵ, 
the solution ݓ଴ to  

 (߲݅௧ − ଴ݓ(|௫ܦ| = ,ܨ ,଴(0ݓ (ݔ = 0, 
is  

଴ݓ  ∈ ,ܶ−])ܥ ܶ];  ,((ߨ0,2)ఙܪ
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and satisfies the estimate  

 ∥ ଴ݓ ∥஼[ି்,்];ு഑(଴,ଶగ))≤ ܥ ∥ ܨ ∥௑ష഑,ഃభషభ. (63) 
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1 Introduction 

The aim of this paper is to estimate from below the first eigenvalue ߣ of 
p--Laplacian Δ௣ݑ = (ݑ∇௣ିଶ|ݑ∇|)	ݒ݅݀	 ݌ , > 1  in a bounded simply 
connected domain Ω ⊂ ܴ௡, ݊ ≥ 2 with smooth boundary ∂Ω  

 ൜−Δ௣ݑ = ݑ,Ω		݊݅			ݑ௣ିଶ|ݑ|ߣ = 		݊݋				0 ∂Ω  (1) 

Problem (1) is the Euler--Lagrange equation minimizing the Reyleigh 
quotient  

׬  	ಈ |∇௨|೛ௗ௫׬ 	ಈ |௨|೛ௗ௫ . (2) 

among functions ݑ ∈ ଴ܹଵ,௣ and is introduced in [22] and independently in 
[11]. 

The first eigenvalue ߣ is positive, simple, the corresponding eigenfunction 
is positive, unique (up to multiplication with a constant) and belongs to the 
class ଴ܹଵ,௣(Ω), see [3, 4, 23, 6, 20]. Below, for the first eigenvalue ߣ of (1) 
we will use also the notation ߣ௣,௡(Ω). 
For ݌ > 1 and ݊ = 1 for Ω = (ܽ, ܾ), the value of ߣ௣,ଵ(Ω) is  
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,ܽ)௣,ଵߣ  ܾ) = ݌) − 1) ቀ గ೛௕ି௔ቁ௣ , ௣ߨ = ׬2 	ଵ଴ ௗ௦√ଵି௦೛೛ , (3) 

see [28, 9]. 

For ݊ ≥ 2 only in the case ݌ = 2, i.e. for the Laplace operator, the value of ߣଶ,௡(Ω) is known with analytical formulae for domains Ω with simple 
geometry like ball, shell, parallelepiped etc. and with numerical 
approximation for more general domains, see the review [14], chapter 3. 
For example if Ω is a ball centered at zero ܤோ ⊂ ܴ௡ then  

(ோܤ)ଶ,௡ߣ  = ݌) − 1) ൬ఓభ(ഀ)ோ ൰ଶ , ߙ = ௡ଶ − 1, (4) 

where ߤଵ(ఈ) is the first positive zero of the Bessel function ܬఈ, see [14] and 
[19]. 

If ݌ ≠ 2 the explicit value of ߣ௣,௡(Ω) is not known even for domains Ω 
like a ball or a parallelepiped. That is why an explicit lower bound for ߣ௣,௡(Ω) is an important task. Different numerical methods are applied in 
order to approximate ߣ௣,௡(Ω) from below, see [21, 9, 8] and references 
herein. Note that, in this case, ݌ ≠ 2, an analytical expression for the lower 
bound of ߣ௣,௡(Ω) by the Cheeger's constant is given in [18]. As for the 
estimates from above, every function ϕ ∈ ଴ܹଵ,௣(Ω) replaced in (2) is an 
upper bound for ߣ௣,௡(Ω). 
Different methods for lower bounds of ߣ௣,௡(Ω)  are developed in the 
literature. For example, isoperimetric estimates and Cheeger's constant, [10, 
21, 20], or inverse power method by means of iterative technique and 
corresponding numerical calculations in [9] (see section 2 for more details). 

In section 3 we estimate ߣ௣,௡(Ω) from below via different Hardy--type 
inequalities with kernels singular at an interior point or on the boundary and 
with double singular kernels. We compare in section 4 the results obtained 
by well known methods described in sections 2 and the new estimates by 
Hardy--type inequalities obtained in section 3. 
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2 State of the art 
 

2.1 Faber--Krahn type inequality 

Let us recall Faber--Krahn type inequality which gives an estimate from 
below of ߣ௣,௡(Ω) for arbitrary bounded domain Ω ⊂ ܴ௡  with ߣ௣,௡(Ω∗), 
where Ω∗ is the n--dimensional ball of the same volume as Ω, see [24, 7, 
16, 18].  

Theorem 2.1 ([18]) Among all domains of given n--dimensional volume the 
ball ߗ∗  with the same volume as ߗ  minimizes every ߣ௣,௡(ߗ), in other 
words  

(ߗ)௣,௡ߣ  ≥  (5) .(∗ߗ)௣,௡ߣ

2.2 Cheeger's constant 

Another lower bound for ߣ௣,௡(Ω) is based on the Cheger's constant  

 ℎ(Ω) = inf | ப஽||஽| . 
Here ܦ  varies over all smooth subdomains of Ω  whose boundary ∂ܦ 
does not touch ∂Ω, and with | ݊) denoting |ܦ| and |ܦ∂ − 1) - and ݊ - 
dimensional Lebegue measure of ∂ܦ and ܦ, respectively. The following 
theorem is proved in [10] for ݌ = 2 and in [20] for ݌ > 1.  

Theorem 2.2 ([10,21]) For every ݌ ∈ (1,∞) the first eigenvalue of (1) can 
be estimated from below via  

(ߗ)௣,௡ߣ  ≥ ቀ௛(ఆ)௣ ቁ௣ = ௣,௡(ଵ)߉  (6) .(ߗ)

Inequality (6) is sharp for ݌ → 1 , because ߣ௣,௡(Ω)  converges to the 
Cheeger's constant ℎ(Ω), see [18], Corollary 6. 
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The Cheeger's constant ℎ(Ω)  is known only for special domains. For 
example, if Ω is a ball ܤோ ⊂ ܴ௡, then ℎ(Ω) = ௡ோ and Theorem 2.2 gives 
the following lower bound for ߣ௣,௡(ܤோ)  

(ோܤ)௣,௡ߣ  ≥ ቀ ௡௣ோቁ௣ = Λ௣,௡(ଵ) ,(ோܤ) ݌		ݎ݋݂ > 1, ݊ ≥ 2. (7) 

Thus combining the above results the following inequality holds for ݌ → 1, 
see [18], Corollary 15 

ଵ,௡(Ω)ߣ  ≥ ݊ ቀఠ೙|ஐ|ቁଵ/௡ = Λଵ,௡(ଵ)(Ω), ݊ ≥ 2. (8) 

where ߱௡ is the volume of the unit ball in ܴ௡. If Ω is a ball ܤோ then (8) 
becomes equality  

 lim௣→ଵߣ௣,௡(ܤோ) = ௡ோ. (9) 

In the other limit case ݌ → ∞ the result in [17] says that  

ஶ,௡(Ω)ߣ  = lim௣→ஶ൫ߣ௣,௡(Ω)൯ଵ/௣ = (max{	݀݅ݐݏ	ݔ), ∂Ω), ݔ ∈ Ω})ିଵ. 
In particular for Ω =   ோܤ

(ோܤ)ஶ,௡ߣ  = lim௣→ஶ൫ߣ௣,௡(ܤோ)൯ଵ/௣ = ଵோ. (10) 

2.3 Sobolev's constant 

It is not difficult to estimate ߣ௣,௡(Ω) from below in a bounded domain Ω 
for 1 < ݌ < ݊ by the well--known Sobolev and Hölder inequalities  

 ∥ ݑ∇ ∥௣≥ ௡,௣ܥ ∥ ݑ ∥ ೙೛೙ష೛≥ ௡,௣ܥ ∥ ݑ ∥௣ |Ω|ିଵ/௡. (11) 

The best Sobolev's constant ܥ௡,௣ which is obtained in [5] and in [29], see 
[26] for bounded domains  
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௡,௣ܥ  = ݊ଵ/௣߱௡ଵ/௡ ቀ௡ି௣௣ିଵቁ೛షభ೛ ቈ୻ቀ೙మቁ୻ቀ௡ାଵି೙೛ቁ୻(௡) ቉ଵ/௡, 
where ߱௡ is the volume of the unit ball in ܴ௡. From (11) the estimate from 
below of the first eigenvalue becomes  

 
௣,௡(Ω)ߣ ≥ ஼೙,೛೛|ஐ|೛/೙= ݊ ቀఠ೙|ஐ|ቁ௣/௡ ቀ௡ି௣௣ିଵቁ௣ିଵ ቈ୻ቀ೙మቁ୻ቀ௡ାଵି೙೛ቁ୻(௡) ቉௣/௡ , (12) 

for 1 < ݌ < ݊. For the ball ܤோ the estimate (12) has the form  

 
(ோܤ)௣,௡ߣ ≥ ௡ோ೛ ቀ௡ି௣௣ିଵቁ௣ିଵ ቈ୻ቀ೙మቁ୻ቀ௡ାଵି೙೛ቁ୻(௡) ቉௣/௡= Λ௣,௡(ௌ) ,(ோܤ)  (13) 

for 1 < ݌ < ݊. As for the limit for ݌ → 1 and fixed ݊ we obtain from (13)  

 lim௣→ଵΛ௣,௡(ௌ) (ோܤ) = ௡ோ೛ ቈ୻ቀ೙మቁ୻(௡)቉ଵ/௡ < ௡ோ. 
For ݌ > ݊  we have from [23] in the parallelepiped ܲ = {0 < ଵݔ <ܽଵ,… ,0 < ௡ݔ < ܽ௡} with ܽ௠௜௡ = minଵஸ௜ஸ௡ܽ௜ the estimate  

(ܲ)௣,௡ߣ  ≥ ௣௔೘೔೙೛ . (14) 

If Ω is an arbitrary bounded domain in ܴ௡  and ܴ  is the radius of the 
largest ball inscribed in the smallest parallelepiped (with minimal ܽ௠௜௡) 
containing Ω then  

௣,௡(Ω)ߣ  ≥ (ோܤ)௣,௡ߣ ≥ ௣ோ೛ = Λ௣,௡(௅) ,(ோܤ) ݌		ݎ݋݂ > ݊. (15) 

For the limit ݌ → ∞ in (15) we obtain  
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 lim୮→ஶ ටΛ௣,௡(௅) ೛(ோܤ) = ଵோ. 
2.4 Numerical methods 

A different method for computing ߣ௣,௡(Ω) inspired by the inverse power 
method in finite dimensional algebra, is developed in [9, 8]. By means of 
iterative technique the authors define two sequences of functions, one of 
them monotone decreasing, the other one monotone increasing. The first 
eigenvalue ߣ௣,௡(Ω) is between the limits of these sequences. In the case of 
a ball, the two limits are equal and ߣ௣,௡(Ω) coincides with them. 

In [21] it is used finite element technique for numerical approximation of 
the first eigenfunction and first eigenvalue for (1).  

3 Estimates from below via different Hardy inequalities 

Hardy--type inequalities are with kernels singular either at some interior 
point of Ω, usually at the origin, or with kernels singular on the boundary or 
combined double singularity at 0 and at ∂Ω. We will apply these three 
Hardy--type inequalities in order to estimate from below the first 
eigenvalue ߣ௣,௡(Ω). We are concentrating only on those Hardy inequalities 
(among the big number of results in the literature) which are with explicitly 
given constants.  

3.1 Kernels with singularity in an internal point 

The classical Hardy inequality, see [15, 27], reads  

׬  	ஐ ݔ௣݀|ݑ∇| ≥ ቚ௡ି௣௣ ቚ௣ ׬ 	ஐ |௨|೛|௫|೛  (16) ݔ݀

for every ݌ > 1 and every ݑ ∈ ଴ܹଵ,௣(Ω), 0 ∈ Ω. Using the trivial estimate  

׬  	ஐ |௨|೛|௫|೛ ݔ݀ ≥ ଵ஽೛ ׬ 	ஐ  ,ݔ௣݀|ݑ|
where ܦ = sup{|ݔ|, ݔ ∈ Ω} we get  
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׬  	ಈ |∇௨|೛ௗ௫׬ 	ಈ |௨|೛ௗ௫ ≥ ቀ|௡ି௣|௣஽ ቁ௣ = Λ௣,௡(ଶ) (Ω), ݊		ݎ݋݂ ≠  ,݌
and the first trivial estimate from below is ߣ௣,௡(Ω) ≥ Λ௣,௡(ଶ) (Ω). If Ω =  ோܤ
then ܦ = ܴ and  

(ோܤ)௣,௡ߣ  ≥ ቀ|௡ି௣|௣ோ ቁ௣ = Λ௣,௡(ଶ) ,(ோܤ) ݊		ݎ݋݂ ≠  (17) .݌

For the limits ݌ → 1 and ݌ → ∞ for fixed ݊ from (17) we obtain  

 lim௣→ଵΛ௣,௡(ଶ) (ோܤ) = ௡ିଵோ , lim௣→ஶටΛ௣,௡(ଶ) ೛(ோܤ) = ଵோ. (18) 

Different improved Hardy inequalities were obtained in [2, 13, 1] but since 
the constants in the additional terms are not given explicitly we will not use 
them in the comparison in section 4.  

3.2 Kernels with singularity on the boundary 

Let Ω ⊂ ܴ௡  be a bounded domain and ݀(ݔ) = ,ݔ)	ݐݏ݅݀	 ∂Ω)  be the 
distance to the boundary. In [30] the following Hardy inequality in convex 
domain Ω was obtained  

׬  	ஐ ݔ௣݀|ݑ∇| ≥ ቚ௣ିଵ௣ ቚ௣ ׬ 	ஐ |௨|೛ௗ೛(௫) ݔ݀ + ௔(௣,௡)|ஐ|೛/೙ ׬ 	ஐ ,ݔ௣݀|ݑ| ݑ ∈ ଴ܹଵ,௣(Ω), 
  (19) 

where  

,݌)ܽ  ݊) = (௣ିଵ)೛శభ௣೛ ቀఠ೙௡ ቁ௣/௡ √గ୻ቀ೙శ೛మ ቁ୻ቀ೛శభమ ቁ୻ቀ೙మቁ. 
For the first eigenvalue for p-Laplacian in the ball ܤோ from (19) we obtain 
the inequality  
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(ோܤ)௣,௡ߣ ≥ ቀ௣ିଵோ௣ ቁ௣ ቈ1 + ௣ିଵ௡೛/೙ √గ୻ቀ೙శ೛మ ቁ୻ቀ೛శభమ ቁ୻ቀ೙మቁ቉= Λ௣,௡(ଷ) ,(ோܤ) ݊		ݎ݋݂ ≥ 2, ݌ > 1. (20) 

 For the limits ݌ → 1 and ݌ → ∞ for fixed ݊ from (20) we obtain  

 lim௣→ଵΛ௣,௡(ଷ) (ோܤ) = 0, lim௣→ஶටΛ௣,௡(ଷ) ೛(ோܤ) = ଵோ. (21) 

3.3 Kernels with double singularity 

Now we will use Hardy--type inequality with double singular kernel, a 
particular case of [12], Theorem 1.  

Theorem 3.1 For every ݌ ≠ ݊ ݌ , > 1 , ݊ ≥ 2  and the ball ܤோ  the 
estimate  

(ோܤ)௣,௡ߣ  ≥ ቀ ଵோ௣ቁ௣ ቂ(௡ିଵ)೙షభ(௣ିଵ)೛షభቃ ೛೙ష೛ = ௣,௡(ସ)߉  (22) .(ோܤ)

 holds.  

Proof. In the notations of Theorem 1 in [12] we choose ߙ = ߚ ,1 = (ݔ)ߣ ,1 = ܴ, Ω = ߛ ,ோܤ = ௣ିଵ௣ , ݉ = −݇ = ௣ି௡௣ିଵ ≠ (ݔ)ݏ ,0 = |௫|ோ ((ݔ)ݏ)݃ , =ோ೘ି|௫|೘௠|௫|೘ . Then (ݔ)ݒ = 1 (ݔ)ݓ , = ଵି|((ݔ)ݏ)݃|ଵି|ݔ|  and we get the 
inequality  

׬  	஻ೃ ݔ௣݀|ݑ∇| ≥ ቚ௣ି௡௣ ቚ௣ ׬ 	஻ೃ |௨|೛|௫|೙ష೘|ோ೘ି|௫|೘|೛  (23) .ݔ݀

for every ݑ ∈ ଴ܹଵ,௣(ܤோ). 
Let us denote |ݔ| = ߩ ∈ [0, ܴ) for ݔ ∈   ோ. From the estimateܤ

׬  	஻ೃ |௨|೛|௫|೙ష೘|ோ೘ି|௫|೘|೛ ݔ݀ ≥ infఘ∈(଴,ோ)(|ݔ|௡ି௠|ܴ௠ − ௠|௣)ିଵߩ ׬ 	஻ೃ  .ݔ௣݀|ݑ|



First Eigenvalue of p—Laplacian via Hardy Inequalities 28

and (23) we have  

 
(ோܤ)௣,௡ߣ ≥ ቚ௣ି௡௣ ቚ௣ infఘ∈(଴,ோ)[ߩଵି௠|ܴ௠ − =௠|]ି௣ߩ ቚ௣ି௡௣ ቚ௣ ቈ supఘ∈(଴,ோ)(ߩଵି௠|ܴ௠ − ௠|)቉ି௣ߩ . (24) 

because ݉ − ݊ = (݉ − and 1 ݌(1 −݉ = ௡ିଵ௣ିଵ > 0. 

For the function (ߩ)ݖ = ଵି௠|ܴ௠ߩ − ,௠| in the interval (0ߩ ܴ) we have (ߩ)′ݖ = [(1 − ݉)ܴ௠ିߩ௠ − (݉)	݊݃݅ݏ	[1  and (ߩ)′ݖ = 0  only for ߩ଴ = ܴ(1 −݉)ଵ/௠ = ܴ ቀ௡ିଵ௣ିଵቁଵ/௠ . Since 0 < ቀ௡ିଵ௣ିଵቁଵ/௠ < 1 , then 0 < ଴ߩ < ܴ  and from ݖ′′(ߩ଴) = −|݉|(1 −݉)ܴ௠ߩ଴ି௠ିଵ < 0  it follows 
that function (ߩ)ݖ has a maximum at the point ߩ଴ and  

(଴ߩ)ݖ  = ܴ ቀ௡ିଵ௣ିଵቁ೙షభ೛షభ ቚ௣ି௡௣ିଵቚ. (25) 

Hence from (24) and (25) we get  

 
(ோܤ)௣,௡ߣ ≥ ቀ௣ିଵ௣ ቁ௣ ቀ௡ିଵ௣ିଵቁ(೙షభ)೛೛ష೙ ܴି௣= ቀ ଵோ௣ቁ௣ ቂ(௡ିଵ)೙షభ(௣ିଵ)೛షభቃ ೛೙ష೛ = Λ௣,௡(ସ)  (26) .(ோܤ)

and Theorem 3.1 is proved.  

For the limits ݌ → 1 and ݌ → ∞ for fixed ݊ from (26) we obtain  

 lim௣→ଵΛ௣,௡(ସ) (ோܤ) = ௡ିଵோ , lim௣→ஶටΛ௣,௡(ସ) ೛(ோܤ) = ଵோ. (27) 

Corollary 3.2 For every ݌ ≠ ݌ ,݊ > 1, ݊ ≥ 2 and every bounded domain ߗ ⊂ ܴ௡ the estimate  
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(ߗ)௣,௡ߣ  ≥ ቀఠ೙|ఆ|ቁ௣/௡ ଵ௣೛ ቂ(௡ିଵ)೙షభ(௣ିଵ)೛షభቃ ೛೙ష೛ = ௣,௡(ସ)߉  (28) .(ߗ)

holds.  

Proof. From Theorem 2.1 with Ω∗ = |ݔ|} < ܴ∗}  if |Ω∗| = |Ω|  then ܴ∗ = ቀ|ஐ|ఠ೙ቁଵ/௡, and (28) follows from (22) and (5).  

In order to obtain an estimate from below for ߣ௡,௡(ܤோ), i.e. for ݌ = ݊ we 
apply Theorem 1 in [11] for ݊ =   .݌

Theorem 3.3 For every ݊ ≥ 2 and the ball ܤோ the estimate  

(ோܤ)௡,௡ߣ  ≥ ቀ ଵோ௡ቁ௡ (݊ − 1)௡݁௡ = ௡,௡(ସ)߉  (29) (ோܤ)

 holds, where ݁ ≈ 2.713 is the Euler's constant.  

Proof. In the notations of Theorem 1 in [12] we choose ߙ = ߚ ,1 = (ݔ)ߣ ,1 = ܴ , Ω = ோܤ ߛ , = ௡ିଵ௡ . Then (ݔ)ݒ = (ݔ)ݓ ,1 = ቀ|ݔ|ln ோ|௫|ቁିଵ  and 
we get the inequality  

׬  	஻ೃ ݔ௡݀|ݑ∇| ≥ ቀ௡ିଵ௡ ቁ௡ ׬ 	஻ೃ |௨|೙ቀ|௫|ቚ୪୬ ೃ|ೣ|ቚቁ೙  (30) ,ݔ݀

 for every ݑ ∈ ଴ܹଵ,௡(ܤோ). 
As in the proof of Theorem 3.1 we use that  

׬  	஻ೃ |௨|೙ቀ|௫|ቚ୪୬ ೃ|ೣ|ቚቁ೙ ݔ݀ ≥ ቈ supఘ∈(଴,ோ)ߩln ோఘ቉ି௡ ׬ 	஻ೃ  .ݔ௡݀|ݑ|
The function (ߩ)ݖ = lnߩ ோఘ  has a maximum ݖ(ߩ଴) = ܴ/݁  at the point ߩ଴ = ܴ/݁. From (29) we get  
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(ோܤ)௡,௡ߣ  ≥ ቀ௡ିଵ௡ ቁ௡ ቀோ௘ቁି௡ = ቀ ଵோ௡ቁ௡ (݊ − 1)௡݁௡, 
and Theorem 3.3 is proved.  

Remark 3.4  Simple computations give by means of L'Hospital rule the 
equality  

 lim௣→௡Λ௣,௡(ସ) (ோܤ) = Λ௡,௡(ସ)  .(ோܤ)
Corollary 3.5 For every ݊ ≥ 2 and every bounded domain ߗ ⊂ ܴ௡ the 
estimate  

(ߗ)௡,௡ߣ  ≥ ఠ೙|ఆ| ቀ௡ିଵ௡ ቁ௡ ݁௡ = ௡,௡(ସ)߉  (31) ,(ߗ)

 holds where ߱௡ is the volume of the unit ball in ܴ௡ and ݁ is the Euler's 
constant.  

4 Comparison of different estimates 

We will compare the estimates from below of the first eigenvalue in the unit 
ball ܤଵ and denote Λ௣,௡(௝) (ଵܤ) = Λ௣,௡(௝)  and Λ௣,௡ = max௝Λ௣,௡(௝) .  

4.1 Using analytical formulas 

Let us start with some general statements.  

Proposition 4.1 For every ݊ ≥ 2 there exists ݌଴௡, 1 < ଴௡݌ < 2 such that ߉௣,௡(ଵ) > ௣,௡(ସ)߉  for 1 < ݌ < ௣,௡(ଵ)߉ ଴௡ and݌ < ௣,௡(ସ)߉  for ݌଴௡ <   .݌

Proof. Let us define a function  

 ௡݂(݌) = ଵ௡ି௣ [(݊ − 1)ln(݊ − 1) − ݌) − 1)ln(݌ − 1)] − ln݊. 
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The inequality Λ௣,௡(ସ) (ோܤ) > Λ௣,௡(ଵ) (݌)holds if and only if ௡݂ (ோܤ) > 0. We 
will show that for every fixed ݊ ≥ 2  the function ௡݂(݌)  is strictly 
increasing one for ݌ > 1 and ௡݂(1) < 0, ௡݂(2) > 0. Thus, there exists ݌଴௡ ∈ (1,2)  such that ௡݂(݌) < 0  for 1 < ݌ < ଴௡݌ , ௡݂(݌଴௡) = 0  and ௡݂(݌) > 0 for ݌଴௡ <  .݌

For the first derivative of ௡݂(݌) we have  

 ݂′௡(݌) = ଵ(௡ି௣)మ [(݊ − 1)ln(݊ − 1) − (݊ − 1) + ݌) − 1) − (݊ − 1)ln(݌ − 1)]= ௚೙(௣)(௡ି௣)మ .  

Since ݃′௡(݌) = ௣ି௡௣ିଵ , ݃′′୬(݌) = ݊ − ݌)1 − 1) > 0  then ݃௡(݌)  has a 
minimum at the point ݌ = ݊ and ݃௡(݊) = 0. Using L'Hospital rule we 
obtain lim௣→௡݂′௡(݌) = ଵଶ(௡ିଵ) > 0  and hence ݂′௡(݌) > 0  for every ݌ > 1. Moreover,  

 Lim௣→ଵ ௡݂(݌) = ln(݊ − 1) − ln݊ < 0, ܽ݊݀	 
	 ௡݂(2) = 1݊ − 2 [(݊ − 1)ln(݊ − 1) − (݊ − 2)ln݊] > 0. 

The second inequality holds because for the function ℎ(݊) = (݊ −1)ln(݊ − 1) − (݊ − 2)ln݊  we have ℎ′ = ଶ௡ + ln(݊ − 1) − ln݊  , ℎ′′ =௡ିଶ௡మ(௡ିଵ) ≥ 0, i.e., ℎ′ is increasing function, ℎ′(݊) ≥ ℎ′(2) = 1 − ln2 > 0. 
Hence ℎ(݊) is strictly increasing function and ℎ(݊) > ℎ(2) = 0.  

Proposition 4.2 For every ݊ ≥ 3, we have ߉௣,௡(ଶ) < ௣,௡(ଵ)߉ .  

Proof.  

 Λ௣,௡(ଶ) = ቀ|௡ି௣|௣ோ ቁ௣ < ቀ ௡௣ோቁ௣ = Λ௣,௡(ଵ) . 
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For ݌ ∈ (1,4] and ݊ = 2,3,4 comparison of Λ௣,௡(ଵ)  and Λ௣,௡(ସ)  is shown on 
Figure 1. 

4.2 Using numerical estimates 

The following comparisons are made by Mathematica program for the 
complicated formulas (13), (20), (22) and the numerical approximations of 
the first eigenvalue in [9]. The analytical prove of the statements in the first 
two subsections below is an open problem.  

4.2.1 Numerical comparison of ઩࢔,࢖(૜)  and ઩࢔,࢖(૝)  
 For every ݊ ≥ 2 ݌ , > 1  we have Λ௣,௡(ଷ) < Λ௣,௡(ସ) . This is shown for ݌ ∈ (1,4] and ݊ = 2,3,4 on the Figure 1.  

4.2.2 Numerical comparison of Sobolev constant (13) and ઩࢔,࢖(૚) , ઩࢔,࢖(૝)  
 Let ݊ ≥ 2 be fixed and 1 < ݌ < ݊. For the Sobolev constant Λ௣,௡(ௌ)  in the 
ball ܤோ, defined in (13), we have  

  For ݊ = 2,3,4 , and ݌ > 1  there exists ݌ଵ௡, ଶ௡݌ , 1 < ଵ௡݌ < ଴௡݌ ଶ௡݌> < 2  such that Λ௣,௡(ଵ) < Λ௣,௡(ସ) < Λ௣,௡(ௌ)  for 0 < ݌ < ଵ௡݌ ; Λ௣,௡(ସ) < Λ௣,௡(ௌ) <Λ௣,௡(ଵ)  for ݌ଵ௡ < ݌ < ଴௡݌ ; Λ௣,௡(ଵ) < Λ௣,௡(ସ) < Λ௣,௡(ௌ)  for ݌଴௡ < ݌ < ଶ௡݌ ; Λ௣,௡(ௌ) < Λ௣,௡(ଵ) < Λ௣,௡(ସ)  for ݌ଶ௡ <   ;݌

  If ݊ = 5,… ,12 then Λ௣,௡(ௌ) < Λ௣,௡(ସ) ;  

  If ݊ ≥ 13 then there exist ݌ଷ௡ ସ௡݌ , , 2 < ଷ௡݌ < ସ௡݌  such that Λ௣,௡(ௌ) <Λ௣,௡(ସ)  for 2 < ݌ < ସ௡݌ ଷ௡ and݌ < and Λ௣,௡(ସ) ,݌ < Λ௣,௡(ௌ)  for ݌ଷ௡ < ݌ <   .ସ௡݌

4.2.3 Comparison of the formulas in [9] and ઩࢔,࢖(૜) , ઩࢔,࢖(૝)  
As it was mention in section 2 numerical method for evaluating the first 
eigenvalue of the problem (1) was developed in [9] and for ݌ ∈ (1,4] and 
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݊ = 2,3,4. The approximate values of the first eigenvalue ߣ௣,௡ in the ball ܤଵ together with the analytical values of Λ௣,௡(ଷ) , Λ௣,௡(ସ)  is shown on Figure 2.  

Figure 1: Comparison of Λ௣,௡(௝)  for ݌ ∈ (1,4) and : a) ݊ = 2; b) ݊ = 3; c) ݊ = 4. 

Figure 2: Comparison between the approximate value of ߣ௣,௡ , see [9] and the 
estimate from below Λ௣,௡(ଵ)  in section 2, see [18] and the estimate from below Λ௣,௡(ସ)  
by using Hardy inequality in section 3, see [12], for ݌ ∈ (1,4) and : a) ݊ = 2; b) ݊ = 3; c) ݊ = 4. 
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ON A NONLOCAL NONLINEAR SCHRÖDINGER 
EQUATION 

TIHOMIR VALCHEV 
 
 
 

Introduction 

Nonlinear Schrödinger equation (NLS)  

 iݍ௧ + ௫௫ݍ ± ݍଶ|ݍ|2 = :ݍ				,0 ܴଶ →  (1) ܥ

is one of classical integrable nonlinear equations. It appears in a variety of 
physical areas [8, 13] like nonlinear optics, plasma physics, fluid mechanics 
as well as in a purely mathematical context like differential geometry of 
curves [3]. Although having been extensively studied and a subject of 
numerous monographs like [4, 7, 8, 13], it is still stimulating further 
research activity, see [1, 10, 17]. Finding new integrable reductions of 
known nonlinear equations is one important trend in theory of integrable 
systems. Nonlocal nonlinear Schrödinger equation (NNS "±")  

 iݍ௧ + ௫௫ݍ ± ,ݔ)ଶݍ2 ,ݔ−)∗ݍ(ݐ (ݐ = 0 (2) 

recently introduced by Ablowitz and Musslimani [9], is a significant 
contribution to that area. Like the local NLS, equation (2) is PT-symmetric, 
i.e. it is invariant under the transform  

ݔ  → ݐ				,ݔ− → ݍ				,ݐ− →  (3) .∗ݍ

This motivated the authors to propose NNS as a theoretical model to 
describe wave phenomena observed in PT symmetric nonlinear media [5, 
11, 12]. 

The purpose of this report is to study some basic properties of the NNS "+" 
equation and its scattering operator. In doing this we shall make use of 
covariant approach [4] being better suited for treating multi-component 
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generalizations of NNS in a uniform way than that of Ablowitz and 
Musslimani. The report is organized as follows. Section 2 is dedicated to 
the direct scattering problem for NNS and spectral properties of the 
corresponding scattering operator. In the next section we demonstrate how 
one can apply Zakharov-Shabat's dressing method to obtain special 
solutions to NNS. This way one easily reproduces the breathing solution 
obtained by Ablowitz and Musslimani [9]. In Section 4  we establish 
Hamiltonian formalism for NNS. For that purpose we derive a recursion 
operator which can generate the hierarchy of higher nonlinear equations, 
integrals of motion and symmetries associated with NNS. Then we apply 
method of diagonalization of Lax pair [16] to describe conserved densities 
of NNS through a recursion formula to generate all of them. We point a 
Hamiltonian to NNS and a Poisson structure assigned to it. Finally, Section 5 contains conclusions and additional remarks. 

Direct Scattering Problem 

NNS is a S-integrable equation, i.e. it is equivalent to compatibility 
condition [(ߣ)ܮ, [(ߣ)ܣ = 0  for matrix differential operators (ߣ)ܮ  and (ߣ)ܣ being chosen in the form:  

(ߣ)ܮ  = i ∂௫ + ܳ −  ଷ, (4)ߪߣ

(ߣ)ܣ  = i ∂௧ + ୧ଶ ,ଷߪ] ܳ௫] + ଷߪ݌ݍ + ܳߣ2 −  ଷ, (5)ߪଶߣ2

 where matrix coefficients are defined as follows:  

,ݔ)ܳ  (ݐ = ൬0 ,ݔ)ݍ ,ݔ)݌(ݐ (ݐ 0 ൰,				ߪଷ = ቀ1 00 −1ቁ. (6) 

We shall restrict ourselves with the simplest case of zero boundary 
conditions  

 lim|௫|→ஶܳ(ݔ, (ݐ = ૙ 

for potential, i.e. we assume that ݍ and ݌ are Schwartz type functions. 
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To obtain a scalar NNS one has to impose an extra symmetry condition on ܳ  so that ݌  and ݍ  are no more independent. For instance, 
Ablowitz-Musslimani's NNS can be derived if one requires that ݔ)݌, (ݐ ,ݔ−)∗ݍ=  This idea can be made precise if one slightly extends the notion .(ݐ
of Mikhailov's reduction group [2] by allowing action on ݔ and ݐ. Let us 
denote by {߰(ݔ, ,ݐ  the set of all fundamental matrices of the linear {(ߣ
problem  

,ݔ)߰(ߣ)ܮ  ,ݐ (ߣ = 0. (7) 

Let a finite group Gୖ act on {߰(ݔ, ,ݐ  i.e. it maps a solution ߰ to linear ,{(ߣ
problem (7) onto another solution  

 ෨߰(ݔ, ,ݐ (ߣ = ୥ࣥ{߰[݇୥(ݔ, ,ݐ g				,{[(ߣ ∈ Gୖ (8) 

where ݇୥: ܴଶ × ܥ → ܴଶ × ܥ  is a smooth transform and ୥ࣥ  is a group 
automorphism. As a result we see that the Lax operator (ߣ)ܮ must fulfill 
certain algebraic condition, hence the potential ܳ  acquires certain 
symmetries. Let us consider an example: 

Example 3.1 Ablowitz-Musslimani's reduction 

In this case the reduction group is ܼଶ. It maps an arbitrary fundamental 
solution ߰ onto  

 ෨߰(ݔ, ,ݐ (ߣ = ,ݔ−)∗ଵ߰ߪ ,ݐ ଵߪ				,ଵߪ(∗ߣ− = ቀ0 11 0ቁ. (9) 

Therefore the potential ܳ satisfies the symmetry condition  

,ݔ)ܳ  (ݐ = ,ݔ−)∗ଵܳߪ  ଵ. (10)ߪ(ݐ

Hence relation ݔ)݌, (ݐ = ,ݔ−)∗ݍ   .holds true (ݐ

Most of our considerations in this section are general, i.e. we shall not fix 
particular reduction. 
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Let ߰(ݔ, ,ݐ  .be any fundamental solution to Zakharov-Shabat's system (ߣ
Since [(ߣ)ܮ, [(ߣ)ܣ = 0 it satisfies  

,ݔ)߰(ߣ)ܣ  ,ݐ (ߣ = ,ݔ)߰ ,ݐ  (11) (ߣ)ܥ(ߣ

for some arbitrary matrix (ߣ)ܥ. An important class of solutions to (7) is 
given by Jost solutions ߰ା and ߰ି defined through:  

 lim௫→±ஶ߰±(ݔ, ,ݐ e୧ఒఙయ௫(ߣ = 	૤	. (12) 

To make sure that (12) is correct we require that (ߣ)ܥ = ଷߪଶߣ2− . 
Scattering matrix is introduced as usual being the transition matrix  

,ݔ)ି߰  ,ݐ (ߣ = ߰ା(ݔ, ,ݐ ,ݐ)ܶ(ߣ  (13) .(ߣ

between the Jost solutions. One can present the scattering matrix in the 
following way  

,ݐ)ܶ  (ߣ = ൬ܽା(ݐ, (ߣ ,ݐ)ିܾ− ,ݐ)ାܾ(ߣ (ߣ ,ݐ)ିܽ (ߣ ൰. (14) 

Its time evolution is driven by linear equation:  

 i ∂௧ܶ − ,ଷߪ]ଶߣ2 ܶ] = 0. (15) 

It is easily integrated to give  

,ݐ)ܶ  (ߣ = eିଶ୧ఒమఙయ௧ܶ(0,  eଶ୧ఒమఙయ௧. (16)(ߣ

Equation (16) represents a linearization of NNS. Due to (16) the functions ܽ± do not depend on ݐ hence they could serve as generating functions of 
integrals of motion for NNS. 

Following well-known procedures developed for local equations [4, 13] one 
can prove the existence of fundamental solutions ߯ା and ߯ି analytic in 
the upper half plane ܥା and the lower half plane ିܥ respectively. To do 
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this one introduces another pair of functions ߦ± = ߰±exp(iߪߣଷݔ) 
satisfying linear equation  

 i ∂௫ߦ± + ±ߦܳ − ,ଷߪ]ߣ [±ߦ = 0. (17) 

Equivalently, ߦ± can be viewed as solutions to the following Voltera type 
integral equations  

,ݔ)±ߦ  ,ݐ (ߣ = 	૤	 + i ׬ 	௫±ஶ eି୧ఒఙయ(௫ି௬)ܳ(ݕ, ,ݕ)±ߦ(ݐ ,ݐ    .ݕ	e୧ఒఙయ(௫ି௬)d(ߣ

  (18) 

By analyzing it one notices that the first column of ߦା and the second one 
of ିߦ allow for analytic continuation in ିܥ. Thus combining those in a 
matrix ݔ)ିߟ, ,ݐ  we obtain a new fundamental solution with analytical (ߣ
properties in that domain. Similarly, the second column of ߦା and the first 
one of ିߦ allow for such continuation in ܥା. They are used to construct 
another solution ߟା analytic there. 

The same result holds for the initial solutions ߰ା and ߰ି. That way one 
constructs fundametnal analytic solutions ߯ା and ߯ି. Making use of LDU 
decomposition of the scattering matrix  

,ݐ)ܶ  (ߣ = ,ݐ)∓ܶ ,ݐ)±ܵ)(ߣ)±ܦ(ߣ  ଵ, (19)ି((ߣ

 ܶି = ൬1 0ܾା/ܽା 1൰ , ܵା = ൬1 0ܾି/ܽା 1൰, 
 ܶା = ቀ1 −ܾି/ܽି0 1 ቁ , ܵି = ൬1 0−ܾା/ܽି 1൰, 
ାܦ		  = 	݀݅ܽ݃	(ܽା, 1/ܽା), (ߣ)ିܦ = 	݀݅ܽ݃	(1/ܽି, ܽି) 
one can construct ߯ା and ߯ି through the formulae:  

 ߯± = ߰ିܵ± = ߰ାܶ∓(20) .±ܦ 
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The ratios ܾ±/ܽ±  and ܾ∓/ܽ±  that appeared above play the role of 
reflection coefficients. 

Remark 3.2 We shall assume that ܽା and ܽି have a finite number of 
simple zeros in ܥା  and ିܥ  respectively. The zeros of ܽା  and ܽି 
correspond to pole singularities of ߯ା and ߯ି respectively.   

Remark 3.3 Like in the local NLS case [4, 7, 13] fundamental solutions ߟା 
and ିߟ can be viewed as solutions to a local Riemann-Hilbert factorization 
problem  

,ݔ)ିߟ  ,ݐ (ߣ = ,ݔ)ାߟ ,ݐ ,ݔ)ܩ(ߣ ,ݐ ߣ				,(ߣ ∈ ܴ, (21) 

,ݔ)ܩ  ,ݐ (ߣ = eି୧ఒఙయ௫[ܵା(ݐ, ,ݐ)ଵܵିି[(ߣ  .e୧ఒఙయ௫(ߣ
with canonical normalization  

 lim|ఒ|→ஶݔ)±ߟ, ,ݐ (ߣ = 	૤	. (22) 

The fundamental analytic solutions allow one to study spectral properties of 
the scattering operator. Following [4, 15] we define the resolvent operator 
of (ߣ)ܮ as an operator ܴ(ߣ) satisfying  

(ߣ)ܮ  ∘ (ߣ)ܴ = 	૤	, 
where ∘ means composition of operators. One can write down ܴ(ߣ) in the 
form  

,ݔ)(ܨ	(ߣ)ܴ)  (ݐ = ׬ 	ஶିஶℛ(ݔ, ,ݕ ,ݐ  (23) ݕ	d	(ݕ)ܨ(ߣ

for ܨ:ℝ → ℂଶ  being a continuous vector-valued function. The integral 
kernel of ܴ(ߣ)  can be expressed through the fundamental analytic 
solutions as follows [4]:  

 ℛ(ݔ, ,ݕ ,ݐ (ߣ = ൜ i߯ା(ݔ, ,ݐ ݔ)Θା(ߣ − ,ݕ)ା߯](ݕ ,ݐ ,ଵି[(ߣ ߣ		 ∈ ,ݔ)ା,−i߯ିܥ ,ݐ ݔ)Θି(ߣ − ,ݕ)ି߯](ݕ ,ݐ ,ଵି[(ߣ ߣ		 ∈ ିܥ  

  (24) 
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where Θ± are matrix-valued functions defined by  

 Θ±(ݔ − (ݕ = ݕ)±)ߠ − ܲ((ݔ − ݔ)±)ߠ − 	૤	)((ݕ − ܲ), ܲ = 	݀݅ܽ݃	(1,0). 
The locus in ߣ-plane where ℛ is unbounded constitutes the continuous 
part of spectrum of (ߣ)ܮ. It is determined by the requirement Im	ߣ = 0, i.e. 
it coincides with the real axis in the ߣ-plane. According to Remark 3.2 the 
fundamental analytic solutions may have a finite number of pole 
singularities determined by the zeros of the diagonal elements of ܶ(ݐ,  .(ߣ
These in turn determine pole singularities of ℛ  to form the discrete 
spectrum of (ߣ)ܮ, see [4, 15]. In the presence of reduction the discrete 
spectrum belongs to orbits of the reduction group, i.e. discrete eigenvalues 
go together in certain symmetric configurations. To illustrate this let us 
consider an example.  

Example 3.4 Ablowitz-Musslimani's reduction 

In this case the resolvent operator ܴ(ߣ) obeys symmetry condition  

ଵߪ(∗ߣ−)∗ଵܴߪ  =  (25) (ߣ)ܴ

while its kernel satisfies  

,ݔ−)∗ଵℛߪ  ,ݕ ,ݐ ଵߪ(∗ߣ− = ℛ(ݔ, ,ݕ ,ݐ  (26) .(ߣ

Relation (25) means that if ߤ is a discrete eigenvalue of (ߣ)ܮ so is −ߤ∗, 
i.e. eigenvalues are located symmetrically to imaginary axis (in particular, 
they can lie on the imaginary axis itself).  

Special Solutions 

In this section we aim at demonstrating how one can apply 
Zakharov-Shabat's dressing method to construct particular solutions to 
NNS. We shall start with a brief reminder of the concept underlying the 
dressing method [13, 18]. Then we shall illustrate all general ideas with an 
example. 
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The dressing method is an indirect way to generate a solution to a ܵ-integrable equations, i.e. we construct solutions to an equation starting 
from a known one (seed solution)  

 ܳ଴(ݔ, (ݐ = ൬0 .ݔ)଴ݍ ,ݔ)଴݌(ݐ (ݐ 0 ൰. 
It plays the role of a potential for the scattering operator  

(ߣ)଴ܮ  = i ∂௫ + ܳ଴(ݔ, (ݐ −  ଷ. (27)ߪߣ

Let ߰଴(ݔ, ,ݐ   be an arbitrary fundamental solution to the linear problem (ߣ

 i ∂௫߰଴ + (ܳ଴ − ଷ)߰଴ߪߣ = 0. (28) 

Now let us construct function ߰ଵ(ݔ, ,ݐ (ߣ = ,ݔ)݃ ,ݐ ,ݔ)଴߰(ߣ ,ݐ (ߣ  and 
assume it satisfies a similar linear problem  

 i ∂௫߰ଵ + (ܳଵ − ଷ)߰ଵߪߣ = 0 (29) 

for some other potential ܳଵ to be found. The multiplier ݃ bears the name 
dressing factor and satisfies linear equation:  

 i ∂௫݃ + ܳଵ݃ − ݃ܳ଴ − ,ଷߪ]ߣ ݃] = 0. (30) 

Due to Remark 3.3 ݃ must be normalized as follows:  

 lim|ఒ|→ஶ݃(ݔ, ,ݐ (ߣ = 	૤	. (31) 

Then the simplest nontrivial choice possible for the dressing factor is  

,ݔ)݃  ,ݐ (ߣ = ૤	 + ஺(௫,௧)ఒିఓ ߤ				, ∈  (32) ܥ

while its inverse is sought in the form  

,ݔ)݃]  ,ݐ ଵି[(ߣ = 	૤	 + ஻(௫,௧)ఒିఔ ߥ				, ∈  (33) .ܥ
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After substituting the ansatz for ݃ into (30) and set |ߣ| → ∞ we derive an 
interrelation between the seed potential and the dressed one, namely:  

 ܳଵ(ݔ, (ݐ = ܳ଴(ݔ, (ݐ + ,ଷߪ] ,ݔ)ܣ  (34) .[(ݐ

The residues ܣ  and ܤ  are not independent. Indeed, from the identity ݃݃ିଵ = 	૤	one can see that  

ܣ  = ܤ− = ߤ) −  (35) ܲ(ߥ

for some projector ܲ (ܲଶ = ܲ). Since ܲ is a projector of rank 1 it can be 
presented in the form:  

 ܲ = ௑ி೅ி೅௑, 
where ܺ(ݔ, (ݐ  and ݔ)ܨ, (ݐ  are some 2 -component column vectors. In 
order to find them one should analyse equation (31) and its counterpart 
satisfied by ݃ିଵ. As a result one can convince himself that ܺ and ܨ are 
expressed in terms of fundamental solutions ߰଴  and ෨߰ ଴  to the bare 
linear problem defined in a vicinity of the poles ߤ and ߥ respectively:  

,ݔ)்ܨ  (ݐ = ଴்ܨ [߰଴(ݔ, ,ݐ ,ݔ)ܺ				,ଵି[(ߤ (ݐ = ෨߰଴(ݔ, ,ݐ  independent but evolve with time. It can be-ݔ ଴ areܨ ଴. (36) 2-vectors ܺ଴ andܺ(ߥ
shown that their ݐ-evolution is driven by the dispersion law of nonlinear 
equation through formulae:  

 ܺ଴(ݐ) = e୧௙(ఔ)௧ܺ଴,଴,				ܨ଴் (ݐ) = ଴,଴்ܨ eି୧௙(ఓ)௧. (37) 

We are particularly interested in the case when ܳ଴(ݔ, (ݐ = 0. In this case as 
a seed fundamental solution we can take  

 ߰଴(ݔ, ,ݐ (ߣ = eି୧ఒఙయ௫. (38) 
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Figure 1: 3D plot of the module of the dressed solution (44) when ߛ = ߢ ,1 = 3 
and ߜ = 0. 

Our further considerations depend on the reduction imposed on Lax pair. 
Let us assume we have Ablowitz-Musslimani's reduction (9). Then the 
dressing factor is subject to the symmetry condition:  

,ݔ−)∗ଵ݃ߪ  ,ݐ ଵߪ(∗ߣ− = ,ݔ)݃ ,ݐ  (39) .(ߣ

This means that the poles of the dressing factor and its inverse are 
imaginary 1 , i.e. ߤ = iߛ  and ߥ = −iߢ  and the projector ܲ  obeys the 
equality  

,ݔ−)∗ଵܲߪ  ଵߪ(ݐ = ,ݔ)ܲ  (40) .(ݐ

                                                 
1 In order to ensure proper asymptotic behaviour of the dressed solution we shall 
require that poles ߤ and ߥ are located at different half planes of ߣ-plane. 
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The vectors ܺ and ܨ are given by:  

,ݔ)ܺ  (ݐ = eି఑ఙయ௫ܺ଴(ݐ),				ݔ)ܨ, (ݐ = eିఊఙయ௫ܨ଴(ݐ). (41) 

Due to (40) ܺ଴ and ܨ଴ have one independent component only, namely we 
have  

 ܺ଴ = ∗ଵܺ଴ߪ 		⇒ 		ܺ଴,ଶ = ܺ଴,ଵ∗ , (42) 

଴ܨ  = ∗଴ܨଵߪ 		⇒ ଴,ଶܨ		 = ∗଴,ଵܨ . (43) 

After substituting all information into (34) we get the following result:  

,ݔ)ଵݍ  (ݐ = ଶ୧(ఊା఑)ୣమംೣୣర౟ഉమ೟ୣమ(ംశഉ)ೣାୣమ౟[మ(ഉమషംమ)೟శഃ]. (44) 

where ߜ ∈ ܴ corresponds to the phases of ܺ଴,ଵ and ܨ଴,ଵ. Thus we have 
reproduced Ablowitz-Musslimani's solution. (44) is not a travelling wave, it 
is a breather, see Fig. 1. The breather solution has singularities for ݔ = 0 
and  

ୱ௜௡௚ݐ  = (ଶ௠ାଵ)గିଶఋସ(఑మିఊమ) ,				݉ ∈ ܼ. 
One can apply the dressing procedure described above on and on thus 
generating a series of more complicated solutions. 

Hamiltonian Formulation 

Like the local NLS equation (2) is an infinite dimensional Hamiltonian 
system. In that section we shall consider Hamiltonian properties of NNS. 
We shall start with analytic description of the hierarchy of higher integrable 
equations in terms of recursion operator. The recursion operator plays a 
fundamental role in theory of nonlinear equations since it paves the way to 
proving complete integrability [4]. 

Let us consider the generic Lax pair  

(ߣ)ܮ  = i ∂௫ + ,ݔ)ܳ (ݐ −  ଷ, (45)ߪߣ
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(ߣ)ܣ  = i ∂௧ + ∑ 	ே௞ୀ଴ ,ݔ)௞ܣ  ௞ (46)ߣ(ݐ

for ܳ(ݔ,  being in the form (6). Since the compatibility condition of (45) (ݐ
and (46) holds identically with respect to ߣ  it yields to a series of 
recurrence relations for coefficients ܣ௞, ݇ = 0,… ,ܰ. Starting to resolve 
them from the highest term downwards allows one to find all coefficients 
[4]. In doing this it is convenient to make use of spltting ܣ௞ = ௞ୄܣ + ܽ௞ߪଷ 
into a non-diagonal part ܣ௞ୄ  and a diagonal one ܽ௞ߪଷ. Proceeding that way 
we see that ܣே = ܿேߪଷ  for some constant ܿே  while ܣேିଵୄ = −ܿேܳ . 
Similarly, the nondiagonal part of the generic recurrence relation allows one 
to express ܣ௞ିଵୄ  through ܣ௞ୄ  as follows:  

௞ିଵୄܣ  = ୧ସ ,ଷߪ] ∂௫ܣ௞ୄ] − ܽ௞ܳ. (47) 

On the other hand from the diagonal part one is able to find ܽ௞  

 ܽ௞ = ܿ௞ + ୧ଶ ׬ 	௫±ஶ d	ݕtr	([ܳ(ݕ),  ଷ) (48)ߪ[(ݕ)௞ୄܣ

After substituting (48) into (47) we obtain the recursion formula:  

௞ିଵୄܣ  = Λ±ܣ௞ୄ − ܿ௞ܳ. (49) 

The integro-differential operators  

 Λ± = ୧ସ ,ଷߪ] ∂௫(. )] + ୧ொଶ ׬ 	௫±ஶ d	ݕtr	(ܳ[ߪଷ, (. )]) (50) 

are named recursion operators. By using them one can describe the 
integrable hierarchy of equations associated with the scattering operator 
(45) in the following way  

 ୧ସ ,ଷߪ] ܳ௧] + ݂(Λ±)ܳ = 0, (51) 

where  

 ݂(Λ±) = ∑ 	ே௞ୀ଴ ܿ௞Λ±௞ ,				ܿ௞ ∈  (52) .ܥ
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The polynomial ݂(ߣ) = ∑ 	௞ ܿ௞ߣ௞  is the dispersion law of nonlinear 
equation. The NNS equation is obtained from (51) when ݂(ߣ) =  .ଶߣ2−

Each member of the integrable hierarchy (51) is a Hamiltonian equation. So 
there is an infinite family of integrals of motion which can be regarded as 
Hamiltonians. We shall demonstrate how one can apply the method of 
diagonalization of Lax pair [16] to derive the integrals of motion of NNS. 
For this to be done we apply a gauge transform  

,ݔ)࣪  ,ݐ (ߣ = 	૤	 + ∑ 	ஶ௞ୀଵ ௞࣪(ݔ,  ௞, (53)ିߣ(ݐ

where all coefficients ௞࣪(ݔ, (ݐ  are off-diagonal 2 × 2  matrices. The ܮ −   pair transforms into ܣ

 ℒ = ࣪ିଵ࣪ܮ = i ∂௫ + ∑ 	ஶ௞ୀିଵ ℒ௞(ݔ,  ,௞ିߣ(ݐ
 ࣛ = ࣪ିଵ࣪ܣ = i ∂௧ + ∑ 	ஶ௞ୀିே ࣛ௞(ݔ,  .௞ିߣ(ݐ
We require that the coefficients ℒ௞(ݔ, (ݐ  and ࣛ௞(ݔ, (ݐ  are diagonal 
matrices. Then the zero curvature condition for the transformed Lax pair is 
written down as:  

 ∂௧ℒ௞ − ∂௫ࣛ௞ = 0. (54) 

From those equations we deduce that ℒ௞  play the role of conserved 
quantities and −ࣛ௞  are the corresponding currents. To find ℒ௞  one 
considers the relation  

 ࣪ℒ =  (55) .࣪ܮ

After comparing the coefficients before equal powers of ߣ  in (55) we 
obtain an infinite series of recurrence relations. To resolve them one splits 
each of them into a diagonal and a non-diagonal part. Thus the generic 
relation leads to the following recursion formula:  

 ℒ௞ = ܳ ௞࣪, (56) 

where  
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 ௞࣪ = ଵସ ad	ఙయ൫i ∂௫ ௞࣪ିଵ − ∑ 	௞ିଵ௟ୀଵ ௟࣪ℒ௞ିଵି௟൯. (57) 

We list here the first three conserved quantities:  

 ࣝଵ = ଶࣝ				,ݍ݌ = ୧ଶ ௫ݍ݌) − ࣝଷ				௫),݌ݍ = ௫௫ݍ݌ +  ଶ. (58)(ݍ݌)

For us to obtain a true conserved quantity for NNS we need to impose an 
extra reduction. In the case of NNS of the Ablowitz-Musslimani type one 
has to require that ݔ)݌, (ݐ = ,ݔ−)∗ݍ (ݐ  while for local NLS we have 
interrelation ݔ)݌, (ݐ = ,ݔ)∗ݍ  holding true. The corresponding integrals (ݐ
of motion are found from the formula:  

(ݐ)௔ܫ  = ׬ 	ஶିஶ d	ࣝݔ௔(ݔ, ܽ				,(ݐ = 1,2, …. (59) ࣝଷ  is a Hamiltonian density for NNS provided the Poisson bracket is 
defined as follows:  

,ܨ}  {ܩ = i ׬ 	ஶିஶ d	ݕ	 ቀ ఋிఋ௤(௬) ఋீఋ௣(௬) − ఋிఋ௣(௬) ఋீఋ௤(௬)ቁ (60) 

for ܨ and ܩ being functionals of ݍ and ݌. 

Conclusion 

We have formulated and discussed the direct scattering problem for the 
scalar NNS. We have shown that in a quite similar manner to the local NLS 
case one can introduce Jost solutions, scattering matrix, fundamental 
analytic solutions etc. All that machinery allows one to study spectral 
properties of the scattering operator by constructing its resolvent operator. 
Like for the local NLS the operator ܮ has a continuous spectrum which 
coincides with real axis and a discrete spectrum of points symmetrically 
located with respect to imaginary axis. 

We have applied Zakharov-Shabat's dressing method to linear bundles with 
nonlocal reduction imposed. It has proved to be sufficient to use dressing 
factors with simple poles. As a special case we have considered in more 
detail the simplest case when the dressing factor has a single simple pole. 
This allowed us to construct solutions in a way alternative to the approach 
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used by Ablowitz and Musslimani [9]. In order to find more complicated 
solutions one can either dress several times using a single pole factor or can 
use a dressing factor with multiple poles. 

We have derived recursion operator for linear bundles with nonlocal 
reductions. It allows one to generate all higher equations belonging to the 
integrable hierarchy under consideration. We have shown that there exist an 
infinite number of integrals of motion for NNS. A recursion formula to 
generate all conserved quantities has been obtained by using the Lax pair 
diagonalization method. We have explicitly calculated the first three of 
them. A Poisson bracket to establish Hamiltonian formulation of NNS has 
been given. 

The results presented here can be extended in several directions. First, one 
may consider potentials obeying more complicated boundary conditions, 
say constant nonzero boundary conditions or time dependent boundary 
conditions (nontrivial background). Such solutions could play an important 
role similar to that of Peregrine or Ma solutions for the local NLS. 

Another promising direction of further developments is study 
multi-component NNS and the corresponding linear bundles associated 
with Hermitian symmetric spaces. An example of a multi-component NNS 
related to symmetric spaces of the type ۯ. ۷۷۷ is given by:  

 iܙ௧ + ௫௫ܙ + ,ݔ)ܙ2 ,ݔ−)றܙ)(ݐ ,ݔ)ܙ(ݐ ((ݐ = 0, 
where ܙ is a matrix-valued smooth function. It has recently become known 
that certain nonlinear Schrödinger equations related to ۯ. ۷۷۷ and ۰۲. ۷ 
symmetric spaces find applications in Bose-Einstein condensation [6, 14] 
so their nonlocal counterparts could find similar applications too. 
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BICHARACTERISTIC CURVES 
IN 3D MODELING OF THE LITHOSPHERE 

GEORGI BOYADZHIEV 
 
 
 

Introduction 

The main source of seismic hazard are earthquakes generated in the 
Lithosphere - the crust and upper Mantle of Earth. Traditional analytical 
methods as modal summation are developed for modeling the Lithosphere 
as structure of horizontal homogeneous layers. It is 1D model that can be 
extended to 2D one (see [5]). Further extension to 3D modeling of the 
classical methods is impossible due to some natural restrictions of the 
models. 

In this paper is given new approach to 3D modeling of elastic piecewise 
homogeneous media, south as Lithosphere. The method is based on 
classical tomography and the main source of information are seismic waves, 
generated by a point source S and recorded by a set of seismic stations on 
the surface of Earth. Irregularity of earthquakes is counterpoised by the 
density of seismic stations and plenty of data are available for geophysical 
surveys.  

Let us suppose Earth is an elastic body that is a continuum, i.e. the matter is 
continuously distributed in space. Furthermore, since seismicity has 
relatively local effect, from geophysical point of view the planet can be with 
no loss of generality by the half-space Ω = ,ݔ)} ,ݕ (ݖ ∈ ܴଷ: ݖ ≥ 0} with 
free surface boundary {ݖ = 0} and axis ݖ is positive downward. If the 
elastic parameters depend only on vertical coordinate ݖ  then the wave 
propagating in solid media satisfying the following strongly coupled linear 
hyperbolic system (see [1] and [5]) 
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ߩ  பమ௨ೣப௧మ = ܺ + ߣ) + (ߤ2 பమ௨ೣப௫మ + ߤ பమ௨ೣப௬మ + ߤ பమ௨ೣப௭మ + ߣ)+ + (ߤ பమ௨೤ப௫ ப௬ ߣ)																							+ + (ߤ பమ௨೥ப௫ ப௭ + பఓப௭ ப௨ೣப௭ + பఓப௭ ப௨೥ப௫  

ߩ ∂ଶݑ௬∂ݐଶ = ܻ + ߤ ∂ଶݑ௬∂ݔଶ + ߣ) + (ߤ2 ∂ଶݑ௬∂ݕଶ + ߤ ∂ଶݑ௬∂ݖଶ + ߣ)+ + (ߤ ∂ଶݑ௫∂ݔ +ݕ∂ ߣ) + (ߤ ∂ଶݑ௭∂ݕ ݖ∂ + ݖ∂ߤ∂ ݖ∂௬ݑ∂ + ݖ∂ߤ∂ ݕ∂௭ݑ∂  

ߩ பమ௨೥ப௧మ = ܼ + ߤ பమ௨೥ப௫మ + ߤ பమ௨೥ப௬మ + ߣ) + (ߤ2 பమ௨೥ப௭మ + ߣ)+ + (ߤ பమ௨ೣப௫ ப௭ + ߣ) (ߤ																		+ பమ௨೤ப௬ ப௭ + பఒப௭ ቀப௨ೣப௫ + ப௨೤ப௬ + ப௨೥ப௭ ቁ + 2 பఓப௭ ப௨೥ப௭  
                                                                        (1) 

where ߣ, ߩ	݀݊ܽ	ߤ  are piecewise continuous functions of ݖ	݀݊ܽ	ݑ௫, ,௬ݑ ,௭ݑ ,௭௭ߪ ௭௬ߪ	݀݊ܽ	௭௫ߪ 	∈ .(Ω)ܥ	  Function ݑ = ,௫ݑ) ,௬ݑ (௭ݑ  is 
called in physics "displacement function". The boundary conditions of 
system (1) at the free surface ݖ	 = 0 are as follows 

௭௭ߪ                          = ߣ) + (ߤ2 ப௨೥ப௭ + ߣ ቀப௨ೣப௫ + ப௨೤ப௬ ቁ = 0 

௭௫ߪ  = ߤ ቀப௨ೣப௭ + ப௨೥ப௫ ቁ = 0 

௭௬ߪ  = ߤ ቀப௨೤ப௭ + ப௨೥ப௬ ቁ = 0 (2) 

Initial data are given by  

 u(S)|௧ୀ଴ =ߜ, ௗ௨ௗ௧ (ܵ)|௧ୀ଴ =c.ߞ଴  (3) 

i.e. at the point source S ∈ Ω there is an impulse alongside given vector ߞ଴= (ߞଵ଴,  .(ଷ଴ߞ ,ଶ଴ߞ

Coefficients ρ, λ and μ depend on the geological properties of the rock. One 
reasonable approximation of the Lithosphere is 3-dimensional structure of 
homogeneous blocks in welded contact ܤ௜,௝,௞, where i and j are integers, 
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and k is a natural number. Blocks ܤ௜,௝,௞ may be not rectangular ones or their 
sides may be not parallel to coordinate axis. Without loss of generality we 
assume the boundary ߲ܤ௜,௝,௞ to be piecewise smooth surface and the source 
S of the seismic signal is in blockܤ଴,଴,଴.  

This way in Ω = {ܤ௜,௝,௞} the system (1) with constant coefficients in every 
block ܤ௜,௝,௞  is a realistic approximation to the wave propagation in the 
Lithosphere.  

Solving system (1), (2), (3) numerically is limited by some natural 
constraints as the size the domain Ω. If it is not relatively small, that is the 
general case, the grid is too large and computational time is too costly or the 
approximation error - too high. On the other hand the fundamental solution 
of (1) can be explicitly written in integral form since so called Rayleigh and 
Love modes give good approximation of the solution when the distance 
from the source is large enough compared to the wavelength (see [1]). 
Numerical computing of the integral faces the same problems as pure 
numerical methods solving (1), (2), (3) directly - the cost of computations 
and error ratio. In another standard analytical approach widely used in 
geophysics, if the body forces are neglected, the solutions of (1) are 
considered as a plane harmonic waves propagating along the positive x axis  

 u(x,t) =F(z).݁௜(ఠ௧ି௞௫) 
where ߱ is the angular frequency and k is the wave number corresponding 
to the phase velocity c, i.e. k=߱/ܿ . (see for instance [5]). The main 
disadvantage of this approach is that the plane wave is two - dimensional 
one, living in the plane y=0 only, and all information on y coordinate is lost. 
Therefore it is impossible to build reasonable 3D model using plane wave of 
such type, which is the reason a new approach for 3-D modeling is 
suggested in this paper. Since earthquake generates a singularity at point S, 
the method suggested is built on the propagation of singularities of system 
(1) itself. 

There are alternative points of view to wave propagating in multi - layered 
solid media. For instance, In [7] are studied evolution systems for paraxial 
equations with non-smooth equations that are applied in reflection seismic 
imaging. Solutions for Cauchy problem of a system with low regularity of 
the coefficients are given in integral form. In our paper is adopted 
completely different way to the problem - so called "train" solutions, i.e. the 
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solution in one block determines the boundary conditions of neighboring 
blocks.  

System (1) in Ω has step - wise coefficients and the classical results for the 
wave front set (Theorem 8.3.1, Hormander, v. I, p.271) are not applicable. 
Hence we use "train solutions" construction in our model. The initial data at 
the point source S determine the solution of system (1) in block ܤ଴,଴,଴, 
which induces the boundary conditions in the neighbouring block and so on. 
This way instead if system (1) with piece - wise constant coefficients we 
consider a series of related problems (1) with constant coefficients, which is 
much easier task. 

This method is based on the features of the bicharacteristic curves of system 
(1). As the principal part is real with constant coefficients, the wave front set 
is invariant under the bicharacteristic flow. Having in mind the source 
model described above, a point source with seismic impulse in some 
direction, actually the singularities of the solution carry all the information 
about the wave. On the other hand, the singularities propagate over 
bicharacteristic curves within every homogeneous block. At the boundary 
between two block bicharacteristics could be reflected or refracted. 
According to geometrical optics and microlocal analysis, if bicharacteristic 
curve reflects off the sides of every block the angle of incidence to the 
surface is equal to the angle of reflection. As for refraction at the surface, it 
is computed in the usual way, more details and exact computations are 
given in Chapter 1 below. Therefore, if we know the position of the source 
S, the direction ߞ଴ of the seismic impulse and media structure Ω={ܤ௜,௝,௞} 
we can compute the intersecting point ݏ଴ of the bicharacteristic curve and 
the surface z=0. The point ݏ଴ is in fact the centre of the surface waves in 
the plane z=0 generated by the section of the wave front and the plane z=0. 
When actual measurement of the seismic waves is done, the coordinates of 
the point ݏ଴ can be triangulated using the data from several stations. This 
way verification of the media model Ω={ܤ௜,௝,௞} is done. Exact coordinates 
of the epicenter of an earthquake and the center of the surface waves ݎ଴ is 
computed using different and quite reliable techniques, like time - 
frequency analysis, based on the data from seismic stations. Given a certain 
3-D media model Ω={ܤ௜,௝,௞}, we compute the point ݏ଴. If the points ݎ଴ and ݏ଴ coincide within the error of the computations, then the media model is 
plausible. For practical purposes 3-D models Ω={ܤ௜,௝,௞}are generated using 
Monte Carlo type methods. Of course, like any other inverse problem, this 
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algorithm has multiple solutions in the sense that many models can fulfill 
the requirement ݏ଴ =   .଴ݎ

Characteristic set and bicharacteristic strip  
in homogeneous block ࢑,࢐,࢏࡮ 

Let ܮ௞,௠(ݔ, (ܦ = ∑ 	|ఈ|ஸଶ ܽఈ௞,௠(ݔ)ܦఈ. Then the characteristic set of linear 
strongly coupled system  

 ∑ 	௡௠ୀଵ ,ݔ)௞,௠ܮ ௠ݑ(ܦ = ௜݂, ݇ = 1, . . . . ݊ 

is given by ݀݁݌|ݐ௞,௠(ݔ, |(ߦ = 0  where ݌௞,௠(ݔ, (ߦ =∑ 	|ఈ|ୀଶ ܽఈ௞,௠(ݔ)ߦ௠ఈ (see [6], p.40). 

Each element of the characteristic matrix is the principal symbol of the 
corresponding equation with respect to the corresponding argument. The 
characteristic set of system (1) in every the block ܤ௜,௝,௞ is given by the 
equation 

 0 = ,ݔ)݌	 (ߦ = 

ተተߙ + ଵଶߦ ଶߦଵߦ ଶߦଵߦଷߦଵߦ ߙ + ଶଶߦ ଷߦଵߦଷߦଶߦ ଷߦଶߦ ߙ + ଷଶተተߦ
= ߙ ቮߙ + ଶଶߦ ଷߦଶߦଷߦଶߦ ߙ + ଷଶቮߦ
+																			 ተተߦଵଶ ଶߦଵߦ ଶߦଵߦଷߦଵߦ ߙ + ଶଶߦ ଷߦଵߦଷߦଶߦ ଷߦଶߦ ߙ + ଷଶተተߦ = 

 = ߙଶ൫ߙ + ଵଶߦ + ଶଶߦ +  ,ଶଶ൯ߦ
where ߙ = ߣ)− + ଶ߬ߩଵൣି(ߤ − ଵଶߦ൫ߤ + ଶଶߦ +  .ଷଶ൯൧ߦ
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These simple calculations show that the characteristic set of system (1) 
consists of two subsets  

 

,ݔ)ଵ݌ (ߦ = ଶ߬ߩ − ଵଶߦ൫ߤ + ଶଶߦ + ଷଶ൯ߦ = ,ݔ)ଶ݌0 (ߦ = ଶ߬ߩ − ߣ) + ଵଶߦ൫(ߤ2 + ଶଶߦ + ଷଶ൯ߦ = 0	 (4) 
since (ߣ + (ߤ > 0. 

Therefore the wave propagating in homogeneous block ܤ௜,௝,௞ is actually a 
composition of two waves. This result corresponds to the theory of P 
(primary) and S (secondary) body waves. P wave corresponds to the set 
defined by ݌ଶ(ݔ, (ߦ = 0, and S wave - to the one defined by ݌ଵ(ݔ, (ߦ = 0. 

Hence the following theorem holds: 

Theorem: Body wave propagating in homogeneous block ܤ௜,௝,௞  is 
composition of two waves - P wave and S wave. There are no other 
components of the wave. 

The characteristic set of an operator contains the wave front of the solution ݑ (see [2], vol. I, Theorem 8.3.1, p.271 ). Roughly speaking, the wave front 
of ݑ is a conic set where ݑ is not smooth ( see [2], Def. 8.1.2 p.254 ). In 
terms of physics the wave front describes the position of the wave at the 
moment. 

Furthermore, the characteristic set of a operator with real principal part ݔ)݌,  and constant coefficients is invariant under the bicharacteristic flow (ߦ
(see [2], vol. I, Chapter 8). The restriction of the bicharacteristic strip into ܴସ is named bicharacteristic curve. It is applicable to 3D modeling of the 
Earth, for, generally speaking, the singularities propagate over the 
bicharacteristic curves. In other words, singularity that is generated by an 
earthquake in block ܤ଴,଴,଴  propagate over the bicharacteristic curve in ܤ଴,଴,଴  untill it intersects at point (ݔଵ, ,ଵݕ (ଵݖ  the boundary to the 
neighbouring block, ܤଵ,଴,଴ for instance. Continuous boundary conditions 
meen that at point (ݔଵ, ,ଵݕ (ଵݖ  system (1) in the block ܤଵ,଴,଴  has 
singularity, that propagates over the bicharacteristic curves in ܤଵ,଴,଴, etc. 
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By definition if ݔ)݌଴, (଴ߦ = 0  then the bicharacteristic strip at point (ݔ଴,   ଴) is defined by the Hamilton equationsߦ

 ௗ௫ௗ௦ = ப௣(௫,క)பక , ௗకௗ௦ = ப௣(௫,క)ப௫  

with initial data (ݔ, (ߦ = ,଴ݔ) (଴ߦ  for ݐ = 0 . The corresponding 
bicharacteristic curve is  

 

ଵݔ = ܿିଵߦଵ଴. ݐ) − (଴ݐ + ଶݔଵ଴ݔ = ܿିଵߦଶ଴. ݐ) − (଴ݐ + ଷݔଶ଴ݔ = ܿିଵߦଷ଴. ݐ) − (଴ݐ +  (5)																																			ଷ଴ݔ
since ݐ − ଴ݐ = 2ܿඥ(ߦଵ଴)ଶ + ଶ(ଶ଴ߦ) + .ଶ(ଷ଴ߦ) ݏ =  ଴| and without loss ofߦ|2ܿ
generality we may assume |ߦ଴| = 1 . Constant ܿ = ඥߩ/ߤ  for 
bicharacteristics generated by ݌ = ,ݔ)ଵ݌ (ߦ  and ܿ = ඥ(ߣ + ߩ/(ߤ2  for 
ones generated by ݌ = ,ݔ)ଶ݌  .(ߦ
The values of ߦଵ଴,  ଷ଴ are determined by the features of the seismicߦ ଶ଴ andߦ
source. Without loss of generalization we can assume source of the seismic 
wave to be a point one with direction of the impulse ߦଵ଴, ,ଶ଴ߦ  .ଷ଴ߦ

Reflection and refraction 

Equation (5) describes the bicharacteristic curves of (1) in each ܤ௜,௝,௞ and 
their behavior on the boundary ∂ܤ௜,௝,௞ is studied by geometrical optics and 
microlocal analysis. 

Let ܾ௜௡  be a bicharacteristic curve in ܤ௜,௝,௞  and ܾ௜௡ ∪ ,ݔ)௜,௝,௞,௟ܨ} ,ݕ (ݖ =0} = ଴݌ . At point ݌଴  ܾ௜௡  can be reflected or refracted. Let ܾ௥௥  be the 
refracted curve and ܾ௥௟  be the reflected one. Both ܾ௥௥  and ܾ௥௟  are 
bicharacteristics through point ݌଴ – ܾ௥௥ is in the next to ܤ௜,௝,௞ block (in 
the sense of propagation of the singularity generated in S) and ܾ௥௟ is in ܤ௜,௝,௞. The singularity at ݌଴ propagates over the bicharacteristics as well 
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and this way the well – known following formula for reflection and 
refraction from geometrical optics are obtained. 

If incidental bicharacteristic curve ܾ௜௡  is reflected the angle ߠ௜௡  of 
incidence to the surface ܨ௜,௝,௞,௟(ݔ, ,ݕ (ݖ = 0  is equal to the angle of 
reflection ߠ௥௟ , since in the same block the equation (5) has the same 
coefficients. As for refraction at a surface, the match of the boundary 
conditions of the neighboring blocks at the two sides of the boundary lead to 
the well - known formula from geometric optics ݒଵsinߠ௥௥ = ௜௡ߠଶsinݒ , 
where ߠ௥௥ is the angle of refraction, ݒଵ is the speed of the wave in the 
"incidence" block and ݒଶ is the one in "refraction" block. 

Computation of reflected and refracted bicharacteristic curve is simple. Let ሬ݊Ԧ = (݊ଵ, ݊ଶ, ݊ଷ) = ൤ቀபிப௫ቁଶ + ቀபிப௬ቁଶ + ቀபிப௭ቁଶ൨ିଵ/ଶ ቀபிப௫ , பிப௬ , பிப௭ቁ (௕݌)  be the 

normal unit vector to surface ܨ௜,௝,௞,௟ = 0  at the point of incidence ݌௕ ௜௡ߦ , = ൫ߦଵ௜௡, ,ଶ௜௡ߦ  ଷ௜௡൯ be the unit vector along the incidental bicharacteristicߦ
curve, ߦ௥௥ = ,ଵ௥௥ߦ) ,ଶ௥௥ߦ ௥௟ߦ ଷ௥௥) be the unit vector along refracted one, andߦ = ,ଵ௥௟ߦ) ,ଶ௥௟ߦ  .ଷ௥௟) be the unit vector along reflected oneߦ

The speed of the wave is a physical feature of every material and it is 
preliminary known. For instance, the velocity of the P-wave in 
homogeneous isotropic medium is ݒ௉ = ඥ(ߣ + ௌݒ for S-wave it is ,ߩ/(ߤ2 = ඥߩ/ߤ. 

Quantities sinߠ௜௡ = sinߠ௥௟ and sinߠ௥௥ are easy to compute using scalar, 
or dot product cosߠ = ߦ ⋅ ሬ݊Ԧ of unit vectors ߦ and the normal unit vector ሬ݊Ԧ, for instance 

 sinଶߠ௜௡ = 1 − ൫ߦଵ௜௡݊ଵ + ଶ௜௡݊ଶߦ +  ଷ௜௡݊ଷ൯ଶߦ

Then equations of refraction and reflection from geometrical optics yield 

ଵ௥௥݊ଵߦ  + ଶ௥௥݊ଶߦ + ଷ௥௥݊ଷߦ = ൤1 − ቀ௩మ௩భቁଶ ൫1 − ଵ௜௡݊ଵߦ] + ଶ௜௡݊ଶߦ ଷ௜௡݊ଷ]ଶ൯൨ଵ/ଶߦ+ ଵ௥௟݊ଵߦ + ଶ௥௟݊ଶߦ + ଷ௥௟݊ଷߦ = ൣ1 − ൫1 − ଵ௜௡݊ଵߦ] + ଶ௜௡݊ଶߦ  ଷ௜௡݊ଷ]ଶ൯൧ଵ/ଶ   (6)ߦ+
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In addition, the incidental bicharacteristic curve, the refracted one and the 
normal to the surface vector lie on the same plane and give us the relation 

 ተ݊ଵ ݊ଶ ݊ଷߦଵ௜௡ ଶ௜௡ߦ ଵ௥௥ߦଷ௜௡ߦ ଶ௥௥ߦ ଷ௥௥ተߦ = 0.  (7) 

The same relation is valid for vector ߦ௥௟. Finally, since we consider vectors ߦ௜௡, ߦ௥௥ and ߦ௥௟ be unit ones, we obtain 

ଶ(ଵ௥௥ߦ)  + ଶ(ଶ௥௥ߦ) + ଶ(ଷ௥௥ߦ) = ଶ(ଵ௥௟ߦ)1 + ଶ(ଶ௥௟ߦ) + ଶ(ଷ௥௟ߦ) = 1 (8) 

Equations (6), (7) and (8) define uniquely vectors of refraction ߦ௥௥	and 
reflection ߦ௥௟ up to the sigh.  

3-D modeling of Lithosphere 

Using bicharacterstic curves, described in the previous section, it is possible 
to define the following criterion for 3D model of the Earth crust and upper 
mantle. 

 Definition:  Let {ܤ௜,௝,௞} be a set of blocks and the source of seismic wave 
be a point one at the point ܵ with direction alongside vector ߦ଴. Let ܲ is 
the point of the Earth surface belonging to the bicharacteristic curves 
generates by system (1), set of blocks {ܤ௜,௝,௞} and source ܵ. Given set of 
blocks ܤ௜,௝,௞ is plausible if the point ܲ coincides with the epicentre ܧ of 
the surface waves generated by the earthquake.  

Since seismic stations record both surface and body waves, point ܧ is a 
subject of triangulation if there are enough sensors in the region. Computing 
the bi-characteristic curves in all set {ܤ௜,௝,௞} arises an important question. 
At the boundaries between two blocks - surfaces ܨ௜,௝,௞,௟(ݔ, ,ݕ (ݖ = 0 - is the 
bicharacteristic curve reflected, refracted, or both? The answer comes from 
so - called reflection and refraction index. It is a physical feature of the 
material that build the block.  
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How to compute refraction and reflection index is well described in Aki and 
Richards (2002), W.M. Ewing, W. S. Jardetzky, F. Press. (1957) or in W. L. 
Plant (1979). 

Furthermore, the body waves records are useful to determine the block 
structure of the closest to the seismic stations blocks. Wave front in a 
homogeneous block is a subset of the characteristic set of system (1), 
therefore it has constant speed by (4).  

Using bi-characteristic curves and the characteristic set we can compute 
arrival time for P - and S - waves. In combination with the criteria from the 
Definition, we can generate and test plausible 3-D models of the Earth crust 
and upper mantle.  
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Introduction 

The new developments in hardware for high-performance computing 
motivate significant changes in the software technologies and convergence 
between services that are used for HPC and distributed computing. The 
European strategy for development of e-infrastructure for research purposes 
includes as one of its main building blocks the Grid infrastructure (see, e.g., 
[5, 6]), built by linking the national Grid initiatives in the European 
countries. Notably, the documents [10, 11] identify the following key 
elements of the European vision:  

  • the GEANT research network;  

  • Grids for e-science;  

  • storing and post-processing of scientific data;  

  • supercomputer e-infrastructures;  

  • global virtual research communities.  

Following these tendencies, the Institute of Information and 
Communication Technologies of Bulgarian Academy of Sciences 
(IICT-BAS) in Sofia built a high-performance grid computing cluster (see 
Figure 1), which also includes a high-performance disk array data storage. 
The cluster serves as the center of the Bulgarian Grid Infrastructure and 
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ensures the participation of Bulgarian research groups in European virtual 
research communities. One of the main considerations for the procurement 
was that we believed the Bulgarian researchers will be more interested in 
tightly coupled parallel applications. That is why we put emphasis on the 
fast interconnection, which is achieved with non-blocking InfiniBand 
fabrics. In this way our cluster is one of the few clusters in the European 
Grid Infrastructure with such advanced capabilities. It is also the most 
powerful interdisciplinary Bulgarian Grid cluster in terms of raw 
computational power and supports all core services necessary to support the 
Bulgarian researchers - senior scientists or Ph.D. students.  

 

Figure 1: HPC Grid Cluster in IICT-BAS 

The main computational part of the cluster are the blade server nodes, which 
are deployed inside three HP Cluster Platform Express 7000 enclosures. 
There are 36 identical blades of the type HP BL 280c, equipped with dual 
Intel Xeon X5560 @ 2.8GHz and 24 GB RAM per blade. Interfacing with 
the storage and various controlling functions are performed by 8 server 
nodes HP DL 380 G6 with dual Intel X5560 @ 2.8Ghz and 32 GB RAM. 
They are connected with the storage systems with redundant Fibre Channel 
connections. Currently the cluster has three SAN systems - MSA2312fc, 
P2000 G3 and the newest one - IBM Storwize V7000, offering access to a 
total of 132 TB of disk storage. Following the tendencies for achieving high 
cost- and energy-efficient computing, we gradually added new types of 
computational capabilities. Namely, we added two HP ProLiant SL390s G7 
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servers with Intel(R) Xeon(R) CPU E5649 @ 2.53GHz, which can be 
equipped with up to 8 NVIDIA Tesla M2090 cards each. One such card has 
512 cores for GPU computing and achieves 1331 GigaFLOPS in single 
precision and 665 GigaFLOPS in double precision. The cards have 6 GB 
ECC GDDR5 RAM with 177 GBytes/sec memory bandwidth. Currently we 
have 9 cards in these two servers, providing computational power close to 
10 TeraFLOPS in single precision. The procurement procedure for 
acquiring additional 7 cards is under way. We note that these servers are 
also interconnected with non-blocking InfiniBand interconnection, thus 
keeping all servers under the same connectivity parameters and enabling the 
development of hybrid applications that combine CPU and GPU computing 
in an optimal way [1]. 

Configuration, testing, certification and inclusion  
into the European Grid Infrastructure 

 
System Configuration 

The configuration of the system was carried out in two stages. In the first 
stage, the physical installation was carried out by the supplier. The disk 
space of the storage systems was distributed, using mostly RAID 6 with 
only the most performance-critical data was stored using RAID 10. In order 
to facilitate the automated installation of the operating system software we 
used the Perceus configuration management system [12]. Although it is 
mostly oriented towards ''stateless'' installations, we used the so-called 
"stateful" option, which needed some tweaking to support the RAID 
controllers at the blades. Most of the disk space from the storage systems is 
used as a ``/home'' file system, while substantial part is also allocated for 
scratch space. Users of the cluster have direct access to these two file 
systems. They were configured using the Lustre file system [13], which is 
open-source software and a popular choice among high-performance 
systems, providing in some cases petabytes of disk space for large 
supercomputer installations. In our case three of the controlling servers are 
dedicated to serving the Lustre file systems, so that one of them acts as a 
metadata server and the other two provide access to the actual disk space in 
which to spread the workload. The Lustre file systems span across the three 
storage systems, thus achieving higher total throughput. 

In the second stage of the installation we configured the Grid software, 
using the YAIM method. The remaining 5 controlling nodes were used to 
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install virtual machines, where the servers supporting the Grid functions are 
installed. We used KVM for the virtualization and we enabled live 
migration over the InfiniBand interconnection. In this way it was possible to 
achieve fast live migration, without dropping any network packets during 
the transition. 

Although all the grid-related services were installed on virtual machines, 
the blade servers were installed as grid worker nodes with direct, bare-metal 
installation, for maximum performance. 

The configurations of the so-called ''worker nodes'', follow the release cycle 
of the EMI project, starting with the gLite distribution version 3.2 and then 
upgrading to the consecutive EMI releases. One of the blade nodes is 
designated as a Grid User Interface enabling direct job submission to the 
cluster, submission of jobs to all grid sites and data management. Since the 
cluster has 36 blade nodes, each with two 4-core processors and 
hyper-threading is enabled, the optimal number parallel processes to be 
launched is 576. Although the controlling servers have the same 
computational capabilities and same non-blocking interconnection as the 
blade servers, they are normally not used for computations by users. The 
control of the user tasks is performed by the TORQUE Resource Manager 
[14]. A virtual machine is setup to act as a TORQUE server and accepts 
tasks that are submitted from the gateway node or from the grid controlling 
nodes. The access through the grid is performed by the servers:  

  • cr1.ipp.acad.bg - Computing Element of type CREAM  

  • cr2.ipp.acad.bg - experimental Computing Element of type CREAM, 
providing access to the GPU computing nodes only.  
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Figure 2: Nagios monitoring system 

 

 

Figure 3: Service status details 

All installed Grid services are monitored with Nagios monitoring system 
(Figure 2) which enables to identify and resolve infrastructure and grid 
middleware problems before they affect critical processes (Figure 3). The 
HPC Grid cluster is involved in the EGI dashboard interface for ticket 
system as BG01-IPP, (Figure 4). 
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Currently, the cluster BG01-IPP supports European Virtual Organizations 
(VOs) as Biomed, CMS, and some regional and national VOs as 
env.see-grid-sci.eu, mm-comp-chem.grid.acad.bg and bg-edu.grid.acad.bg. 
The main grid services for the last VOs are running off virtual machines 
from the controlling nodes. It is notable that env.see-grid-sci.eu and 
mm-comp-chem.grid.acad.bg VOs have high percentage of parallel jobs.  

 

 

Figure 4: EGI dashboard interface for ticket system 

Testing 

To certify the cluster for full-scale operations a series of tests were 
performed.  

High Performance Linpack 

The productivity of supercomputer systems is usually measured in billions 
of floating point operations in double precision per second and the results of 
the first 500 systems are published regularly on the site http://www. 
top500.org. It should be noted that this output is required to be achieved in 
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solving a system of linear equations, whereas the choice of libraries, 
problem sizes and the software configuration can be varied. In our tests we 
used the package High-Performance Linpack (http://www.netlib.org/ 
benchmark/hpl/), which is based on MPI. Since the peak performance of our 
Intel CPUs cannot be increased by turning hyper-threading on, we used 
only the available real cores, i.e. 288. In order to achieve the best 
performing configuration of the HPL software, the following website 
http://hpl-calculator.sourceforge.net/ provided useful information with 
regards to the optimal choice of parameters for the file HPL.dat. The peak 
performance of the cluster is equal to 3.225 billion operations per second, 
according to the specification. In the tests we achieved more than 3 billion 
operations per second, i.e. the ratio between attained performance and peak 
performance is more than 93%. This is an excellent result that highlights the 
capabilities of the system for parallel computing. Some of the tests were 
carried out in the Grid environment, proving that access to the 
high-performance capabilities of the cluster is also possible using Grid 
middleware. 

It should be emphasized that in these tests the processor is almost fully 
loaded and there is no practical gain from the presence of hyper-threading, 
which allows for launching twice as many parallel processes. In real-time 
problems hyper-threading technology can offer significant advantage, since 
it allows to "overlap" the waiting time when accessing memory or logic 
transitions. Some of our Monte Carlo applications achieve between 30 and 
60 percent speedup from hyper-threading. Since some applications can not 
benefit from hyper-threading, users can choose to use only the physical 
processors, but they still have to reserve all the available (logical) 
processors in order to obtain full control of the machine. 

MPI tests with InfiniBand 

One of the most popular standardized tests for high-performance MPI 
communications are the tests osu_latency and osu_bw, which measure the 
latency and bandwidth of the connection between two servers of the cluster. 
Significant differences were noted between the basic distribution of OFED 
and the later versions that we installed - around 10% in some benchmarks. 
The results in Table 1 are obtained when we used the following test: 

/usr/mpi/gcc/openmpi-1.3.3/bin/mpirun -H wn02.hpcg,wn03 -n 2 
/usr/mpi/gcc/openmpi-1.3.3/tests/osu_benchmarks-3.1.1/osu_latency  
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Table 1: OSU MPI Latency Test v3.1.1 

 Size   Latency 

(us)  

 Size   Latency 

(us)  
 0   2.45   2048   8.75  
 1   2.54   4096   10.73  
 2   2.46   8192   14.74  
 4   2.17   16384   20.84  
 8   2.14   32768   33.15  
 16   2.18   65536   53.76  
 32   2.24   131072   100.41  
 64   2.44   262144   178.19  
 128   4.10   524288   333.10  
 256   4.45   1048576   625.75  
 512   5.01   2097152   1249.96  
 1024   6.22   4194304   2462.30  

One can see that the latency of short communications is at times less than 
 With regard to the bandwidth, (see Table 2) we used the following .ߤ2.5
test: 

/usr/mpi/gcc/openmpi-1.3.3/bin/mpirun -H wn02.hpcg,wn03 -n 2 
/usr/mpi/gcc/openmpi-1.3.3/tests/osu_benchmarks-3.1.1/osu_bw  
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Table 2: OSU MPI Bandwidth Test v3.1.1 

 Size   Bandwidth 
(MB/s)  

 Size   Bandwidth 
(MB/s)  

 0   -   2048   936.44  
 1   1.13   4096   1211.40  
 2   2.32   8192   1528.57  
 4   4.68   16384   1471.90  
 8   8.82   32768   1572.26  
 16   18.51   65536   1680.17  
 32   35.68   131072   1727.01  
 64   67.71   262144   1727.80  
 128   124.40   524288   1731.80  
 256   228.00   1048576   1733.65  
 512   427.28   2097152   1734.14  
 1024   698.39   4194304   1734.69  

In these tests one can see that when the size of the message grows to more 
than 131072 bytes the maximum throughput of around 1734 megabytes per 
second is achieved, which is close to the theoretical maximum. For 
comparison we conducted the same tests on the same server from the 
cluster. Thus we found that the difference between the results is relatively 
small and the access to the memory of another server is comparable in speed 
to memory access from the same server. We note that the use of adjacent or 
distant blade servers does not affect significantly these results, due to the 
non-blocking interconnection. 

Tests of the file system 

One of the most common tests for file system performance is bonnie++, 
which is available as a standard OS package. The cluster file system has two 
types of Lustre file systems, one of which is used to securely store data - 
/home, and the other for temporary files and broadband access. In tests with 
bonnie++ the same order of magnitude of the results were achieved for 
both, for example reading speeds of around 436 MB/s. 

Following the certification process the cluster was included in the European 
Grid Infrastructure, managed by the project EGI-InSPIRE, [15]. In addition 
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to that, the cluster was included in the infrastructure of the project HP-SEE 
(see [16]) to create a network of high-performance clusters and 
supercomputers in the region. 

Continuous operation of the cluster, monitoring, problem 
solving and statistical data collection 

As part of the regional and European Grid Infrastructure the cluster is 
monitored continuously and passes certification tests every hour. This 
requires the project team to ensure regular monitoring to eliminate possible 
problems and software update. In order to enable detailed accounting of the 
used resources, the team of the HP-SEE project developed and deployed a 
system which gathers and analyses more data than the regular Grid 
accounting software [3]. 

The Figure 5 shows how the Bulgarian HPCG cluster in IICT-BAS supports 
virtual research communities related to computational physics, 
computational chemistry and life sciences in the SEE region, [4] and how 
their accounting data are distributed on different computing centers in the 
region, including our center named HPCG, http://gserv4.ipp.acad.bg/ 
HPSEEAccounting/.  

 

Figure 5: HP-SEE usage for the last two project years over different HPC centers in 
SEE region (log scale). 
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It should be noted that the development of Grid applications requires good 
understanding of the dependencies of the executable code on different 
versions of system libraries and developers should be ready for the inherent 
heterogeneity of the Grid environment. In the Bulgarian Grid infrastructure 
the goal is to maintain maximum compatibility between operating systems 
installed on Bulgarian Grid clusters, allowing a number of codes to be 
prepared initially on smaller clusters and then ported to the 
high-performance grid cluster with minimal modification. 

The main Grid applications using the cluster are a system dealing with 
modeling of transport of hazardous substances into the atmosphere for the 
purpose of early warning and rapid response, multi-scale modeling of the 
atmosphere,[8], Monte Carlo sensitivity analysis, [2], computer simulations 
of gas flow in micro-channels, [9]. The cluster has also many international 
users, mostly obtaining accounts through the HP-SEE project. 

There is substantial diversity of applications using the cluster, varying from 
single-CPU applications to tightly coupled parallel applications using high 
percentage of the total available CPU power. The distribution of jobs can be 
seen from two angles in Figure 6 and 7. Although single-CPU jobs 
dominate in terms of number of jobs, as seen in the first figure, the total 
CPU usage reaches a peak in the range between 81 and 160 parallel 
processes. This observation motivated us to make some configuration 
changes and enhancements in the deployed versions of maui and torque in 
order to facilitate faster execution of such jobs. When such jobs are 
submitted using the Grid job submission mechanisms, there is the 
undesirable consequence that the job can be launched on any combination 
of job slots, leading to uneven distribution of processes among worker 
nodes. We deployed filtering scripts that prevent such possibility, thus 
ensuring dedicated worker nodes for optimal quality of service.  
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Figure 6: Distribution of number of jobs by number of parallel processes 

 

Figure 7: Distribution of CPU usage by number of parallel processes 
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Conclusion 

The cluster was certified and put into operation within one month after 
completion of the procurement process and used continuously by scientists 
from various scientific organizations from Bulgaria, European Grid Virtual 
Organizations and scientists from the regional HP-SEE project. It provides 
a strong basis for Bulgarian participation in the largest European Grid 
project and the construction of new high-performance computing regional 
infrastructure. The substantial expansion of the user base provides further 
justification of the need to expand the cluster using state-of-the art 
high-performance computing technologies, for example, using accelerator 
cards like NVIDIA Tesla and Intel Xeon Phi at larger scale. 

The European Grid Initiative is developing new services, based on Cloud 
technologies, [7]. The efforts to integrate the cluster using OpenStack 
middleware are under way and the production operations are planned to 
start in April 2014. Due to the distinguishing features of Grid and Cloud 
technologies we expect that the data intensive applications will be using the 
Cloud services more intensively, while the applications that stress the 
parallel performance of the cluster will continue using the cluster through 
the Grid interfaces. 
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PARALLEL ALGORITHM 
FOR FIELD FIRE SIMULATION 

STEFKA FIDANOVA AND PENCHO MARINOV 
 
 
 

Introduction 

Every year south European countries have a lot of burned hectares with 
different vegetation coverage caused because of wild-land fires. In the last 
decades with the consequences of human influence on the nature and 
climate change this part of the Europe became dryer and that increased the 
wild-land fires occurrence. USA, Mexico, Australia and Brazil have the 
same problem. Bulgarian ministry of forests and agriculture officially 
announced in 2006 that Bulgaria has significant increase of wild-land fires 
since 1976. 

The field fire modeling started forty years ago in USA by Rothermel [23]. 
He shows how the freed energy during the pyrolysis is distributed in the 
nature. Both USA models, WRF-Fire and FARSITE, use as basis 
Rothermail rate of spread equation [12,17]. In the beginning of eighties 
Russian researchers from the University of Tomsk developed their 
wild-land fire model, very different of the American one [14]. The Russian 
model is very specific for Siberian forest and is difficult to be used for other 
region. Canadian model PROMETEUS [25] is designed to work in 
Canadian fuel complexes. Most of them are very slow and unusable for 
front fire development. They are used for training firemen and to estimate 
the potential of wild fire and damages which it can causes [9]. There is some 
groups from Spain [11] and France [7, 18] which work in the field of forest 
fire modeling, but more theoretically. Having in mind all listed statistics a 
team from Bulgarian Academy of Sciences has started working on 
modeling field fire using game method. It is a cellular automate with cells 
that can represent a fire spread for flat areas where the vegetation can be 
diverse. The cells have been tested with different shapes and hexagonal 
shaped cells have been chosen as the optimal one. This shape gives better 
contact to the neighbor cells and fire spread is more realistic. The software 
implementation is meant to provide prevision of different scenarios of the 
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fire spread which can help to the firefighting teams better optimize their 
work. The firemen need fast model which can calculate for several minutes 
the fire acceleration for several hours. When the area is big and the front of 
the fire is changed very fast the model does a lot of calculations. Therefore 
we created parallel version of our algorithm. 

The rest of the paper is organized as follow: in Section 2 we describe the 
Game Method; in Section 3 the numerical simulation is presented; in 
Section 4 we report computational results and some comparisons; in 
Section 5 are drown some conclusions and directions for future work. 

Game Method 

The Game Method for Modeling (GMM) is developed by Prof. Krassimir 
Atanassov [4]. The idea for GMM comes from Conoway's Game of Life [8, 
15]. It uses orthogonal grid of square cells, each with one of the two 
possible states, a live ore dead. Their first application is for describing 
astronomic processes [24]. They are used in the field of combinatorial 
geometrics [6] and field fire modeling [10]. Movements of objects and their 
quantitative and qualitative changes can be described by this method. 

In GMM the considered area is describe by mesh. The cells of the mesh can 
be triangular, square (more often), hexagonal or other. There are initial 
parameters, called initial state, which will be changed during the time steps. 
There are transition rules which define the way the cell's parameters will 
change according previous stage and according the stage of the neighbor 
cells. Thus in every time step we can know the stage of every one of the 
cells in the considered area. The initial configuration can be every set of 
eligible parameters. The final configuration is a set of parameters, result of 
certain number of application of the transition rules. A single application of 
the rules is called elementary step. The stopping criteria can vary according 
modeled problem. More often used criteria is predefined number of time 
steps. Other criteria can be obtaining predefined configuration or when the 
process oscillated. 

The GMM can be described as follows: 

ܮ  = (ܭ)ܣ = ×)ଵܣ)ଵܣ (ܭ)ଵܣ ×)) 
where: 
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  is the final configuration   --   ܮ  is the initial stage   --  ܭ  ଵ  --   is the set of transition rulesܣ
 

Numerical Simulation 

The forest fire models usually are classified as follows: 

  • stochastic and deterministic models [16, 22]; 

  • empirical, semi-empirical [3]; 

  • and physical models [20, 21].  

Stochastic models are based on the observation of experimental and 
wild-lend fires, from which the burning parameters are determined. The 
empirical and semi-empirical models are based on the assumption that the 
energy, which is transferred to the unburned fuel, is proportional to the 
energy released by the combustion of the fuel. Physical models lead to 
differential equation systems which describes the energy transfer in the 
burning area. These models require time-consuming numerical calculations 
[2, 13, 19]. Normally they are ran on parallel computers, because they are 
very slow and inefficient on single processor even for small area. 

In our previous works [10, 26] we apply GMM with square cells on forest 
fire spread modeling. Later we decide to use cells with hexagonal shape 1. 
They are more appropriate for two reasons: the hexagon is closer to the 
circle, the shape of the fire without wind; there are only one kind of 
neighbor cells, there are not corner neighbors (see Figure 1). 
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Figure 1: Hexagonal cells 

The parameters for our GMM model are: 

  • Burning time; 

  • Time to start to burn; 

  • Wind parameters, force and direction; 

  • Surface.  

The burning time shows how many time steps the material inside the cell 
needs to be totally burned or it is a burning duration. The time to start to 
burn shows the ignition speed if one neighbor cell burns. For example: if the 
speed for ignition is 2 time steps and the burning duration is 5 time steps, the 
cell will start to burn if during 2 time steps some neighbor cells burn and the 
cell will totally burned 5 time steps after ignition. We suppose that the size 
of the parameters and the size of the cells are fixed in advance. If the 
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material in the cell is unburned, than the burning duration and the speed for 
ignition are equal to 0. 

The rules of our fire model are as follows: 

  • At the initial time step the modeling starts from the initial state of the 
area where one ore more cells are burning; 

  • Every time step the burning duration of burning cells decrease with 1 till 
it becomes 0 (totally burned); 

  • If a cell is burning, the speed of ignition of closer cells are changed, 
depending of the force and direction of the wind; 

  • When the speed of ignition becomes 0 the cell start to burn; 

  • The process continues until no other change of the parameters is 
possible or the number of the time steps is equal to the predefined time 
steps, otherwise go to 2. 

One of the advantages of our model is that it can start from any stage of the 
area, which is a realistic case. Normally, a forest fire is discern after some 
acceleration. 

Parallel Algorithm 

Our model is much more faster than the American ones. In the case when 
the concerning area is very large and we need some expectation about the 
development of the fire front for a short time, the parallel version of the 
algorithm can be useful. We prepare a version of our algorithm, which is 
convenient for IBM Blue Gene/P supercomputer. For parallelization we use 
MPI (Message Passing Interface). Our parallel algorithm easily can be 
adjusted for other parallel computers too. 

In June 2007, IBM unveiled Blue Gene/P, the second generation of the Blue 
Gene series of supercomputers. Each Blue Gene/P Compute chip contains 
four PowerPC 450 processor cores, running at 850 MHz. The cores are 
cache coherent and the chip can operate as a 4-way symmetric 
multiprocessor. The memory subsystem on the chip consists of small 
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private L2 caches, a central shared 8 MB L3 cache, and dual DDR2 memory 
controllers. The chip also integrates the logic for node-to-node 
communication. A compute card contains a Blue Gene/P chip with 4 GB 
DRAM, comprising a "compute node". 32 Compute cards are plugged into 
an air-cooled node board. A rack contains 32 node boards (thus 1024 nodes, 
4096 processor cores). By using many small, low-power, densely packaged 
chips, Blue Gene/P exceeded the power efficiency of other supercomputers 
of its generation, and at 371 MFLOPS/W Blue Gene/P installations ranked 
at or near the top of the Green500 lists in 2007-2008 [1]. 

In our parallel algorithm we divide the considered area into overlapped 
bands. The bands have the same width (number of cells). The width of the 
overlapped area depends of the force of the wind. If there is not a wind, the 
overlapping is one row. Thus we minimize data transfer, which is very 
important in parallel computing because it is a slowest part of parallel 
computing. The used cores are numbered. The core number 0 receives all 
the data, area and cell parameters. It divides the area and sends the parts to 
other cores. Other cores calculate the changes of cells parameters in their 
parts and after every time step they exchange information for overlapping 
parts. Thus they unify the information. If we divide the area on ܰ bands, 
the core with number ݅, ݅ = 2,… ,ܰ − 1 exchange information with cores 
with numbers ݅ − 1 and ݅ + 1. Core 1 exchange information with core 2 
and core ܰ exchange information with core ܰ − 1. After the final time 
step all cores with number more than 0 send their areas to the core 0. Core 0 assemble the information coming from other cores and constructs the 
final configuration of the concerned area. 

We prepare test problem where the area is flat, with the uniform vegetation 
(same burning time and ignition speed for every cell), to test the 
parallelization of our algorithm. Our tests consist of 100 × 100  and 1000 × 1000 hexagonal cells. The number of time steps is fixed to be 100. Every processor of our supercomputer has 4 cores with common 
memory. When the used cores are on the same processor they use common 
memory and the transfer of the data is fast. When the used cores are on 
different processors, the transfer of the data is slower. We run the algorithm 
on 4 cores on same processor, 2 cores from 2 different processors, 4 cores 
from 4 different processors, 3 cores on the same processor and 2 cores on 
the same processor. 

When 2 cores are used, the algorithm proceed in sequential way, because 
the core 0 only divides the data and at the end assemblies them. In the case 
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the two cores are on the same processor, they use common memory, thus 
there are not parallelism and the transfer of the data is fast. We will denote 
the running time in this case with 1 and will estimate the running time of 
other cases with it. When the two cores are on different processors there is 
transfer of data between processors. Thus in this case we estimate data 
transfer. When 4 cores are used, the area is divided on 3 bands. When 3 
cores are used the area is divided on 2 bands. 

Table 1: Running time on various number of cells 

2 cores  2 cores  3 cores  4 cores  4 cores  
1 processor  2 processors 1 processor 1 processor 4 processors 
1  +2%  -6%  -10%  +10 % 

Table 1 shows the increase and decrease of the running time of the 
algorithm. When the algorithm is run on several cores on a same processor 
the running time decrease according sequential variant, because the fast 
data transfer between cores on same processor. When the algorithm is ran 
on cores on different processors, the running time increase, because the 
slow data transfer between the processors. 

Let us run the algorithm on 5 cores. The cores from 1 to 4 to be on the same 
processor and core 0 to be on other processor. In this case there is slow data 
transfer from core 0 to other cores, which is only at the beginning and at the 
end of the calculations, and fast data transfer between other cores. Thus the 
running time decrease with 8% according sequential variant. 

We verified if the final configuration achieved by parallel algorithm is the 
same as the configuration achieved by the sequential one, or if the parallel 
algorithm performs in a proper way. 

Conclusion 

On this paper we develop an algorithm for field fire modeling. The 
algorithm is based on game method for modeling. We prepare a parallel 
version of our algorithm for IBM Blue Gene supercomputer using MPI. We 
study the influence of the number of cores and used architecture on the 
algorithm performance. We can conclude that the minimal running time is 
when the algorithm is run on cores on the same processors. Other possibility 
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can be only the core 0 to be on the different processor and other to be on 
the same. During the algorithm run there is data transfer from core 0 at the 
beginning and to core 0 at the end of the run. There is data transfer between 
other cores at every time steps, thus it is better they to be on the same 
processor. 
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Introduction 

The trabecular bone tissue is an example of deformable medium that has 
complex hierarchical morphology in the sense that essential features are 
needed to consider from nanometer to millimeter scales. These features 
modeled at various scales determine how well the bone tissue meets 
conflicting mechanical and mass-transport needs. However, the modeling to 
predict the flow and mechanical behavior in such systems with hierarchical 
structures and multiple, often poorly separated length-scales, is very 
computationally demanding, thus making every day mechanical and flow 
simulations of bone tissue impractical. 

The main goal of this paper is to propose a new low computational cost and 
easily implementable multilevel multiscale method for linear elasticity 
system with isotropic heterogeneous bulk modulus and spatially varying 
Poisson ratio close to incompressibility limit, which will be made more 
precise ahead. This new procedure uses multigrid combined with an 
analytical approximation of the homogenized bulk modulus, as well as an 
average of the variable Poisson's ratio for the fluid phase, at coarser levels. 
The numerical results will be presented in a 2-D version of the problem. 

The use of homogenization tools incorporated into multigrid schemes for 
solving problems in heterogeneous media justifies since the optimal 
performance of the multigrid alone is a challenging task, particularly when 
the heterogeneous media is described by step functions or jumping 
coefficients. Among the issues related to using multigrid to solve multiscale 
systems is the mesh anisotropy. This is caused by elements having very 
large aspect ratio, typically appearing as a factor in the condition number of 
the stiffness matrix, that can easily generate a highly ill-conditioned 
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problem [7]. In this particular case, the other difficulty is that the system 
becomes ill-conditioned also because the Poisson ratio of the fluid phase 
approaches the incompressibility limit, ߥ → 0.5. 

Even though both the Poisson's ratio (ݔ)ߥ and the bulk modulus (ݔ)ܭ are 
upscaled, the terminology upscaled refers to the bulk modulus only, since it 
is a tensor that is a multiplicative term in the compliance matrix ۱(ݔ) 
ahead. The proposed upscaling of ߥ does not follow from the classical 
homogenization theory. The general framework of the multiscale multigrid 
method corresponds to defining coarse-grid operators at each level of the 
V-cycle by using an upscaled value for ߥ and for (ݔ)ܭ. The upscaled bulk 
modulus is derived from an analytical approximation ܭ∗  of the true 
upscaled, or effective, tensor ۹. The existence of ۹ is a classical result in 
homogenization theory from [9]. The proposed multilevel setting can be 
considered as an iterative homogenization procedure. 

Let's recall that finding the true upscaled tensor, ۹, in a simplified way has 
been the subject of many research, generally aiming to reduce the 
computational effort. Given its importance in various fields of application, 
there is a large literature in the subject and the reader is referred to [8] for a 
review and other general applications. 

Since the numerical computation of ۹  is usually computationally 
demanding, the underlying hypotheses is that the effective tensor at each 
level, can be replaced by suitable approximations. The use of 
approximations to replace ۹ is not new in the literature, particularly when 
built in a numerical scheme. The most popular schemes use the arithmetic 
and harmonic average, or a combination of both [1, 3, 5]. However, these 
averages are generally too far from the true upscaled tensor, especially 
when high aspect ratios are present, thus better approximations to the true 
upscaled tensor can lead to more reliable algorithms. Here, the Analytical 
Coarse Operator (ACO) proposed in [12, 13], will be used together with the 
averaging of the variable Poisson's ratio (ݔ)ߥ. 
In the next sections, the algorithm will be presented followed by numerical 
convergence results that indicates the reliability of the procedure when 
compared with well-known upscaled tensors given by the arithmetic, 
harmonic and geometric averages, and the respective averaging of ߥ 
approaching the incompressible limit ߥ ≈ 0.5. First, the general multiscale 
problem is outlined, together with the theoretical basis for its upscaled 
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approximation at coarser levels. This work is a continuation of a previous 
work where only the bulk modulus was variable, see Sviercoski and 
Margenov [12]. 

The Problem at the Fine-scale and the Homogenization 

Without loss of generality, let Ω ⊂ ܴଶ be a bounded domain with boundary Γ = ∂Ω and ܝ = ,ଵݑ)  ଶ), the displacement in Ω. The pure displacementݑ
deformation of a body under the influence of applied forces, ܎ , (and 
considering only first order terms in the displacement) is described by:  

 ൜−∇ ⋅ ૌ(ݔ) = ܎ ݔ ∈ Ω(ݔ)ܝ = 0 ݔ ∈ ∂Ω (1) 

where ૌ(ݔ) is the stress tensor, with components, ߬௜௝(ݔ), given by Hooke's 
law:  

 ߬௜௝(ݔ) = Σ௞,௟ୀଵଶ ܿ௜௝௞௟(ݔ)ߝ௞௟(ܝ), 1	 ≤ ݅, ݆, ≤ 2. (2) 

The components of the strain-displacement tensor are given by:  

(ܝ)௜௝ߝ  = ଵଶ ൬ப௨೔ப௫ೕ + ப௨ೕப௫೔൰ ,			1 ≤ ݅, ݆, ≤ 2, (3) 

and ܿ௜௝௞௟(ݔ) are the spatially dependent properties describing the behavior 
of the material. These properties are related to Lamé's coefficients ((ݔ)ߣ,   : ((ݔ)ߤ

(ݔ)ߣ  = ଷ௄(௫)ఔ(௫)(ଵାఔ(௫)) = (ݔ)ߤ				,(ݔ)Λ(ݔ)ܭ = ଷ௄(௫)(ଵିଶఔ(௫))ଶ(ଵାఔ(௫)) =   (ݔ)ߢ(ݔ)ܭ

  (4) 

where it has been used the relationship for the Young's module (ݔ)ܧ 1)(ݔ)ܭ3= − (ݔ)ߥ and of the Poisson ratio ,(ݔ)ܭ as a function of spatially dependent, bulk modulus ,((ݔ)ߥ2 ∈ [0, ଵଶ). The case when the spatially 

variable (ݔ)ߥ = ଵଶ − ߜ)	ߜ > 0 is a small parameter) leads to the notion of 



R. Sviercoski and S. Margenov 91

almost incompressible material. We observe that eq. (1) becomes ill-posed 
at the incompressibility limit, when (ݔ)ߥ → ଵଶ. 
For ܎ = ( ଵ݂, ଶ݂)் ∈ ܝ ଶ, the weak formulation of (1) reads as finding(ଶ(Ω)ܮ) ∈ ଶ(଴ଵ(Ω)ܪ) = ܝ} ∈ பஐܝ|ଶ(ଵ(Ω)ܪ) = 0}  such that for all ܞ   :ଶ(଴ଵ(Ω)ܪ)∋

,ܝ)ܣ  (ܞ = ׬ 	ஐ (ܞ)ݒ݅݀(ܝ)ݒ݅݀ߣ + Σ௞,௟ୀଵଶߤ2 (ܞ)௜௝ߝ(ܝ)௜௝ߝ = ׬ 	ஐ  (5) ݔ݀ܞ்܎

The bilinear form ܝ)ܣ,   :can be written, from [7], as (ܞ

,ܝ)ܣ  (ܞ = ׬ 	ஐ < ,(ܝ)܌(ݔ)ܥ (ܞ)܌ >  (6) ,ݔ݀

where,  

(ݔ)۱  = (ݔ)۹ ێێۏ
(ݔ)Λ)ۍێ + ((ݔ)ߢ2 0 0 Λ(ݔ)0 (ݔ)ߢ (ݔ)ߢ 00 (ݔ)ߢ (ݔ)ߢ 0Λ(ݔ) 0 0 (Λ(ݔ) + ۑۑے((ݔ)ߢ2

ېۑ
 (7) 

and (ܝ)܌ = ቂப௨భப௫భ , ப௨భப௫మ , ப௨మப௫భ , ப௨మப௫మቃ. In the 2-D case, ۹(ݔ) is a 4 × 4 isotropic 
diagonal tensor. Note also that the formulation of the compliance matrix ۱(ݔ)  is used in a general setting, unlike the work from [12] where a 
modified ۱(ݔ)  was used for the particular case of pure displacement 
problem. 

An upscaled or homogenized version of (6) means to find an upscaled 
tensor representation of the ۹(ݔ) and of the scalar (ݔ)ߥ, here denoted by 
the tensor ۹ and the scalar ߥ. Therefore, the respective upscaled form of 
the bilinear system is considered as, ܝ)ܣ,   :such that ,(ܞ

,ܝ)ܣ  (ܞ →ு ,ܝ)ܣ  (8) (ܞ

converges to the fine-scale operator in the homogenized (or averaged) 
sense, where ܝ is the upscaled approximation of the solution ܝ. When only 
the homogenization of ۹(ݔ) is considered, then the convergence is called 
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ܪ −convergence (to not be confused with ܪ as coarse mesh parameter) 
and its mathematical detailed explanation can be found in classical 
literature, such as [6, 9]. Here, however, besides that the upscaled 
coefficient for ۹(ݔ), the averaging also applies to the variable (ݔ)ߥ. These 
will lead to define at the coarse level the upscaled diagonal tensor with 
entries Λ + ߢ2  and ߢ . While the averaging of ۹(ݔ)  follows from 
homogenization theory, the averaging of (ݔ)ߥ does not follow from the 
same theory. It is used here only as an alternative. 

The derivation of	ܭ∗, which is usually a full tensor, starts by using an 
approximation to the solution of the cell-problem from [10], leading to the 
lower and upper bounds of the upscaled tensor ۹, known as the generalized 
Voigt-Reuss inequality (GVR) [6]:  

 ۹௛ ≤ 	۹෩ 	≤ 	۹ 	≤ 	۹෡ 	≤ 	۹௔ (9) 

The lower bound, ۹෩, is the arithmetic average (say in the ݔଶ variable) of 
the harmonic average (in the ݔଵ  variable) of ۹(ݔ), whereas the upper 
bound, ۹෡ , is the harmonic average of the arithmetic average of ۹(ݔ). 
These are much stricter bounds than the classical Voigt-Reuss inequality 
given by the harmonic, ۹௛ and arithmetic, ۹௔, averages. 

The diagonal entries of ܭ∗ are given by the average between the geometric 
and arithmetic averages of the (GVR) bounds (9) at each direction. The 
off-diagonal terms are derived by using a rotation of a diagonal matrix ۲ 
by an angle ߠ related to the center of the mass of the reference cell. In 2-D, 
it is given by:  

∗ܭ  = ଵଶ ቆܭଵଵ௔ + ଵଵ௚ܭ −ܾsin(2ߠ)−ܾsin(2ߠ) ଶଶ௔ܭ + ଶଶ௚ܭ ቇ =  ଵ, (10)ି۾∗ܦ۾

where ܦ∗ is diagonal representation of ܭ∗ with 2 eigenvalues and ۾ is 
the eigenvector matrix. There are two possible rotations, when the main 
diagonals of ܭ∗  are equal or not. In each case, one can choose 
appropriately ۾, and the coefficient ܾ will correspond to:  
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 ܾ = ቐ௄೔೔∗ ି௄ೕೕ∗ୡ୭ୱ(ଶఏ) ∗௜௜ܭ			݂݅ ≠ ௝௝∗௄෡೔೔ା௄෡ೕೕଶܭ − ௄෩೔೔ା௄෩ೕೕଶ ∗௜௜ܭ			݂݅ = ∗௝௝ܭ  (11) 

where ܭ෩௜௜ and ܭ෡௜௜ come from (9) above. In the cited literature, there are 
conditions on the angle ߠ to ensure that ܭ∗ is positive definite. In this 
particular application, an upscaled full tensor may render a non-symmetric 
operator. Thus, in order to insure symmetry, and that at the same time the 
heterogeneities are accounted for, the eigenvalues ߣଵ and ߣଶ of ܭ∗ will 
be used to define:  

 ۹# = ఒభାఒమଶ  (12) 

 It can be proved that each eigenvalue satisfies the classical Voigt-Reuss 
inequality (9) above. 

The next step to obtain the coarse operator is to average the Poisson ratio (ݔ)ߥ. Here, the same averaging used for the bulk modulus (ݔ)ܭ is used for (ݔ)ߥ to obtain ߥ∗ and ߥ#, which is then used to compute Λ +  ߢ and ߢ2
presented below. 

The Analytical Coarse Operator 

In this paper, the system defined through (5)-(6) is written using the 
Displacement Decomposition (DD) form. Under this setting, and since ۹(ݔ)  is diagonal isotropic tensor, the coefficient matrix ۱(ݔ)  can be 
written as four 2 × 2 block diagonal matrices ܥ௜, ݅ = 1, . . ,4 as:  

(ݔ)۱  = ۈۉ(ݔ)ܭ
Λۇ + ߢ2 0 0 Λ0 ߢ ߢ 00 ߢ ߢ 0Λ 0 0 Λ + ۋیߢ2

ۊ = ൭ܥଵ(ݔ) (ݔ)ଷܥ(ݔ)ଶܥ  ൱(ݔ)ସܥ

  (13) 

To solve the resulting discrete system ܝ(ݔ)ۯ௛ =  from (5), at the fine ܊
mesh ℎ, a multiscale multilevel composite block iterative method is applied 
to the related coupled Finite Element (FE) system, where at the coarse 
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mesh, ܪ , the approximations ۹#  and ߥ#  are used to represent the 
fine-scale features. 

At the coarse level ܪ, the upscaled representation of ۱(ݔ) will be given as 
two 2 × 2  block diagonals ܥ∗ = ,∗ଵܥ] 0; 0, [∗ସܥ , where ۱ଵ∗ = #ܭ ቌ(Λ + (ߢ2 00 ߢ ቍ , and ܥସ∗ = #ܭ ቌߢ 00 (Λ + ቍ(ߢ2  where ܭ# 

and ߥ# are the averages between the eigenvalues of ܭ∗ as (12) and the 
respective ߥ∗. Then from (4), Λ + ߢ2 = ଷఔ#(ଵାఔ#) + ଷ(ଵିଶఔ#)(ଵାఔ#) . The theoretical 
justification for using the block diagonal displacement decomposition 
(DD), instead of the full matrix at coarser levels, is provided by the second 
Korn's inequality [2]. 

The multigrid algorithm follows by first defining a sequence of grids: Ω଴ ⊂ Ωଵ ⊂. . . ⊂ Ωு ⊂. . . ⊂ Ω௛ = Ω  together with the corresponding 
sequence of equations being discretized. The approximations ܭ଴∗, ,∗ଵܭ . .. 
and υ଴∗ , ߭ଵ∗, . .. at each grid level lead to a sequence of linear operators from 
the coarse to fine level ܮ଴∗ ܷ଴ = ଴݂, . . . , ∗ுܮ ܷு = ு݂, ∗௛ܮ ܷ௛ = ௛݂ , where a 
coarse-grid operator at a given level ܪ, is:  

∗ுܮ)  )௜௝ = ׬ 	ஐ ∇߮ு௝ܥ∗∇߰ு௜  (14) ݔ݀

where {߮ு௝ }௝ୀଵ௡ೖ  and {߰ு௝ }௝ୀଵ௡ೖ  are the test functions at the corresponding 
level. 

The application of a two-level grid to the initial fine-grid operator, ܥ௛ܷ௛ = ௛݂, at the ݊௧௛ iteration, is performed following the steps described 
below.  

  1. Compute ܭ∗ and ߭∗ at each level at the finest grid resolution, in order 
to obtain ܮ∗ for each subgrid. 

  2. Pre-smoothing. Compute an approximation to the initial value ܷ௛௡ by 
applying ߟ  steps of the smoothing iteration, ܵ , to the system at the ℎ −level. This can be formalized as: ܷ௛ఎ = ܵఎ೛ೝ೐(ܷ௛௡, ,௛ܮ ௛݂). 
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  3. Coarse-grid correction. Define a coarse grid, ܪ level, and its operator ܮு∗ . (3.1) - Restrict the residual to the ܪ grid, by solving ݎு = )௛ுܫ ௛݂ (௛ܷ௛ఎܮ− . (3.2) - Solve for the corrector ܭு , with ܮு∗ ுܭ = ுݎ . (3.3) - 
Compute the new approximation ܷå by interpolating the correction back to 
the grid ℎ, ܫு௛, to give: ܷ∗ = ܷ௛ఎ +  .ுܭு௛ܫ

  4. Post-smoothing. Use ܷå  as the initial value to give: ܷ௛௡ାଵ =ܵఎ೛೚ೞ(ܷ∗, ,௛ܮ ௛݂).  

The resulting two-level multigrid method is the operator:  

ܩ  = ܵఎ೛೚ೞ(ܫ − ுåܮ)ு௛ܫ )ିଵܫ௛ுܮ௛)ܵఎ೛ೝ೐  (15) 

Here the classical point-wise Gauss-Seidel (GS) smoothing is used, and the 
intergrid operators are the standard full weight restriction and bilinear 
interpolation, like early work [1]. Moreover, unless otherwise indicated, it 
is assumed that (ݔ)ܭ is completely resolved on the finest grid; that is, the 
jumps of discontinuity coincide with grid lines. At each level, the 
corresponding homogenized coefficients, K* and υ*, and the related 
diagonal entries of ܥଵ∗  and ܥସ∗ , are computed within each subdomain, 
implying that the derived coarse-operator ܮ∗ has still varying coefficient 
from one cell to another. 

This same procedure can be applied with other approximations of the 
upscaled tensor and other averaging of ߥ , such as the ones using the 
arithmetic, harmonic or geometric, averages [3]. These operators here will 
be identified at the tables below as ARCO, HCO and GCO, respectively. 
The results will be presented next. 

Numerical Results 

In this section, the multilevel algorithm described above for the system (6) 
will be used to demonstrate numerically the reliability of the ACO operator, 
which will be measured by comparing the number of V-cycles with other 
well known analytical operators. The results described on the tables 
demonstrate that the operators given by the arithmetic average, ARCO, and 
the harmonic HCO average, have their limitation because neither of them 
can be reliable for a ranging of contrast ratios within the same medium. 
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The tests were selected illustrating that the bulk modulus (ݔ)ܭ and (ݔ)ߥ 
are given by step functions describing non-periodic media. This is 
emphasized here because classical homogenization results focus primarily 
in periodic medium, however the results also are known to follow for the 
non-periodic case. Test 1 uses the checkerboard geometry. The choice of 
such medium is the usual (and sometimes extreme) example of 
non-periodic medium used in the literature to illustrate the generalization of 
the classical theory. It is also known that the upscaled tensor for this case is 
the diagonal isotropic tensor given by the geometric average of [6] (ݔ)ܭ, 
that is the reason why the geometric coarse operator, GCO, appears in the 
Table 1. For the Test 2, the geometry is an example close to realistic 
trabecular bone's tissue micro structure. 

All the results were obtained on the unit square domain, Ω = [0,1]ଶ, with 
spatially varying Poisson's ratio approaching the value ߥ = 0.5, with stress 
force equal to ܎ = (1,1). At the boundary ∂Ω there is no displacement, 
meaning ܝ = (0,0). The accuracy at the iterative stopping criteria was set 
to 10ି଻. The results are for two-grids where the finer has 32 × 32 nodes 
and the coarse has 16 × 16  nodes. Each grid is resolved by linear 
rectangular finite elements. Even though the application here is for pure 
displacement, the bilinear form used applies to more general setting. 

Tests 1 and 2 have bulk modulus (ݔ)ܭ, and respectively (ݔ)ߥ, defined by 
step function like:  

(ݔ)݇  = ൜ߙ ݐܽ Ω஻௟௔௖௞1 ݐܽ Ωௐ௛௜௧௘ (16) 
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ߙ = 10ିଶ ߟ &  = 20 ߥ  = ߥ   0.49 = ߥ   0.495 = ߥ   0.498 = 0.499  

 ACO   69   76   77   77  
 ARCO   26   28   30   30 ߙ = 10ିଵ ߟ &  = 10  

ߥ  = ߥ   0.49 = ߥ   0.495 = ߥ   0.498 = 0.499  

 ACO   24   34   46   53  
 ARCO   24   33   46   52 
 HCO   ∗  ∗ ∗ ∗
 GCO   29   34   46   53 ߙ = 10 ߟ &  = 10 ߥ  = ߥ   0.49 = ߥ   0.495 = ߥ   0.498 = 0.499  

 ACO   34   39   44   48  
 ARCO   45   53   59   62 
 HCO   30   28   29   32  
 GCO   32   37   42   45 
ߙ  = 10ଶ ߟ &  = 10  

ߥ  = ߥ   0.49 = ߥ   0.495 = ߥ   0.498 = 0.499  

 ACO   47   76   126   163  
 ARCO   79   126   207   267 

Table 1: Test 1- Comparison between the number of V-cycle iterations 
to solve (6) using ACO, ARCO, HCO and GCO. The medium is 
illustrated on Fig. 1 (left), where the binary colored values are 1 and ࢻ 
and 0.325 and ࣇ . The sign ∗  indicates that the method did not 
converge. For the case ࢻ = ૚૙૛  and ࢻ = ૚૙ି૛  neither HCO nor 
GCO converged. The ACO method performed better than all the 
others because it converged with fewer iterations, on average, than the 
ARCO. 

Test 2 The geometry depicted in Fig. 1 (right) is an example of close to 
realistic trabecular bone's tissue micro structure. The values considered for 
both bulk modulus and Poisson ratio are taken from the literature on the 
subject. The dark area has bulk modulus equal ܭ =  and Poisson ܽܲܩ	14
ratio, ߥ = 0.325. The light area is the fluid with ܭ =  and varying ܽܲܩ	2.3
Poisson ratio ߥ → 0.5. The illustrated grid is the coarse grid used in the 
simulation, with the assumption that the finer grid, with 32 × 32, resolves 
the geometry. The number of v-cycles for each averaging procedure 
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presented in Table 2 indicates that the ACO is the best among them. Note 
that while the ARCO performed better than HCO for the Test 1, it did not 
for this case.  

 0.499   0.498   0.495   0.49   ߥ  
 ACO   39   45   65   81 
ARCO   ∗   ∗   ∗   ∗  
HCO   33   43   64   80  

Table 2: Test 2 - Number of V-cycle iterations using ACO, ARCO and 
HCO for the bone geometry illustrated in Fig. 1 (right), using ࣁ = ૛૙. 
The sign ∗ means that the algorithm did not converge. Observe that 
ACO performed best among them. 

Discussion of the Results and Conclusions 

In the literature, there are estimates relating the number of V-cycle 
iterations for resolving the DD system, ஽ܰ஽, with the number of V-cycle 
iterations for the scalar elliptic equation, ாܰ. For instance, the inequality ஽ܰ஽ ≤ 1)ܥ − ଵ/ଶି(ߥ2 ாܰ holds true. However, this result follows from the 
second Korn's inequality, which concerns the case of isotropic 
homogeneous media (see, e.g., [2]). The conclusion here is that for the case 
when the coefficients are heterogeneous, the estimate is not uniform with 
respect to the coefficient jumps, particularly for contrast higher than 1 order 
of magnitude. These representative numerical results illustrate the 
robustness of ACO across geometries and contrast ratios at the 
incompressibility limit. They also suggest that the HCO is not a robust 
operator as sometimes claimed in the literature, e.g. [3], because it failed to 
converge in many cases. Further improvements could be expected by using 
an analytical prolongation operator [13], instead of the one used here, 
together with an aggressive coarsening by considering coarser mesh than 
the one considered here as precondition. The application and further 
improvements of this procedure, for more realistic 3-D bone structure, is 
also an ongoing work. 
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IMPROVED IMPLEMENTATION  
OF A LARGE-SCALE AIR POLLUTION MODEL  

TZVETAN OSTROMSKY 
 
 
 

The Danish Eulerian Model 

In this section we reveal the main features of the Danish Eulerian Model 
(DEM) [12, 13] and its current high-performance implementation 
UNI-DEM [11]. 

The Danish Eulerian Model (DEM) is a powerful air pollution model, 
designed to calculate the concentrations of various dangerous pollutants and 
other chemical species over Europe. In fact, its spatial domain covers larger 
geographical region (4800 × 4800 km), including the whole of Europe, the 
Mediterranean and some parts of Asia, Africa and the adjacent oceans. It 
takes into account the main physical, chemical and photochemical 
processes between the species under consideration, the emissions, the 
quickly changing meteorological conditions. 

Mathematical representation of UNI-DEM 

The Danish Eulerian Model (DEM) is mathematically represented by the 
following system of partial differential equation s, in which the unknown 
concentrations of a large number of chemical species (pollutants and other 
chemically active components) take part. The main physical and chemical 
processes (advection, diffusion, chemical reactions, emissions and 
deposition) are represented in that system.  

 ப௖ೞப௧ = − ப(௨௖ೞ)ப௫ − ப(௩௖ೞ)ப௬ − ப(௪௖ೞ)ப௭ + 

 + பப௫ ቀܭ௫ ப௖ೞப௫ ቁ + பப௬ ቀܭ௬ ப௖ೞப௬ቁ + பப௭ ቀܭ௭ ப௖ೞப௭ ቁ + (1) 
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௦ܧ+  + ܳ௦(ܿଵ, ܿଶ, … ܿ௤) − (݇ଵ௦ + ݇ଶ௦)ܿ௦, ݏ = 1,2, …  .	ݍ
 where  

  • ܿ௦ -- the concentrations of the chemical species;  

,ݑ •   ,ݒ   ;the wind components along the coordinate axes -- ݓ

,௬ܭ,௫ܭ •     ;௭ -- diffusion coefficientsܭ

  ;௦ -- the emissionsܧ •  

  • ݇ଵ௦, ݇ଶ௦ -- dry / wet deposition coefficients;  

  • ܳ௦(ܿଵ, ܿଶ, … ܿ௤)  -- non-linear functions describing the chemical 
reactions between species under consideration.  

Splitting of the system 

The above large and rather complex system (1) is not suitable for direct 
numerical treatment. For the purpose of numerical solution it is split into 
sub models, which represent the main physical and chemical processes. The 
most straightforward sequential splitting [6] is used in the current 
production version of the model, although other splitting methods have also 
been considered and implemented in some experimental versions [1, 4]. In 
this way, the following 3 sub models are formed: 

 

 ப௖ೞ(భ)ப௧ = − ப(௨௖ೞ(భ))ப௫ − ப(௩௖ೞ(భ))ப௬ + பப௫ ൬ܭ௫ ப௖ೞ(భ)ப௫ ൰ + பப௬ ൬ܭ௬ ப௖ೞ(భ)ப௬ ൰ =  (ݐ)ଵܿ௦(ଵ)ܣ
 horizontal advection & diffusion 

 ப௖ೞ(మ)ப௧ = ௦ܧ + ܳ௦(ܿଵ(ଶ), ܿଶ(ଶ), … ܿ௤(ଶ)) − (݇ଵ௦ + ݇ଶ௦)ܿ௦(ଶ) =  (ݐ)ଶܿ௦(ଶ)ܣ
 chemistry, emissions & deposition 
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 ப௖ೞ(య)ப௧ = − ப(௪௖ೞ(య))ப௭ + பப௭ ൬ܭ௭ ப௖ೞ(య)ப௭ ൰ =  (ݐ)ଷܿ௦(ଷ)ܣ
 vertical transport 

The EMEP grid or its refinements (see Table 1) are used for the spatial 
discretization of the domain (EMEP is abbreviation of the European 
Monitoring and Evaluation Programme). Spatial and time discretization of 
the above sub-models makes each of them a huge computational task, 
challenging for the most powerful supercomputers available nowadays. The 
high performance and parallel computing has become vital for the real-time 
numerical solution of the model. Therefore, the parallelization is a crucial 
point in the software implementation of DEM since its very early stages. A 
coarse-grain parallelization strategy based on partitioning of the spatial 
domain appears to be the most efficient and well-balanced way on widest 
class of nowadays parallel machines (with not too many processors), 
although some restrictions apply. Other parallelizations have also been 
developed and tried on certain classes of supercomputers [9, 10]. 

Various numerical methods are used in the numerical solution of the 
sub-models, as follows:  

  • On the  advection-diffusion part -- Finite elements, followed by 
predictor-corrector schemes with several different correctors.  

  • On the  chemistry-deposition part -- An improved version of the 
QSSA (Quazi Steady-State Approximation) [5].  

  • On the  vertical transport -- Finite elements, followed by 
theta-methods.  

UNI-DEM package -- contents and properties 

The advances in the development of DEM during the last two decades 
resulted in a variety of different versions with respect to the grid-size / 
resolution, the dimension and the number of layers [14], as well as the 
number of species in the chemical scheme. The most advanced of them has 
been united under a common driver routine in a package, called UNI-DEM. 
It provides an uniform and easy access to the available up-to-date versions 
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of the model with a rather intuitive way of selecting the desired parameters 
(appropriate default values can be used as well). 

The versions, incorporated in UNI-DEM, and the user-defined parameters, 
used to choose between them, are shown in Table 1 below. 

Table 1: User-defined parameters and their optional values 

Choosable parameters for selecting an optional UNI-DEM version   
Parameter  Description   Optional values  
NX = NY   Grid size  96 × 96  288 × 288 480 × 480  
  Grid step  50 km.  16.7 km.   10 km.  
 NZ   # layers 

(2D/3D)  
 1     10   

NEQUAT  #chem. 
species  

 35   56   168   

 NSIZE  chunk size   integer divisor of (NX*NY) 
 
 

Basic parallelization algorithm (distributed memory model) 

The traditional parallelization strategy, followed in UNI-DEM, is based on 
partitioning of the spatial domain (horizontal grid, in particular) in strips 
and distributed memory processing of the sub-domains obtained in separate 
processors. This strategy requires communications (point-to-point) on each 
time step. To implement it with maximal portability, the MPI library of 
standard communication routines is used. MPI was originally developed as 
a package of communication subroutines for distributed memory parallel 
computers. Later, gaining popularity among parallel programmers and 
having proved to be efficient and easy to use, it became one of the most 
popular and portable tools for parallel programming. Now it can be used on 
much wider class of parallel systems, including shared-memory 
supercomputers and clusters with hierarchical structure. For optimal 
load-balance, non-blocking MPI communications are used in this, 
so-called communication stage. 

Each sub-domain is assigned to a separate MPI task. As there is no data 
dependency between the MPI tasks on both the chemistry and the vertical 
exchange stages, there is no need of data exchange on each time step. On the 
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advection-diffusion stage, however, the boundary conditions treatment in 
the separate MPI tasks requires overlapping of the inner boundaries and 
exchange of certain boundary values on the neighboring sub grids on each 
time step. The main consequences are as follows: 

  • Computational and storage overhead due to the extended-boundary 
sub-domains on the advection-diffusion stage, which grows up with 
increasing the number of MPI tasks;  

  • Certain load imbalance on the advection-diffusion stage due to the 
unequal size of the sub-domains (extended along the inner boundaries 
only);  

New meteorological data sets for each new month of the modeled period 
must be loaded from local files. This leads to interruption of the smooth the 
calculation process and often cause heavy I/O overload. Furthermore, this 
overload can easily become a performance bottleneck with increasing the 
number of parallel tasks, as will be shown by experiments in the next 
section. 

A huge amount of output data is written in large local temporary files, 
which also cause heavy I/O overload and increase the disk storage 
requirements to the system. These must be read again at the end ( gathering 
stage) and post-processed in order to extract the output results. Another 
performance bottleneck appears here. 

Additional pre-processing and post-processing stages are needed for 
scattering the input data and gathering the results. This is also a significant 
overhead, increasing with the number of parallel tasks. 

Increasing of the data locality and the reuse of data in the faster cache 
memory is ruled by the parameter NSIZE. It determines how to group in 
chunks of proper size the numerous small tasks in the chemistry-deposition 
stage for more efficient cache utilization. Different parallel systems need 
tuning of the parameter NSIZE for optimal performance. 
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Scalability results for the basic algorithm 

In the table below some scalability results of UNI-DEM runs are given 
(including execution times, speed-ups and parallel efficiency). The 
corresponding experiments have been performed on the IBM MareNostrum 
III platform at BSC - Barcelona, the most powerful Spanish supercomputer 
and one of the most powerful in Europe. It has theoretical peak performance 
about 1 PetaFLOPS. The machine consists of 3028 IBM iDataPlex dx360 
M4 compute nodes, placed in 84 compute racks. Each compute node is 
composed of two 8-core Intel Xeon processors (16 cores per node or in total 
more than 48000 Intel SandyBridge-EP E5-2670 cores. The cores are 
working at frequency of 2.6 GHz and are capable of executing 8 flops per 
cycle (i.e. 20.8 GFLOPS per core). There are 32 GB RAM per node and 20 
MB local cache memory. The total disk storage is 1,9 PB. The machine has 
two interconnection networks: Infiniband and Gigabit Ethernet. 

The finest-grid 2D version of UNI-DEM ((480 × 480)) has been used in 
the experiments. The time steps in both Advection and Chemistry sub 
models are equal -- 90 sec. (small enough to ensure stability of the results, 
should be correlated with the spatial grid step). The cache utilization 
parameter NSIZE is equal to 32 . The times shown in Table 2, are for one 
year period. 

Table 2: Time (T) in seconds and speed-up ( Sp) of UNI-DEM (MPI 
parallelism with the basic algorithm) on IBM MareNostrum III at 
BSC, Barcelona. Times for one-year runs are given in the table.  

Time and speed-up of UNI-DEM (basic version)  
on the IBM MareNostrum III  (480 × 480 × 1) grid,   35 species,   CHUNKSIZE=32  
 #  Advection  Chemistry   I/O  Com.  TOTAL  
CPU  T[s]  (Sp)  T [s] (Sp) T [s]  T[s]  T [s]  (Sp) ܧ[%]  
 16  8976 (16)  6672 (16) 4730  1865 22387 (16) 100%  
 32  5085 ( 28)  3372 ( 32) 5943  2307 16790 ( 21) 67 %  
 64  2630 ( 55)  1563 ( 68) 7258  1090 12613 ( 28)  44 %  
 96  2095 ( 69)  1365 ( 78) 11114 695  15302 ( 23) 24 %  
120  1774 ( 81)  850  (126) 12417 619  15684 ( 23)  19 %  
160  1481 ( 97)  701  (152) 14412 595  17230 ( 21)  13 %  
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The results of one-year experiments with the 2D UNI-DEM (on the fine 
resolution spatial grid (480 × 480 × 1) , executed on the IBM 
MareNostrum III are presented in Table 2. Times T (in seconds), speed-up 
(Sp) and the parallel efficiency ܧ  (in percent) are given in the 
corresponding columns of the table. The chemistry stage has almost linear 
speed-up, the advection scales well, taking into account the overlapping 
subdomains overhead, but the I/O time grows quickly with increasing the 
number of processes. As a result, the total efficiency drops down to 13%. 

Improved data management parallelization algorithm 
 

Main features and specifics 

An improved data distribution mechanism has been developed and 
implemented in UNI-DEM. The I/O operations from/to local temporary 
files were replaced by MPI non-blocking communications, reducing 
significantly the non-scalable time overhead, as well as the local storage 
requirements. Here there are the main features of the new algorithm.  

  • Certain processors (a fixed number) are used only for I/O procedures 
(global file transfer and scatter/gather operations), as well as exchanging 
(via MPI) with the rest of the processors the corresponding data chunks. In 
particular, 11 proc. are reserved for the 11 meteorological input data sets 
and 5 - for the output data sets, (16 in total). 

  • The rest of the processors are acting like in the basic algorithm but 
without the above (overhead-causing) operations. Receiving and sending of 
(local) I/O data is done via MPI instead of reading/writing temporary files 
(normally, much faster on most modern supercomputers). 

  • The number of opened files in a time is kept constant (independent of the 
number of MPI processes). 

  • Part of the non-scalable overhead (producing and using local temporary 
files) is fully avoided. 
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Scalability results for the improved data management 
UNI-DEM 

In Table 3 similar scalability results of runs of the improved data 
management UNI-DEM are given (similarly as in the previous table). The 
experiments have been performed on the same platform (IBM 
MareNostrum III at BSC - Barcelona), with the same input parameters. 

Table 3: Time (T) in seconds and speed-up ( Sp) of UNI-DEM (MPI 
parallelism with the improved data management algorithm) on IBM 
MareNostrum III at BSC, Barcelona. Times for one-year runs are 
given in the table.  

 Time and speed-up of UNI-DEM (improved version)  
 on the IBM MareNostrum III  
 (૝ૡ૙ × ૝ૡ૙ × ૚) grid,   35 species,   CHUNKSIZE=32  
 #  Advection  Chemistry  I/O  Com.  TOTAL  

CPU  T [s]  ( Sp)  T [s] ( Sp) T [s] T [s]  T [s] (Sp) ܧ [%] 
16  8976  ( 16)  6672 ( 16) 4730 1865 22387 (16) 100 % 
32  8911  ( 16)  6761 ( 16) 1934 3538 21303 (17) 53 %  
48  5025  ( 29)  3422 ( 31) 1829 3386 13758 (26) 54 %  
80  2705  ( 53)  1584 ( 67) 1773 2975 9120 (39) 49 %  
112  2039  ( 70)  1334 ( 80) 1678 2375 7464 (48) 43 %  
136  1829  ( 79)  876  (122) 1481 2007 6223 (58) 42 %  
176  1521  ( 94)  711  (150) 1529 1863 5674 (63) 36 %  

It can be seen from the table, that the I/O time now is much smaller and 
scales better (does not increase with increasing the parallelism, as it used to 
be with the original algorithm). In fact, all the I/O overhead due to file 
processing is taken now by the 16 I/O processors and pipelined with the 
computations, performed by the rest of the processors. The time for MPI 
communications is higher, as expected (more data is communicated), but in 
general does not increase with increasing the number of parallel tasks. As a 
result, the total speed-up and efficiency are considerably better. 
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Concluding remarks and plans for future work 

Essential improvements were done in the data distribution mechanism and 
the data management strategy in the distributed-memory parallel 
implementation of the Danish Eulerian Model . These are connected with 
the I/O data management and transfer of data between the parallel MPI 
processes. The I/O operations from/to local temporary files were replaced 
by MPI non-blocking communications, reducing significantly the 
non-scalable time overhead, as well as the local storage requirements. 

Improvements were done in the parallel MPI implementation of UNI-DEM 
on the IBM MareNostrum III at BSC, Barcelona. They increase 
significantly the total speed-up and efficiency of the code, as shown by 
experiments. 

For the near future, the plans are as follows:  

  • The new data management strategy should be refined and optimized, 
reducing furthermore the non-scalable overhead. 

  • It can be expected that these improvements will be particularly efficient 
on parallel cluster supercomputers with relatively low number of I/O 
devices (with respect to its computational power) and/or not capable to 
ensure enough disk storage per node for the original UNI-DEM model in its 
full range of options. Therefore, the version of UNI-DEM with these 
improvements will be implemented on the Bulgarian IBM Blue Gene/P 
supercomputer. 

  • The improvements will also be implemented and used in the specialized 
version SA-DEM [2, 3, 7, 8] for producing sensitivity analysis data, in order 
to increase its scalability and capability to exploit efficiently the 
computational power of the large cluster supercomputers like IBM Blue 
Gene/P and IBM MareNostrum III. 
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Introduction 

Pattern formation in dynamical systems is found in many areas of science 
and engineering, such as biology, fluids, plasmas, neurobiology, and 
nonlinear optics [1]. Turing's seminal paper [14] on pattern formation 
sought to account for morphogenesis in biological organisms, e.g., the 
tentacle patterns in Hydra. The dynamics of spatial pattern formation have 
also been used to model the development of patterns on seashells and 
animal coasts. In engineering, it has been suggested as a mechanism for 
fingerprint enhancement. A system of reaction-diffusion equations is the 
prototypical system for modeling pattern formation. 

In this chapter we propose an explanation of pattern formation behavior in a 
variety of complex systems, e.g. biological, neuronal etc. We describe 
Cellular Nonlinear Networks (CNN) models [2,12] that exhibit spatially 
organized patterns of activity, which are formed by reaction-diffusion. 
Partial differential equations of diffusion type have long served as models 
for regulatory feedbacks and pattern formation in aggregates of living cells. 
We propose new receptor-based models for pattern formation and 
regulation in multi-cellular biological systems. The idea is that patterns are 
controlled by specific cell-surface receptors, which transmit to the cells 
signals responsible for their differentiation. The main aim of this work is to 
check which aspects of self-organization and regeneration can be explained 
within the framework of CNNs. 

The simplest model describing receptor-ligand is given in the form of three 
equations. It takes into consideration the density of free receptors, of the 
bound receptors and of the ligands. We use a representation of this simplest 
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receptor-based model that is as generic as possible and based on the scheme 
shown in Fig.1. 

 

Fig.1. General scheme of the simplest receptor-based model.  

The abbreviations in Figure 1 are as follows: l. -ligands, b.r. - bound 
receptors, e.c. - epithelial cells, f.r. - free receptors. This model is based on 
the idea that epithelial cells secrete ligands (a regulatory biochemical), 
which diffuse locally within the interstitial space and bind to free receptors 
on the cell surface. We assume that new ligands and new free receptors are 
produced on cell surface through a combination of recycling (dissociation 
of bound receptors) and de novo production within the cell. Then a ligands 
binds to a free receptor reversibly, which results in a bound receptor that is 
internal into the cell. Bound receptors also dissociate. Both ligands and free 
receptors undergo natural decay. 

Hysteresis seems to be important in modeling biological development since 
according to the observation, inductive signals are present only in the 
certain time interval of the development [9]. It triggers the changes in the 
cell's nucleus and evokes differentiation, which does not revert when signal 
is stopped. The developmental process is irreversible. Hysteresis results 
from multiple steady states. A reaction-diffusion model involving a 
hysteretic functional was proposed by Hopenstead and Jäger [8]. They 
assumed that the cell's growth had a hysteretic dependence on the amount of 
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nutrients and acid present. Pattern formation in this model is caused by the 
initial instability of the ordinary differential equations (ODEs). 

Receptor-Based Model 

 We consider one-dimensional epithelial sheet of length ܮ. We denote the 
density of ligands by ݐ)ݒ, (ݔ , where ݔ  and ݐ  are space and time 
coordinates, with ݔ increasing from 0 to ܮ along the body column. The 
density of free receptors is denoted by ݔ)ݑ,  Consider a system of one .(ݐ
reaction-diffusion equation and one ordinary differential equation (ODE): 

 ฬݑ௧ = Δݑ + ,ݑ)݂ ௧ݒ(ݒ = ,ݑ)݃ ,(ݒ  (1) 

where the functions ݂(ݑ, ,ݑ)݃ and (ݒ  present the rate of production of (ݒ
new free receptors and ligands, respectively and they are given by: 

 ቮ݂(ݑ, (ݒ = −ܿଵ ௨ଵା௨మ + ௕భ௨(ଵା௨మି௨)(ଵା௩)݃(ݑ, (ݒ = −ܿଶ ௩ଵା௩మ + ௕మ௩(ଵା௩మି௩)(ଵା௨) , (2) 

ܿଵ is the rate of decay of free receptors, ܿଶ is the rate of decay of ligands, ܾ௜ > 0, ݅ = 1,2 are constants. 

The systems composed of both diffusion-type and ordinary differential 
equations cause some difficulties, since both existence and behavior of the 
solutions are more difficult to establish. Many aspects of qualitative 
behavior have to be investigated numerically. For this purpose we shall 
apply Cellular Nonlinear Network (CNN) approach [2] for studying system 
(1),(2). 

The case when ∂௩݂(ݑ, (ݒ ≤ 0 and ∂௨݃(ݑ, (ݒ ≤ 0 hold has been studied 
by Heinze and Schweizer [6] and they prove the existence of stationary and 
travelling fronts as well as they investigate the stability of these solutions. 

System (1), (2) describes a receptor-based model in which the production of 
new receptors and ligands in a steady state has a hysteretic dependence on 
the amount of new receptors and ligands in the sense that in a steady state 
the density of the new receptors and ligands is a third order polynomial 
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divided by a second order polynomial. Periodic solutions of (1), (2) has 
been found and existence of stationary standing wave or a spatio-temporal 
solution oscillating in time has been obtained numerically. 

We shall study dynamical behavior of the CNN model of (1), (2) and the 
emergence or complexity of the model will be proved. The edge of chaos 
phenomena will be presented. Then we shall design a discrete-continuous 
regulator of CNN model in order to stabilize the chaotic motion to an 
admissible solution which is connected in some way to the original 
behaviour of the system (1),(2). 

Cellular Nonlinear Network model 

We can present the dynamical systems for a general CNN whose cells are 
made of time-invariant circuit elements for each cell ܥ(݆݅) in the following 
way [2]: 

ሶ௜௝ݔ  = ,௜௝ݔ)݃− ,௜௝ݑ ௜௝௦ܫ ), (3) 

 where ݔ௜௝ ∈ ܴ௠, ݑ௜௝ is usually a scalar. In most cases, the interactions 
(spatial coupling) with the neighbor cell ܥ(݅ + ݇, ݆ + ݈) are specified by a 
CNN synaptic law:  

௜௝௦ܫ  = ௜ା௞,௝ା௟ݔ௜௝,௞௟ܣ + ሚ௜௝,௞௟ܣ ∗ ௞݂௟(ݔ௜௝, (௜ା௞,௝ା௟ݔ + (4) 

෨௜௝,௞௟ܤ+  ∗  .(ݐ)௜ା௞,௝ା௟ݑ
The first term ܣ௜௝,௞௟ݔ௜ା௞,௝ା௟ of (4) is simply a linear feedback of the states 
of the neighborhood nodes. The second term provides an arbitrary nonlinear 
coupling, and the third term accounts for the contributions from the external 
inputs of each neighbor cell that is located in the ௥ܰ neighborhood. 

Complete stability, i.e. convergence of each trajectory towards some 
stationary state, is a fundamental dynamical property in order to design 
CNN's for accomplishing important tasks in applications. The most basic 
result on complete stability is certainly the one requiring that the CNN 
interconnection matrix ܣሚ  be symmetric. Also some special classes of 
nonsymmetric CNN's such as cooperative CNN's, were shown to be 
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completely stable. In the general case, however, competitive (inhibitory) 
CNN's may exhibit stable nonlinear oscillations. 

In our particular case for the model with hysteresis (1), (2) we shall take 
one-dimensional discretized Laplacian template:  

:ܣ  (1, −2,1) 
Therefore the CNN representation for our hysteresis model (1), (2) will be 
the following: 

 
ௗ௨ೕௗ௧ = ௝ିଵݑ) − ௝ݑ2 + (௝ାଵݑ + (5) 

,௝ݑ)݂+   (௝ݒ
 

ௗ௩ೕௗ௧ = ,௝ݑ)݃ ௝),1ݒ ≤ ݆ ≤ ܰ. 
The above system is actually a system of ODE which is identified as the 
state equation of an autonomous CNN made of ܰ cells. For the output of 
our CNN model (5) we will take the standard sigmoid function. 

Edge of chaos in the hysteresis CNN model 

The theory of local activity [3,4] provides a definitive answer to the 
fundamental question: what are the values of the cell parameter for which 
the interconnected system may exhibit complexity? The answer is - the 
necessary condition for a non-conservative system to exhibit complexity is 
to have its cell locally active. The theory which will be presented below 
offers a constructive analytical method for uncovering local activity. In 
particular, for diffusion CNN model, one can determine the domain of the 
cell parameters in order for the cells to be locally active, and thus potentially 
capable of exhibiting complexity. This precisely defined parameter domain 
is called the edge of chaos. 

We develop the following constructive algorithm for determining of edge of 
chaos: 
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1. Map hysteresis model (1), (2) into the following associated 
discrete-space version which we shall call hysteresis CNN model:  

 
ௗ௨ೕௗ௧ = ௝ିଵݑ) − ௝ݑ2 + (௝ାଵݑ + (6) 

,௝ݑ)݂+  (௝ݒ = ܷ + ݂ 

 
ௗ௩ೕௗ௧ = ,௝ݑ)݃ (௝ݒ = ݃, 1 ≤ ݆ ≤ ܰ. 

2. Find the equilibrium points of (6). According to the theory of dynamical 
systems, the equilibrium points (ݑ௘,   :௘) of (6) are these for whichݒ

 ܷ + ,௘ݑ)݂ (௘ݒ = 0, (7) 

,௘ݑ)݃  (௘ݒ = 0. 
If we substitute (2) into (7), we obtain:  

 ܷ − ܿଵ ௨೐ଵା(௨೐)మ + ௕భ௨೐(ଵା(௨೐)మି௨೐)(ଵା௩೐) = 0 (8) 

 −ܿଶ ௩ଵା(௩೐)మ + ௕మ௩೐(ଵା(௩೐)మି௩೐)(ଵା௨೐) = 0.. 
After solving (8), we obtain that it has one, two or three real roots ܧଵ = ,ଵ௘ݑ) (ଵ௘ݒ ଶܧ , = ,ଶ௘ݑ) (ଶ௘ݒ ଷܧ , = ,ଷ௘ݑ) (ଷ௘ݒ , respectively. In general, 
these roots are functions of the cell parameters ܿଵ,ଶ and ܾଵ,ଶ. 

3. We calculate now the four cell coefficients of the Jacobian matrix of (8) 
about each system equilibrium point ܧ௜, ݅ = 1,2,3: 

 ቎ப௙(௨,௩)ப௨ ப௙(௨,௩)ப௩ப௚(௨,௩)ப௨ ப௚(௨,௩)ப௩ ቏ |(௨,௩)ୀா೔,௜ୀଵ,ଶ,ଷ = ൤ ଵ݂௘ ଶ݂௘ଵ݃௘ ݃ଶ௘൨. (9) 

4. Calculate the trace ܶݎ(ܧ௜) and the determinant Δ(ܧ௜) of the Jacobian 
matrix (9) for each equilibrium point: 
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(௜ܧ)ݎܶ  = ଵ݂௘(ܧ௜) + ݃ଶ௘(ܧ௜), (10) 

 Δ(ܧ௜) = ଵ݂௘(ܧ௜)݃ଶ௘(ܧ௜) − ଶ݂௘(ܧ௜) ଵ݃௘(ܧ௜). 
5. We shall identify the cell state variables ݑ௝  and ݒ௝  as follows: ݑ௝  is 
associated with the node-to-datum voltage at node ݆ of a grid ܩଵ of linear 
resistors; ݒ௝ is associated with the node-to-datum voltage at node ݆ of a 
second grid ܩଶ. We identify the coupling input ܷ with the current leaving 
node ݆, i.e. entering the cell connected to node ݆. In this case, the associated 
electronic circuit has three terminals with two node-to-datum voltages (ݑ௝,  ௝) and one terminal current ܷ. The importance of the circuit model isݒ
not only in the fact that we have a convenient physical implementation, but 
also in the fact that well-known results from classic circuit theory can be 
used to justify the cells' local activity. In this sense, if there is at least one 
equilibrium point for which the circuit model of the cell acts like a source of 
``small signal'', i.e. if the cell is capable of injecting a net small-signal 
average power into the passive resistive grids, then the cell is said to be 
locally active [3]. 

Definition 2.1 A diffusion cell is locally active at an equilibrium point ܧ௜, 
iff the matrix: 

ா೔ܮ  = ൤−2 ଵ݂௘ −( ଶ݂௘ + ଵ݃௘)−( ଶ݂௘ + ଵ݃௘) −2݃ଶ௘ ൨ (11) 

 is not semi-definite at the equilibrium point ܧ௜, ݅ = 1,2,3.  

Definition 2.2 Local activity region ܴܣܮ(ܧ௜) is defined as follows: 

:(௜ܧ)ܴܣܮ  ݃ଶ௘ > 0			4 ଵ݂௘݃ଶ௘ < ( ଶ݂௘ + ଵ݃௘)ଶ, ݅ = 1,2,3. (12) 

Definition 2.3 Stable and locally active region ܴܵܣܮ(ܧ௜)  at the 
equilibrium point ܧ௜ for the hysteresis CNN model (6) is such that ܶݎ < 0 
and ߂ > 0.  
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6. Edge of chaos. In the literature [4], the so-called edge of chaos (EC) 
means a region in the parameter space of a dynamical system where 
complex phenomena and information processing can emerge. We shall try 
to define more precisely this phenomena till now known only via empirical 
examples. Moreover, we shall present an algorithm for determining the 
edge of chaos for diffusion CNN models as our hysteresis CNN model (6). 
Let us set ܷ = 0 in the equilibrium equations: 

 ܷ + ,௘ݑ)݂ (௘ݒ = 0, (13) 

,௘ݑ)݃  (௘ݒ = 0. 
After solving the above system we get that it can have one, two or three real 
solutions and therefore we have three equilibrium points ܧ௜(ݑ௜௘, (௜௘ݒ , ݅ = 1,2,3. 

Our next step is to calculate the local cell coefficients ଵ݂௘, ଶ݂௘, ଵ݃௘, ݃ଶ௘ from 
(9) about each equilibrium point ܧ௜ , ݅ = 1,2,3. We determine LAR and 
SLAR for each point in the cell parameter space and we found that there is 
at least one equilibrium point (0,0)ܧ for which these conditions hold. We 
shall identify the edge of chaos domain EC in the cell parameter space by 
using the following definition: 

Definition 2.4 A hysteresis CNN is said to be operating on the edge of chaos 
EC iff there is at least one equilibrium point ܧ௜, ݅ = 1,2,3 which is both 
locally active and stable when ܷ = 0.  

The following theorem then hold: 

Theorem 2.5 Hysteresis CNN model for the system (1), (2) is operating in 
the edge of chaos regime if and only if ܿଵ > ܾଵ > 0, ܿଶ > ܾଶ > 0. For this 
parameter values, there is at least one equilibrium point which is both 
locally active and stable.  

Proof: After solving (13) we have three equilibrium points ܧଵ = ଶܧ ,(0,0) = (−1,−1) and ܧଷ = (−1, ିଶ௕భିଷ௖భଷ௖భ ) . Then we check the conditions 
for local activity and stability given by Definitions 2.2,2.3. The results show 
that the equilibrium point ܧଵ = (0,0)  satisfy these conditions for the 
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following parameter set ܿଵ > ܾଵ > 0 and ܿଶ > ܾଶ > 0. Therefore, there is 
at least one equilibrium point which is both locally active and stable. 
According to Definition 2.4, this means that the hysteresis CNN model (6) 
is operating in the edge of chaos regime. Theorem is proved. 

According to the simulations for the hysteresis CNN model (6) we obtain 
the following figures: 

  

Fig.2. Stationary wave solution of the receptor-based CNN model.  

0
0.5

1
1.5

2

0

0.5

1

1.5

2
−1

−0.5

0

0.5

1

uv



Gregory Agranovich, Elena Litsyn and Angela Slavova 123

 

Fig.3. Spatio-temporal solution of the receptor-based CNN model.  

Remark 2.6 Simulations show that for the model (6) we can have a 
gradient-like solution for the density of free receptors (standing wave) 
which is stationary in time (see Fig.2 ) or a spatio-temporal solution 
oscillating in time (see Fig. 3). The formation and persistence of the several 
peaks on Fig.3 are result of the bi-stability of the reaction term. For such 
model we can have various stable solutions which are transitions between 
the stable steady states.  

Continuous feedback control of the CNN model 

Let us rewrite the hysteresis CNN model (6) by the following simultaneous 2 ∗ ܰ ordinary differential equations: 
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ௗ௨ೕௗ௧ = ௝ିଵݑ) − ௝ݑ2 + (௝ାଵݑ + (14) 

,௝ݑ)݂+  (௝ݒ + ,௨௝ݖ ݆ = 1…ܰ, 
 

ௗ௩ೕௗ௧ = ௝ݑ)݃ + ,௩௝ݖ ݆ = 1…ܰ, 
where ݖ௨௝, ݖ௩௝ are controls and 

 ቮ݂(ݑ, (ݒ = −ܿଵ ௨ଵା௨మ + ௕భ௨(ଵା௨మି௨)(ଵା௩)݃(ݑ, (ݒ = −ܿଶ ௩ଵା௩మ + ௕మ௩(ଵା௩మି௩)(ଵା௨) , (15) 

Numbers of cells ܰ lies in bounds 1 ≤ ܰ ≤ 25. Constant coefficients 

 ௝ܿ ∈ [0,1], ௝ܾ ∈ [1,2]. (16) 

Boundary conditions for (14) are  

,ݐ)ݑ  −1) = ,ݐ)ݑ ܰ + 1) = 0 

and initial conditions are in the intervals  

,0)ݑ  ݆) ∈ [0,2], ,0)ݒ ݆) ∈ [0,2]. 
The matrix form of (14) is 

 ௗ௎ௗ௧ = ܷܣ + ,ܷ)ܨ ܸ) + ܼ௎, (17) 

 ௗ௏ௗ௧ = ,ܷ)ܩ ܸ) + ܼ௏ 

where the tridiagonal ܰ × ܰ matrix 
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ܣ  = ێێێۏ
2−ۍ 1 0 … … … 01 −2 1 0 … … 0… … … … … … …0 … … 0 1 −2 10 … … … 0 1 ۑۑے2−

 (18) .ېۑ

The nonlinear state model of (14) is in the following matrix form  

 ௗ௑ௗ௧ = ௘ܺܣ + (ܺ)௘ܨ + ܼ (19) 

in which the block matrices are 

 ܺ = ቂܷܸቃ , ௘ܨ = ቂܩܨቃ , ܼ = ൤ܼ௎ܼ௏൨ , ௘ܣ = ൤ܣ 0ே×ே0ே×ே 0ே×ே൨. (20) 

Linearized model of (19) in the neighborhood of the equilibrium point ܺ௦ 
is  

 ௗ௑ௗ௧ = ௘ܣ) + ܺ(௑௘(ܺ௦)ܨ + ܼ, (21) 

where  

௑௘(ܺ௦)ܨ  = பி೐(௑ೞ)ௗ௑ = ቎பி(௑ೞ)ப௎ பி(௑ೞ)ப௏பீ(௑ೞ)ப௎ பீ(௑ೞ)ப௏ ቏. (22) 

At the equilibrium point ܧଵ = (0,0) the coefficient matrix of linearized 
system (21) takes the form 

௘ܣ  + ௑௘(ܺ௦)ܨ = ൤ܣ + (ܾଵ − ܿଵ)ܧ 0ே×ே0ே×ே (ܾଶ − ܿଶ)ܧ൨. (23) 

It follows from (23) that the eigenvalues {ߣ௝଴, ݆ = 1…2ܰ} of the linearized 
system (21) are 

௝଴ߣ  = ௝ߣ + ܾଵ − ܿଵ, ݆ = 1…ܰ; (24) 
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ேାଵ଴ߣ  = ⋯ = ଶே଴ߣ = ଴ߤ = ܾଶ − ܿଶ, 
where ߣ௝, ݆ = 1…ܰ are the eigenvalues of the matrix (18) ܣ. 

We shall seek stabilized controls for (21), (23) as follows  

 ܼ௎ = ݇௨ܸ, ܼ௏ = ݇௩ܷ + ݇௪ܸ, (25) 

where the values of the scalar control coefficients ݇௨, ݇௩, ݇௪ are to be 
found. The close-loop system (21), (23), (25) have the matrix representation  

 ௗ௑ௗ௧ = ௘ܣ) + ௑௘(ܺ௦)ܨ + ܴ)ܺ, (26) 

where  

 ܴ = ൤0ே×ே ݇௨݇ܧ௩ܧ ݇௪ܧ൨. 
So we obtain the following close-loop system's dynamical matrix 

௖௟ܣ  = ൤ܣ + (ܾଵ − ܿଵ)ܧ ݇௨݇ܧ௩ܧ (݇௪ − ܾଶ − ܿଶ)ܧ൨ (27) 

Characteristic polynomial of (27) is  

ܧݏ)ݐ݁݀  − (௖௟ܣ = ݐ݁݀ ൤(ݏ − ܾଵ + ܿଵ)ܧ − ܣ −݇௨ܧ−݇௩ܧ ݏ) − ݇௪ − ܾଶ + ܿଶ)ܧ൨ 
 = ݏ)൤)ݐ݁݀ − ܾଵ + ܿଵ)ܧ − ܣ −݇௨ܧ−݇௩ܧ ݏ) − ݇௪ − ܾଶ + ܿଶ)ܧ൨ × 

 × ቈܧ 0ே×ே௞ೡ௦ି௞ೢି௕మା௖మ ܧ ܧ ቉) 
 = ݐ݁݀ ൥(ݏ − ܾଵ + ܿଵ − ௞ೠ௞ೡ௦ି௕మା௖మ)ܧ − ܣ −݇௨0ܧே×ே ݏ) − ݇௪ − ܾଶ + ܿଶ)ܧ൩ 
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 = ݏ) − ݇௪ − ܾଶ + ܿଶ)ே ⋅ ݏ)]ݐ݁݀ − ܾଵ + ܿଵ − ௞ೠ௞ೡ௦ି௞ೢି௕మା௖మ)ܧ −  [ܣ
 = ݏ) − ݇௪ − ܾଶ + ܿଶ)ே ⋅ ௞ೠ௞ೡ௦ି௞ೢି௕మା௖మି(௦ି௞ೢି௕మା௖మ)(௦ି௕భା௖భ)]ݐ݁݀ ܧ( −  .[ܣ
Let matrix ܣ  has ݉  eigenvalues ߣ௝  of order ௝݉ , ݆ = 1…݉ . So the 
characteristic polynomial of ܣ is  

ܧݏ]ݐ݁݀  − [ܣ = ∏ 	௠௝ୀଵ ݏ) −  .௝)௠ೕߣ
Then the characteristic polynomial of (27) can be represented as  ݀݁ܧݏ)ݐ − (௖௟ܣ = ∏ 	௠௝ୀଵ ݏ)] − ܾଵ + ܿଵ − ݏ)(௝ߣ − ݇௪ − ܾଶ + ܿଶ) − ݇௨݇௩]௠ೕ
  (28) 

As it follows from (24), (26) the eigenvalues {ߣ௝௖௟, ݆ = 1…2ܰ}  of the 
close-loop system (21),(23),(25) are solutions of the equations  

ݏ)  − ݏ)(௝଴ߣ − ݇௪ − (଴ߤ − ݇௨݇௩ = 0, ݆ = 1…ܰ, 
or, after some trivial algebraic calculations,  

ଶݏ  − (݇௪ + ଴ߤ + ݏ(௝଴ߣ + ௝଴(݇௪ߣ] + (଴ߤ − ݇௨݇௩] = 0, ݆ = 1…ܰ. 
  (29) 

The next theorem gives the opportunity to find feedback coefficients (25) 
for the stabilizing close-loop system (26) and in addition ensures the 
designed rate of convergence. 

Theorem 3.1 If the parameters of the close-loop system (26) with open-loop 
eigenvalues (24) satisfy the following inequalities  

 ݇௪ ≤ ߪ2− − ଴ߤ −  (30) (௝଴ߣ)௝ݔܽ݉

 ݇௨݇௩ ≤ ଶߪ + ௪݇)ߪ + (଴ߤ + ݉݅ ௝݊ߣ௝଴(ߪ + ݇௪ +  (଴ߤ
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 for some ߪ ≥ 0, then eigenvalues of the close-loop system satisfy the 
inequality ߣ௝௖௟ ≤ ߪ− . For each value of ߪ ≥ 0  exist values of control 
feedback parameters (25), for which the inequalities (30) are satisfied.  

 Proof: Let us perform in the characteristic equations (29) of the close-loop 
system change of variable ݏ to ݏ −   :ߪ

ଶݏ  − ߪ2) + ݇௪ + ଴ߤ + ݏ(௝଴ߣ + ଶߪ] + ௪݇)ߪ + ଴ߤ + (௝଴ߣ + ௝଴(݇௪ߣ + (଴ߤ −݇௨݇௩] = 0. 
It is well known [16], that positivity of coefficients is the necessary and 
sufficient condition for a second - order polynomial to be Hurwitz. Let us 
shift a polynomial argument ݏ by ߪ > 0 to the left. It is obvious, that the 
Hurwitz property of the shifted polynomial implies that the roots ݏ௜of the 
initial polynomial satisfy inequality ݏ௜ <  .ߪ

Then the conditions ߣ௖௟ ≤  are satisfied if and only if the following ߪ−
inequalities 

 ݇௪ ≤ ߪ2− − ଴ߤ − ,௝଴ߣ ݇௨݇௩ ≤ ଶߪ + ௪݇)ߪ + (଴ߤ + (௝଴ߣ + ௝଴(݇௪ߣ +  (଴ߤ
hold for every eigenvalue ߣ௝଴ , ݆ = 1…ܰ (24) of the open-loop system. 
Replacing the right-hand parts of these inequalities by the least value 
according to ݆, we obtain (30). The rest of the proof follows immediately 
from the form of the inequalities. 
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Fig.4. Spatio-temporal solution of the un-stabilized receptor-based CNN model.  
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Fig.5. Spatio-temporal solution of the stabilized receptor-based CNN model, ߪ = 0.5.  

As in can be seen from figures 4 and 5, the proposed method allows so to 
stabilize the system's dynamics so to assign its rate of convergence. 

Coupled FitzHugh-Nagumo neural system 

Nonlinear reaction-diffusion type of equations are widely used to describe 
phenomena in different fields, as biology-Fisher model, Hodgkin-Huxley 
model and its simplification- FitzHugh-Nagumo nerve conduction model, 
etc. [1,5,10]. In this section we shall study a coupled FitzHugh-Nagumo 
neural system and the phenomena "edge of chaos", as well as the feedback 
stabilization of the system. 

Hodgkin injected a DC-current of varying amplitude and discovered that 
some systems could exhibit repetitive spiking with arbitrary low 
frequencies, while the others discharged in a narrow frequency band. In the 
seminal paper by Rinzel and Ermentrout it was shown that the difference in 
behavior is due to different bifurcation mechanisms of excitability. For 
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dynamical systems in neuroscience, the type of bifurcation determines the 
computational properties of neurons. Neuronal models can be excitable for 
some values of parameters, and fire spikes periodically for other values. 
These two types of dynamics correspond to a stable equilibrium and a limit 
cycle attractor, respectively. When the parameters change, the models can 
exhibit a transition from one qualitative type of dynamics to another. Thus, 
the stability and bifurcation of neural network systems attract a lot of 
attention. At the same time, the information transmission among neurons is 
carried out through synapses, and therefore the coupling among neurons is 
also achieved through synapses. Coupling among neurons can be classified 
into a gap junction and chemical synapse coupling. Chaos and bifurcations 
can occur even in the most simple system, and moreover, coupled neurons 
could synchronize and exhibit collective behavior. 

The famous Hodgkin-Huxley neuron model [7] is the first mathematical 
model describing neural excitation transmission derived from the angle of 
physics and lays the basis of electrical neurophysiology. The 
FitzHugh-Nagumo equation, which is a simplification of Hodgkin-Huxley 
model, describes the generation and propagation of the nerve impulse along 
the giant axon of the squid. The FitzHugh-Nagumo systems [5,10] are of 
fundamental importance for understanding the qualitative nature of nerve 
impulse propagation. Based on the finite propagating speed in the signal 
transmission between the neurons, the following coupled 
FitzHugh-Nagumo neural system is proposed:  

 ተݑሶ ଵ = ଵݑ)ଵݑ− − ଵݑ)(1 − ܽ) − ଶݑ + ሶݑ(ଷݑ)݂ܿ ଶ = ଵݑ)ܾ − ሶݑ(ଶݑߛ ଷ = ଷݑ)ଷݑ− − ଷݑ)(1 − ܽ) − ସݑ + ሶݑ(ଵݑ)݂ܿ ସ = ଷݑ)ܾ − ,(ସݑߛ  (31) 

 where ܽ , ܾ ߛ ,  are positive constants, ݑଵ,ଶ  represent transmission 
variables, and ݑଷ,ସ  are receiving variables; ܿ  measures the coupling 
strength, ݂ ∈ ଷܥ , ݂(0) = 0, ݂ᇱ(0) = 1. We shall take ݂(ݔ) =  (ݔ)ℎ݊ܽݐ
in our investigation. System (31) is symmetric. Thus, considering the 
existence, spatio-temporal patterns and stability of its Hopf bifurcating 
periodic solutions are interesting. 
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Edge of chaos of coupled FitzHugh-Nagumo CNN model 

For coupled FitzHugh-Nagumo system (31), CNN model will be the 
following: 

 ተ
ተௗ௨ೕభௗ௧ = ௝ଵݑ)௝ଵݑ− − ௝ଵݑ)(1 − a) − ௝ଶݑ + ௗ௨ೕమௗ௧(௝ଷݑ)݂ܿ = ௝ଵݑ)ܾ − ௝ଶ)ௗ௨ೕయௗ௧ݑߛ = ௝ଷݑ)௝ଷݑ− − ௝ଷݑ)(1 − ܽ) − ௝ସݑ + ௗ௨ೕరௗ௧(௝ଵݑ)݂ܿ = ௝ଷݑ)ܾ − ,(௝ସݑߛ ݆ = 1,… , ݊.

 (32) 

The system is transformed into a system of ordinary differential equations 
which is identified as the state equations of a CNN with appropriate 
templates. We map the variables ݑଵ, ݑଶ, ݑଷ and ݑସ into CNN layers such 
that the state voltage of a CNN cell at a grid point is ݑ௝௜, ݅ = 1,2,3,4, ݊ =  .is number of the cells ܯ ,ܯ.ܯ

Simulations of the above CNN model for different parameter sets are given 
on Fig.6: 
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Fig.6. Simulations of the CNN model (32).  
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We shall present an algorithm for determining the edge of chaos for 
reaction-diffusion CNN models as coupled FitzHugh-Nagumo CNN model 
(32). 

We apply the following constructive algorithm: 

1. Map coupled FitzHugh-Nagumo system (31) into the associated discrete- 
space version (32) which we shall call coupled FitzHugh-Nagumo CNN 
model. 

2. Find the equilibrium points of (32). According to the theory of dynamical 
systems the equilibrium points ݑො௝௜ of (32) are these for which: 

 ተተ
௝ଵݑ)௝ଵݑ− − ௝ଵݑ)(1 − ܽ) − ௝ଶݑ + (௝ଷݑ)ℎ݊ܽݐ	ܿ = ௝ଵݑ)0ܾ − (௝ଶݑߛ = ௝ଷݑ)௝ଷݑ−0 − ௝ଷݑ)(1 − ܽ) − ௝ସݑ + (௝ଵݑ)ℎ݊ܽݐ	ܿ = ௝ଷݑ)0ܾ − (௝ସݑߛ = 0.  (33) 

Equation (33) may have one, two, three or four real roots ݑො௝ଵ, ݑො௝ଶ, ݑො௝ଷ, ݑො௝ସ 
respectively. In general, these roots are functions of the cell parameters ܽ, ܾ, ܿ, ො௝௜ݑ In other words, we have .ߛ = ,ܽ)ො௝௜ݑ ܾ, ܿ, ݅ ,(ߛ = 1,2,3,4. We shall 
consider only the equilibrium point ܧ଴ = (0,0,0,0). 
3. Calculate now the Jacobian matrix of (33) about equilibrium point ܧ଴. In 
our particular case the associate linear system in a sufficient small 
neighborhood of the equilibrium point ܧ଴ can be given by  

 ௗ௭ௗ௧ =  ݖ(଴ܧ)ܨܦ

(଴ܧ)ܨܦ =  is the Jacobian matrix of each of the equilibrium points and ܬ
can be computed by:  

௣,௦ܬ  = பி೛ப௨ೞ |௨ୀாబ, 1 ≤ ,݌ ݏ ≤ ݊. (34) 

In our particular case the Jacobian matrix in the equilibrium point ܧ଴ is: 
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ܬ  = ൦−ܽ −1 ܿ 0ܾ ߛܾ− 0 0ܿ 0 −ܽ −10 0 ܾ  ൪ߛܾ−
4. Calculate the trace ܶݎ(ܧ଴) = ∑ 	ே௤ୀଵ ௤ߣ . In the equilibrium point ܧ଴ = (0,0,0,0) trace is ܶ(0,0,0,0)ݎ = −ܽ − ߛܾ − ܽ − ߛܾ = −2(ܽ +  .(ߛܾ
5. We shall identify the cell state variables ݑ௝ as follows: ݑ௝ is associated 
with the node-to-datum voltage at node (݆) of a two-dimensional grid ܩ of 
linear resistors. The importance of the circuit model is not only in the fact 
that we have a convenient physical implementation, but also in the fact that 
well-known results from classic circuit theory can be used to justify the 
cells' local activity. In this sense, if there is at least one equilibrium point for 
which the circuit model of the cell acts like a source of "small signal" 
power, in a precise sense defined in, i.e. if the cell is capable of injecting a 
net small-signal average power into the passive resistive grids then the cell 
is said to be locally active [3,4]. 

Definition 4.1 Stable and Locally Active Region ܵ(ܧ)ܴܣܮ  at the 
equilibrium point ܧ଴ for coupled FitzHugh-Nagumo CNN model (32) is 
such that ܶݎ < 0.  

In our particular case we have: ܶ(0,0,0,0)ݎ = −2(ܽ + (ߛܾ < 0 for all ܽ, ܾ, ߛ positive. Therefore in the equilibrium point ܧ଴ = (0,0,0,0) we have 
stable and locally active region. 

6. Edge of chaos. 

We shall identify the edge of chaos domain (EC) in the cell parameter space 
by using the following definition: 

Definition 4.2 Coupled FitzHugh-Nagumo CNN model is said to be 
operating on the edge of chaos EC if and only if there is at least one 
equilibrium point ܧ଴, which belongs to ܵ(ܧ)ܴܣܮ.  

The following theorem then holds: 
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Theorem 4.3 CNN model of coupled FitzHugh-Nagumo system (31) is 
operating in the edge of chaos regime for all ܽ, ܾ and ߛ positive. For this 
parameter values there is at least one equilibrium point which belongs to ܵ(ܧ)ܴܣܮ.  

 Proof: After solving (32) we find that one of the equilibrium points is ܧ଴ = (0,0,0,0). Then we check the conditions for local activity and stability 
given by Definitions 4.1. The results show that the equilibrium point ܧ଴ = (0,0,0,0) satisfies these conditions for the parameter set. Therefore, 
there is at least one equilibrium point which is both locally active and stable. 
According to Definition 4.2, this means that the FitzHugh-Nagumo CNN 
model (32) is operating in the edge of chaos regime. Theorem is proved. 

The edge of chaos EC in which is operating the coupled FitzHugh-Nagumo 
CNN model (32) is given on Fig.7 for different parameter sets: 
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Fig.7. EC  

Remark 4.4 In the literature [11,15] spatio-temporal patterns are derived by 
the following result: The trivial solution of the system (31) undergoes a 
Hopf bifurcation, that is, when ܿ = ݈ (respectively, ܿ = −݈), where ݈ is 
some constant, giving rise to one branch of synchronous (respectively, 
anti-phase) periodic solutions. So on Fig. 7 we present this synchronization 
for ܿ = −2 , ܿ = 2 , respectively. The parameter set is the following: ܽ = ߛ ,0.33 = 0.47, ܾ = 1.  
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Stabilizing feedback control for coupled 
FitzHugh-Nagumo CNN model 

Let us extend the model (32) by adding to each cell the local linear 
feedback:  

 ተ
ተௗ௨ೕభௗ௧ = ௝ଵݑ)௝ଵݑ− − ௝ଵݑ)(1 − ܽ) − ௝ଶݑ + (௝ଷݑ)݂ܿ − ௝ଵௗ௨ೕమௗ௧ݑ݇ = ௝ଵݑ)ܾ − ௝ଶ)ௗ௨ೕయௗ௧ݑߛ = ௝ଷݑ)௝ଷݑ− − ௝ଷݑ)(1 − ܽ) − ௝ସݑ + (௝ଵݑ)݂ܿ − ௝ଷௗ௨ೕరௗ௧ݑ݇ = ௝ଷݑ)ܾ − ,(௝ସݑߛ ݆ = 1,… , ݊.

 (35) 

 where ݇ is the feedback controls coefficient, which is assumed to be equal 
for all cells. 

The problem is to prove that this simple and available for the 
implementation feedback can stabilize the coupled FitzHugh-Nagumo 
CNN model. In the following we present a proof of this statement and give 
sufficient condition on the feedback coefficient values which provide 
stability of the CNN nonlinear model (35). 

As a first step, we examine the stability conditions of the system (35), 
linearized in the neighborhood of the zero equilibrium point ܧ଴ . This 
system in a vector-matrix form is given by  

 ௗ௭ௗ௧ =  ݖ(݇)ܬ

  :଴ܧ is the Jacobian matrix of the controlled CNN in (݇)ܬ

(݇)ܬ  = ൦−(ܽ + ݇) −1 ܿ 0ܾ ߛܾ− 0 0ܿ 0 −(ܽ + ݇) −10 0 ܾ  ൪ (36)ߛܾ−
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Theorem 5.1 Let the parameters ܽ, ܾ and ߛ of coupled FitzHugh-Nagumo 
CNN system and feedback coefficient ݇ (35) have positive values. Then its 
linearized in ܧ଴ model (36) is assymptotically stable for all  

 ݇ > ට((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ + (௕ିଵ)మ଼௕ఊ − ܽ (37) 

Proof: Define the quadratic Lyapunov function candidate (ݖ)ܮ = ଵଶ  .ݖ்ݖ
Then its derivative along the linearized controlled CNN is 

 ௗ௅(௭)ௗ௧ = ଵଶ (݇)்ܬ)்ݖ + ݖ((݇)ܬ =  ݖ(݇)்ܳݖ−

where  

 ܳ(݇) =
ێێۏ
ܽ)ۍێێ + ݇) − ௕ିଵଶ −ܿ 0− ௕ିଵଶ ߛܾ 0 0−ܿ 0 (ܽ + ݇) − ௕ିଵଶ0 0 − ௕ିଵଶ ߛܾ ۑۑے

 (38) ېۑۑ

Therefore ௗ௅(௭)ௗ௧ < 0  implies a positive definiteness of ܳ(݇) . It can be 
shown that ܳ(݇) (38) positive definiteness implies  

 

ܽ + ݇ > 0(ܽ + ߛܾ(݇ − (௕ିଵ)మସ > ܽ)ߛ0ܾ + ݇)ଶ − (௕ିଵ)మସ (ܽ + ݇) − ܿଶܾߛ > 0 

 or  

 

݇ > −ܽ݇ > (௕ିଵ)మସ௕ఊ − ܽ(ܽ + ݇)ଶ − 2 (௕ିଵ)మ଼௕ఊ (ܽ + ݇) + ((௕ିଵ)మ଼௕ఊ )ଶ > ((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ 
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 The last inequality have equivalent representation  

 ܽ + ݇ − (௕ିଵ)మ଼௕ఊ > ට((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ 

from which the theorem inequality follows. Theorem is proved.  

For verification of the Theorem 2 the eigenvalues of ܬ(݇)  (36) were 
calculated related on the values вЂ‹вЂ‹of feedback coefficient ݇. Stability 
of the linear system requires that the eigenvalues ߣ௝௜, ݅ = 1,… ,4 of (36) 
вЂ‹вЂ‹satisfy the inequality ݉ܽݔ௜ܴ݁ߣ௝௜ < 0 . Dependence of the ݉ܽݔ௜ܴ݁ߣ௝௜  on ݇ for the parameter set, which is defined in the Remark 1 
and ܿ = −2, is represented in Figure 8. 

 

Fig.8. Dependence of real part value of dominant eigenvalue on the feedback 
coefficient CNN model (35).  

The critical value of ݇ = 1.2, for which the ݉ܽݔ௜ܴ݁ߣ௝௜ = 0, is marked in 
the figure. For this parameter set the inequality (37) gives the critical value ݇ = 1.67.  
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The following theorem provides a sufficient condition to stabilize the 
nonlinear controlled FitzHugh-Nagumo model (35). 

Theorem 5.2 Let the parameters ܽ, ܾ, ߛ  and feedback coefficient ݇  of 
coupled controlled FitzHugh-Nagumo CNN (35) have positive values. Then 
it is globally asymptotically stable in the zero equilibrium point ܧ଴ for all  

 ݇ > ට((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ + (ଵି௔)మସ + (௕ିଵ)మ଼௕ఊ  (39) 

 Proof: Let us define the quadratic Lyapunov function candidate  

(௝ݑ)ܮ  = ଵଶ∑ 	ସ௜ୀଵ  ଶ(௝௜ݑ)

It is obvious, that it is positive definite, decreasing and radially unbounded 
Lyapunov function. Then its derivative along the model (35) of controlled 
CNN is  

 
ௗ௅(௨ೕ)ௗ௧ = ସ(௝ଵݑ)− + (1 + ଷ(௝ଵݑ)(ܽ − ଶ(௝ଵݑ)ܽ + (ܾ − ௝ଶݑ௝ଵݑ(1 −  ଶ(௝ଵݑ)݇

(௝ଷݑ)௝ଵ݂ݑܿ+  −  ଶ(௝ଶݑ)ߛܾ

ସ(௝ଷݑ)−  + (1 + ଷ(௝ଷݑ)(ܽ − ଶ(௝ଷݑ)ܽ + (ܾ − ௝ସݑ௝ଷݑ(1 −  ଶ(௝ଷݑ)݇

௝ଷݑ(௝ଵݑ)݂ܿ+  −  ଶ(௝ସݑ)ߛܾ

 Selecting the perfect square  

ସ(௝ଵݑ)−  + 2 ଵା௔ଶ ଷ(௝ଵݑ) − (ଵା௔)మସ ଶ(௝ଵݑ) = ௝ଵݑ)ଶ(௝ଵݑ)− − ଵା௔ଶ )ଶ 

in the first line of the expression and the same one in the third line, we have 
the inequality  

 
ௗ௅(௨ೕ)ௗ௧ ≤ ((ଵି௔)మସ − ଶ(௝ଵݑ)(݇ + (ܾ − ௝ଶݑ௝ଵݑ(1 + (௝ଷݑ)௝ଵ݂ݑܿ −  ଶ(௝ଶݑ)ߛܾ



Chaotic Systems and their Application in Industry 142

 ((ଵି௔)మସ − ଶ(௝ଷݑ)(݇ + (ܾ − ௝ସݑ௝ଷݑ(1 + ௝ଷݑ(௝ଵݑ)݂ܿ −  ଶ(௝ସݑ)ߛܾ

 Now we strengthen the inequality, using  

 (ܾ − ௝ଶݑ௝ଵݑ(1 ≤ |(ܾ − 1)| ⋅ |௝ଵݑ| ⋅  ,|௝ଶݑ|
(௝ଷݑ)௝ଵ݂ݑܿ  ≤ |ܿ| ⋅ |௝ଵݑ| ⋅ |(௝ଷݑ)݂| ≤ |ܿ| ⋅ |௝ଵݑ| ⋅  ,|௝ଷݑ|
and obtain  

 
ௗ௅(௨ೕ)ௗ௧ ≤ ((ଵି௔)మସ − ଶ(௝ଵݑ)(݇ + |(ܾ − 1)| ⋅ |௝ଵݑ| ⋅  |௝ଶݑ|

 +((ଵି௔)మସ − ଶ(௝ଷݑ)(݇ + |(ܾ − 1)| ⋅ |௝ଷݑ| ⋅  |௝ସݑ|
 +2|ܿ| ⋅ |௝ଵݑ| ⋅ |௝ଷݑ| − ଶ(௝ଶݑ)ߛܾ −  ଶ(௝ସݑ)ߛܾ

The right-hand part of the last inequality can be represented as quadratic 
form −|ݑ௝|்ܳ௡௟(݇)|ݑ௝| , where |ݑ௝| = ,|௝ଵݑ|] . . , ்[|௝ସݑ|  is the vector of 
absolute values of the CNN coordinates, and  

 ܳ௡௟(݇) =
ێێۏ
ێێێ
݇ۍ − (ଵି௔)మସ − |௕ିଵ|ଶ −|ܿ| 0− |௕ିଵ|ଶ ߛܾ 0 0−|ܿ| 0 ݇ − (ଵି௔)మସ − |௕ିଵ|ଶ0 0 − |௕ିଵ|ଶ ߛܾ ۑۑے

ۑۑۑ
ې
 (40) 

If the matrix ܳ௡௟(݇)  is positive definite then the nonlinear coupled 
FitzHugh-Nagumo model (35) is assymptotically stable in the 
neighborhood of the zero equilibrium point ܧ଴. 

It can be shown that ܳ௡௟(݇) (40) positive definiteness implies  
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݇ − (ଵି௔)మସ > 0(݇ − (ଵି௔)మସ ߛܾ( − (௕ିଵ)మସ > ݇)ߛ0ܾ − (ଵି௔)మସ )ଶ − (௕ିଵ)మସ (݇ − (ଵି௔)మସ ) − ܿଶܾߛ > 0 

or  

 

݇ > (ଵି௔)మସ݇ > (௕ିଵ)మସ௕ఊ + (ଵି௔)మସ(݇ − (ଵି௔)మସ )ଶ − 2 (௕ିଵ)మ଼௕ఊ (݇ − (ଵି௔)మସ ) + ((௕ିଵ)మ଼௕ఊ )ଶ > ((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ 

The last inequality have equivalent representation  

 ݇ − (ଵି௔)మସ − (௕ିଵ)మ଼௕ఊ > ට((௕ିଵ)మ଼௕ఊ )ଶ + ܿଶ 

from which the theorem inequality follows. Theorem is proved.  
 
For the parameter set, which is defined in the Remark 1 and c = -2, the 
inequality (37) gives the critical value ݇ = 2.11. 
 

 
Fig.9. Phase trajectory ݑଵ − ଶݑ  for different values on the feedback coefficient 
CNN model (35). 



Chaotic Systems and their Application in Industry 144

Acknowledgments  

The authors are partially supported by the bilateral grant between Israel 
Academy of Sciences and Bulgarian Academy of Sciences.  

Bibliography 

[1] Britton N.F., Reaction-Diffusion Equations and Their Applications to 
Biology, New York: Academic, 1986.  

[2] Chua L.O., CNN:A Paradigm for Complexity, World Scientific Series 
on Nonlinear Science, Series A - Vol. 31, World Scientific, 1998.  

[3] Chua L.O., Local activity is the origin of complexity, Int.J. of 
Bifurcations and Chaos, Nov. 2005.  

[4] Dogaru R., Chua L.O., Edge of chaos and local activity domain of 
FitzHugh-Nagumo equation, International Journal of Bifurcation and 
Chaos, vol. 8 (2), pp. 211-257, 1998.  

[5] R.FitzHugh, Impulses and physiological states in theoretical models of 
nerve membrane, Biophys.J., 1, 1961, pp.445-466.  

[6]  Heinze S., Schweizer B., Creeping fronts in degernerate 
reaction-diffusion systems,  

[7] Hodgkin A.L., Huxley A.F., A quantitative description of membraine 
current and its application to conduction and excitation in nerve, J. 
Physiology, vol. 117, pp. 500-544, 1952.  

[8] Hoppensteadt F., Jäger W., Pattern fromation by bacteria, In S.levin ed., 
Lecture Notes in Biomathematics:Biological Growth and 
Spread,pp.69-81, Heidelberg, Springer-Verlag, 1980. 

[9] Macki J., Nistri P., Zecca P., Mathematical Models for Hysteresis, SIAM 
Review,53:1:94-123, 1993. 

[10] J.Nagumo, S.Arimoto, S.Yoshizawa, An active pulse transmission line 
simulating nerve axon, Proc.IRE 50, 1962, 2061-2070  

[11] J.Rinzel, G.B.Ermentrout, Analysis of Neural Excitability and 
Oscillations, Methods in Neuronal Modeling, MIT, Cambridge, 1989.  

[12] Slavova A., Applications of some mathematical methods in the 
analysis of Cellular Neural Networks, J.Comp.Appl.Math., 114, pp. 
387-404, 2000.  

[13] Slavova A., Zecca P., CNN model for studying dynamics and 
travelling wave solutions of FitzHugh-Nagumo equation, Journ. Comp. 
and Appl. Math., 151, pp. 13-24, 2003. 

[14] Turing A.M., The chemical bsis of morphogenesis, 
Phil.Trans.Roy.Soc. B,237:37-72,1952. 



Gregory Agranovich, Elena Litsyn and Angela Slavova 145

[15] J. Wu, Symmetric functional differential equations and neural 
networks with memory, Trans. Am.Math.Soc. 350, 1998, 4799-4838.  

[16] M. Vidyasagar, Nonlinear systems analysis, 2nd ed., Philadelphia: 
Society for Industrial and Applied Mathematics, 2002. 

 





CHAPTER FOUR: 

INDUSTRIAL APPLICATIONS IN MECHANICS 

 

 

 



ON 2D FINITE ELEMENT SIMULATION 
OF A THERMODYNAMICALLY CONSISTENT 

LI-ION BATTERY MICROSCALE MODEL 

M. TARALOV, V. TARALOVA, P. POPOV,  
O. ILIEV, A. LATZ AND J. ZAUSCH  

 
 
 

Introduction 

Li-ion batteries are one of the most popular types of rechargeable batteries 
for portable electronics as well as for electromobility applications because 
they have one of the best energy-to-weight ratios, no memory effect, and 
one of the longest calendar life time, i.e. a slow loss of charge when not in 
use. Right now progress is driven mainly by laboratory experiments and 
experience, in contrast to other industries where extensive computer 
simulations help to improve the production process. Mathematical 
modeling aims at a better understanding of the complex electrochemical 
processes in the batteries and prediction of the influence of different factors 
on their longevity and performance. Furthermore, with the right tools, 
potentially dangerous scenarios could be identified thus ensuring safe 
working conditions.  

 
 

Figure 1: Battery Scheme  Figure 2: Microscale battery cell during a 
charging process 
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A li-ion battery contains several electrically connected electrochemical 
cells. Each cell has at least one positive and one negative electrode, which 
are referred to as cathode and anode, and a separator, c.f. Figure 1. We are 
considering the micro length scale where the grain structure of the porous 
electrodes of these cells is resolved. This porous structure consists of an 
active particle skeleton filled with electrolyte. There are also other additives 
which however are neglected here. The separator also has a porous 
structure. The size of a single active particle varies between nanometers and 
micro meters and their number can reach thousands in each electrode, 
depending on the type of the battery. The active particles are made of solid 
materials in which lithium can enter and exit due to electrochemical 
reactions. The main process inside the battery is the diffusion and 
migration, i.e. potential driven flux of lithium ions. The process of a lithium 
ion entering into the active particles is called intercalation. The inverse 
process of a lithium ion leaving the active particles material is called 
de-intercalation. These electrochemical reactions of intercalation and 
de-intercalation happen on the interface between the solid particles and the 
electrolyte. During discharge of the battery, i.e. when a power consuming 
device is connected to the battery, the lithium ions diffuse to the surface of 
the active particles of the anode, de-intercalate into the electrolyte phase 
and carry then the electric current from the negative to the positive electrode 
through the pores of the separator. There the ions are intercalated into the 
active particles and diffuse into the particles. The electrical current within 
the active particles is mainly carried by electrons. The electrons do not enter 
the electrolyte phase. Only the Li ions can move through the electrolyte. 
Therefore the particles in the electrodes have to be connected to each other 
to guarantee the electric conductivity of the electrode as a whole. The 
electrical current, i.e. the electrons leave the cell through current collectors, 
which are connected to the active material. This is shown in 2. When the 
battery is being charged a higher voltage than the one produced by the 
battery is applied on the cathode thus forcing the current to pass from the 
cathode to the anode.  

During the operation of the battery the temperature may rise significantly. 
Heat is one of the major contributors to the degradation of the materials 
inside the battery [13, 1]. It can also lead to unsafe working conditions 
caused by a local hotspot somewhere inside the cell. As such the full 
mathematical model described in [6] will be used in this work. This model 
considers separately the complex transport phenomena in the active 
particles of the electrodes and in the electrolyte on the microscale as well as 
the contribution of heat generators on the interfaces. To the best of our 
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knowledge, there is little literature regarding systematic derivation of 
thermodynamically consistent microscale Li-ion battery models. 
Consequently there are also very few numerical experiments on such a 
scale.  

A lot of the existing simulations are based on the pseudo 2D model of 
Newman et. al. and use finite differences [9]. The early FORTRAN codes 
are supplied by Newman himself in his BAND routine. This model is 
widely used since due to its 1D+1D nature it is both easy to implement and 
also runs very fast. It is not thermodynamic, but there are thermal 
extensions based on global energy conservation, i.e. usually without 
considering the microstructure of the battery and also using a prescribed 
heat generator [3, 4, 10]. In order to account for the interface conditions 
more naturally there are also Finite Volume or Finite Element 
discretizations. If one wants to also observe local phenomena, a cell 
resolved model could be used. They are far more expensive to solve 
however (especially in 3D), so simulating many charge/discharge cycles 
can take a lot of time. For an example of finite volume discretization of a 
cell resolved isothermal model [7], see [11, 8]. A cell-resolved model was 
solved in [2] with finite elements, using Comsol.  

The main contributions of this paper are  

- carefully developing a FEM algorithm for solving the highly nonlinear 
problem with discontinuous coefficients and solutions and performing 
feasibility study;  

- using the developed algorithm and software to study the temperature 
behavior of porous electrodes at different operating regimes. 

Although the developed FEM algorithm in general contains known basic 
elements, we did not find in the literature FEM algorithms for simulation of 
pore scale processes in Li-ion batteries, so we had to carefully put together 
and test all the components. We had several reasons to choose FEM. 
Compared to the voxel based FVM in the above cited papers, FEM allows 
to more accurately resolve the microstructure of the porous electrodes. 
Compared to DG, FEM uses less memory and is better studied. The 
memory is an important issue when one performs simulations on 3D images 
of the complicated electrodes' microstructure, which is our final goal. 
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Mathematical model 

We use the model, derived in [6]. The equations of the model differ in the 
particles and the electrolyte. The unknowns in these equations are the 
concentration of lithium ions, the electrical (or electrochemical in the 
electrolyte) potential and the temperature. They are denoted by ܿ,Φ and ܶ 
respectively. The functions ܿ(ܠ, ,ܠ)and Φ (ݐ  are discontinuous across (ݐ
the interfaces.  

Governing equations in the electrolyte 

Let us introduce the flux of ions and the flux of charges:  

ା,௘ۼ  = −ቀܦ௘∇ܿ௘ − ௧శி ௘ܒ + ஽೐௖೐௞೅,೐் ∇ܶቁ (1) 

௘ܒ  = −ቀߢ∇߮௘ − ߢ ଵି௧శி ቀபఓ೐ப௖೐ቁ ∇ܿ௘ − ߢ ଵி ቀபఓ೐ப் ቁ ∇ܶቁ (2) 

 In the above fluxes ܨ  is the Faraday number, ܴ  is the universal gas 
constant, ܦ is the interdiffusion coefficient (strictly positive), ݐା  is the 
transference number of Li-ions, ߤ is chemical potential, ߢ is the electric 
conductivity (strictly positive) and ்݇ is the Soret coefficient. Also as per 
[6] in the electrolyte we actually solve for the electrochemical potential ߮௘ 
rather than the electric potential Φ௘. Then in the electrolyte the system of 
equations has the following form:  

 ப௖೐ப௧ = −∇ ⋅  ା,௘ (3a)ۼ

 0 = −∇ ⋅  ௘ (3b)ܒ

 ܿ௣,௘ߩ ப்ப௧ = ∇ ⋅ (ܶ∇௘ߣ) + ೐|మ఑ܒ| + பఓ೐ப௖೐ శ,೐ି೟శಷۼ) ೐)మ஽೐ܒ − 

 ܶ∇ ⋅ ቆܿ௘ பఓ೐ப௖೐ ௞೅,೐் ቀۼା,௘ − ௧శி  ௘ቁቇ (3c)ܒ
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 for ܠ ∈ Ω௘ , where Ω௘  is the domain of the electrolyte, Ω is the whole 
domain and ܿ௣, ߩ, and ߣ are specific heat capacity per unit mass, density 
and heat conductivity (stricly positive), respectively. We use for boundary 
conditions  

ା,௘ۼ  ⋅ ܖ = 0 (4a) 

௘ܒ  ⋅ ܖ = 0 (4b) 

ܶ∇௘ߣ  ⋅ ܖ = ܶ)ߙ − ௘ܶ௫௧) (4c) 

 for ܠ ∈ ∂Ω ∩ ∂Ω௘.  

Governing equations in the solid particles 

In the solid particles the ion transference number ݐା is approximately zero, 
since the current is mainly carried by electrons. The fluxes there have the 
following form:  

ା,௦ۼ  = −ቀܦ௦∇ܿ௦ + ஽ೞ௖ೞ௞೅,ೞ் ∇ܶቁ (5) 

௦ܒ  =  Φ௦ (6)∇ߪ−

 and the equations are:  

 ப௖ೞப௧ = −∇ ⋅  ା,௦ (7a)ۼ

 0 = −∇ ⋅  ௦ (7b)ܒ

 ܿ௣,௦ߩ ப்ப௧ = ∇ ⋅ (ܶ∇௦ߣ) + ೞ|మ఑ܒ| − ܨ ப௎బப௖ೞ శ,ೞ|మ஽ೞۼ| + 

∇ܨܶ  ⋅ ቀܿ௦ ப௎బப௖ೞ ௞೅,ೞ்  ା,௦ቁ (7c)ۼ

 for ܠ ∈ Ω௦ where Ω௦ is the domain of the active material of an electrode, 
so ݏ = ,݁݀݋݊ܽ ݁݀݋ℎݐܽܿ . With ߪ  is denoted the average electronic 
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conductivity and with ܷ଴  - the half cell open circuit potential. The 
boundary conditions are  

ା,௦ۼ  ⋅ ܖ = 0, ܠ ∈ ∂Ω ∩ ∂Ω௦ (8a) 

௦ܒ  ⋅ ܖ = ,ݐݏ݊݋ܿ ܠ ∈ ∂Ω ∩ ∂Ω௖௔௧௛௢ௗ௘ (8b) 

 Φ௦ = ,ݐݏ݊݋ܿ ܠ ∈ ∂Ω ∩ ∂Ω௔௡௢ௗ௘ (8c) 

ܶ∇௦ߣ  ⋅ ܖ = ܶ)ߙ − ௘ܶ௫௧), ܠ ∈ ∂Ω ∩ ∂Ω௦ (8d) 

Interface conditions 

Let us denote the current density across the interface with  

 ݅௦௘ = ݅଴ ቀexp(ఈೌிோ் (௦ߟ − exp(ିఈ೎ிோ்  ௦)ቁ, (9)ߟ

 where the pre-factor ݅଴ (exchange current density) is  

 ݅଴ = ݇ܿ௘ఈೌܿ௦ఈೌ(ܿ௦,௠௔௫ − ܿ௦)ఈ೎ (10) 

 and the overpotential ߟ௦ is  

=:௦ߟ  Φ௦ − ߮௘ − ܷ଴ ൬ ௖ೞ௖ೞ,೘ೌೣ൰ (11) 

 Then for the first two equations of the model we have the following 
interface conditions  

௦ܒ  ⋅ ௦ܖ = ௘ܒ ⋅ ௦ܖ = ݅௦௘ = ࣤ(ܿ௘, ܿ௦, ߮௘, Φ௦, ܶ), ܠ ∈ Γ (12a) 

ା,௦ۼ  ⋅ ௦ܖ = ା,௘ۼ ⋅ ௦ܖ = ௜ೞ೐ி = ࣨ(ܿ௘, ܿ௦, ߮௘, Φ௦, ܶ), ܠ ∈ Γ (12b) 

 where ܖ௦  is the unit normal vector going out of the solid into the 
electrolyte and Γ  is the interface boundary. The thermal interface 
conditions are given by  
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ܛܖ௦ߣ−  ⋅ ∇ ௦ܶ + ܛܖ௘ߣ ⋅ ∇ ௘ܶ = 

 −݅௦௘ߟ௦ − ݅௦௘Π + ݅௦௘ ቀܿ௦ ப௎బப௖ ்݇,௦ + ܿ௘ பఓ೐ப௖ ௞೅,೐(ଵି௧శ)ி ቁ (13) 

 with ܠ ∈ Γ and Π being the Peltier coefficient:  

 Π = ௦ߚ)ܶ − (௘ߚ + ܶ ப(௎బାഋ೐ಷ )ப்  

where ߚ is the Seebek coefficient. 

Discretization 
 

  

   
Figure 3: Sample domain 
for a battery. The whole 
domain is Ω. The 
domains for the 
electrodes are Ω௦. The 
domain of the electrolyte 
is Ω௘ = Ω\Ω௦. 

Figure 4: Example of 
splitting of the nodes on 
the interface. The split 
nodes are in black and 
the others are in white. 

Figure 5: Support of a 
basis function on a split 
node. The interface is the 
dashed line. 

For time discretization we use the Backward Euler method. For space 
disretization we use the finite element method with P1 conforming 
elements. Since we have two discontinuous functions we mesh the whole 
region (Fig. 3), and we split the nodes on the interface (Fig. 4). The resulting 
nodes are treated as two separate entities and the support of the nodal basis 
functions associated with them is only on one side of the interface (Fig. 5). 
The interface conditions are treated as nonlinear Neumann type boundary 
conditions and accounted for naturally in the weak formulation of the 
problem. For the continuous temperature we just use the original nodes and 
the basis functions associated with it have support on both sides of the 
interface. Now let ݊ be the total number of vertices in the mesh, ݊௘ be the 
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vertices in the electrolyte and ݊௦ be the number of vertices in the solids. 
We denote the basis functions in the electrolyte with {߮௘,௜}௜ୀଵ௡೐ , in the 
particles with {߮௦,௜}௜ୀଵ௡ೞ  and the ones continuous across the interfaces with {߰௜}௜ୀଵ௡ , and the discretrized concentrations, potentials and temperature 
with  

௥,௛ܥ  = ∑ 	௡ೝ௝ୀଵ 		(ܠ)௥,௝߮(ݐ)௥,௜ܥ ௥ܲ,௛ = ∑ 	௡ೝ௝ୀଵ ௥ܲ,௜(ݐ)߮௥,௝(ܠ)		 ௛ܶ =∑ 	௡௝ୀଵ ௜ܶ(ݐ)߰௝(ܠ) 
where ݎ = ݁,  When we plug everything in the weak formulations of our .ݏ
system of equations we obtain the following system of nonlinear algebraic 
equations  

׬  	ஐೝ ஼ೝ,೓೗ ି஼ೝ,೓೗షభఛ ߮௥,௝dܠ − ׬ 	ஐೝ ܠ௥,௛߮௥,௝dۼ + ௥ߜ ׬ 	୻ ࣨ߮௥,௝dݏ = 0, (14a) 

׬−  	ஐೝ ௥,௝ܒ ⋅ ∇߮௥,௝dܠ + ௥ߜ ׬ 	୻ ࣤ߮௥,௝dݏ = 0, ݆ = 1,… , ݊௥ (14b) 

׬  	ஐ ߰௝ܿ௣ߩ ೓்೗ି ೓்೗షభఛ dܠ + ׬ 	ஐ ∇߰௝ ⋅ ∇ߣ) ௛ܶ௟)dܠ − ׬ 	ஐ ߰௝ మ఑|ܒ| dܠ − 

׬  	ஐ ߰௝ பఓப௖ శି೟శಷۼ) మ஽(ܒ dܠ − ׬ 	ஐ ∇(߰௝ ௛ܶ௟) ⋅ ቆܥ௛௟ பఓப௖ ௞೅೓்೗ ቀۼା − ௧శி ቁቇܒ dܠ − 

׬  	பஐ ߰௝ߙ( ௛ܶ௟ − ௘ܶ௫௧)dݏ − ׬ 	୻ ߰௝࣮dݏ = 0, ݆ = 1,… , n (14c) 

where we have  

௘,௛ۼ  = ൬ܦ௘∇ܥ௛௟ − ௧శி ௘,௛ܒ + ஽೐஼೓೗ ௞೅,೐೓்೗ ∇ ௛ܶ௟൰ (15) 

௦,௛ۼ  = ൬ܦ௦∇ܥ௛௟ + ஽ೞ஼೓೗ ௞೅,ೞ೓்೗ ∇ ௛ܶ௟൰ (16) 

௘,௛ܒ  = ൬ߢ (ଵି௧శ)ோ ೓்೗ி஼೓೗ ௛௟ܥ∇ ൰ − ∇ߢ) ௛ܲ௟ ) + ൬ߢ ோ୪୬஼೓೗ி ∇ ௛ܶ௟൰ (17) 
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௦,௛ܒ  = ∇ߪ) ௛ܲ௟ ) (18) 

and  

ߤ  = ൜ߤ଴ + ܴܶlnܿ, ܠ ∈ Ω௘ߤ௅௜ − ,଴ܷܨ ܠ ∈ Ω௦ ௥ߜ		 = ൜−1, ܠ ∈ Ω௘1, ܠ ∈ Ω௦  
The function ࣮ = ݅௦௘(ߟ௦ + Π) emerges from the weak formulation of the 
heat transfer equations. Note that most of the terms on the interface cancel 
out and ࣮ is what is left. 

We solve the nonlinear algebraic system with the Newton method. Since the 
Jacobi matrix is not symmetric we use BiCGSTAB with ILUT 
pre-conditioner for solving the linearized problem. For a complete 
derivation of the weak formulations as well as some of the derivatives for 
the Newton method, see [12]. 

Numerical experiments 

In this section we present numerical simulations in different settings. We 
show simulations of charging and discharging of a battery. We vary the 
strength of the applied current to show its effect on the temperature. We also 
vary the thermo-conductivity of the boundary. The total area of the particles 
in the anode and in the cathode is chosen in such a way that the maximum 
number of Lithium ions that can be stored in each electrode is the same. The 
parameters that we use in our numerical experiments are given in Table 1. 
We run our simulations for time ݐ = 2500s.  

Table 1: Values of the parameters used for the simulations 

ܦ   ቂୡ୫మୱ ቃ  ݐା  ߢ ൤ Scm൨ ߣ ቂ݇ ୛ୡ୫⋅୏ቃ  ߩ ቂ ୩୥ୡ୫యቃ c୮ ቂ ୎୩୥⋅୏ቃ ܿ௠௔௫ ቂ୫୭୪ୡ୫య
Electrol
yte  

7.5 ×10ି଻  0.363 0.002 1  0.01  0.001 2000   

Cathode 1.0 ×10ିଽ  0  0.038 1  0.01  0.0036  7000  0.023671 

Anode  3.9 ×10ିଵ଴  0  1.0  1 0.01  0.0029 7000  0.024681 



M. Taralov , V. Taralova, P. Popov, O. Iliev, A. Latz  and J. Zausch 157

Table 2: Values of the parameters for the interface conditions 

௖  ݇௔௡௢ௗ௘ߙ   ௔ߙ  ቂ ୅ୡ୫మቃ kୡୟ୲୦୭ୢୣ ቂ ୅ୡ୫మቃ Π௔௡௢ௗ௘  Π௖௔௧௛௢ௗ௘ 

0.5  0.5   0.002   0.2  -0.28   -0.38  

Finally for ܷ଴ we use (due to Fuller et al. [5])  

 ܷ଴ = −0.132 + 1.41݁ିଷ.ହଶୱ୭ୡ, ܠ ∈ Ω௔ 

 ܷ଴ = 4.06279 + 0.0677504tanh(−21.8502soc + 12.8268) −										0.045݁ି଻ଵ.଺ଽୱ୭ୡఴ − 0.105734 ቀ ଵ(଴଴ଵ଺଻ିୱ୭ୡ)బ.యళవఱళభ − 1.576ቁ +										0.01݁ିଶ଴଴(ୱ୭ୡି଴.ଵଽ), ܠ ∈ Ω௖ 
where soc = ܿ௦/ܿ௦,௠௔௫ . We have Ω = [0,5 × 10ିଷ] × [0,5 × 10ିଷ] and 
the units are in centimeters.  

Table 3: Initial values for the charging process 

   ܿ ቂ୫୭୪ୡ୫యቃ   Φ[V]   ܶ[K]  

 Electrolyte   0.001   0   300  
Cathode   0.0213   4   300  
Anode   0.0025   0.8596   300 

Table 4: Initial values for the discharging process 

   ܿ ቂ୫୭୪ୡ୫యቃ   Φ[V]   ܶ[K]  

 Electrolyte   0.001   0   300  
Cathode   0.0083   4.13   300  
Anode   0.016   0.011   300 

 The boundary conditions for the charging process are  

 Φ(ܠ, (ݐ = 0.8596ܸ, ܠ ∈ ∂Ω௔௡௢ௗ௘,௢௨௧௘௥ (20) 



On 2D Finite Element Simulation 158

ߪ  ப஍பܖ = ݅௔௣௣௟, ܠ ∈ ∂Ω௖௔௧௛௢ௗ௘,௢௨௧௘୰ (21) 

ߣ  ப்பܖ = ߙ × ( ௘ܶ௫௧ − ܶ), ܠ ∈ ∂Ω (22) 

 and for the discharging process are  

 Φ(ܠ, (ݐ = 0.011ܸ, ܠ ∈ ∂Ω௔௡௢ௗ௘,௢௨௧௘௥ (23) 

ߪ  ப஍பܖ = ݅௔௣௣௟ ቂ ஺௖௠మቃ , ܠ ∈ ∂Ω௖௔௧௛௢ௗ௘,௢௨௧௘௥ (24) 

ߣ  ப்பܖ = ߙ × ( ௘ܶ௫௧ − ܶ), ܠ ∈ ∂Ω (25) 

 ௘ܶ௫௧ = W/ܿ݉ଶK, 5 0} = ߙ is the ambient temperature. We also take ܭ300 × 10ି଺  W/ ܿ݉ଶ  K, 10ିହ  W/ ܿ݉ଶ  K, 3 × 10ିହ  W/ ܿ݉ଶ  K, 10ିସ 
W/ ܿ݉ଶ  K }  in each case in order to test different levels of thermal 
insulation for the battery and ݅௔௣௣௟ = {5 × 10ିସA/cmଶ, 10ିଷA/cmଶ} in 
order to observe what happens when we drive different currents through the 
battery. The rest of the boundary conditions have been already defined in 
1.2. For our problem the values of the temperature are practically uniform at 
each time step hence we show only its evolution and not its distribution in 
the battery. This is a consequence of the fast diffusion related to the scale of 
the problem. It is obvious from the figures that when driving stronger 
currents the temperature increases faster, as is expected. The behavior of the 
concentration is not influenced by the temperature in this test case since the 
temperature gradient is practically zero. Simulation snapshots for the 
concentration profile at ݐ = 2000  seconds are shown for charge and 
discharge for ߙ = 0 in Figure 8a and Figure 8b respectively. There are two 
scales - one for the concentration in the electrolyte and one for the 
concentration in the active particles. We observe that in contrast to the 
temperature, the concentration has spatial variation on the same time step. 
This means that it contributes to the heat generation.  
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(a) ݅௔௣௣௟ = 10ିଷ A/ܿ݉ଶ (b) ݅௔௣௣௟ = 5 × 10ିସ A/ܿ݉ଶ 
Figure 6 Evolution of the temperature in a battery cell during discharge for 2500s 
for different values of ߙ 

 

 
(a) ݅௔௣௣௟ = 10ିଷ A/ܿ݉ଶ (b) ݅௔௣௣௟ = 5 × 10ିସ A/ܿ݉ଶ 
Figure 7 Evolution of the temperature in a battery cell during charge for 2500s for 
different values of ߙ 

 
(a) Charging (b) Discharging 
Figure 8 Spatial profile of the lithium concentration (mol/ܿ݉ଶ) in a battery cell 
after 2000s for applied current density 10ିଷ A/ܿ݉ଶ 
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Conclusion 

We have successfully discretized the problem and implemented in C++ 
code a solver in a two dimensional setting. The results obtained from the 
simulations seem physically correct. The node splitting technique that we 
used for the finite element method allowed us to correctly simulate the 
discontinuous quantities. A natural extension of our solver would be to 
move it to a realistic three dimensional setting. In its current form the 
geometry does not allow to have the complicated structures observed in real 
batteries. If the model is extended to include the degradation processes for 
the particles, which may include changing their geometry, the mesh should 
allow for modification.  
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Introduction 

The propagation of high-intensity ultrashort light pulses (HULP) in 
nonlinear bulk medium is a challenging problem that is not yet fully 
investigated and understood. The early studies reveal broadening and 
splitting of the pulse at positive group velocity dispersion (GVD) [1, 2, 3, 
4], while existence of spatiotemporal solitons (STSs) is predicted at 
negative GVD [5]. That understanding has been changed with the discovery 
of self-compression (SC) of HULP in various media (atomic and molecular 
gases and fused silica) at positive GVD [6, 7]. In fact, the SC is part of an 
entire rearrangement of the pulse that can be summarized as [7]: 
self-focusing in the transversal direction (space) leading to formation of a 
light filament; SC in the longitudinal direction (time); increasing of the peak 
intensity; improvement of the spatio-temporal pulse shape; and stable 
propagation over given distance. The simultaneous self-focusing and SC 
represents complete space-time trapping of the light matter, demonstrated 
for the first time in [7]. The experimental and theoretical studies revealed 
the great potential of the SC [6]-[15]. Efficient generation of few-cycle 
high-intensity pulses due to the SC has been achieved experimentally [9] 
whereas the theoretical studies predict generation of even shorter pulses - 
single-cycle [11] and even sub-cycle high-intensity pulses [12]. The 
intensive work in the field of propagation equations and physical models 
[14, 15] gave strong contribution in the understanding of highly 
complicated dynamics of HULP. 

The SC reverses the natural trend of the pulse to broaden in time and the 
problem of stable spatiotemporal propagation of HULP can be considered 
on that ground. The SC is a resultant effect from the common action of a 
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number of individual processes. The minimal set of processes at normal 
dispersion at which SC can be observed includes GVD, diffraction and 
cubic nonlinearity within (3+1)D nonlinear Schrödinger equation [16, 17]. 
The physical mechanism of SC in that case has been determined as an 
effective shortening of the pulse duration (full width at half maximum 
characterization) at a rapid increase of the peak intensity due to 
self-focusing, which strongly competes the dispersion broadening at low 
GVD [16]. However, no signature of pulse stabilization has been found 
within that simple physics. 

The problem of stable propagation of optical pulses and, particularly -- 
generation of STS, is not yet fully understood although the marked progress 
in that field [18, 19]. One may distinguish two main approaches to the 
problem: solving the problem at abstract conditions [19, 20] and at realistic 
physical conditions [21, 22]. In the first case, stable pulse propagation and 
existence of STS is predicted within given range of parameters of the 
propagation equation. There is no guarantee, however, that such set of 
parameters takes place in a real medium. Also, such works are based on the 
analysis of propagation equations, only, assuming no change of the building 
particles of the medium due to ionization, as for the case of HULP. In the 
second case, stable pulse propagation has been found assuming that the 
shape of the initial pulse remains constant and only the parameters of the 
shape may change. The assumption of constant pulse shape along the whole 
propagation distance is a strong restriction on the pulse evolution that, as the 
experiments show, does not take place in reality. Instead, the shape of the 
pulse may strongly change leading to formation of highly complicated 
structures. In the more simple cases, it may split into two or more well 
resolved individual pulses. 

In this work, the problem of stable propagation of high-intensity ultrashort 
laser pulses in a nonlinear bulk medium is investigated without any 
preliminary constrains on the pulse evolution. Thus, the pulse propagation 
is ruled solely by the underlying physical processes. Finally, the problem is 
solved at realistic physical conditions. General stabilization of the pulse 
shape and the relevant parameters over given propagation range is found. 
To the best of our knowledge, such stabilization is found for the first time 
within that realistic approach. 
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Physical model and numerical method of solution 

Our study is based on the physical model developed in [14]. The 
propagation equation is (3+1)D nonlinear envelope equation (NEE) for the 
field amplitude ܣ (in standard notations [23, 14])  

 ப஺ப௭ = ୧ଶ௞బ ෠ܶିଵ∇ଶୄܣ + iܦ෡ܣ + i ఠబ௖ ݊ଶ ෠ܶ|ܣ|ଶܣ − i ఠబ௖ ݊ସ ෠ܶ|ܣ|ସܣ 

 		−i ௞బଶ௡బమఘ೎ ෠ܶିଵܣߩ − ఙଶ ܣߩ − ఉ౉ು಺(஺)ଶ  (1) ,ܣ

where the non-instantaneous effects in the nonlinearity are neglected due to 
the fast electronic response of the atomic medium (gaseous argon) 
considered here. The physical processes involved in the pulse propagation 
can be put into: linear processes, diffraction and dispersion (the first and the 
second terms, respectively, at the right hand side of the equation); nonlinear 
processes in neutrals, cubic and quintic nonlinearity of neutral particles 
(third and the forth terms, respectively); processes due to ionization, 
ionization modification of the refractive index, collision ionization by 
inverse bremsstrahlung and multi-photon ionization (fifth, sixth and the 
seventh terms, respectively). The material parameters in the NEE, 
particularly those associated with ionization, are field-dependent functions, 
which also requires a realistic self-consistent approach to the problem. 

The electron number density ߩ is described by the kinetic equation (in 
standard notations) [14]  

 பఘப௧ = ௡ߩ)(ܫ)ܹ − (ߩ + ఙ(ఠబ)ூ೛ ߩଶ|ܣ| −  (2) (ߩ)݂

where ߪ is inverse bremsstrahlung cross section, ݂(ߩ) =  ଶ is plasmaߩߙ
recombination term. The ionization rate ܹ(ܫ) is described by the simple 
multiphoton formula [14]  

 ܹ =  ௞, (3)ܫ௞ߪ

where ߪ௞ is the ݇-photon ionization coefficient, ܫ is the intensity and ݇ is 
the number of photons to directly ionize the atoms of the propagation 
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medium from their ground state. If necessary, the ionization rate can be 
refined using, e.g., Perelomov-Popov-Terent'ev theory [24]. 

In this work, the physical model of [14] is further developed including the 
influence of ionization on GVD, predicted in [25]. The total GVD of the 
medium ߚ(ଶ) can thus be presented as a sum of GVD of neutrals ߚ଴(ଶ) and 
GVD of plasma ߚ௜(ଶ), ߚ(ଶ) = ଴(ଶ)ߚ +  ௜(ଶ). The ionization contribution toߚ
the GVD is given by [25]  

௜(ଶ)ߚ  = − ௘మఒయఘଶగమ௠೐௖ర൬ଵି೐మഊమഐഏ೘೐೎మ൰యమ	, (4) 

where ߣ is the wavelength, ݁, ݉௘, and ܿ are the charge and the mass of 
electron, and the velocity of light, respectively. The ionization contribution 
to the GVD accomplishes the physical model because the negative 
contribution of ionization to the GVD is only the process that acts directly 
against the positive GVD of neutrals. In this way, to each strong physical 
process in the model corresponds at least one other strong physical process 
acting in the opposite direction. The latter, in our opinion, is important for 
the more complete understanding of the pulse behavior, including the 
problem of stable pulse propagation. In view of that, the above model will 
be put into a minimal sufficient model. 

The main difficulties in the solution of the problem come from the 
propagation Eq.(1). It is (3+1)-dimensional highly nonlinear equation. At 
first glance, it is of cubic-quintic (߯(ଷ) − ߯(ହ))  type but the actual 
nonlinearity is much higher due to the multiphoton ionization term. To 
ionize the argon atom, having 15.76eV ionization potential, simultaneous 
absorption of eleven photons from the electromagnetic field of 800nm 
central wavelength (considered here) is required. Direct (non-resonant) 
eleven-photon absorption is ruled by ߯(ଶଵ)-nonlinearity that stays behind 
the multi-photon ionization coefficient ߚ(୑୔୍) . Thus, the leading 
nonlinearity in Eq.(1) is 21st, assuming perturb field-matter interaction. 

The pulse propagation rests on self-consistent numerical solution of Eqs. 
(1)-(4) at the following pulse and medium parameters: initial pulse of 
Gaussian shape in space and in time, having 0.5mJ pulse energy, 150fs 
pulse duration (full width at half maximum), 300ߤm transversal width 
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(beam diameter), and 800nm central wave length, and gaseous argon at 
18atm pressure as propagation medium. 

The numerical method of solution of the problem can be shortly described 
by the following. We split the original Eq. (1) twice. In the beginning, we 
split it into two ݖ-evolutionary equations by physical processes (see, e.g., 
[26]). On the next step, following [27], we apply a coordinate splitting to the 
resultant equations by using the Crank-Nicolson difference scheme direct in 
complex arithmetic combining it with inner iterations with respect to the 
nonlinear terms. We use 512 and 1024 grid nodes in the transversal 
direction and time, respectively, and the longitudinal step along the 
propagation direction ݖ is 5 × 10ି଻ dimensionless units. We have found 
that such a small value of propagation step is crucial in order to achieve both 
independence of the numerical results on the spatial and temporal steps as 
well as the stability and fast convergence of the inner iterations with respect 
to the evolutionary ݖ-step. We have met just one other work in this field 
where such independence is declared [19]. On the other hand, the small size 
of the grid dramatically increases the computation time. At the specified 
conditions, a single numerical run takes about one week on our computer. 
To make the problem tractable on a standard PC, we have chosen relatively 
high gas pressure (18atm) in comparison to the typical values of argon gas 
pressure for most of the simulations and/or experiments. The stronger 
self-focusing at that high gas pressure ensures a more rapid passage from 
the initial stage of propagation of the pulse to the stage of stable pulse 
propagation. It substantially reduces the computation time. Such high 
pressure case, however, leads to a more rapid growth of the peak intensity 
(due to higher nonlinearity of the medium) and, consequently - to a rapid 
growth of free electrons once the pulse intensity reaches the level of 
substantial ionization. Rapid growth of free electrons may destabilize the 
pulse as they strongly and non-instantaneously affect the pulse behavior. 

Results and discussions 

The influence of ionization on the material parameters, more particularly - 
the GVD, as well as on the whole pulse propagation dynamics of HULP 
plays substantial role in our model. Recently, filamentation without 
ionization has been proposed as a result of a dynamic balance between the 
focusing (߯(ଷ), ߯(଻) …) and defocusing (߯(ହ), ߯(ଽ) …) nonlinearities [13]. 
Although the possibility of formation of stable light filament without 
ionization is well illustrated and probably takes place at long distance 
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propagation, the whole phenomenology that accompanies the filamentation, 
including strong SC of the pulse and, eventually, stable propagation, is not 
demonstrated within such a mechanism. The evolution of the electron 
number density along the propagation distance and the respective change of 
the GVD at the specified pulse and medium parameters are shown in 
Figures 1 and 2, respectively. The ionization at the initial stage of 
propagation is negligible, Figure 1, due to the relatively low peak intensity 
of the pulse. The pulse intensity grows up with the propagation due to 
self-focusing of the pulse and rapid growth of free electrons (in agreement 
with the high nonlinearity of the ionization) takes place at around 1 ×10ଵଷW/cmଶ for the case of argon atoms.  

 
 
Figure 1: Evolution of the electron number density versus propagation distance (left 
panel).  
Figure 2: 	Evolution of the total GVD of the medium (neutrals plus plasma 
contribution) versus propagation distance (right panel). 

The dissipation of the pulse energy due to ionization leads to stabilization of 
the peak intensity around 4.5 × 10ଵଷW/cmଶ for about 3cm of propagation 
distance, between 13.7cm and 16.7cm from the beginning of the 
propagation. The stabilization of the peak intensity from “above” due to 
ionization plays substantial role in the entire stabilization of the pulse. The 
maximal value of the electron number density reaches 5.3 × 10ଵ଻cmିଷ, 
Figure 1. It is substantially higher in comparison to other simulations [14] 
and can be attributed to the much higher pressure (number density of 
neutrals) of the gaseous medium considered here. 

Ionization contribution to the GVD results in a rapid drop of the total GVD, 
Figure 2, once the ionization rate become substantial - around and above 3 × 10ଵଷW/cmଶ  of peak intensity. At large enough electron numbers 
density, the total GVD may become negative. Such effect has been 
predicted in principle at given level of ionization and has been called 
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ionization induced inversion (ܫଷ) of the GVD [25]. Here, the ܫଷ created by 
the pulse itself is proved for the first time at realistic propagation conditions. 
It can be considered as a new self-action effect because the ionization 
created by the pulse acts on the pulse behavior by means of ionization 
contribution to the GVD. The GVD of the medium changes from the initial 
value of +3.6fsଶ/cm to −0.8fsଶ/cm (the minimal GVD found here) as a 
result of the ionization. The inverted GVD is of the same order of 
magnitude as the initial one. The possibility to change and even to invert the 
GVD by ionization offers, in principle, a new way to control the pulse 
propagation. However, as our calculations show (putting zero all orders of 
dispersion of neutrals in the NEE and neglecting the ionization contribution 
to the GVD), neither the magnitude of the initial positive GVD of the 
medium, nor the magnitude of the inverted negative GVD are sufficient to 
change substantially the pulse propagation dynamics over the (laboratory 
scale) distances studied here. The results obtained when all dispersion 
contributions (including that one of ionization) are totally excluded differ 
insubstantially from those presented here, where all specified quantities are 
taken into account. This is because the propagation distances are 
substantially shorter than the dispersion length over which the GVD alone 
may provide substantial effect. The latter, however, does not make the 
problem of stable propagation less important because the pulse may 
strongly change its shape and parameters over such short distances due to 
the action of nonlinear processes. 

Increasing the peak intensity by self-focusing due to ߯(ଷ) -nonlinearity 
results in growing contribution of ߯(ହ)  (defocusing) nonlinearity. Both 
processes (in fact, the contribution of all orders of nonlinearity of opposite 
sign [28]), tend to balance each other. At given stage of pulse evolution, a 
balance between self-focusing due to ߯(ଷ)-nonlinearity (and higher orders 
of self-focusing nonlinear terms), from one side, and defocusing due to the 
common action of diffraction (the most universal defocusing effect but not 
dominating here), ߯(ହ) -nonlinearity (and higher orders of defocusing 
nonlinearities), and ionization, takes place. It leads to formation of stable 
light filament. The contribution of higher orders of nonlinearities, together 
with the ionization, as a possible mechanism of SC and spatiotemporal 
stabilization of the pulses, has been proposed in [7]. In our case, the 
stabilization of the transversal beam profile, as a whole, and the bean 
diameter within the specified propagation range is shown in Figure 3. The 
same results also illustrate the stabilization of the peak intensity within that 
propagation range. The peak intensity is clamped around 4.5 ×10ଵଷW/cmଶ due to the ionization losses and has less than 3% variations in  
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Figure 3: Stabilization of the spatial profile and beam diameter of the pulse between 
13.9cm and 15.2cm of the propagation distance. 

magnitude between 13.7cm and 16.7cm. The stabilization of the pulse in the 
transversal direction (beam diameter) as well as with respect to the peak 
intensity helps to stabilize the pulse in time. The evolution of the pulse in 
time is shown in Figure 4. As can be seen, the temporal profile of the pulse 
practically remains unchanged between 13.9cm and 15.2cm of the 
propagation distance. The profile of the pulse in time has well expressed 
asymmetry - the trailing edge is substantially shorter than the leading edge, 
which is an indication of self-steepening. The time duration also shows 
signature of stabilization although it does not remain constant - the SC of 
the pulse still continue within the specified range (the pulse duration 
decreases from 29fs at the beginning to 18fs at the end of the range) but 
much more slowly than outside that range. As a whole, the pulse undergoes 
more than 8 times time compression - from 150fs of the initial pulse to 18fs 
of the shortest single pulse. At longer distances, a second pulse starts 
appearing at the trailing edge of the main pulse - see the time profile at ݖ = 16.6cm in Figure 4. Such deterioration of the pulse is irreversible and, 
due to that reason, the results at longer distances are not shown. The 
spatiotemporal evolution of the pulse found here is in agreement with the 
experimental observations [7]. In order to get entire representation about the 
spatiotemporal structure of the pulse, the latter is shown in Figure 5 at the 
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same propagation positions, as that of the temporal profiles in Figure 4. As 
can be seen, we have well expressed clean single pulse within the range of 
stabilization with no sub-pulses or other strong field structures 
superimposed on the pulse. 

Figure 4: Evolution of the temporal profile of the pulse with the propagation and 
stabilization between 13.9 cm and 15.2 cm of the propagation distance. 

One may distinguish three main cases in the spatiotemporal dynamics of 
high-intensity ultrashort pulses: (i), formation of stable light filament due to 
a balance of self-focusing and self-defocusing effects, i.e., transversal 
stabilization of the pulse, only; (ii) formation of stable light filament 
accompanying by SC of the pulse; and (iii) formation of stable light 
filament with SC of the pulse and stable propagation of the self-compressed 
pulse over given distance. The last case, namely, is subject to the present 
studies. The formation of stable light filament is a necessary condition for 
the entire stabilization of the pulse. However, it plays only a secondary role 
in the general stabilization of the pulse because filamentation may take 
place without [29, 30] or with [6]-[11] SC and stabilization [7] of the pulse 
in the time domain. The main point in the entire pulse stabilization problem 
is the stabilization in the time domain. The stabilization of the pulse in time 
is the most complicated part of the problem because it strongly depends on 
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the stabilization of the pulse with respect to the other two parameters. Based 
on above result, we may conclude that a general stabilization of the pulse 
takes place over propagation distance of length between 1.5cm and 3cm for 
the different pulse parameters. Such conclusion is additionally enforced if 
we compare the behavior of the pulse predicted by the NLSE [16, 17]. In 
that case, the pulse immediately starts splitting after the peak intensity 
reaches maximum and none of the pulse parameters show stabilization. It 
means that the above-cubic nonlinearities and ionization play substantial 
role not only in the pulse compression but also in the stabilization of the 
pulse parameters. Recently, cubic-quintic STS stabilized by ionization over 50ߤm propagation distance was reported [21] but neither the temporal 
profile nor stable evolution of the pulse in time were presented. Instead, the 
stability of the spatial profile was only shown.  

 

Figure 5: Evolution of the spatiotemporal structure of the pulse with the 
propagation. 

At the typical conditions of HULP, the pulse develops in strongly nonlinear 
regime throughout the propagation distance, i.e., ܮ୒୐ = ୈ୊ܮ =  ୈୗ are nonlinear, diffraction and dispersion lengths, whoseܮ ୈ୊, andܮ ,୒୐ܮ ୈୗ, whereܮ
values, determined on the base of the pulse parameters in the region of 
stabilization are 0.16cm, 0.43cm, and 663cm, respectively. It is an 
indication that the linear processes, dispersion and diffraction, play only a 
secondary role in the SC of HULP and formation of stable pulse. Instead, a 
number of nonlinear processes start playing the main role in that case. Thus, 
the strong difference between the characteristic lengths in our case is not a 
big problem for the pulse stabilization because the main balance mechanism 
results from the interplay between strong nonlinear processes. Although the 
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distance of pulse stabilization is shorter than the dispersion length, it 
substantially exceeds the nonlinear length ܮ୒୐, determined by the cubic 
nonlinearity, which is only 0.16cm. The stabilization of the pulse over 
laboratory scale distances ܮ, in our case ܮ ≪  ୈୗ, must be referred to aܮ
balance between nonlinear processes. It seems not justified to use the linear 
characteristics lengths ܮୈ୊, and ܮୈୗ as a criterion of stability of HULP if 
much more intense nonlinear processes may cause strong modification of 
the pulse over much shorter distances than ܮୈ୊ and ܮୈୗ. 

Conclusions 

In conclusion, the spatiotemporal dynamics of high-intensity ultrashort 
light pulses is studied numerically solving self-consistently the propagation 
and the material equations at realistic physical conditions. At proper pulse 
and material parameters, self-compression and stable propagation of the 
compressed pulse is found. The stabilization of the pulse results mainly 
from a balance between competitive nonlinear optical processes. Inversion 
of the group velocity dispersion due to ionization from a positive to a 
negative value is found for the first time at real propagation regime.  
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Preliminaries 

The positive integer solutions of the Diophantine equation ݔଵଶ + ଶଶݔ =  ,ଷଶݔ
referred to as Pythagorean triples, or at least some of them, have been 
known since the time of ancient Babylon and even earlier [11]. Perhaps the 
most famous method for generating primitive triples, i.e., those formed by 
relatively prime ݔ௞ , is the one due to Euclid, based on the rational 
parametrization of the unit circle  

ଵݔ  = ݉ଶ − ݊ଶ,				ݔଶ = ଷݔ				,2݉݊ = ݉ଶ + ݊ଶ (1) 

where ݉,݊  are relatively prime integers of different parity. The ratio ߬ = ݊/݉ provides the Euler trigonometric substitution for ॺଵ. On the other 
hand, interpreting Pythagorean triples as integer points on the future light 
cone allows for mapping one such point to another by means of 
integer-valued Lorentz transformations, i.e., with the aid of the modular 
group PSLଶ(ℤ) ≅ SOଶ,ଵା (ℤ). This observation was first used by Barning [3], 
who managed to find a minimal set of matrices in the form  
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ܮ  = ൮1 −2 22 −1 22 −2 3 ൲ ,				ܷ = ൮1 2 22 1 22 2 3 ൲,				 
 ܴ = ൮−1 2 2−2 1 2−2 2 3 ൲ (2) 

known as the Hall matrices [9], which generate all primitive Pythagorean 
triples without repetition acting on the Egyptian vector ݒ = (3, 4, 5)௧. As a 
consequence, we have a ternary branching tree of Pythagorean triples [2, 4], 
which represents the orbit of ݒ with respect to the subgroup of Oଶ,ଵ(ℤ) 
generated by the matrices (2). As it has been shown in [16] with an 
alternative choice of generators in the modular group PSLଶ(ℤ) , this 
construction is equivalent to the well-known Euclid's method. One major 
advantage of the group-theoretic approach is that it allows for natural 
generalizations. For example, in the case of quadruples ݔଵଶ + ଶଶݔ + ଷଶݔ =  ସଶݔ
the set of integer points on the future light cone in Minkowski space ℝଷ,ଵ is 
preserved by the action of the group SOଷ,ଵା (ℤ) and the latter may be used to 
generate solutions starting from certain ``base point''. This idea was used in 
[12], where it has been shown that all primitive Pythagorean quadruples can 
be obtained from the orbits of the elements  

ଵݒ  = (1,0,0,1)௧,				ݒଶ = (0,1,0,1)௧,				ݒଷ = (0,0,1,1)௧ 
with respect to the subgroup of SOଷ,ଵା (ℤ) generated by the six matrices  

ଵܪ  = ۈۉ
1−ۇ −2 0 22 1 0 −20 0 1 0−2 −2 0 3 ۋی

ۊ , ଶܪ = ۈۉ
1ۇ 0 −2 20 1 0 02 0 −1 22 0 −2 ۋی3

 	,ۊ

ଷܪ																																							 = ۈۉ
1ۇ 0 0 00 −1 −2 20 2 1 −20 −2 −2 3 ۋی

ۊ
 (3) 
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ସܪ = ۈۉ
1ۇ 0 0 00 −1 2 20 −2 1 20 −2 2 3 ۋی

ହܪ				,ۊ = ۈۉ
ۇ 1 0 2 −20 1 0 0−2 0 −1 2−2 0 −2 3 ۋی

 			,ۊ

଺ܪ	 = ۈۉ
1−ۇ 2 0 2−2 1 0 20 0 1 0−2 2 0 ۋی3

ۊ ⋅ 
Here we suggest a slight modification of this method. Namely, we exploit 
the idea of vector parametrization for the special orthogonal and 
pseudo-orthogonal groups (of dimension three and six), briefly described in 
the next section. This construction allows for simplicity of notation as well 
as more efficient computations, especially in the case of powers of the same 
matrix that occurs regularly in the procedure. At the end we also consider 
pairs of Gaussian integers at equal distance from the origin. This second 
type of Pythagorean quadruples can be realized by means of a similar 
construction involving O(2,2) -like transformations. The non-trivial 
solutions here may be identified with convex quadrangles with integer 
sides, having two opposite right angles. Some of them also have an integer 
diagonal and thus correspond to pairs of Pythagorean triangles with glued 
hypotenuses [7]. An interesting physical interpretation of this setting would 
be an infinite plane crystal with quadratic lattice formed by charges of equal 
magnitude. If we introduce a reference frame centered at a vertex, the test 
charge at the origin would experience Coulomb forces of the same intensity 
from charges, described by the coordinates ݔଵ + iݔଶ and ݔଷ + iݔସ, if they 
satisfy the condition ݔଵଶ + ଶଶݔ = ଷଶݔ +  .ସଶݔ

Quaternions and Vector-Parameters 

We choose a basis in ०२(2) in the form  

 ݅ = ൭i 	00 −݅൱ ,				݆ = ൭ 0 	1−1 	0൱ ,				݇ = ൭ 0 	ii 	0൱ 

and introduce the set of unit quaternions as  
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ߞ  = ଴ߞ + ଵ݅ߞ + ଶ݆ߞ + ଶ|ߞ|				,ଷ݇ߞ = ఓߞ				,1 ∈ ℝ 

with norm given by  

ଶ|	ߞ	|  = ଵଶ t(ߞߞ)ݎ̅ = d݁(ߞ)ݐ = ∑ 	ଷఓୀ଴  ఓଶߞ

where ̅ߞ = ଴ߞ − ଵ݅ߞ − ଶ݆ߞ −  ,ଷ݇ stands for the conjugate quaternion. Nextߞ
we associate with each vector ݔ ∈ ℝଷ a skew-hermitian matrix by the rule  

ݔ  → Ψ = ଵ݅ݔ + ଶ݆ݔ +  ଷ݇ݔ

where ݔ௜ are the Cartesian coordinates of ݔ in the default basis and let SU(2) act in its Lie algebra via the adjoint representation A݀఍:	Ψ →  ̅,ߞ	Ψ	ߞ
which can be viewed as a norm-preserving automorphism of ℝଷ. It is not 
difficult to obtain also the orthogonal matrix transforming the 
corresponding Cartesian coordinates of three-dimensional vectors  

 ℛ(ߞ) = ଴ଶߞ) − ાଶ)ℐ + 2ા⊗ ા௧ +  ଴ા× (4)ߞ2

where ા ∈ ℝଷ stands for the imaginary, or vector part of the quaternion ߞ = ,଴ߞ) ા) and ߞ଴  is referred to as its real or scalar part. The famous 
Rodrigues' rotation formula follows directly with the substitution  

଴ߞ  = cos ఝଶ ,				ા = sin ఝଶ 	݊,				(݊, ݊) = 1. 
Alternatively, we may project ߞ → ܿ = ఍఍బ = tan ቀఝଶቁ 	݊  and express the 
matrix entries of (4) as rational functions of the vector-parameter ܿ  

 ℛ(ܿ) = (ଵି௖మ)	ℐାଶ	௖⊗௖೟ାଶ	௖×ଵା௖మ ⋅ (5) 

Quaternion multiplication then gives the composition law for the 
vector-parameters of two successive rotations ℛ(〈ܿଶ, ܿଵ〉) = ℛ(ܿଶ)	ℛ(ܿଵ) 
in the form  

 〈ܿଶ, ܿଵ〉 = ௖మା௖భା௖మ×௖భଵି(௖మ,௖భ)  (6) 
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The latter constitutes a representation since it is associative and satisfies  

 〈	ܿ, 0	〉 = 〈	0, ܿ	〉 = ܿ,				〈ܿ, −ܿ〉 = 0. 
Some of the advantages of the vector parametrization involve exact rational 
expressions for the rotation matrix entries, less calculations for the 
compositions of group elements and correct description of the orthogonal 
group's topology SO(3) ≅ ℝℙଷ. 

Equivalently, in ०य़ଶ(ℝ) one has the split quaternion basis [1, 5]  

 ଓ̃ = ൭ 0 	11 	0൱,				ଔ̃ = ൭ 1 00 −1൱,				k෨ = ൭ 0 	1−1 	0൱ 

which can be mapped to ०२(1,1) via the isometry ݖ → i	 ௭ି୧௭ା୧	as  

 ଓ̃	′ = ൭0 	11 	0൱,				ȷ̃	′ = ൭ 0 	i−i 	0൱,				 ෨݇ 	′ = ൭ 	i 	00 	−i൱ ⋅ 
Expansion in the above bases allows for an explicit isometry ℝଶ,ଵ →०य़ଶ(ℝ):	ݔ → Ψ = ଵଓ̃ݔ + ଶଔ̃ݔ + ଷݔ ෨݇, ݔ ⋅ ݔ = −detΨ and the projection onto SOା(2,1)  is given by the adjoint action of the group of unit split 
quaternions SLଶ(ℝ) ≅ SU(1,1) in its Lie algebra A݀	఍:	Ψ →  which ̅,ߞ	Ψ	ߞ
is a norm preserving automorphism. Using the familiar notation ߞ ,଴ߞ)= ા), ߞ ̅ = ,଴ߞ) −ા), ા ∈ ℝଶ,ଵ we see that the Cartesian coordinates of ݔ 
are transformed by the pseudo-orthogonal matrix  

 Λ(ߞ) = ଴ଶߞ) + ાଶ)ℐ − 2	ા ⊗ ા	ߟ +  ા⅄ (7)	଴ߞ	2

where ߟ = d݅ܽ݃(1,1, −1)  is the flat metric in ℝଶ,ଵ , (ા ⊗ ા)௝௜	ߟ ⅄௞ (summation over repeated indices is assumed) and ાߞ௜ߞ	௝௞ߟ= =  ા×, so	ߟ
that we also denote ા⅄૆ = ા⅄	૆ . Furthermore, we may introduce the 
hyperbolic vector-parameter in the usual manner ܿ = ા఍బ and write (7) as  

 Λ(ܿ) = (ଵା௖మ)ℐିଶ	௖⊗ఎ	௖ାଶ	௖⅄ଵି௖మ ⋅ (8) 
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The inverse transformation yields  

±଴ߞ  = ±(1 − ܿଶ)ିభమ,				ા± =  ܿ±଴ߞ

where the two signs correspond to different sheets of the spin cover. 

From the multiplication rule of split quaternions we easily derive the 
composition law of hyperbolic vector parameters in the form  

 〈ܿଶ, ܿଵ〉 = ௖మା௖భା௖మ⅄௖భଵା௖మ⋅௖భ ⋅ (9) 

It is easy to see that this construction constitutes a representation of SO(2,1), which has the obvious advantages we already discussed. 

In the 3 + 1 dimensional case we exploit a Mat(2, ℂ) representation of 
four-vectors, which allows for expressing their pseudo-norm as a 
determinant  

ݔ  ∈ ℝଷ,ଵ 	→ 	Ψ = ൭ݔସ + ଵݔ ଷݔ − iݔଶݔଷ + iݔଶ ସݔ − ଵݔ ൱ 

ݔ  ⋅ 	ݔ = 	−detΨ = ଵଶݔ + ଶଶݔ + ଷଶݔ −  .ସଶݔ
The standard matrix realization of the Lorentz group can be obtained from 
the norm-preserving action of SLଶ(ℂ):Ψ	 → றߞ ற, whereߞ	Ψ	ߞ	 = ,଴̅ߞ) −ાത) 
stands for the Hermitian conjugate of the unit biquaternion ߞ = ,଴ߞ) ા) ∈SLଶ(ℂ) . Finally, we may project dividing by ߞ଴  and thus obtain the 
complex vector parameter ܿ = ા఍బ , which allows for writing the 
corresponding pseudo-orthogonal matrix transforming the Cartesian 
coordinates of ݔ in a block form as (see [8])  
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Λ(ܿ) = 

1	൮ߣ − |	ܿ	|ଶ + ܿ ⊗ ܿ̅௧ + ܿ̅ ⊗ ܿ௧ + (ܿ + ܿ̅)× 				ܿ − ܿ̅ + cത × ܿ	(ܿ̅ − ܿ + ܿ̅ × ܿ)௧ 				1 + |	ܿ	|ଶ ൲ 

where we denote ߣ = |1 + ܿଶ|ିଵ and omit the factor ℐ in the upper-left 
block in order to keep notations simple. 

Finally, we investigate the case SO(2,2), which is more or less similar [10]. 
Considering the spin cover U(1,1) ⊗ U(1,1) → SO(2,2) we obtain  

 Λ(ܿ, ܿ̃) =
ሚߣ ൮1 + ܿ ⋅ ܿ̃ − ܿ ⊗ ̃ܿ	ߟ − ܿ̃ ⊗ ܿ	ߟ + (ܿ + c෤)⅄ 		ܿ − ܿ̃ − ܿ⅄c෤	(ܿ − ܿ̃ + ܿ⅄c෤)௧ 		1 − ܿ ⋅ ܿ̃ ൲ 

  (10) 

with ܿ = ા఍బ , ܿ̃ = ஖෨఍෨బ  and ߣሚ = 1/ඥ(1 − ܿଶ)(1 − ܿ̃ଶ) . One may also 

determine the vector-parameters from the matrix Λ෩ = Λ − ෤ߟ ෤, whereߟ	Λ௧	෤ߟ = d݅ܽ݃(1,1, −1,−1), as  

 ܿ = ଵ୲௥ஃۈۉ
Λ෩ଵସۇ − Λ෩ଷଶΛ෩ଵଷ + Λ෩ଶସΛ෩ଶଵ + Λ෩ଷସۋی

				,ۊ ܿ̃ = − ଵ୲௥ஃቌΛ෩ଵସ + Λ෩ଷଶΛ෩ଶସ − Λ෩ଵଷΛ෩ଷସ − Λ෩ଶଵቍ ⋅ (11) 

Pythagorean Spinors 

As pointed out in [12, 13, 18], the relation between Pythagorean triples and 
Gaussian integers ℤ[i] = ݖ} = ݉ + i݊ ∈ ℂ	; 	݉, ݊ ∈ ℤ} , given by the 
Euclid's parametrization ݔଵ = ℜ(ݖଶ), ݔଶ = ℑ(ݖଶ), ݔଷ = ଶ|ݖ| , providing 
also a link to rational points on ॺଵ via Euler's trigonometric substitution  
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 ௫మ௫య = sin߮ = ଶఛଵାఛమ , ௫భ௫య = cos߮ = ଵିఛమଵାఛమ , ߬ = tan ఝଶ = ௫మ௫భା௫య 
is actually a spin correspondence. This becomes more apparent if we map 
integer null vectors ݔ to the subset of singular matrices in ०य़ଶ(ℤ) as  

ݔ  → Ψ = ൭ݔଶ ଵݔ + ଵݔଷݔ − ଷݔ ଶݔ− ൱ , |Ψ|ଶ = −detΨ = ଵଶݔ + ଶଶݔ − ଷଶݔ = 0. 
This property remains invariant under the adjoint action of unimodular 
transformations ߞ ∈ SLଶ±(ℝ) , since detߞΨ	ିߞଵ = detΨ . Thus, we may 
obtain the subgroup of Oଶ,ଵ(ℤ)  transformations (2). Euclid's 
parametrization, on the other hand, provides the alternative representation  

 Ψ = 2൭݉݊ 		݉ଶ−݊ଶ −݉݊൱ = 2ቆ	−݉݊ቇ⊗ (݊,݉) = 2	߰∗ ⊗ ߰ 

where ߰ = (݊,݉) is referred to as the Pythagorean spinor generating the 
triple ݔ and ߰∗ = (݉,−݊)௧ is its conjugate (in this case ߰∗ = ߰ୄ). Then, 
the adjoint action of PSLଶ(ℤ) on Ψ is reduced to ordinary unimodular 
transformations on the spinor ߰௧. In particular, the ternary tree given by the 
Hall matrices [9] can be obtained from the orbits of the base spinor ߰௧ = ൭21 ൱  corresponding to the triple ݒ = (3	, 4	, 5)௧  under the 

action of the subgroup of unimodular matrices generated by  

 ࣭௅ = ൭ 2 −11 	0 ൱,				࣭௎ = ൭ 2 	11 	0൱,				࣭ோ = ൭ 1 	20 	1൱ (12) 

as shown in [16]. Acting with only one of the three we obtain the families of 
Plato, Fermat and Pythagoras, respectively. The first one generates the 
sequence of harmonics (overtones) ߬௞ = ௞ାଵ௞ , the last one - the sequence of 
even natural numbers ߬௞ = 2݇  (octaves) and the one in between is 
somewhat more complicated ߬௞ = 2, ହଶ , ଵଶହ , ଶଽଵଶ , ଻଴ଶଽ , ଵ଺ଽ଻଴ , … → 1 + √2. 
Combining these families one may easily obtain other useful integer or 
rational numerical sequences, such as the Fibonacci numbers [9]. 



The Geometry of Pythagorean Quadruples 184

The Two Types of Quadruples 

In the case of quadruples ݔଵଶ + ଶଶݔ + ଷଶݔ − ସଶݔ = 0  we use a similar 
construction  

ݔ  → Ψ = ൭ݔସ + ଵݔ ଷݔ − iݔଶݔଷ + iݔଶ ସݔ − ଵݔ ൱ 

and since the action of PSLଶ(ℤ[i]): Ψ →  ,ଵ preserves the determinantିߞ	Ψߞ
it yields a Lorentz transformation for the null vector ݔ, parameterized by ߙ, ߚ ∈ ℤ[i], such that |ߙ|ଶ + ଶ|ߚ| ∈ 2ℤ (see [17] for comparison)  

௧ݔ  = ଵଶ ൬|ߙ|ଶ − ,ଶ|ߚ| 2	ℑ(ߚ̅ߙ), 2	ℜ(ߚ̅ߙ), ଶ|ߙ| +  ଶ൰ (13)|ߚ|

which can be written also as  

 Ψ = ቌ|ߙ|ଶ ߚ̅ߙߚതߙ ଶቍ|	ߚ| = ൭ߙത̅ߚ ൱⊗ ቀߙ	, ߚ ቁ = ߰∗ ⊗߰,				߰∗ = ߰ற. 
Working with the parameter ߬ = ߙ/ߚ ∈ ℂℙଵ (or its conjugate) we relate 
Pythagorean quadruples to rational points on the unit sphere and (13) 
becomes the well-known stereographic projection. Next, we let the group PSLଶ(ℤ[i]) act in the space of spinors and thus generate all solutions from 
the orbits of the points ݒ௞ given in ߰ = ,	ߙ	)   parametrization as (	ߚ

ଵݒ  ↔ (	1 + i	, ଶݒ				,(	0 ↔ (	i	, ଵݒ				,(	1 ↔ (	1	, 1	) 
and the PSLଶ(ℤ[i]) transformations corresponding to the matrices (??) are  

 ℎଵ = ൭ 1 −2	i0 	1 ൱,				ℎଶ = ൭ 2 −11 	0 ൱,				ℎଷ = ൭1 − i −1−1 1 + i൱ 

 ℎସ = ൭1 + i 11 1 − i൱,				ℎହ = ൭	0 	1−1 	2൱,				ℎ଺ = ൭ 1 	2	i0 	1 ൱ ⋅ 



Danail S. Brezov, Clementina D. Mladenova and Ivaïlo M. Mladenov 185

As for the second type ݔଵଶ + ଶଶݔ − ଷଶݔ − ସଶݔ = 0 , it is convenient to 
represent  

ݔ  → Ψ = ൭ݔସ + iݔଷ ଵݔ + iݔଶݔଵ − iݔଶ ସݔ − iݔଷ൱ 

and use a pair of complex parameters ߙ, ߚ ∈ ℂ (not necessarily in ℤ[i])  

௧ݔ  = ൬ℜ(ߙଶ − ,(ଶ	ߚ ℑ(ߙଶ − ,(ଶ	ߚ 2	ℑ(ߙതߚ), ଶ|ߙ| −  ଶ൰ (14)|	ߚ|

which yields with the notation ߦ = ߙ + ߟ and ߚ = ߙ −   ߚ

 Ψ = ቌߙଶ − ଶ	ߚ ߙ) + തߙ൫(ߚ − തߙ൯൫ߚ̅ + ߙ)൯ߚ̅ − (ߚ തଶߙ − ଶ	ߚ̅ ቍ 

 = ቌ̅ߦߦ ቍ⊗ ቀߟ	, ߟ̅ ቁ. (15) 

Since ߦ and ߟ are independent, they are transformed by Γ⊗ Γ, where Γ 
is the subgroup generated by the U(1,1) images of the matrices in (12)  

 ℎ෨ଵ = ൭1 − i i−i 1 + i൱ , ℎ෨ଶ = ൭1 1 + i1 − i 1 ൱ , ℎ෨ଷ = ൭1 + i 11 1 − i൱ 

  (16) 

together with their inverses. Note that the results ݔଵݔଶݔଷ = 0mod60 and ݔଵݔଶݔଷݔସ = 0mod12 for the standard triples and quadruples, obtained by 
considering all possible solutions in ℤଷ, ℤସ and for the former ℤହ, have no 
analogue in this case. It can be shown by a standard descent procedure [12] 
that each such quadruple can be shrank via the action of the subgroup (16) 
to a null vector in the box |ݔ௜| ≤ 1. Then, it is straightforward to see that all 
solutions reside in the orbits of the points  
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෤ଵݒ = (	1	, 0	, 0	, 1	)௧,				ݒ෤ଶ = (	0	, 1	, 0	, 1	)௧ 
෤ଷݒ  = (	1	, 1	, 1	, 1	)௧,				v෤ସ = (	1	, 1	, −1	, 1	)௧ 
which are given in ߙ,   parametrization as-	ߚ

෤ଵݒ  ↔ (	1	, 0	),				v෤ଶ ↔ ଵ√ଶ	(	1 + i	, 0	) 
 

෤ଷݒ  ↔ (	5/4 + i	, 3/4 + i	),				ݒ෤ସ ↔ (	−5/4 − i	, 3/4 + i	) 
respectively. Using the correspondence  

 ℎ෨௞	ߦ ⊗ ߟ ↔ ߦ				,෩௞ܪ ⊗	ℎ෨௞	ߟ ↔ ݇				,෩௞ାଷܪ = 1,2,3 (17) 

we obtain the ℤଶ,ଶ analogue of the Hall matrices (2) and (3) in the form  

෩ଵܪ  = ۈۉ
ۇ 1 1 1 0−1 1 0 11 0 1 −10 1 1 1 ۋی

ۊ , ෩ଶܪ = ۈۉ
1ۇ 0 1 10 1 −1 11 −1 1 01 1 0 ۋی1

    		,ۊ

෩ଷܪ	 = ۈۉ
1ۇ −1 0 11 1 −1 00 −1 1 11 0 −1 ۋی1

ۊ
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෩ସܪ  = ۈۉ
ۇ 1 1 −1 0−1 1 0 1−1 0 1 10 1 −1 ۋی1

ۊ , ෩ହܪ = ۈۉ
ۇ 1 0 −1 10 1 1 1−1 1 1 01 1 0 ۋی1

 		,ۊ

෩଺ܪ = ۈۉ
1ۇ −1 0 11 1 1 00 1 1 −11 0 1 1 ۋی

ۊ ⋅ 
The orbits of the points ݒ௞  with respect to the subgroup spanned by ܪ෩௞,ܪ෩௞ି ଵ contain all primitive1 null vectors in ℤଶ,ଶ/{0}, including solutions 
of the type ݔଵ = ଶݔ ,ଷݔ =  ସ, as well as triples, permutations of the sameݔ
coordinates (generated by the symmetries2 ଵ࣭ଶସଷ, ࣭ଶଵଷସ and ࣭ଷସଵଶ) and 
sign inversions. Note that the matrices ܪ෩௞ are not all in SO(2,2). They 
belong to a larger class of transformations, defined by the property Λߟ෤ ± ෤Λߟ = 0, which also keeps the isotropic pseudo-cone invariant and 
may still be obtained from (10) if we omit the pre-factor ߣሚ. 

Vector-Parameter Algorithm 

Instead of the Hall matrices (2), we use (with the expense of allowing 
negative solutions) ܮ, ܴ  and Ů = −ܷ ∈ SO(2,1) , so the vector 
parametrization is straightforward  

 ܿ௅ = (	0	, 1	, 1	)௧,				ܿŮ = (	−1	, 1	, 0	)௧,				ܿோ = (	−1	, 0	, −1	)௧. 
and we may take advantage of the composition (9) as an alternative to the 
matrix multiplication. Afterwards, we obtain the compound transformation 
matrix explicitly with the aid of (8), thus greatly simplifying calculations, 
especially for words of the type Λ௡  with vector-parameter ܿ〈௡〉 =〈	ܿ, ܿ〈௡ିଵ〉	〉 = 〈	ܿ〈௡ିଵ〉, ܿ	〉, ܿ〈଴〉 = 0  that can be written as ܿ〈௡〉 = ௔೙௕೙ 	ܿ , 
where ܽ௞ and ܾ௞ are determined by the recurrence relations  

                                                 
1since the matrices are unimodular, they preserve the set of primitive solutions. 
2for the involution ߪ = ࣭ଶଵଷସ we may show that ܪ෩଻ି௞ =  .ߪ෩௞ܪߪ
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 ܽ௞ାଵ = ܽ௞ + ܾ௞,				ܾ௞ାଵ = ܽ௞	ܿଶ ± ܾ௞,				ܽଵ = ܾଵ = 1. (18) 

The sign is positive for triples and quadruples of the second kind, and 
negative for standard quadruples. In the latter case, the vector-parameters 
derived from (3) are  

 ܿଵ = (	0	, i	, 1	)௧,				ܿଶ = (	−i	, −1	, 0	)௧,				ܿଷ = (	1	, 0	, i	)௧ 
with = ܿ଻ି௞ = −ܿ௞ and finally, in the ℤଶ,ଶ case, denoting ܿி = (1, 1, 0)௧, 
one has from (10) and (17)  

:෩ଵܪ  Λ(ܿோ + ܿி, 0), :෩ଶܪ Λ(ܿி, 0), :෩ଷܪ Λ(−ܿோ, 0) 
:෩ସܪ  Λ(0,−ܿ௅), :෩ହܪ Λ(0, −ܿி), :෩଺ܪ Λ(0, ܿ௅ − ܿி) 
where the coefficient of proportionality is ߣሚିଵ defined in (10). 

The Two Types of Quintuples 

For the first type of quintuples ݔଵଶ + ଶଶݔ + ଷଶݔ + ସଶݔ = ହଶ the spin cover U(2)ݔ × U(2) → SO(4) allows for parameterizing by a pair of quaternions ߞଵ,ଶ with complex coordinates ߙ௜, ,௜ (or two vectors હߚ ઺ ∈ ℂଶ). Denoting  

 (હ, ઺	)± = ଶߚଵߙ ± ,〈હ				ଶ,ߙଵߚ ઺	〉± = ଶߙଵߙ ±  ଶߚଵߚ

 |હ઺	|± = (∏ 	ଶ௜ୀଵ ௜|ଶߙ|) ±  ௜|ଶ))ଵ/ଶߚ|

we can express from the corresponding orthogonal matrix (ignoring signs)  

௧ݔ  = (ℜ	(હ, ઺	)ା, 	ℑ	〈હ, ઺	〉ା, 	ℜ	〈હ, ઺	〉ି, ℑ	(હ, ઺	)ି, 	|હ઺	|ା) 
which can also be written in terms of ߬௞ = ,௞ߙ/௞ߚ ݇ = 1,2. The above 
gives a quintuple iff |ߞଵߞଶ| = |હ઺	|ା ∈ ℤ , e.g., |ߞଵ| = |ଶߞ|  or ߞଵ,ଶ  both 
correspond to quintuples themselves. The projective action of Sp(1,1) ≅Spin(4,1) on the space of spinors, this time realized as block quaternion 
matrices, propagates the solutions in the usual way. 
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For the second kind ݔଵଶ + ଶଶݔ + ଷଶݔ = ସଶݔ +  ହଶ we may use either SO(2,2)ݔ
or SO(3,1) parametrization. Choosing the former, we write  

௧ݔ  = (ℜ	〈હ, ઺	〉ା, 	ℑ	〈હ, ઺	〉ି, 	ℑ	(હ, ઺	)ି, 	ℜ	(હ, ઺	)ା, 	|હ઺	|ି) 
that can be expressed also in terms of the complex parameters ߬௞ =  .௞ߙ/௞ߚ
Just as in the previous case, the product of the norms of the two 
split-quaternions needs to be integer. To ensure this property one may 
choose parameters that satisfies it and then obtain the rest of the solutions 
via the action of a subgroup of Sp	(4, ℝ) ≅ Spin(3,2) that preserves it. 

Vector Decomposition in ℚ૜ and ℚ૛,૚ 

First, we note that unit vectors in ℚଷ are related to primitive quadruples  

ଵଶݔ  + ଶଶݔ + ଷଶݔ = ,ସଶݔ ସݔ ≠ 0		 ⇔ 		݊ ∈ ℚ଴ଷ, ݊௞ = ௫ೖ௫ర , ݇ = 1,2,3 

where ℚ଴ଷ denotes the set of unit vectors in ℝଷ with rational coordinates. 
Suppose we are given three rational unit vectors (quadruples) ܿ௞ ∈ ℚ଴ଷ to 
determine three axes of rotation. Furthermore, the unit vector along the 
compound rotation's axis is denoted by ݊ and ߬ is its scalar parameter ߬ = tan ఝଶ, where ߮ is the angle of rotation3. We use the notations  

 ௜݃௝ = ൫cො௜, cො௝൯,				ݎ௜௝ = ൫ܿ̂௜, ℛ(ܿ)	cො௝൯,				߱ = (cොଵ, cොଶ × ܿ̂ଷ) 
where ܿ = ߬݊ is the compound vector-parameter and ℛ(ܿ) - the matrix 
transformation, associated with it. As shown in [6], the necessary and 
sufficient condition for the decomposition ℛ(ܿ) = ℛ(ܿଷ)	ℛ(ܿଶ)	ℛ(ܿଵ) 
(where ܿ௞ = ߬௞cො௞) to exist over ℝℙଵ ≅ ℝ ∪∞ is given by the formula  

 Δ = ተ1 ଵ݃ଶ ଷଵ݃ଶଵݎ 1 ݃ଶଷݎଷଵ ݃ଷଶ 1 ተ ≥ 0. (19) 

                                                 
3 Note that it also has to be Pythagorean in order to have ߬ ∈ ℚ. 
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In the rational case considered here we demand √Δ ∈ ℚ instead, as long as ݎ௜௝ ≠ ௜݃௝ for ݅ > ݆. The solutions for the scalar parameters ߬௞ = tan ఝೖଶ  
are given in the generic setting (߮ ≠ 0, and cොଷ ߨ ≠ ±ℛ(ܿ)	cොଵ) by  

 ߬ଶ± = ିఠ±√୼௥యభା௚యభିଶ௚భమ௚మయ (20) 

and respectively (for most of the results in this section we refer to [6])  

 ߬ଵ± = (௚యమି௥యమ)ఛమ±((௚యమା௥యమ)జభି(௚యభା௥యభ)జమ)ఛఛమ±ା௥యభି௚యభ 
  (21) 

 ߬ଷ± = (௚మభି௥మభ)ఛమ±((௚మభା௥మభ)జయି(௚యభା௥యభ)జమ)ఛఛమ±ା௥యభି௚యభ 
where we make use of the notation  

 ߭௞ = (cො௞, ݊), ෤߭ଵ = (cොଶ × cොଷ, ݊), ෤߭ଶ = (ܿ̂ଷ × ܿ̂ଵ, ݊), ෤߭ଷ = (ܿ̂ଵ × ܿ̂ଶ, ݊). 
In the symmetric case of a half-turn (߬ = ∞) l'Hôpital's rule yields  

 ߬ଵ± = (௚మయିజమజయ)ఛమ±(జభజ෥భାజమజ෥మ)ఛమ±ାజభజయି௚భయ 
 ߬ଷ± = (௚భమିజభజమ)ఛమ±(జమజ෥మାజయజ෥య)ఛమ±ାజభజయି௚భయ ⋅ 
Also, decomposing the identity (߮ ≡ 0) in the case ߱ ≠ 0, one obtains  

 		߬ଵ = ఠ௚భమ௚భయି௚మయ , ߬ଶ = ఠ௚భమ௚మయି௚భయ , ߬ଷ = ఠ௚భయ௚మయି௚భమ (22) 

and for ߱ = 0 we have one more (degenerate) solution iff cොଵ = ±ܿ̂ଷ - it 
appears in the form of two mutually inverse matrices, i.e., ߬ଶ = 0, ߬ଵ ∓߬ଷ = 0. More generally, such infinite families of solutions emerge for a 
generic transformation when the gimbals lock condition cොଷ = ±ℛ(ܿ)	ܿ̂ଵ is 
satisfied and they are explicitly given by the expressions  
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 ߬ଶ = ୴෥෩య௚భమజమିజభ ,				߬′ଵ = ఛభ±ఛయଵ∓ఛభఛయ = ௩෤෨య௚భమజభିజమ ⋅ (23) 

Note that in this case Δ = ଶଵݎ)− − ݃ଶଵ)ଶ, so (19) is actually equivalent to  

ଶଵݎ  = ݃ଶଵ. (24) 

Next, we attempt to find a situation in which the condition √Δ ∈ ℚ is 
guaranteed. For example, in the Davenport setting ܿ̂ଶ ⊥ ܿ̂ଵ,ଷ  that yields Δ = 1 − ଷଵଶݎ ≥ 0 for arbitrary ܿ it is sufficient to demand  

ଷଵݎ  = (ଶజభజయି௚భయ)ఛమିଶ୴෥మఛା௚భయଵାఛమ ∈ ቄ௠మି௡మ௠మା௡మ , ଶ௠௡௠మା௡మቅ 
for some integers (݉, ݊) ≠ (0,0) , i.e., the acute angle between the 
directions of cොଷ and ℛ(ܿ)	cොଵ to be present in some Pythagorean triangle.  

Another solution is obtained when ݎଷଵ = 2 ଵ݃ଶ݃ଶଷ − ଵ݃ଷ (߬ଶ = ∞), e.g., if ܿ̂ଶ is normal to either ܿ̂ଵ or cොଷ and ℛ(ܿ) inverts the projection of ܿ̂ଵ on cොଷ. 

One more setting is ݎଷଵ = ݃ଷଵ, which guarantees that Δ = ߱ଶ as a Gram 
determinant and for the middle parameter one has ߬ଶ± = 0, ఠ௚భమ௚మయି௚భయ , 
while ߬ଵ  and ߬ଷ  are determined as before. We note that when one 
encounters a vanishing parameter, i.e., ݎ௜௝ = ௜݃௝  for some ݅ > ݆ , the 
remaining two may also be obtained in another way based on two-axes 
decomposition. For example, in the case ݎଶଵ = ݃ଶଵ we may decompose 
into a pair of rotations about the first two axes and the rational solution is 
given by  

 ߬ଵ = ୴෥෩య௚భమజభିజమ ,				߬ଶ = ୴෥య௚భమజమିజభ ⋅ (25) 

Similar expressions can be derived in the cases ݎଷଵ = ݃ଷଵ and ݎଷଶ = ݃ଷଶ. 
Finally, in the gimbal lock setting cොଷ = ±ℛ(ܿ)	cොଵ the condition (24) is 
equivalent to (19), as already discussed. Thus (23) is justified via (25) and 
the parameters ߬ଵ and ߬ଷ take all rational values that satisfy it. 
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In [6] we also argue that one may consider a system of axes, attached to the 
rotating object, which we denote by {cො′௞}, while {cො௞} stands for the static 
one. Then, the decompositions in the two systems are related via  

 ℛ(ܿ) = ℛ(ܿ′ଷ)ℛ(ܿ′ଶ)ℛ(ܿ′ଵ) = ℛ(ܿଵ)ℛ(ܿଶ)ℛ(ܿଷ) 
and in the case of two axes we have in particular  

 ℛ(ܿ) = ℛ(ܿ′ଶ)ℛ(ܿ′ଵ) = ℛ(ܿଵ)ℛ(ܿଶ). 
Using a set of linear relations, it is not hard to see how the gimbals lock 
condition in {cො′௞}  corresponds to Euler decomposition {cො௞}  and vice 
versa. 

The Hyperbolic Case 

In the hyperbolic setting we consider vectors with positive, negative or 
vanishing pseudo-norm4. Restricted to ℚଶ,ଵ these three types are related to 
Pythagorean quadruples and triples. Namely, vectors of positive norm can 
be rescaled to unit length as ݔଵଶ + ଶଶݔ − ଷଶݔ = ସଶݔ ⇒ ݊ ∈ ℚ଴ଶ,ଵ, ݊௞ =  ,ସݔ/௞ݔ
while in the time-like case we have ݔଵଶ + ଶଶݔ − ଷଶݔ = ݊ ସଶ andݔ− ⋅ ݊ = −1, 
i.e., a quadruple of the first kind with ݔଷ and ݔସ exchanged. Finally, a null 
integer vector ݔଵଶ + ଶଶݔ − ଷଶݔ = 0 yields a Pythagorean triple. In order to 
distinguish between different types of vectors, we introduce the ߝ-factors ߝ = ݊ ⋅ ݊ and ߝ௞ = cො௞ ⋅ ܿ̂௞. We also denote  

௜௝ݎ  = cො௜ 	 ⋅ 	Λ(ܿ)	cො௝,				݃௜௝ = cො௜ 	 ⋅ 	 cො௝,				߱ = cොଵ ⋅ 	 cොଶ ⋎ cොଷ 

and obtain the necessary condition for decomposability  

 Δ = − ተ	ߝଵ 	݃ଵଶ ݃ଶଵ	ଷଵݎ	 ଶߝ	 	݃ଶଷݎଷଵ ݃ଷଶ ଷߝ ተ ≥ 0 (26) 

that is also sufficient unless some of the relations cොଷ = ±Λ(ܿ)	cොଵ and  

                                                 
4 Usually referred to space-like, time-like and isotropic or null vectors, respectively. 
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௜ߝ  = ௜݃௝ = 0,				|݅ − ݆	| = 1 (27) 

holds. The latter impose additional conditions, such as ߱ ≠ 0 or ݎ௜௝ = ௜݃௝ 
for certain ݆ and ݅ > ݆. Some examples are provided in the next paragraph. 

In the rational case we demand √Δ ∈ ℚ instead of (26) and in the generic 
setting (߬ ≠ 0,∞, (27) does not hold and cොଷ ≠ ±Λ(ܿ)	cොଵ) the solutions are  

 ߬ଶ± = ఠ±√୼ఌమ(௥యభା௚యభ)ିଶ௚భమ௚మయ (28) 

for the middle parameter, while for the other two we obtain  

 ߬ଵ± = (௥యమି௚యమ)ఛమ±((௚యమା௥యమ)జభି(௚యభା௥యభ)జమ)ఛఛమ±ା௚యభି௥యభ 
  (29) 

 ߬ଷ± = (௥మభି௚మభ)ఛమ±((௚మభା௥మభ)జయି(௚యభା௥యభ)జమ)ఛఛమ±ା௚యభି௥యభ ⋅ 
In the limit ߬ → ∞, corresponding to either a half turn if ߝ = −1 or a 
non-orthochronous Lorentz transformation for ߝ = +1, we obtain  

 ߬ଵ± = (ఌ௚మయିజమజయ)ఛమ±(జభ୴෥෩భାజమ୴෥మ)ఛమ±ାజభజయିఌ௚భయ 
 ߬ଷ± = (ఌ௚భమିజభజమ)ఛమ±(జమ୴෥෩మାజయ୴෥య)ఛమ±ାజభజయିఌ௚భయ ⋅ 
Similarly, for the identity transformation (߬ ≡ 0) we have  

 ߬ଵ = ఠఌభ௚మయି௚భమ௚భయ , ߬ଶ = ఠఌమ௚భయି௚భమ௚మయ , ߬ଷ = ఠఌయ௚భమି௚భయ௚మయ 
in the regular case ߱ ≠ 0 and for ߱ = 0 the only possibility is cොଷ = ±cොଵ, 
i.e., decomposition into a pair of two mutually inverse transformations. 
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Decomposing into a pair of pseudo-rotations about cොଵ and cොଶ, on the other 
hand, demands the condition ݎଶଵ = ݃ଶଵ and then the solution is  

 ߬ଵ = ୴෥෩యఌభజమି௚భమజభ ,				߬ଶ = ୴෥యఌమజభି௚భమజమ ⋅ (30) 

The same relation needs to hold also in the gimbal lock setting  

 cොଷ = ±Λ(ܿ)	cොଵ (31) 

in which the degenerate solutions are given by the expressions  

 ߬ଶ = ୴෥యఌమజభି௚భమజమ ,						 ఛభ±ఛయଵ±ఌభఛభఛయ = ୴෥యఌభజమି௚భమజభ ⋅ (32) 

Just as in the Euclidean case, here (24) guarantees the above decomposition, 
but this time it is not implied by (26), since Δ = ଶଵݎ)ଵߝ − ݃ଶଵ)ଶ and if ܿଵ 
is space-like or null, unlike (24) and (32), it is automatically satisfied. 

Orthogonality Conditions and Lattice Cubes 

The orthogonality condition between two integer vectors ݔ, ݕ ∈ ℤଷ with 
equal lengths is given by a null complex vector ݖ = ݔ + iݕ ∈ ℤଷ[i], ଶݖ = 0, 
i.e., a Wick rotated complex Pythagorean equation ݖଵଶ + ଶଶݖ = (iݖଷ)ଶ, the 
real part of which yields |ݔ| = |ݕ| =  and the imaginary one determines ܮ
that ݔ ⊥  ,The solutions correspond to lattice squares in ℤଷ. In particular .ݕ
if ܮ ∈ ℤ, that is if both ݔ and ݕ represent quadruples, it also gives rise to a 
lattice cube5 [15] with a third edge determined by ݔ × ݕ  and volume v݈݋ =  ,ଵ rescales to unit cubes in ℚଷିܮ ଷ. Multiplying all coordinates byܮ
which are in one-to-one correspondence with SO(3,ℚ) matrices6, so they 
can easily be obtained from the spin representation. We see that unlike in 
the generic case, directions here cannot be chosen arbitrarily, since they 
need to correspond to Pythagorean quadruples and in the orthogonal setting 
in particular (Bryan angles) - to rows (columns) of some SO(3,ℚ) matrix. 
Then, in order to have √Δ ∈ ℚ satisfied, we demand that ݎଷଵ is a cosine of 
an angle in a Pythagorean triangle, e.g.,  
                                                 
5 Actually, this determines eight such cubes considering the possible reflections. 
6 In [14] we find an efficient way to generate O(݊,ℚ) matrices (݊-dimensional 
cubes). 
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ଷଵݎ  = 2߬ జభజయఛିజమଵାఛమ = ଶ௠௡௠మା௡మ 
for some integer (݉, ݊) ∈ ℤଶ/{0}. One obvious solution is ߬ = ݉/݊ and ߭ଵ߭ଷ = ݊/݉ in the case ߭ଶ = 0 (݊ lies in the plane determined by cොଵ,ଷ).  

Similarly, in the case of Euler angles ( ଵ݃ଶ = ଶଷݍ = 0, ଵ݃ଷ = 1) one has  

ଷଵݎ  = ଶజభమାఛషమିଵଵାఛషమ = ௠మି௡మ௠మା௡మ 
which certainly holds for ߬ = ݊/݉ and ߭ଵ = 0. Thus, we conclude that in 
the Euler setting for each SO(3,ℚ) transformation there exists a rational 
decomposition as long ݊ ⊥ ܿଵ. For example, one may choose cොଵ, cොଶ and ݊ 
to be the three rows of some SO(3,ℚ) matrix and let ߬ ∈ ℚ be arbitrary. 

In the hyperbolic case one obtains an orthogonal pair of unit vectors from 
the real and imaginary part of a complex null vector ݖ = ݔ + iݕ , or 
alternatively, from the solutions of the complex Pythagorean equation ݖଵଶ + ଶଶݖ =  ଷଶ. The hyperbolic cross product Ê can be used to construct aݖ
third integer vector ݔÊݕ that is normal (in the Lorentz metric) to both ݔ 
and ݕ. In the case |ݔ|, |ݕ| ∈ ℤ this relates Pythagorean quadruples of the 
second kind directly to hyperbolic lattice pseudo-cubes and therefore to 
orthonormal frames in three-dimensional Minkowski space. We note that 
such frames can be retrieved from the rows or columns of a rational SO(2,1) matrix, the first two corresponding to space-like vectors, while the 
third - to a time-like one and thus, to a quadruple of the first kind. Moreover, 
from (26) and (27) we have the configurations7 (for ݅, ݆ = 1,3)  

௜ߝ  = ௜݃ଶ = 0, ߱ = ±݃ଷଵ ≠ ଶߝ)		0 = 1) 		⇒ 		 ߬ଶ = ఠ±௥యభ௚యభା௥యభ 
  (33) 

ଶߝ  = ݃ଶ௜ = 0, ߱ = ±݃ଶ௝ ≠ ௜ߝ)		0 = 1) 		⇒ 		 ߬ଶ = ௚యభି௥యభଶ	ఠ  

                                                 
7 Note that (8) naturally imposes the restrictions ߝ = 1 ⇒ |߬| ≠ 1 and ߝ = 0 ⇒|߬| ≠ ∞. 
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that guarantee the existence of a rational decomposition for arbitrary 
rational pseudo-rotation away from the gimbals lock setting (31) - a 
construction with no analogue in the Euclidean case, as we show above. On 
the other hand, the Davenport condition ଵ݃ଶ = ݃ଶଷ = 0 , if we have 
additionally ߝଵߝଷ = 1 and ݎଷଵ = ±1, provides a degenerate solution with  

 Δ = ଷଵଶݎ)ଶߝ − (ଷߝଵߝ = 0. 
The latter is an exact (rational) square also when cොଶ  is time-like and ݎଷଵ =  are one of the legs and the hypotenuse of a ݍ and ݌ where ,ݍ/݌
Pythagorean triangle, or when cොଶ is space-like, ߝଵߝଷ = −1 and ݍ ,݌ are 
the two legs of such triangle. More generally, if we have ଵ݃ଶ = ±݃ଶଷ and ߝଵ = ଷߝ = ±1, then all four expressions  Δ = ଷଵଶݎ)ଶߝ − 1) ± 2 ଵ݃ଶଶ ଷଵݎ) ± 1) 
vanish for either ݎଷଵ = 1  or ݎଷଵ = −1  that also yields degenerate 
solutions. 

 For a detailed discussion on the real case we refer to [6], while [5] provides 
some useful relations to hyperbolic geometry and physics. A recommended 
reading for the vector parametrization technique would be [8] and for 
Pythagorean triples and quadruples - [2, 13] and [17], respectively. 
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SERIES IN PRABHAKAR FUNCTIONS 
AND THE GEOMETRY OF THEIR CONVERGENCE 

JORDANKA PANEVA-KONOVSKA 
 
 
 

Introduction 

In 1971 Prabhakar introduced and studied a 3-index generalization of the 
Mittag-Leffler function. 

Let ܧఈ,ఉఊ  denote the Prabhakar generalization (see [18]) of the 
Mittag-Leffler (M-L) functions ܧఈ and ܧఈ,ఉ, defined in the whole complex 
plane ℂ by the power series:  

ఈ,ఉఊܧ  (ݖ) = ∑ 	ஶ௞ୀ଴ 	 (ఊ)ೖ୻(ఈ௞ାఉ) ௭ೖ௞! ,ߙ				, ,ߚ ߛ ∈ ℂ, (ߙ)ܴ݁ > 0, (1) 

where (ߛ)௞ is the Pochhammer symbol ([1], Section 2.1.1)  

଴(ߛ)  = 1, ௞(ߛ) = ߛ)ߛ + 1)… ߛ) + ݇ − 1). 
It is clear that for ߛ = 1, (1) coincides with the M-L function ܧఈ,ఉ (see e.g. 
[7], [6], [11], [3]), while for ߛ = ߚ = 1 with ܧఈ ([1], Vol. 3), i.e.:  

ఈ,ఉଵܧ  (ݖ) = ,(ݖ)ఈ,ఉܧ ఈ,ଵଵܧ (ݖ) =  (2) ,(ݖ)ఈܧ

with ߙ, ߚ ∈ ℂ, (ߙ)ܴ݁ > 0. 

Consider now Prabhakar's generalization (1) for indices ߚ = ݊  with 
integer ݊ = 0,1,2, . .., i.e.  

ఈ,௡ఊܧ  (ݖ) = ∑ 	ஶ௞ୀ଴ 	 (ఊ)ೖ୻(ఈ௞ା௡) ௭ೖ௞! , ,ߙ ߛ ∈ ℂ, (ߙ)ܴ݁ > 0, ݊ ∈ ℕ଴. (3) 



Jordanka Paneva-Konovska 199

Depending on ߛ and ݊, some coefficients in (3) may be equal to zero, that 
is, the summation in (3) begins from some ݌ ≥ 0. So, (3) can be written as 
follows:  

ఈ,௡ఊܧ  (ݖ) = ௣ݖ ∑ 	ஶ௞ୀ௣ (ఊ)ೖ୻(ఈ௞ା௡) ௭ೖష೛௞!  ݎ݋			,

ఈ,௡ఊܧ  (ݖ) = ௣ݖ ∑ 	ெ௞ୀ௣ (ఊ)ೖ୻(ఈ௞ା௡) ௭ೖష೛௞! 	. (4) 

More precisely, as it is seen above, if ߛ is different from zero, then ݌ = 1 
for ݊ = 0, whereas ݌ = 0 for each positive integer ݊. In the case ߛ = 0, 
the following remark can be made. 

Remark 1.1 If ߛ = 0, then the functions in (3) take the simplest form 

ఈ,௡଴ܧ .1 (ݖ) = 0 for ݊ = 0, 

ఈ,௡଴ܧ .2 (ݖ) = ଵ୻(௡) for ݊ ∈ ℕ.  

Furthermore, an asymptotic formula for "large" values of the indices ݊ is 
valid as follows, a proof can be seen in [13]. 

Theorem 1.2 Let ݖ, ,ߙ ߛ ∈ ℂ, ݊ ∈ ℕ଴, (ߙ)ܴ݁ > 0, ߛ ≠ 0. Then there exist 
entire functions ߠఈ,௡ఊ  such that the generalized Mittag-Leffler function (3) 
has the following asymptotic formulae  

ఈ,௡ఊܧ  (ݖ) = (ఊ)೛௰(ఈ௣ା௡) ௣൫1ݖ + ఈ,௡ఊߠ  ൯, (5)(ݖ)

where ߠఈ,௡ఊ (ݖ) → 0 as ݊ → ∞, with a corresponding ݌, depending on the 
index ݊. Moreover, on the compact subsets of the complex plane ℂ, the 
convergence is uniform and  

ఈ,௡ఊߠ  (ݖ) = ܱ ቀ ଵ௡ೃ೐(ഀ)ቁ		(݊	 ∈ ℕ).  (6) 
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Remark 1.3 According to the asymptotic formula (5), it follows that there 
exists a positive integer ଴ܰ such that the functions (3) have no zeros for ݊ > ଴ܰ, possibly except for the origin.  

Remark 1.4 Each function in (3) (݊ ∈ ℕ), being an entire function, not 
identically zero, has no more than a finite number of zeros in the closed and 
bounded set |ݖ| ≤ ܴ. Moreover, because of Remark 1.3, no more than 
finite number of these functions have some zeros, possibly except for the 
origin.  

Series in Prabhakar's functions 

Let ܧ෨ఈ,௡ఊ  be the functions given by the following relations:  

෨ఈ,଴଴ܧ  (ݖ) = 0, ෨ఈ,௡଴ܧ (ݖ) = Γ(݊)	ݖ௡	ܧఈ,௡଴ ,(ݖ) ݊ ∈ ℕ, 
෨ఈ,௡ఊܧ  (ݖ) = ୻(ఈ௣ା௡)(ఊ)೛ ఈ,௡ఊܧ	௡ି௣ݖ	 ,(ݖ) ݊ ∈ ℕ଴		(ߛ ≠ 0), (7) 

(with the corresponding values of ݌). 

We consider the series in these functions of the form:  

 ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ  (8) ,(ݖ)

with complex coefficients ܽ௡ (݊ = 0,1,2, . . . ). 
In the process of studying the convergence of such kind of series we give 
their regions of convergence in the complex plane, and investigate the 
behavior of the series on the boundaries of these regions. We determine 
where the series converge and where they do not, where the convergence is 
uniform. Finding their disks of convergence, we study the series behavior 
inside the found disks and "near" their boundaries, as well as on the 
boundaries, giving Cauchy-Hadamard, Abel, and Fatou type theorems. 
Such kinds of results are provoked by the fact that the solutions of some 
fractional order differential and integral equations can be written in terms of 
series (or series of integrals) of Mittag-Leffler type functions and their 
generalizations (as for example in works of V. Kiryakova [5], T. Sandev, Ž. 
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Tomovski and J. Dubbeldam [20], A. Khamzin, R. Nigmatullin and I. 
Popov [2], and many others). 

The asymptotic formula (5) for the Prabhakar functions, earlier established 
by the author, in the cases of "large" values of indices, is used in the proofs 
of the convergence theorems for the considered series. 

The same type convergence theorems have been previously obtained for 
series in some other special functions, for example, for series in: Laguerre 
and Hermite polynomials, by Rusev ([19]) , and resp. Bessel functions, their 
Wright's 2-, 3-, and 4-indices generalizations, and also more general 
multi-index Mittag-Leffler functions (in the sense of Yu. Luchko - V. 
Kiryakova [4], [6], [3]) (see e.g. [9] - [17]) - by the author. 

Note that for ߛ = 0 the series (8) reduces to the power one and because of 
that the discussed proofs are only for ߛ ≠ 0. 

Cauchy-Hadamard and Abel type theorems 

In the beginning, we state a theorem of Cauchy-Hadamard type and a 
corollary for the series (8). 

In what follows we use the notations 0)ܦ; ܴ) and 0)ܥ; ܴ) respectively for 
the open disk with a radius R centered at the origin with a radius ܴ and its 
boundary, i.e.  

;0)ܦ  ܴ) = :ݖ} |ݖ| < ܴ, ݖ ∈ ℂ}, ;0)ܥ ܴ) = :ݖ} |ݖ| = ܴ, ݖ ∈ ℂ}. 
Theorem 3.1 (of Cauchy-Hadamard type) The region of convergence of 
the series (8) with complex coefficients ܽ௡  is the disk 0)ܦ; ܴ)  with a 
radius of convergence ܴ, where  

 ܴ = ൬݈݅݉݌ݑݏ௡→ஶ 	(	|ܽ௡|	)ଵ/௡൰ିଵ. (9) 

More precisely, the series (8) is absolutely convergent on the disk 0)ܦ; ܴ) 
and divergent on the region |ݖ| > ܴ. The cases ܴ = 0 and ܴ = ∞ fall in 
the general case.  
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Thus, the considered series (8) converges in a disk, like in the classical 
theory of the power series. Analogously, inside the disk, the convergence of 
the discussed series is uniform, i.e., the following corollary, similar to the 
classical Abel lemma, holds. 

Corollary 3.2 Let the series (8) converge at the point ݖ଴ ≠ 0. Then it is 
absolutely convergent on the disk 0)ܦ; ;0)ܦ ଴|). Inside the diskݖ| ܴ), i.e. 
on each closed disk |ݖ| ≤ ݎ < ܴ (ܴ defined by (9)), the convergence is 
uniform.  

Proof. Indeed, since the considered series converges at the point ݖ଴ ≠ 0, its 
radius of convergence is the positive number ܴ, and moreover the point ݖ଴ 
lies either in the disk 0)ܦ; ܴ) or on its boundary - the circle 0)ܥ; ܴ). That 
is why, the disk 0)ܦ;  ଴|) is either a part of the region of convergence or itݖ|
coincides with it, whence the absolute convergence follows. To prove 
uniformity of the convergence inside the disk 0)ܦ; ܴ), it is sufficiently to 
show that the series is uniformly convergent on each closed disk |ݖ| ≤ ݎ <ܴ . To this purpose, choosing a point ߞ |ߞ| , = ߩ ݎ , < ߩ < ܴ  and 
considering the series (8), we estimate |ܽ௡ܧ෨ఈ,௡ఊ  First, mention that .|(ݖ)
some of the values of ܧ෨ఈ,௡ఊ  .but only finite number of them, can be zero ,(ߞ)
Then there exists a number ܲ such that  

 |ܽ௡ܧ෨ఈ,௡ఊ |(ݖ) = |ܽ௡ܧ෨ఈ,௡ఊ |(ߞ) |ா෨ഀ,೙ം (௭)||ா෨ഀ,೙ം (఍)| ≤ |ܽ௡ܧ෨ఈ,௡ఊ 	|(ߞ) |ଵାఏഀ,೙ം (௭)||ଵାఏഀ,೙ം (఍)| 
for all ݊ > ܲ and |ݖ| ≤  .ݎ

Because of (6) and the relations lim௡→ஶ ଵ௡ೃ೐(ഀ) = 0, lim௡→ஶ(1 + ఈ,௡ఊߠ = ଵି((ߞ) 1, 
there exist numbers ܣ and ܤ such that |1 + 1||(ݖ)௡ߠ + ఈ,௡ఊߠ ≥ ଵି|(ߞ)  ܤܣ
and hence, |ܽ௡ܧ෨ఈ,௡ఊ |(ݖ) ≤ ෨ఈ,௡ఊܧ௡ܽ|ܤܣ ݊ for all the values of ,|(ߞ) > ܲ and |ݖ| ≤ ∑ Since the series .ݎ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ  is absolutely convergent and by (ߞ)
the Weierstrass comparison criterium, the uniform convergence is proved.  

The very disk of convergence is not obligatory a region of uniform 
convergence and on its boundary the series may even be divergent. 

Let ݖ଴ ∈ ℂ, 0 < ܴ < |଴ݖ| ,∞ = ܴ and ݃ఝ be an arbitrary angular region 
with size 2߮ < ߨ  and with a vertex at the point ݖ = ଴ݖ , which is 
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symmetric with respect to the straight line defined by the points 0 and ݖ଴, 
and ݀ఝ be the part of the angular region ݃ఝ, closed between the angle's 
arms and the arc of the circle with center at the point 0 and touching the 
arms of the angle. 

The following inequality can be verified inside ݀ఝ,  

ݖ|  − ଴|cos߮ݖ < |଴ݖ|)2 −  (10) .(|ݖ|

The next theorem refers to the uniform convergence of the series (8) on the 
set ݀ఝ and the limit of its sum at the point ݖ଴, provided ݖ ∈ ;0)ܦ ܴ) ∩ ݃ఝ. 

Theorem 3.3 (of Abel type) Let {ܽ௡}௡ୀ଴ஶ  be a sequence of complex 
numbers, ܴ  be the real number defined by (9) and 0 < ܴ < ∞ . If ሚ݂(ݖ; ,ߙ	 ;0)ܦ is the sum of the series (8) on the region (ߛ ܴ), i.e.  

 ሚ݂(ݖ; ,ߙ	 (ߛ = ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ ,(ݖ) ݖ ∈ ;0)ܦ ܴ) 
and this series converges at the point ݖ଴ of the boundary 0)ܥ; ܴ), then: 

 (i) The following relation holds  

 ݈݅݉௭→௭బ ሚ݂(ݖ; ,ߙ	 (ߛ = ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ  (11) ,(଴ݖ)

provided ݖ ∈ ;0)ܦ ܴ) ∩ ݃ఝ. 

 (ii) The series (8) is uniformly convergent on the region ݀ఝ. 

The proofs of Theorems 3.1 and 3.3, excepting the uniformity, are given in 
[14]. 

Remark 3.4 If the series (8) has a finite and non-zero radius of convergence ܴ , it converges at the point ݖ଴ ∈ ,0)ܥ ܴ)  and ܨ  is the holomprphic 
function defined by this series in its region of convergence, then by the 
Theorem 3.3 it follows that  
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 lim௭→௭బ,௭∈ௗക(ݖ)ܨ =  ,(଴ݖ)ܨ
i.e. the restriction of the function ܨ  to each set of the kind ݀ఝ  is 
continuous at the point ݖ଴.  

Proof. Here we consider the series (8) whose convergence have been 
proved in [14]. To prove its uniform convergence we use the inequality (10) 
that is the crucial point of the proof. 

So, let ݖ ∈ ݀ఝ. Setting  

 ܵ௞(ݖ) = ∑ 	௞௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ  ,(ݖ)
              		ܵ௞(ݖ଴) = ∑ 	௞௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ ,(଴ݖ) lim௞→ஶܵ௞(ݖ଴) =                  (12)         ,ݏ

௡ߚ   = ܵ௡(ݖ଴) − ,ݏ ௡ߚ − ௡ିଵߚ = ܽ௡ܧ෨ఈ,௡ఊ  ,(଴ݖ)
we obtain  

 ܵ௞ା௣(ݖ) − ܵ௞(ݖ) = ∑ 	௞ା௣௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ (ݖ) − ∑ 	௞௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ  (ݖ)
= ෍ 	௞ା௣

௡ୀ௞ାଵ ܽ௡ܧ෨ఈ,௡ఊ  .(ݖ)
According to Remark 3.4, there exists a natural number ଴ܰ  such that ܧ෨ఈ,௡ఊ (଴ݖ) ≠ 0  when ݊ > ଴ܰ . Let ݇ > ଴ܰ  and ݌ > 0 . Then, using the 
denotation ߛ௡(ݖ; (଴ݖ = ෨ఈ,௡ఊܧ ෨ఈ,௡ఊܧ/(ݖ) ,(଴ݖ)  we can write the difference ܵ௞ା௣(ݖ) − ܵ௞(ݖ) as follows:  

 ܵ௞ା௣(ݖ) − ܵ௞(ݖ) = ∑ 	௞ା௣௡ୀ௞ାଵ ܽ௡ܧ෨ఈ,௡ఊ (଴ݖ) ா෨ഀ,೙ം (௭)ா෨ഀ,೙ം (௭బ) 
=	 ෍ 	௞ା௣

௡ୀ௞ାଵ ܽ௡ܧ෨ఈ,௡ఊ ;ݖ)௡ߛ(଴ݖ)  .(଴ݖ
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Now, by the Abel transformation (see in [8], vol.1, ch.1, p.32, 3.4:7), we 
obtain consecutively:  

 ܵ௞ା௣(ݖ) − ܵ௞(ݖ) = ∑ 	௞ା௣௡ୀ௞ାଵ ௡ߚ) − ;ݖ)௡ߛ(௡ିଵߚ  (଴ݖ
 = (ݖ)௞ା௣ߛ௞ା௣ߚ − (ݖ)௞ାଵߛ௞ߚ − ∑ 	௞ା௣ିଵ௡ୀ௞ାଵ ;ݖ)௡ାଵߛ)௡ߚ (଴ݖ − ;ݖ)௡ߛ  ,((଴ݖ
and  

 |ܵ௞ା௣(ݖ) − ܵ௞(ݖ)| ≤ |ܵ௞ା௣(ݖ଴) − |(ݖ)௞ା௣ߛ||ݏ + |ܵ௞(ݖ଴) −  |(ݖ)௞ାଵߛ||ݏ
 +∑ 	௞ା௣ିଵ௡ୀ௞ାଵ |ܵ௡(ݖ଴) − |ݏ × ฬ ா෨ഀ,೙ം (௭)ா෨ഀ,೙ം (௭బ) − ா෨ഀ,೙శభം (௭)ா෨ഀ,೙శభം (௭బ)ฬ. (13) 

So, using the last relation, we are going to estimate the module of the 
difference ܵ௞ା௣(ݖ) − ܵ௞(ݖ). Because of (6) and the equalities lim௡→ஶ ଵ௡ೃ೐(ഀ) =0 , lim௡→ஶ(1 + ଵି((଴ݖ)௡ߠ = 1 , there exist numbers ܣ > 0  and ଵܰ > ଴ܰ 
such that |1 + |(ݖ)௡ߠ ≤ 2/ܣ  for all the natural values of ݊  and |1 ଵି|(ߞ)௡ߠ+ < 2 for ݊ > ଵܰ, whence  

,ݖ)௡ߛ|  |(଴ݖ ≤ ݊		ݎ݋݂			ܣ > ଵܰ. (14) 

Further, setting  

 ݁௡(ݖ, (଴ݖ = ா෨ഀ,೙ം (௭)ா෨ഀ,೙ം (௭బ) − ா෨ഀ,೙శభം (௭)ா෨ഀ,೙శభം (௭బ) 
and observing that ݁௡(ݖ଴, (଴ݖ = 0 , we apply the Schwartz lemma for ݁௡(ݖ,   :ܥ ଴). So, we get that there exists a constantݖ

 |݁௡(ݖ, |(଴ݖ = ฬ ா෨ഀ,೙ം (௭)ா෨ഀ,೙ം (௭బ) − ா෨ഀ,೙శభം (௭)ா෨ഀ,೙శభം (௭బ)ฬ ≤ ݖ|ܥ −  ,଴|௡ݖ/ݖ||଴ݖ
whence, and according to (10):  

 ∑ 	௞ା௣ାଵ௡ୀ௞ାଵ |݁௡(ݖ, |(଴ݖ ≤ ∑ 	ஶ௡ୀ଴ ݖ|ܥ −  ଴|௡ݖ/ݖ||଴ݖ
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																= |଴ݖ|ܥ × |௭ି௭బ||௭బ|ି|௭| < ଶ஼|௭బ|ୡ୭ୱఝ . (15) 

Let ߝ be an arbitrary positive number. Taking in view the third of the 
relations (12), we can confirm that there exists a positive number ଶܰ > ଴ܰ 
so large that  

 |ܵ௡(ݖ଴) − |ݏ < ݉݅݊ ቀ ఌଷ஺ , ఌୡ୭ୱఝ଺஼|௭బ|ቁ ݊		ݎ݋݂			 > ଶܰ. (16) 

Now, let ܰ = (ߝ)ܰ = max( ଵܰ, ଶܰ) and ݇ > ܰ. Therefore (13)-(16) give  

 หܵ௞ା௣(ݖ) − ܵ௞(ݖ)ห < ଶఌଷ + ఌୡ୭ୱఝ଺஼|௭బ| ∑ 	௞ା௣ାଵ௡ୀ௞ାଵ |݁௡(ݖ,  |(଴ݖ
< 3ߝ2 + |଴ݖ|ܥcos߮6ߝ ଴|cos߮ݖ|ܥ2 =  ,ߝ

that completes the proof.  

Fatou type theorem 

Let {ܽ௡}௡ୀ଴ஶ  be a sequence of complex numbers with limsup௡→ஶ 	(|ܽ௡|)ଵ/௡ =ܴିଵ, 0 < ܴ < ∞ and ݂(ݖ) be the sum of the power series ∑ 	ஶ௡ୀ଴ ܽ௡ݖ௡ on 
the open disk 0)ܦ; ܴ), i.e.  

(ݖ)݂  = ∑ 	ஶ௡ୀ଴ ܽ௡ݖ௡, ݖ ∈ ;0)ܦ ܴ). (17) 

Definition 4.1 A point ݖ଴ ∈ ;0)ܦ߲ ܴ) is called regular for the function ݂ 
if there exist a neighbourhood ܷ(ݖ଴; ∗and a function ௭݂బ (ߩ ∈ ℋ(ܷ(ݖ଴;  ((ߩ
(the space of complex-valued functions, holomorphic in the set ܷ(ݖ଴;  ,((ߩ
such that ௭݂బ∗ (ݖ) = ݖ for (ݖ)݂ ∈ ;଴ݖ)ܷ (ߩ ∩ ;0)ܦ ܴ).  

By this definition it follows that the set of regular points of the power series 
is an open subset of the circle 0)ܥ; ܴ) = ;0)ܦ∂ ܴ) with respect to the 
relative topology on ∂0)ܦ; ܴ), i.e. the topology induced by that of ℂ. 

In general, there is no relation between the convergence (divergence) of a 
power series at points on the boundary of its disk of convergence and the 
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regularity (singularity) of its sum of such points. For example, the power 
series ∑ 	ஶ௡ୀ଴ ௡ݖ  is divergent at each point of the unit circle 0)ܥ; 1) 
regardless of the fact that all the points of this circle, except for ݖ = 1, are 
regular for its sum. The series ∑ 	ஶ௡ୀଵ ݊ିଶݖ௡ is (absolutely) convergent at 
each point of the circle 0)ܥ; 1), but nevertheless one of them, namely ݖ = 1, is a singular (i.e. not regular) for its sum. 

However, under additional conditions on the sequence {ܽ௡}௡ୀ଴ஶ , such a 
relation does exist (for details, see the Fatou theorem in [8], Vol.1, Ch.3, § 
7, 7.3, p.357), namely: 

If the coefficients of the power series (17) with the unit disk of convergence 
tend to zero, i.e. ܴ = 1 and lim௡→ஶܽ௡ = 0, then the power series converges, 
even uniformly, on each arc of the unit circle, all the points of which 
(including the ends of the arc) are regular for the sum ݂ of the series. 

Let us point out that under the hypothesis of the above assertion there exists 
a region ܩ ⊃ ߪ  and a function ݂∗ ∈ (ܩ)ܪ  such that ݂∗(ݖ) = (ݖ)݂  for ݖ ∈ ܩ ∩ ;0)ܦ 1). 
This means that the function ݂∗  is an analytical continuation of the 
function ݂ outside the disk 0)ܦ; 1). Moreover, as it is not hard to see, the 
series (17) converges on that open arc ߪ෤ ⊂ ;0)ܥ 1) which contains ߪ and 
is included in the region ܩ. Then Abel's theorem yields that the sum of the 
series (17) is ݂(ݖ) for each ݖ ∈ ෤ߪ . Therefore, we may assume that the 
power series (17) represents the function ݂ even on the arc ߪ෤. 
Propositions referring to the properties discussed above have been also 
established for series in the Laguerre and Hermite polynomials, as well as in 
Mittag-Leffler systems (see e.g. [19], resp. [15]). Here we give such type of 
theorem for the Prabhakar systems, as follows. 

Theorem 4.2 (of Fatou type) Let {ܽ௡}௡ୀ଴ஶ  be a sequence of complex 
numbers satisfying the conditions  

 ݈݅݉௡→ஶܽ௡ = ௡→ஶ݌ݑݏ݈݉݅				,0 	(	|ܽ௡|	)ଵ/௡ = 1, (18) 

and ݖ)ܨ; ,ߙ ;0)ܦ be the sum of the series (8) on the unit disk (ߛ 1), i.e.  
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;ݖ)ܨ  ,ߙ (ߛ = ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ఊ ,(ݖ) ݖ ∈ ;0)ܦ 1). 
Let ߪ  be an arbitrary arc of the unit circle 0)ܥ; 1) with all its points 
(including the ends) regular to the function ܨ . Then the series (8) 
converges, even uniformly, on the arc ߪ.  

Proof. Since all the points of the arc ߪ  are regular to the function ݖ)ܨ; ,ߙ (ߛ  there exists a region ܩ ⊃ ߪ  where the function ܨ  can be 
continued. Denoting ܩ෨ = ܩ ∪ ;0)ܦ 1), we define the function ߰ in the 
region ܩ෨ by the equality  

(ݖ)߰  = ;ݖ)ܨ ,ߙ ,(ߛ ݖ ∈ ;0)ܦ 1). 
More precisely, it means that ܨ has a single valued analytical continuation 
in ܩ෨. 
Let ߩ > 0 be the distance between the boundary ∂ܩ෨ of the region ܩ෨ and 
the arc ܩ∂) ߪ෨ contains a part of the unit circle 0)ܥ; 1)), and take the points ߞଵ, ߞଶ ∉ |ଵߞ| ,ߪ = |ଶߞ| = 1, such that the distances between each of the 
points ߞଵ,  ,2/ߩ are equal to ߪ ଶ and the respective closer end of the arcߞ
and ݖଵ = ଵ(1ߞ + ଶݖ ,(2/ߩ = ଶ(1ߞ +   .(2/ߩ

Define the auxiliary functions  

߮௡(ݖ) = (ݖ)߰ − ∑ 	௡௞ୀ଴ ܽ௞ܧ෨ఈ,௞ఊ ,(ݖ) ߱௡(ݖ) = ఝ೙(௭)ா෨ഀ,೙శభം (௭) ݖ) − ݖ)(ଵߞ −  .(ଶߞ
                                    (19) 

In order to prove that the sequence ൛∑ 	௡௞ୀ଴ ܽ௞ܧ෨ఈ,௞ఊ ൟ(ݖ)  is uniformly 
convergent on the arc ߪ , it is sufficiently to show that the sequence {߱௡(ݖ)}௡ୀ଴ஶ  tends uniformly to zero on the boundary ∂Δ of the sector Δ =  .ଶ which is a compact setݖଵݖܱ

To this end, we come back to (6). Just to mention that since lim௡→ஶ ଵ௡ೃ೐(ഀ) = 0, 
then there exist numbers ܥ and ෩ܰ such that |1 + ఈ,௡ఊߠ |(ݖ) ≤  for all 2/ܥ
the values of ݊ ∈ ℕ଴  and 1/2 ≤ |1 + ఈ,௡ఊߠ |(ݖ) ≤ 2  for ݊ > ෩ܰ  on an 
arbitrary compact subset of ℂ. 
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Now, taking ߝ > 0 and setting  

 ܴ = 1 + ,2/ߩ ଵߝ = ఌఘయ଼(଼஼ோమାఘ) , ܯ = max௭∈[୼]|߰(ݖ)|				([Δ] = Δ ∪ ∂Δ), 
we separate the considerations in four cases as follows: 

1) First, let ݖ ∈ (ܱ, (ଵߞ ∪ (ܱ, (ଶߞ ⊂ ;0)ܦ 1). 
In the unit disk, according to (19) and (7), we have:  

 ߱௡(ݖ) = ∑ 	ஶ௞ୀ௡ାଵ ܽ௞ݖ௞ି௡ିଵ (ଵାఏഀ,ೖം (௭))(ଵାఏഀ,೙శభം (௭)) ݖ) − ݖ)(ଵߞ −  .(ଶߞ
Since ܽ௡ → 0, there exists a number ଵܰ = ଵܰ(ߝଵ) > ෩ܰ, such that  

 |߱௡(ݖ)| ≤ ଵߝ ∑ 	ஶ௞ୀ௡ାଵ ௞ି௡ିଵ|ݖ| ฬ (ଵାఏഀ,ೖം (௭))(ଵାఏഀ,೙శభം (௭))ฬ ݖ)| − ݖ)||(ଵߞ −  |(ଶߞ
 

 < ଵߝܥ2 ∑ 	ஶ௞ୀ௡ାଵ ௞ି௡ିଵ(1|ݖ| − (|ݖ| =  ଵߝܥ2

 for ݊ > ଵܰ, i.e.  

 |߱௡(ݖ)| <  ଵ. (20)ߝܥ2

ݖ (2 ∈ ,ଵߞ) (ଵݖ ∪ ,ଶߞ)  .(ଶݖ
In this case |ݖ − |ଵߞ = |ݖ| − ݖ| ,1 − |ଶߞ ≤ |ݖ| + |ଶߞ| < 2ܴ, and taking into 
account (5), (7) and (19) we can write the following inequalities for the 
absolute value of ߱௡(ݖ)  

 ߱௡(ݖ) = ట(௭)ି∑ 	೙ೖసబ௔ೖ௭ೖ(ଵାఏഀ,ೖം (௭))௭೙శభ(ଵାఏഀ,೙శభം (௭)) ݖ) − ݖ)(ଵߞ −  ,(ଶߞ
namely  
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 |߱௡(ݖ)| ≤ ெା∑ 	೙ೖసబ |௔ೖ||௭|ೖ|(ଵାఏഀ,ೖം (௭))||௭|೙శభ|(ଵାఏഀ,೙శభം (௭))| |ݖ|)2ܴ	 − 1) 
 

 < 2ܴ൫2ܯ + ∑ 	ேభ௞ୀ଴ (|௭|ିଵ)|௭|೙శభ	௞|ܴ௞൯ܽ|ܥ + 	ܥଵܴߝ2 (|௭|ିଵ)|௭|೙శభ ∑ 	௡௞ୀேభାଵ  .	௞|ݖ|
Furthermore, having in mind that  

 								(|௭|ିଵ)|௭|೙శభ < (|௭|ିଵ)|௭|೙శభିଵ = ଵ|௭|೙ା⋯ାଵ < ଵ௡ାଵ, 
 ∑ 	௡௞ୀேభାଵ ௞|ݖ| = |௭|೙శభି|௭|ಿభశభ(|௭|ିଵ) < |௭|೙శభ(|௭|ିଵ), 
we conclude that  

 |߱௡(ݖ)| < ଶோ௡ାଵ ൫2ܯ + ∑ 	ேభ௞ୀ଴ ௞|ܴ௞൯ܽ|ܥ 	+  .ܥଵܴߝ2
Then, since ݊ିଵ → 0, there exists a number ଶܰ = ଶܰ(ߝଵ) > ଵܰ such that  

 ଶோ௡ାଵ ൫2ܯ + ∑ 	ேభ௞ୀ଴ ௞|ܴ௞൯ܽ|ܥ <  ଵߝ

for ݊ > ଶܰ, i.e.  

 |߱௡(ݖ)| < (1 +  ଵ. (21)ߝ(ܥ2ܴ

	⌢ଶݖଵݖ belongs to the arc ݖ (3
 (including the ends). 

Then |ݖ − |ଵߞ < ݖ| ,2ܴ − |ଶߞ < 2ܴ and hence  

 |߱௡(ݖ)| < ସோమ൫ଶெା∑ 	೙ೖసబ஼|௔ೖ|ோೖ൯ோ೙శభ < ସቀଶெା∑ 	ಿభೖసబ஼|௔ೖ|ோೖቁோ೙షభ  

 +ସఌభ஼ቀ∑ 	೙ೖసಿభశభோೖቁோ೙షభ < ସቀଶெା∑ 	ಿభೖసబ஼|௔ೖ|ோೖቁோ೙షభ + ଼ఌభ஼ோమఘ 	. 
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Since ܴି௡ → 0, there exists a number ଷܰ = ଷܰ(ߝଵ) > ଵܰ, such that  

 |߱௡(ݖ)| < ቀ଼஼ோమఘ + 1ቁ  ଵ (22)ߝ

for ݊ > ଷܰ. 

ݖ (4 ∈ {ܱ, ,ଵߞ  .{ଶߞ
In this case we have ߱௡(0) = ܽ௡ାଵߞଵߞଶ, whence |߱௡(0)| = |ܽ௡ାଵ| <  ଵߝ
for ݊ > ଵܰ, and ߱௡(ߞଵ,ଶ) = 0. 

Let ܰ = max{ ଵܰ, ଶܰ, ଷܰ} and ݊ > ܰ, then having in view the inequalities 
(20) - (22), we can write on the boundary of the region Δ:  

 |߱௡(ݖ)| < ݔܽ݉ ቀ2ߝܥଵ, ܥ2ܴ) + ,ଵߝ(1 ቀ଼஼ோమఘ + 1ቁ ଵቁߝ = ቀ଼஼ோమఘ + 1ቁ  ,ଵߝ
that verifies the uniform convergence of ߱௡(ݖ) on the boundary ∂Δ, as 
well. Having in view the last estimate, according to the principle of the 
maximum of the modulus, we can write  

 |߱௡(ݖ)| < ቀ଼஼ோమାఘఘ ቁ  ଵ (23)ߝ

on the arc ߪ. 

Finally, according to (5), (7) and (19), since |ݖ| = 1 on the arc ߪ,  

 |߱௡(ݖ)| = ቚట(௭)ି∑ 	೙ೖసబ௔ೖா෨ഀ,ೖം (௭)ቚ|௭೙శభ|ቚଵାఏഀ,೙శభം (௭)ቚ ݖ| − ݖ||ଵߞ −  |ଶߞ
> ଶ8ߩ อ߰(ݖ) −෍ 	௡

௞ୀ଴ ܽ௞ܧ෨ఈ,௞ఊ  ,อ(ݖ)
whence the inequality (23) yields  
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 ห߰(ݖ) − ∑ 	௡௞ୀ଴ ܽ௞ܧ෨ఈ,௞ఊ ห(ݖ) < ఘ଼మ |߱௡(ݖ)| < ଼ఌభఘయ ଶܴܥ8) + (ߩ =  ߝ

on the arc ߪ.  

Special cases 

In particular, as it has been discussed in Introduction, for ߛ = 1  the 
Prabhakar function ܧఈ,ఉఊ , defined by (1), coincides with M-L’s function ܧఈ,ఉ, i.e. ܧఈ,ఉଵ (ݖ) =  So in this case the series (8) takes the .(see (2)) (ݖ)ఈ,ఉܧ
form  

 ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡ଵ (ݖ) = ∑ 	ஶ௡ୀ଴ ܽ௡ܧ෨ఈ,௡(ݖ), (24) 

with complex coefficients ܽ௡ (݊ = 0,1,2, . . . ). 
Such a kind of series was studied in details e.g. in [16] and [15], but all the 
obtained results concerning them follow as particular cases from the 
preceding sections, as well. 

Conclusion 

We emphasize that the results obtained for the series (8) are quite analogous 
to these for the classical power series (17). 
  As seen, they have one and the same radius of convergence ܴ, and are 
both absolutely and uniformly convergent on each closed disk |ݖ| ≤ ݎ) ݎ < ܴ). Moreover, if each one of them converges at the point ݖ଴ of the 
boundary of 0)ܦ; ܴ), then the theorems of Abel type hold for both series in 
one and the same angular region. Finally, if {ܽ௡}௡ୀ଴ஶ  is a sequence of 
complex numbers satisfying the conditions (18): and all the points 
(including the ends) of the arc ߪ of the unit circle 0)ܥ; 1) are regular to 
the sums of both considered series, then the series (8) and (17) converge 
even uniformly, on the arc ߪ. 

 

 



Jordanka Paneva-Konovska 213

Acknowledgements 

This paper is performed in the frames of the Bilateral Res. Project 
"Mathematical Modeling by Means of Integral Transform Methods, Partial 
Differential Equations, Special and Generalized Functions" between BAS 
and SANU (2012-2014). 

Bibliography  
 
[1] A. Erdélyi et al. (Ed-s), Higher Transcendental Functions. 1 - 3, 1st Ed., 

McGraw-Hill, New York-Toronto-London (1953-1955). 
[2] A.A. Khamzin, R.R. Nigmatullin, I.I. Popov, Justification of the 

empirical laws of the anomalous dielectric relaxation in the framework 
of the memory function formalism, Fract. Calc. Appl. Anal., 17 (2014), 
no. 1, 247-258, doi:10.2478/s13540-014-0165-5. 

[3] A.A. Kilbas, A.A. Koroleva, S.V. Rogosin, Multi-parametric 
Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal. 16 
(2013), no. 2, 378-404, DOI:10.2478/s13540-013-0024-9. 

[4] V. Kiryakova, The special functions of fractional calculus as 
generalized fractional calculus operators of some basic functions, 
Computers and Mathematics with Appl. 59 (2010), no. 3, 1128-1141, 
doi:10.1016/j.camwa.2009.05.014. 

[5] V. Kiryakova, Fractional order differential and integral equations with 
Erdélyi-Kober operators: Explicit solutions by means of the 
transmutation method, AIP Conf. Proc., 1410 (2011), 247–258,  

 doi:10.1063/1.3664376. 
[6] V. Kiryakova, Yu. Luchko, The multi-index Mittag-Leffler functions 

and their applications for solving fractional order problems in applied 
analysis, AIP Conf. Proc., 1301 (2010), 597-613,  

 doi:10.1063/1.3526661. 
[7] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. 

Imperial College Press, London (2010). 
[8] A. Markushevich, A Theory of Analytic Functions. 1, 2 (In Russian), 

Nauka, Moscow (1967). 
[9] J. Paneva-Konovska, Theorems on the convergence of series in 

generalized Lommel-Wright functions, Fract. Calc. Appl. Anal. 10 
(2007), no. 1, 59-74. 

[10] J. Paneva-Konovska, Cauchy-Hadamard, Abel and Tauber type 
theorems for series in generalized Bessel-Maitland functions, Compt. 
Rend. Acad. Bulg. Sci. 61 (2008), no. 1, 9-14. 



Series in Prabhakar Functions and the Geometry of their Convergence 214

[11] J. Paneva-Konovska, Series in Mittag-Leffler functions: Inequalities 
and convergence theorems, Fract. Calc. Appl. Anal. 13 (2010), no. 4, 
403-414. 

[12] J. Paneva-Konovska, The convergence of series in multi-index 
Mittag-Leffler functions. Integral Transforms Spec. Funct. 23 (2012), 
no. 3, 207-221, DOI:10.1080/10652469.2011.575567. 

[13] J. Paneva-Konovska. Inequalities and Asymptotic Formulae for the 
Three Parametric Mittag-Leffler Functions. Mathematica Balkanica, 
New Ser. 26 (2012), fasc. 1-2, 203-210.  

[14] J. Paneva-Konovska, Convergence of series in three parametric 
Mittag-Leffler functions. Mathematica Slovaca. 64(2014), Issue 1,73-84 
DOI:10.2478/s12175-013-0188-0 

[15] J. Paneva-Konovska, Fatou type theorems for series in Mittag-Leffler 
functions. AIP Conf. Proc. 1497 (2012), 318-325, doi:  

 10.1063/1.4766800. 
[16] J. Paneva-Konovska, Series in Mittag-Leffler functions: Geometry of 

convergence, Adv. Math. Sci. Journal, 1, no. 2 (2012), 73-79, UDC: 
517.58:517.521. 

[17] J. Paneva-Konovska. On the multi-index (3m-parametric) Mittag-Leffler 
functions, fractional calculus relations and series convergence, Central 
European Journal of Physics 11, no. 10 (2013), 1164-1177, DOI: 
10.2478/s11534-013-0263-8. 

[18] T.R. Prabhakar, A singular integral equation with a generalized 
Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 
7-15. 

[19] P. Rusev, Classical Orthogonal Polynomials and Their Associated 
Functions in Complex Domain. Publ. House Bulg. Acad. Sci., Sofia 
(2005). 

[20] T. Sandev, Ž. Tomovski, J. Dubbeldam, Generalized Langevin 
equation with a three parameter Mittag-Leffler noise, Physica A, 390 
(2011), issue 21-22, 3627–3636, doi:10.1016/j.physa.2011.05.039. 

 



CHAPTER SIX: 

NETWORK APPLICATIONS IN INDUSTRY 



APPLICATION OF PROBABILITY NEURAL 
NETWORKS FOR CLASSIFICATION 

OF EXPLOSIVES WITH BLASTING ACTION  

VALERIJ I. DZHUROV, MILENA P. KOSTOVA 
AND KALOYAN V. DZHUROV  

 
 
 

Introduction 

The fight against terrorism is a priority in research of scientist from around 
the world. There are many created and used devices for explosive and trace 
detection on documents, clothes, letters and others, built by a number of 
companies in Russia, Great Britain, China, USA and Israel. 

In Russia are used devices of Pilot-M series for detecting explosives in a 
non-airtight spaces and traces of dangerous substances on examined 
objects. The price of this device is around 10000 euro. The device of series 
Pilot M-1 gives the opportunity for detecting trinitrotoluene (TNT), 
nitroglycerin (NGl), hexogen (XG), pentaeritrittetranitrat and their 
derivatives. For examination of trace explosives on documents, passports 
and others, certificate is offered by the GOVERNMENT OF 
DEFENCE-2D. The price of the device varies depending on the type of 
client's requirements. Detecting and classifying the type of blasting material 
is realized by the device MO-2M with a price around 13000 euro. Most 
portable devices and instruments are combined as they are designed for 
detecting explosives, chemical materials, toxic chemicals and drugs 
(SABRE 5000, IONSCAN 400B). The device EVD 3000, which has ICAO 
certificate, is used for detection of plastic explosives and such materials 
made by high pressure methods, with approximate price of 44000 euro 
[3,6]. 

For detecting traces and identifying exploding materials on the surface of 
packages, clothes, hands, gun, etc., is used Poisk -- ХТ with a price around 
60 euro. There is also a spray from the same series. Similar functionality has 
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the device Dropex Plus, which has very small size. The device ExPen 1, 2, 3 
is used for detecting blasting materials when testing suspicious packages at 
customs and checkpoint [8]. 

For identifying and detecting blasting materials of group A (TNT, TNB and 
others) and blasting materials of group B (plastic explosives -- SemtexH, 
RDX, C4 and others) is used the device EXPRAY. There is a modified type 
of this device -- Mini EXPRAY with the same functionalities (identification 
of explosives and non-organic compounds containing nitrates) [11,12]. 

In the Israeli company International Technologies Lasers (ITL) is 
developed a device with remote action for detecting explosives, drugs and 
different types of forbidden chemicals substances. A sensitive laser is used, 
as three components are easily distinguishable: laser emitter which scans 
the object, a spectrometer and a computer. A reaction starts in the molecules 
of the substance which the laser hits, causing emanation with specific 
wavelength. Later the spectrometer analyzes the results of the emanation 
and the computer compares the results with the database of the forbidden 
substances. Similar device is ITMS or VaporTracer-2. The applied laser 
spectrometry is very sensitive. It gives the opportunity for detection of more 
than 40 known narcotic substances (cocaine, heroin, methamphetamine and 
explosives as trotyl, hexogen, PETN, EGDN, dynamit) [9]. 

Israeli-American company AR Challenges implements in Europe and other 
continents automated complex system Trust Based Security(TBS). The 
used detectors give the opportunity for detection of random explosives of 
0.5 micrograms in shipping containers, luggage, handbags and clothes. 
Patent technologies Video Synopsis are used for processing of huge amount 
of video data [13,14 ]. 

From the brief overview conclusions for some drawbacks when using the 
popular control system can be made: 

  1. The used hardware requires significant financial resource and 
well-trained staff; 

  2. UVW frequent range (in THz) is used, which hides some health risks in 
multiple reuse; 
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  3. Existing systems can be ``misleading'' when using fragrances and 
softeners and also give false information for substances placed in colored 
glass bottles.  

An approach for building a system for classification of discovered traces of 
explosives is offered, which in some ways compensates the presented 
earlier disadvantages. This method of approach offers another working 
principle by analyzing the spectral picture of reflected coherent signal by 
samples of explosive materials. 

A classification system for traces of explosives  
with blasting action 

Building a system for classifying traces of blasting materials suggests 
knowledge for their composition, action and the specific features of those 
materials and compounds.  

  • Synopsis of the major explosives  

Explosives are chemicals or compounds, capable under the force of external 
impulse (a hit, friction, heating or other) to turn into self-spreading chemical 
transformation in form of blast with release of heat and formation of 
gaseous products. The process is related with spurt of spreading, which for 
the modern substances can reach up to 9000 [m/s]. In this way, the range of 
the most used by the terrorists explosives can be limited to the blasting 
materials and in separated cases to the use of some brands gunpowder and 
easily accessible pyrotechnic mixtures [15]. 

In the most general way, the classification of the blasting materials can be 
made: 

- initiating (fulminated mercury, nitroglycerin); 

- blasting (TNT hexogen, nitropenta, plastic materials, C4, P4, D-5A); 

- propelling (gunpowder); 

- pyrotechnic mixtures. 
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The main pyrotechnic characteristics of the most used blasting materials are 
given in Table 1 

Table 1. Main parameters of Blasting explosive substances 

 Parameters  Trotyl Nitroglycerin Hexogen  Ten Ammonite  
 Density 
  1,6   1,6   1,7   1,7  1,5   [ଶ݉ݏ/݃]

 Flashpoint 
[deg]  290   290   230   220  220  

 Heat of the 
blast [deg]   1000  6552   1200  5964  4350  

 Spreading 
speed [m/s]   7000  7600   8200  8240  4800  

 
 

  • Experimental part  

Laboratory tests in University Of Ruse's Chemical laboratory were 
conducted under the following conditions: 

Temperature of the environment -- 21 [deg]; 

Humidity -- 80%; 

Altitude -- 50[ m]; 

Power of the probing signal -- up to 80[ mW]; 

Distance between source of the signal and the examined sample -- 0,5[ m]; 

Distance between reflected signal and the receiving aperture -- 0,6[ m]; 

Azimuth angle -- 90[ deg]; 

Site corner -- 30[ deg]. 

3D scenario of the experimental set-up is presented in Fig. 1 
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Fig.1. 3D scenario of the experimental set-up 

The following samples (patterns) have been used: 

Trinitrotoluol (Sample 2), Hexogen (Sample 3), Nitropenta (Sample 4), 
Plastit (Sample 1). The mass of the samples from the viewpoint of safety, is 
not more than 6 [mg]. 

Every sample is irradiated consecutively with coherent probing signals with 
wavelength ߣ = 630	[nm], ߣ = 530[nm], ߣ = 440[nm] respectively. The 
time of each irradiation is 10 [sec]. 

The reflected signals are received under the form of colored images upon 
RGB aperture with 18 Mpxl (5184 x 3456 pixels). Each image is divided 
into nine ``areas'' (facets) on axis Ох and Оу, in which a filter for resulting 
color is applied (filter of type Gaussian blur). For every area are reported the 
average intensities of the pixels' brightness for the corresponding waves 
(colors). The level of the intensities for each color is from 0 to 255. The 
average intensities of brightness of the pixels for the corresponding waves 
(colors) of the four patterns are showed on Fig. 2 and presented tabular in 
Table 1÷4. 
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Fig.2. Reflected coherent signals from trinitrotoluol (Т), hexogen (h), nitropenta (n) 
and plastit (p)  
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Table 2. Average brightness intensity for corresponding mask of 
Sample 1 

  Sample 1 (plastit-5D-1A)  

 Average brightness intensity for corresponding mask at 
ߣ  = 650	nm	(red), ߣ = 530 nm (green),   nm (blue) 430=ߣ

№ R/R  R/G  R/B  G/R  G/G G/B  B/R  B/G  B/B  

 1. 251  251  251  255  255  255  253  254  200  

 2.   251   251   251  255  255  255  254  255  200  

 3.   251   248   251  255  255  255  254  254  200  

 4.   248   188   216  255  255  255  225  241  200  

 5.   244   152   163  255  255  250  211  234  160  

 6.   245   139   97   255  255  250  171  190  150  

 7.   245   140   93   255  254  250  170  173  130  

 8.   246   141   93   154  236  240  167  158  100  

 9.   236   139   95   49   227  200  159  142  100  

 10  236   139   95   51   228  150  153  132  80  

 11  251   251   251  255  255  255  253  254  160  

 12  252   200   210  255  255  255  215  241  150  

 13  252   200   210  255  255  255  191  224  130  

 14  252   155   61   240  252  255  174  172  110  

 15  252   147   77   237  255  255  168  154  120  

 16  252   141   92   139  250  255  163  142  120  

 17  236   130   92   89   254  250  154  120  110  

 18  236   130   92   60   236  180  154  119  110  

 19  191   119   84   65   186  160  152  108  100  

 20  183   121   81   67   163  130  149  107  80  
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Table 3. Average brightness intensity for corresponding mask of 
Samples 2, 3, 4 

  Average brightness intensity for corresponding mask at  ߣ = 650	nm	(red), ߣ = 530 nm (green),   nm (blue) 430=ߣ

 Sample 2 (trinitrotoluon)  

 №  R / R  R / G  R / B  G / R  G / G  G / B  B/ R  B / G  B / B 

 1.   255   249   255  255  255  220  255  255  253  

 2.   255   253   255  255  255  220  255  254  252  

 3.   255   252   255  255  255  220  255  249  252  

 4.   255   242   254  255  255  220  255  137  252  

 5.   255   211   249  255  255  210  253  137  252  

 6.   252   119   180  255  255  210  243  104  250  

 7.   252   119   180  245  253  210  128  17   180  

 8.   246   70   120  224  248  210  100  9   150  

 9.   233   26   50   127  235  180  58   2   100  

 10  218   14   28   74   233  180  38   2   100  

 11  255   249   255  255  255  210  255  255  250  

 12  255   252   255  255  255  210  255  229  250  

 13  255   252   255  255  255  210  255  185  250  

 14  255   237   253  255  255  210  255  128  250  

 15  255   199   242  253  253  210  247  63   240  

 16  254   168   225  224  247  200  208  50   240  

 17  246   96   165  210  247  200  95   10   150  

 18  234   59   105  192  242  150  57   3   110  

 19  209   21   40   127  234  150  31   2   60  

 20  194   10   17   79   233  130  22   2   60  

 Sample 3 (Hexogen)  
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 21.  253   253   253  255  255  220  251  251  251  

 22.  247   242   247  255  255  220  252  251  252  

 23.  250   217   250  253  254  210  247  186  253  

 24.  250   151   113  220  251  200  249  227  252  

 25.  198   145   101  57   252  160  170  117  233  

 26.  188   141   88   60   249  150  249  227  252  

 27.  198   145   101  65   240  100  150  114  158  

 28.  165   138   88   93   212  100  149  144  148  

 29.  198   145   101  96   206  100  158  128  148  

 30  149   130   81   97   207  90   161  131  146  

 31  253   253   253  255  255  230  251  251  251  

 32  247   241   248  255  255  220  249  227  252  

 33  252   199   243  255  255  190  251  243  251  

 34  250   152   116  247  254  180  240  160  248  

 35  251   197   115  86   251  160  215  116  251  

 36  188   140   89   74   250  150  200  106  251  

 37  207   144   97   82   248  130  170  109  244  

 38  165   138   89   94   250  80   175  113  243  

 39  176   144   90   99   229  100  172  121  234  

 40  148   129   82   98   220  90   165  115  224  

 Sample 4 (Nitropenta)  

 41  255   255   255  255  255  180  252  250  252  

 42  254   254   254  255  255  180  255  255  255  

 43  250   244   250  254  254  180  253  253  253  

 44  250   165   221  103  247  180  255  255  255  

 45  250   152   165  103  247  160  253  251  250  

 46  234   149   154  35   249  150  249  211  250  
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 47  219   144   153  46   241  130  249  169  250  

 48  180   140   141  52   210  80   253  91   254  

 49  171   139   135  56   190  80   246  75   254  

 50  159   138   134  64   172  70   235  70   254  

 51  255   255   255  255  255  180  252  250  252  

 52  252   252   252  255  255  180  254  251  254  

 53  251   241   251  255  255  180  253  241  253  

 54  250   154   150  254  254  170  253  150  254  

 55  250   146   164  227  250  150  254  118  254  

 56  233   146   156  193  249  130  249  80   249  

 57  232   149   157  52   250  110  254  85   254  

 58  180   140   141  59   245  100  253  87   254  

 59  172   148   139  63   238  90   254  76   254  

 60  159   137   133  68   226  120  233  71   254  

Key to presented symbols in the tables: 

R / R -- pixel brightness level at probing coherent signal with ߣ = 630[nm]	and	reflected	signal	with	ߣ = 630 [nm]; 

R / G -- pixel brightness level at probing coherent signal with  ߣ = 630	[nm]	and	reflected	signal	with	ߣ = 530 [nm]; 

R / B -- pixel brightness level at probing coherent signal with  ߣ = 630	[nm]	and	reflected	signal	with	ߣ = 440 [nm]; 

G / R -- pixel brightness level at probing coherent signal with  ߣ = 530	[nm]	and	reflected	signal	with	ߣ = 630 [nm]; 

G / G -- pixel brightness level at probing coherent signal with ߣ = 530	[	nm]	and	reflected	signal	with	ߣ = 530[ nm]; 
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G / B -- pixel brightness level at probing coherent signal with  ߣ = 530[	nm]	and	reflected	signal	with	ߣ = 440[ nm]; 

B / R -- pixel brightness level at probing coherent signal with  ߣ = 440[	nm]	and	reflected	signal	with	ߣ = 630[ nm]; 

B / G -- pixel brightness level at probing coherent signal with  ߣ = 440[	nm]	and	reflected	signal	with	ߣ = 530[ nm]; 

B / B -- pixel brightness level at probing coherent signal with  ߣ = 440[	nm]	and	reflected	signal	with	ߣ = 440[ nm]. 

  • Mathematical, algorithmic and software procedures  
for information examination of classification signs for traces 

from substances with blasting action  

For trace classification of substances with blasting action are defined nine 
signs for two classes -- Class 1 -- non-plastic exploding substances 
(trinitrotoluol, hexogen and nitropenta) and Class 2 -- plastic exploding 
substances (plastit 5D- 1А). The signs are determined by the average 
brightness intensity of the spectral picture in corresponding wave range at 
irradiation of the pattern consequently using coherent signal with 
wavelength respectively ߣ = 630	[nm], ߣ = 530[nm], ߣ = 440 [nm]. 
They are conditionally marked with: R/ R ; R/G; R/B; G/R; G/G; G/B; B/R; 
B /G; B/B . 

To evaluate the information of the inputted signs are used interval marks, 
which with probability ߛ	contain	Р. 100% from all elements of the studied 
general combination. Practical borders of dispersing (PBD) are used 
,marked respectively with ܷ஽	(bottom	border)	ܷீ (top border). 

 They are evaluated by the formulas [2]: 

 ܷ஽ = ܺ − ݇ ⋅ ,ݏ ܷீ = ܺ + ݇ ⋅  (1) ݏ

The value of the coefficient к depends on the trust probability ߛ, the	quantity	P	(0 < ܲ < 1)  and the volume of the except ݊	and	it	is	taken	from	tables, and	ݏ  is the mark of the mean-squared 
diversion. 
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Some criterions for information are introduced: 

 The sign is informative if: 

  • The intersection of the intervals, determined by the practical borders for 
the corresponding classes, is an empty set; 

  • The intersection of the intervals is not an empty set, but there is no 
interval which is not a subset of another and the corresponding probabilities ܲ	(ܷ஽ଶ < ܺ < ଴ݔ)	ܲ	and	଴)ݔ < ܺ < ܷீଵ),	which	we	will	provisionally	call	„probability	for	wrong	classificationᇱᇱ	(ܲீ ௄), are	smaller	than	25	%.With	ݔ଴	is	marked	the	abscissa	of	the		intersection	f(ݔଵ; ܽଵ; ܾଵ)	and	f(ݔଶ, ܽଶ,ܾଶ).  

The determination of ܲ(ܷ஽ଶ < ܺ < ଴ݔ)ܲ	and	଴)ݔ < ܺ < ܷீଵ) is based 
upon one of the main tasks from the probability theory for determining a 
random quantity to fall in given range. It is accepted that the values of the 
informative signs are random quantities which are distributed in normal law 
(Gauss's law) [2]. 

It is known that in finite closed interval with length 
,values	X		the	of	99,73%	fall	interval	this	in	precisely	[2].More	Х	quantity	random		law	normal	in	distributed	the	of	values	possible	all	practically	fall		,[ܺ]ܧvalue	average	the	with	environment,matching	and[X]ߪ6 but	in	practice	this	is	accepted	as	100%. Therefore, if	the		practical	borders	of	disperse	are	evaluated, based	on	the	test	data	we	can		determine	the	approximate	value	for	ߪ[X] 

[ܺ]ߪ  ≈ ଵ଺ (ܷீ − ܷ஽) (2) 

When given random quantity Х is distributed in normal law it has density 
distribution: 

;ݔ)݂  ܽ; ܾ) = ଵ√ଶగ௕ ݁ି(ೣషೌ)మమ್మ  (3) 

where а =ܧ[ܺ]	and	ܾ =  .are the distribution parameters (ܺ)ߪ
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One of the main tasks in each distribution is the determination of the 
probability for falling of random quantity in given interval (ݔଵ,ݔଶ). For the 
random quantity Х distributed in normal law this probability is: 

ଵݔ)ܲ  < ܺ < (ଶݔ = ׬ 	௫మ௫భ ݔ݀(ݔ)݂ = Φ(ݐଵ) − Φ(ݐଶ), (4) 

 where	ݐଵ = ௫భିா[௑]ఙ[௑] , ଶݐ = ௫మିா[௑]ఙ[௑] ; 
 Φ(ݐ) = ଵ√ଶగ ׬ 	௧ିஶ ݁ି೟మమ  (5) ݐ݀

The value of Ф(t) is taken from tables [2]. 

Distribution densities for class 1 and class 2 are given with formulas 
respectively: 

 ݂( ଵܺ, ܽଵ; ܾଵ) = ଵ√ଶగ௕భ . ݁ି(ೣషೌభ)మమ್భమ  (6) 

 ݂(ܺଶ, ܽଶ,ܾଶ) = ଵ√ଶగ௕మ . ݁ି(ೣషೌమ)మమ್మమ  (7) 

For class 1 is accepted this class for which ܷீ is bigger. The probability for 
wrong classification can be determined for every class using the formula (4) 
as 

 For	class	1 ⇒ ଵݐ = ௫బିா[௑భ]ఙ[௑భ] ; ଶݐ = ௎ಸభିா[௑భ]ఙ[௑భ]  (8) 

 For	class	2 ⇒ ଵݐ = ௎ವమିா[௑మ]ఙ[௑మ] ; ଶݐ = ௫బିா[௑మ]ఙ[௑మ] , 
where ݔ଴	is	the	abscissa	of	the	intersection	point	of	f( ଵܺ; 	ܽଵ; ܾଵ)	and	f(ܺଶ, ܽଶ,ܾଶ). 
The value of ݔ଴ is found by resolving the equation: 
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 ଵ√ଶగ௕భ ݁ି(ೣషೌభ)మమ್భమ = ଵ√ଶగ௕మ ݁ି(ೣషೌమ)మమ್మమ 	 (9) 

which is equivalent of 

 (௫ି௔మ)మଶ௕మమ − (௫ି௔భ)మଶ௕భమ = l݊ ௕భ௕మ (10) 

The solution is sought in interval х∈ (ܷ஽ଶ, ܷீଵ). 

The approach for the selection of informative signs can be described using 
the algorithm shown on Fig. 3. The following symbols: ோܲ − sign	ܭ௜ − 	݅ −th	class, ܷ஽௜೔, ܷீ௜,	bottom and top practical border of class ݅,  ଴-abscissa ofݔ
the intersection point for the graphics of distribution density of the sign and 
the two classes. 
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Fig.3. A flowchart of an algorithm for determining information of input indications  
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  • Results of the statistical processing of the examined test 
patterns  

The practical borders of disperse for all inputted signs for the two classes 
are given in Table 4 ÷ Table	12	 and presented graphically on ݃݅ܨ. 4 ÷Fig.6  

Table 4. Practical borders for sign R/R 

 Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 240,5 19,30 3,615 170,73÷310,27  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 218,7 51,05 3,06  63,48÷375,91  

Table 5. Practical borders for sign R / G 

Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20  169,1 47,36 3,615 -36,36÷373  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 168,17 66,84 3,06  -2,11÷340 

Table 6. Practical borders for sign R / B 

Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 142,75  72  3,615 -117,5÷403  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 169,05 73,66  3,06 -56,39 ÷394,45  
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Table 7. Practical borders for sign G / R 

Class   n  ݔ   s   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 185,05 88,08 3,615  -133,36÷503  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 170,08 86,44  3,06 -94,43÷434,6  

Table 8. Practical borders for sign G / G 

Class  n   ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20  241,8 25,14 3,615 150,91÷337  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 239,93 33,33  3,06 137,94÷341,39  

Table 9. Practical borders for sign G / B 

Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 233,3  41,4 3,615 83,64÷382,96  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60  164 43,38  3,06  -32÷297  
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Table 10. Practical borders for sign B / R 

Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20  189,5 39,22 3,615 47,72÷331, 3  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 210,88 66,83  3,06 10,39÷411,37  

Table 11. Practical borders for sign B / G 

Class  n   ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 183,7 55,47 3,615  -16,82÷384,22  

 Class2 
(Trinitrotoluol, 
Hexogen, 
Nitropenta)  

60 130,2
3  88,57  3,06 -140,79÷401,24  

Table 12. Practical borders for sign B /B 

Class   n  ݔ   S   k   Practical 
borders  

 Class1 
(plastit-5D-1A)  20 135,5 40,5 3,615  -10 ÷ 282  

 Class2  
(Trinitrotoluol, 
Hexogen, Nitropenta) 

60 223,3  56 3,615  55÷336  
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 Fig.4. Practical borders for probing signal with wavelength ߣ = 630	݊݉  

 

  

Fig.5. Practical borders for probing signal with wavelength ߣ = 530	݊݉  
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Fig.6. Practical borders for probing signal with wavelength ߣ = 430	݊݉ 

For determining the probability percentage for ``wrong classification'' is 
developed software application in Matlab environment (Table13, Table 14). 
It is applied for signs G / B and B / B, which meet the requirement none of 
the intervals of the practical borders not to be subset of the other. The 
graphics of the density distribution for sign G / B (a) and sign B / B (b), are 
presented respectively on Fig. 7. 
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Table 13. Parameters of distribution density, ࢄ૙,ࡷࡳࡼ for sign G / B 

Class Density parameters for sign
G /B 

Value for ܺ଴ ܲீ ௄% 

 Class1 -- 
Plastic  ܽଵ =233.3  ܾଵ =49,83   199.9024   22  

 Class2 -- 
non-plastic  ܽଶ =164   ܾଶ =46   199.9024   24  

Table 14. Parameters of distribution density,ࢄ૙, ࡷࡳ࢞ࢇܕࡼ  for sign B / B 

Class Density parameters for sign
B /B 

Value for ܺ଴ ܲீ ௄% 

 Class1 -- 
Plastic  ܽଵ =135,5  ܾଵ =48,66   180.61   18  

 Class2-- 
non-plastic  ܽଶ =223.3   ܾଶ =56   180.61   22  
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Fig.7. Graphics of the functions for density distribution for sign G / B (a) and sign B 
/ B(b)  
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  a)  b)  

Fig.8. Input data and received results for signs G / B (a) and B / B (b) with software 
processing in Matlab environment  

The received statistical characteristics are used for creating a classifier 
based on Probability neural network. 
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  • Synthesis of classifier with Probability neural network  

There is a large amount of developed and well studied algorithms for 
classification based on artificial neural networks [1,4]. Main disadvantages 
of the neural networks are that in most cases the represent ''black'' boxes as 
regards to their way of work and require significant time for training. 

The Probability neural classifiers (PNC) are type one way multilayer 
perceptrons (MLP-Multilayer Perceptrons). Typical for them in that they 
use strategy similar to statistical and probability Bayes's strategy for 
minimizing the error, which gives opportunity for strict mathematical 
rationale of the way they work. In classification tasks the probability neural 
network evaluates the probabilities of belonging of given observation to 
each of the classes and comparing them choose the most likely class [7,10]. 

The most frequent architecture of PNC is built on four layers -- input, radial, 
summing and output (Fig.9). 

The input layer (IL) contains as many neurons as is the number of 
informative signs. 

The number of elements of radial layer, also called Example Layer (ЕL) is 
equal to the number of elements of the training sample (the training 
vectors), grouped in K groups, where K is the number of classes. Every 
neuron from the radial layer contains Gaussian activation function. The 
Summation Layer (SL) is built by as many elements as is the number of 
classes. In the output layer (the Decision Layer) is taken a decision for the 
class to which the input vector belongs. 

In summation layer every neuron perform aggregation of the received 
probabilistic densities for corresponding class in the previous layer, 

 ܵ௞(ܺ) = ∑ 	ெೖ௜ୀଵ ௞௜ݓ ௞ܲ௜(ܺ), ݇ ∈ {1,2, . . . ,  (11) ,{ܭ

where ܯ௞ − 	number	of	neurons	from	class	ݓ,ܭ௞௜ - weigth coefficients. 
The probabilistic sense of (11) is the posterior probability 

 ܵ௞(ܺ) = ௥ܲ(ܭ௜\ܺ) = ௉ೖ೔(௑).௉ೝ(௄೔)௉(௑) , where (12) 
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௥ܲ(ܭ௜)	is	the	posterior	probability	for	class	݅, and	ܲ(ܺ)  is complete 
probability for the pattern X. 

In the output layer (DL) is chosen the class to which belongs the input 
vector based on the rule: "The winner takes it all" 

(݇)ܥ  = argmax(ܵ௞)ଵஸ௞ஸ௄  (13) 

The mechanism of PNC operation is the following: 

To each element of the input layer is given the input vector ܺ ,ଵݔ)= ,ଶݔ . . . , .(௡ݔ Every	neuron	from	layer	ܮܫ gives the input data to each 
of the EL elements. In this layer the output of the i-th neuron from k-th class 
is evaluated by Gaussian function, which has the following look: 

 ܲ(݅/݇) = ௞ܲ௜(ܺ) = ଵ(ଶగఙమ)೙మ exp(− ‖௑ି௑ೖ೔‖మଶఙೖ,೔మ ), (14) 

where Xk,i is the “center” of the core, and σk,i is the smoothing parameter 
[2]. We can accept σk,i equals to parameter σ, which is experimentally 
determined using methodology determined by the e xpert	. For	the	current	task	ߪ gets the minimum value at which the two 
classes give the optimal recognition accuracy [1]. 

 ܲ(݅/݇) = ௞ܲ௜(ܺ) shows the probability of j-th pattern to belong to the 
K-th class. 
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Fig.9. Architecture of PNN  

The main advantage of the probability neural network is that it is trained 
relatively quickly. The time for training is down only to the time for giving 
the training data to the input. This gives the opportunity to carry out a large 
volume of sample tests. The studies show that the classifiers based on PNN 
neural networks are effective at highly noised data [7]. 

As a disadvantage can be highlighted and need of large amount of memory. 
The network must store all training data. When the task is not related with 
big amount of data this fact does not influence the work speed of the 
network. 

The synthesis of the classifier based on the probability neural network can 
be described with the following algorithm: 

  1. Determining the number of input vectors depending on the informative 
signs; 

  2. Determining the average values of the informative signs for each of the 
classes; 
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  3. Determining the value of smoothing parameterߪ.  

The probability classifier (PNC) for the specific task has 2 inputs, which 
correspond to the two informative signs and 2 outputs determined by the 
number of classes. The radial layer contains 4 neurons, at 2 for each class. 
The Aggregation layer consists of two neurons, which is the same as the 
number of classes. The architecture of PNC with 2 inputs and 2 outputs is 
presented on Fig.10. 

 

 

Fig.10. Architecture of PNC with 2 inputs and 2 outputs  

The classifier is trained using training vectors with coordinates the average 

values of the corresponding signs ( ஻ீ , ஻஻)	for	each	class	–	 ஻ீ௣ =183,7;	 ஻ீ௡ = 130,23;	 ஻஻೛ = 135,5;	஻஻௡ = 223,3.	 
The rule for making a decision for class choice to which to allocate the input 
vector is given with the formula: ܥ(݇) = argmax(ܵ௞)ଵஸ௞ஸ௄ ,  

which means that is chosen that class for which the posterior probability for 
correct classification is biggest [7]. Experimentally is established the 
optimal value of σ is 0,4. 
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	To determine the accuracy of the classifier are made 20 tests with patterns 
of every class. The error for the first class is 15% (from 20 attempts 3 give 
wrong result). For the second class the error is 10% (from 20 attempts 2 
give wrong result). 

The work window of PNC in Matlab environment is given on Fig.11. 

  

Fig.11. Work window of PNC in Matlab environment  

Conclusions 

   • Information of the inputted signs is established at probing signal with 
wavelength respectively ߣ = 	530	nm	and	ߣ = 	440	nm	and reflected by 
the examined object signal with wavelength ߣ, equals or smaller than the 
wavelength of the probing signal. 

  • The PNC classifying accuracy is higher for Class 2 (10%) in compare to 
Class 1 (15%). 
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  • The used frequent range has fewer risks for the health of the serving 
stuff and the objects subjects to control in compare to systems using X-ray 
waves in terahertz range. 

  • The offered approach is apposite to access control of authorized 
companies, working with explosives. 

  • The proposed approach could be used for other explosives (gunpowder), 
and also for other plastic substances (С4, RDX, Semtex). 

  • The studies, related with the offered approach does not hide any risks for 
the research team.  
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Introduction 

Neural networks and fuzzy logic are successfully used for the identification 
and control of nonlinear plants for many years. In addition, there have been 
developed many structures combining these two techniques, such as ANFIS 
[6], DENFIS[7], NEFCON [9] and etc. The fusion of the fuzzy logic with 
the neural networks allows to combine the learning and computational 
ability of neural networks with the human like IF-THEN thinking and 
reasoning of fuzzy system. This could be compared with the human brain 
[1] - neural network concentrate on the structure of human brain, i.e., on the 
hardware whereas fuzzy logic system concentrate on software. 

Many recent developments show that recurrent neural networks (RNNs) 
and recurrent fuzzy-neural networks (RFNNs) are more suitable in 
describing complicate dynamical systems than feed-forward NNs/FNNs, 
because they can handle the time-varying inputs or outputs through its own 
natural temporal operation. RFNNs have an internal feedback loop that 
allows them to capture the dynamic response of a system with external 
feedback through delays. 

The error back-propagation (EBP) algorithm is the most commonly used 
training approach of the neural networks/neuro-fuzzy structures. The 
method belongs to the group of first order gradient algorithms, but it has 
some disadvantages, such as slow convergence rate and stuck in local 
minima. During the past years, many training improvements of the EBP 
algorithm have been developed, such as momentum [11], Quickprop [18] 
and Resilient [13] and e.t.c. 
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Other group algorithms for neural networks/fuzzy-neural networks training 
are so called second order methods like Newton [20] and 
Levenberg-Marcguard [19] approaches. Typical for these algorithms is that 
they provide a fast convergence. Fast and Efficient Second-Order Method 
for Training Radial Basis Function Networks is presented in [21]. Basic 
requirements for training algorithms and brief commentary on first and 
second order gradient algorithms can be found in [15]. 

As learning algorithms are also used biologically-inspired algorithms for 
global optimization. Along with the established genetic algorithms (GA) 
[12], Ant Colony Optimization [2], [14], Artificial Bee Colony [3] and 
Particle Swarm Optimization [5], [8]. Typical of this group of algorithms is 
that they do not require calculation of derivatives, but are significantly 
slower, compared to the well known gradient approaches. 

In this paper is demonstrated the development of a hybrid EBP algorithm 
for training a Takagi-Sugeno recurrent fuzzy-neural network with a global 
feedback. The proposed algorithm represents a combination of 
Gauss-Newton or of Levenberg-Marcquardt approaches used to adjust the 
fuzzy rule consequents parameters, while the premises are being adjusted 
by the Gradient Descent approach. The efficiency of the proposed hybrid 
algorithm is studied through prediction by the proposed Fuzzy-Neural 
Network of two common Chaotic Time Series: Rossler and Mackey-Glass.  

Recurrent Takagi-Sugeno Fuzzy-Neural Network 

The fuzzy model proposed by Takagi and Sugeno (TS) [16] is described by 
fuzzy IF-THEN rules which represent local input-output relations of a 
nonlinear system. The main feature of a Takagi-Sugeno fuzzy-neural model 
is to express the local dynamics of each fuzzy implication (rule) by a linear 
system model. The overall fuzzy model of the system is achieved by fuzzy 
"blending" of the linear system models. Thus, in discrete time by using the 
NARX representation model (Nonlinear AutoregRessive model with 
eXogenous inputs) can be derived:  

(݇)ݕ  = ௬݂(ݔ(݇)) (1) 

where the unknown nonlinear function f ௬  can be approximated by 
Takagi-Sugeno type fuzzy rules:  
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process, two groups of parameters in the fuzzy-neural architecture вЂ“ 
premise and consequent parameters are under adaptation. The consequent 
parameters are the coefficients aଵ, aଶ,...a௡௬, bଵ, bଶ,...b௡௨ in the Sugeno 
function and they are calculated by making a step defined by the following 
chain rule:  

 பஆபఉ೔ೕ = பஆப௬ಾ ப௬ಾப௙೤ ப௙೤பఉ೔ೕ (4) 

where f௬  is the Sugeno function, yெ  is the model output and β௜௝  is an 
adjustable iି௧௛  coefficient (a௜  or ܾ௜ ) of the jି௧௛  activated fuzzy rule. 
Thus, the recurrent equations for calculation of the rule consequent 
parameters, can be expressed as:  

݇)௜௝ߚ  + 1) = (݇)௜௝ߚ + ݕ)ߟ −  ௜(݇), (5)ݔ(݇)௬(௝)ߤ̅(ெݕ

݇)଴௝ߚ  + 1) = (݇)଴௝ߚ + ݕ)ߟ −  ௬(௝)(݇) (6)ߤ̅(ெݕ

where ߟ  is the learning rate and ̅ߤ௬  is the normalized value of the 
membership function degree defined by the fuzzy implication realized by 
means of the product composition:  

௬(௜)ߤ  = ଵ௝(௜)ߤ ∗ ଶ௝(௜)ߤ ∗. . . . . .∗  ௣௝(௜) (7)ߤ

and  

௬(௜)ߤ̅  = ∑/௬(௜)ߤ 	௤௜ୀଵ  ௬(௜) (8)ߤ

The premise parameters are a௜௝ (the centre c௜௝ and the deviation σ௜௝) of an 
input Gaussian fuzzy set defined as:   																ߤ௜௝(௜)(ݔ௜) = exp(−(ݔ௜ − ܿ௜)/2ߪ௜)ଶ (9) 

During the learning process, the error is being propagated through the links 
composed by the corresponding membership degrees from the last to the 
first network layer. Hence, using again the chain rule the gradient step is 
defined as:  
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 பஆபఈ೔ೕ = பஆப௬ಾ ப௬ಾபఓ೔ೕ பఓ೔ೕபఈ೔ೕ (10) 

The final recurrent equations for the premise parameters are being 
expressed as:  

 ܿ௜௝(݇ + 1) = ܿ௜௝(݇) + ݕ)ߟ − ](݇)௬(௝)ߤ̅(ெݕ ௬݂(௜) − [(݇)ොݕ [௫೔(௞)ି௖೔ೕ(௞)]௖೔ೕమ (௞)  

  (11) 

݇)௜௝ߪ  + 1) = (݇)௜௝ߪ + ݕ)ߟ − ](݇)௬(௝)ߤ̅(ොݕ ௬݂(௜) − [(݇)ොݕ [௫೔(௞)ିఙ೔ೕ(௞)]ఙ೔ೕమ (௞) ଷ
 

  (12) 

  Newtonian approaches for learning of the rule 
consequent parameters  

 
Gauss-Newton approach 

To improve the efficiency of the proposed recurrent fuzzy-neural network, a 
Gauss-Newton method for adjusting the rules consequent parameters, is 
applied. Since, the Newton method requires the computation of the second 
order derivative of the defined error cost term, taking into account (5 and 6) 
it can be rewritten:  

 Δߚ = −[∇ଶΞ(ߚ)]ିଵ∇Ξ(ߚ) (13) 

The Hessian and the Gradient of Ξ(ߚ) are expressed as:  

 ∇Ξ(ߚ) = ,(݇)݁(ߚ)்ܬ ∇ଶΞ(ߚ) = (ߚ)ܬ(ߚ)்ܬ + ∑ 	ே௝ୀଵ ௝݁(݇)∇ଶ ௝݁(݇) 
  (14) 

where the dimension of the Jacobian matrix is (NxN௣); where N is the 
number of the training samples and N௣  is the number of adjustable 
parameters in the network. Using the Newton approach the second term in 
(14) is assumed equal to zero. Therefore, the update rule, according to (13) 
became:  
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 Δߚ =  (15) (݇)݁(ߚ)்ܬଵି[(ߚ)ܬ(ߚ)்ܬ]−

where the Jacobian according to adjustable parameters is calculated as:  

(௜௝ߚ)்ܬ  = ,௜ݔ௬(௝)ߤ̅ (௜௝ߚ)ܬ =  ௜൧் (16)ݔ௬(௝)ߤ̅ൣ

  

(଴௝ߚ)்ܬ  = ,௬(௝)ߤ̅ (଴௝ߚ)ܬ =  ௬(௝)൧் (17)ߤ̅ൣ

Finally, the recurrent equations for the rule consequent parameters are 
derived as follows:  

݇)௜௝ߚ  + 1) = (݇)௜௝ߚ + ߟ ቂ̅ߤ௬(௝)ݔ௜(݇)൫̅ߤ௬(௝)ݔ௜(݇)൯்ቃିଵ ݕ) − (݇)௜௝ߚ)ߞ+௬(௝)ߤ̅(ெݕ − ݇)௜௝ߚ − 1))  

  (18) 

݇)଴௝ߚ  + 1) = (݇)଴௝ߚ + ߟ ቂ̅ߤ௬(௝)൫̅ߤ௬(௝)൯்ቃିଵ ݕ) − (݇)଴௝ߚ)ߞ+(݇)௬(௝)ߤ̅(ெݕ − ݇)଴௝ߚ − 1))  (19) 

where the second term represents an introduced momentum ߞ in notion to 
previous increment of the adjusted parameter.  

Levenberg-Marquardt approach  

The Levenberg-Marquardt algorithm also uses the approximated Hessian 
and the information in the gradient, taking into account some regularization 
factors. The algorithm iterates using the following general equation:  

 Δߚ = (ߚ)ܬ(ߚ)்ܬ]− +  (20) (݇)݁(ߚ)்ܬଵି[ܫߣ

where H is the Hessian as it is computed in (14), I is the identity matrix and ߣ is the Levenberg-Marquardt parameter, which adjust the direction of 
movement to extremes. When ߣ parameter is small, the method represents 
a quadratic approximation and when it is large, the Hessian is negligible and 
the LM method works similarly as Gradient descent algorithm. At first 
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iterations, LM works as a gradient method and as it gets near the optimal 
point it gradually switches to Newton based approach. When LM parameter 
gets smaller, LM finds a locally linear solution, precisely and quickly. After 
each iteration of the search, Hessian is checked to be positive definite 
(convex optimization). If Hessian is not positive definite, ߣ is increased 
until this happens. To investigate the positive definiteness of Hessian, 
Cholesky factorization has to be used [10]. To find the minimum using LM 
it is necessary to calculate the Gradient and the Hessian of the cost function. 
Using a TS fuzzy-neural network model of the system, it is straightforward 
task.  

݇)௜௝ߚ + 1) = (݇)௜௝ߚ + ߟ ൤̅ߤ௬(௝)ݔ௜(݇) ቀ̅ߤ௬(௝)ݔ௜(݇)ቁ் + ൨ିଵܫߣ ݕ) − ௬(௝)ߤ̅(ெݕ (݇)௜௝ߚ)ߞ++ − ݇)௜௝ߚ − 1))
   (21) 

݇)଴௝ߚ + 1) = (݇)଴௝ߚ + ߟ ቂ̅ߤ௬(௝)൫̅ߤ௬(௝)൯் + ቃିଵܫߣ ݕ) − (݇)௬(௝)ߤ̅(ெݕ (݇)଴௝ߚ)ߞ++ − ݇)଴௝ߚ − 1))  

  (22) 

Chaotic Time-Series prediction by the proposed recurrent 
Fuzzy-Neural Network 

Chaos is a common dynamical phenomenon in various fields [22] and 
different definitions as series representations exist. Chaotic time series are 
inherently nonlinear, sensitive to initial conditions and difficult to be 
predicted. In the mathematical sense, a chaotic process is one where 
positive feedback of some kind exists. Under some circumstances such 
processes can create time series that appear to be completely random - the 
corollary of this is that some seemingly random series are in fact chaotic, 
and thus to a certain extent predictable. Chaotic systems are never 
completely predictable; because of feedback the simulation and the real 
series will always rapidly diverge. This is effect is caused by small 
differences between the initial real state and the simulation growing 
geometrically as the simulation is advanced in time. Chaotic time series 
commonly occur in physics, biology, meteorology, engineering and 
finance.  
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Experimental results on Chaotic Time Series Prediction 
 
The chaotic time series prediction based on measurement is a practical 
technique for studying characteristics of complicated dynamics and 
evaluation of the accuracy of different types of nonlinear models as 
RNNвЂ™s. In this study, a two chaotic time series, Mackey-Glass [?] and 
Rossler [4] are used to assess the performance prediction of the proposed 
recurrent TS network, with chosen fixed momentum of 0.098=ߞ. 
 

 
 
Figure 2: Prediction of Mackey-Glass Chaotic Time Series. 
 

 
 
Figure 3: Prediction of Rossler Chaotic Time Series. 
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On Fig. 2 is demonstrated the model performance in prediction of the 
Mickey-Glass chaotic times series, with the following parameters: a=0.3; 
b=0.1; C=10; initial conditions x଴=0.1 and ߬= 17s. As it can be seen, the 
classical Gradient descent approach predicts the time series with a great 
error, compared to proposed hybrid learning using the Gauss-Newton and 
Levenberg-Marquardt approaches. In order to illustrate the fluctuations in 
the prediction error and the Root Mean Squared Error, they are given in a 
logarithmic scale, which proves again the positive effect of the designed 
approach. 

On Fig. 3 are shown the obtained results in case of Rossler chaotic series 
prediction with the following parameters: a=0.2; b=0.4; c=5.7; initial 
conditions x଴=0.1; y଴=0.1; z଴=0.1. The obtained results show again a 
good model performance with minimum error prediction and fast transient 
response of the predicted error and RMSE (illustrated in a logarithmic 
scale), approaching to zero, by using the adopted hybrid approach. 

Conclusions 

It was presented in this paper a hybrid learning approach for a Recurrent 
Fuzzy-Neural Network with a global feedback. The proposed algorithm lies 
on the Gradient Descent approach for adjusting the rule premise and 
Gauss-Newton and Levenberg-Marquardt approaches for scheduling the 
rule consequent parameters. The performed experimental simulations in 
prediction by the model of two common Chaotic Time Series 
(Mackey-Glass and Rossler) shown the potentials of the adopted approach. 

The modeling error is smaller and its transient response is faster with values 
closer to zero, compared to the classical Gradient learning methodology. A 
potential extension of the proposed approach is that the model can be 
coupled with an Optimization procedure into Model Predictive Control 
scheme.  
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Introduction 

CNN is a new class of neural networks, first introduced by Leon Chua and 
Lin Yang in 1988 year. They use a grid of non-linear dynamic circuits 
which are connected to each other. As a result, it is possible to transmit a 
large amount of information in real time. 

The basic circuit unit of CNNs is called a cell. It contains linear and 
nonlinear circuit elements, which typically are linear capacitors, linear 
resistors, linear and nonlinear controlled sources, and independent sources. 
All the cells of a CNN have the same circuit structure and element values. 

One of the key features of a CNN is that the individual cells are nonlinear 
dynamical systems, but that the coupling between them is linear. Roughly 
speaking, one could say that these arrays are nonlinear but have a linear 
spatial structure, which makes the use of techniques for their investigation 
common in engineering or physics attractive [1]. 

Here the dynamical systems describing CNNs is presented. For a general 
CNN whose cells are made of time-invariant circuit elements, each cell ܥ(݅, ݆) is characterized by its CNN cell dynamics:  

(ݐ)ሶ௜௝ݔ  (ݐ)௜௝ݔ−= + ∑ 	஼(௞,௟)∈ேೝ(௜,௝) ,(ݐ)௞௟ݕ)ሚ௜௝,௞௟ܣ ((ݐ)௜௝ݕ +∑ 	஼(௞,௟)∈ேೝ(௜,௝) ,௞௟ݑ)෨௜௝,௞௟ܤ (௜௝ݑ +  ௜௝  (1)ܫ

 1 ≤ ݅ ≤ ,ܯ 1 ≤ ݆ ≤  ܯ
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where ݔ௜௝, ݕ௜௝ and ݑ௜௝ refer to the state, output and input voltage of a cell ܥ(݅, ,݅)ܥ :(݆ ݆) refers to a grid point associated with a cell on the 2-D grid. ܥ(݇, ݈) ∈ ௥ܰ(݅, ݆) is a grid point (cell) in the neighborhood within a radius ݎ of the cell ܥ(݅, ௜௝ܫ .(݆  is an independent current source. ܣሚ and ܤ෨  are 
nonlinear cloning templates, which specify the interactions between each 
cell and all its neighbor cells in terms of their input, state and output 
variables [1]. In the linear case instead of ܣሚ and ܤ෨  we have the following 
templates:  

 ∑ 	஼(௞,௟)∈ேೝ(௜,௝) (ݐ)௞௟ݕ௜௝,௞௟ܣ + ∑ 	஼(௞,௟)∈ேೝ(௜,௝)  ௞௟ (2)ݑ௜௝,௞௟ܤ

When the templates are spatially independent, each cell is described by two 
real matrices ܣ and ܤ. In other words, the linear CNN has the following 
static equation:  

(ݐ)ሶ௜௝ݔ  = (ݐ)௜௝ݔ− + ܣ ∗ (ݐ)௜௝ݕ + ܤ ∗ ௜௝ݑ +  ௜௝ (3)ܫ

where ܣ and ܤ are called templates for feedback and control templates 
and ∗ is the convolution operator. 

The symmetry of the templates for feedback ܣ is necessary to demonstrate 
the complete stability of CNN. 

The purpose of this paper is to present some features of the graphical user 
interface in Matlab. GUI facilitated the work of users as they explore a 
variety of parameters of different systems and equations. For example using 
static equation CNN (3). 

Creating a Graphical User Interface and Options 

An interface to study the static equation of linear CNN can be developed 
using the built in the MATLAB graphics editor GUIDE. MATLAB has 
functionality with additional software packages called toolbox - designed 
for a wide range of tasks in different areas such as: Signal Processing Tools 
- processing data ( signals ), Control System Tools - for analysis and 
synthesis systems management, System Identification Tools - identification 
of dynamical systems, Optimization Tools - for solving optimization 
problems, Neural Network Tools- for work with neural networks, Pattern 
Recognition Tools- a sinister transformation, etc. The graphical user 
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interface provides the user with a familiar environment in which to work. 
This environment contains: pushbuttons, toggle buttons, lists, menus, text 
boxes, and so forth (described below). However, GUIs are harder for 
programming because a GUI-based program must be prepared for 
executing a different events. Such inputs are known as events, and a 
program that responds to events is said to be event driven [5]. 

To start GUIDE it is necessary to select the GUIDE icon from the Matlab 
tool menu. In the GUIDE Quick Start dialog box, select the Blank GUI 
(Default) template, and then click OK (show in Figure 1). 

 

Figure 1. GUIDE quick start 

It displays a dialog box to create a user interface that contains a set of tools 
called controls. The Layout Editor then appears as shown in the following 
figure (Figure 2). 
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Figure 2. Layout Editor 

The GUI controls are described here.  

  • Push Button - Push buttons generate an action when clicked.  

  • Slider - Sliders accept numeric input within a specific range by enabling 
the user to move a sliding bar, which is called a slider or thumb.  

  • Radio Button - Radio buttons are similar to check boxes, but are 
typically mutually exclusive within a group of related radio buttons. That is, 
you can select only one button at any given time.  

  • Check Box - Check boxes generate an action when checked and indicate 
their state as checked or not checked. Check boxes are useful for multiple 
choise.  

  • Edit Text - Edit text controls are fields that enable users to enter or 
modify text strings.  

  • Static Text - Static text is typically used to label other controls, provide 
directions to the user, or indicate values associated with a slider. Users 
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cannot change static text interactively and there is no way to invoke the 
callback routine associated with it.  

  • Pop-Up Menu- Pop-up menus open to display a list of choices when 
users click the arrow.  

  • List Box - List boxes display a list of items and enable users to select 
one or more items.  

  • Toggle Button- Toggle buttons generate an action and indicate whether 
they are turned on or off. When you click a toggle button, it appears 
depressed, showing that it is on. When you release the mouse button, the 
toggle button's callback executes.  

  • Table - For work with table data.  

  • Axes - Axes enable your GUI to display graphics.  

  • Panel - Panels group GUI components. Panels can make a user interface 
easier to understand by visually grouping related controls. A panel can have 
a title and various borders.  

  • Button Group -Button groups are like panels but can be used to manage 
exclusive selection behavior for radio buttons and toggle buttons. A button 
group overwrites the Callback properties of radio buttons and toggle 
buttons that it manages.  

  • ActiveX Component- ActiveX components enable you to display 
ActiveX controls in your GUI.  

When you save your GUI application, GUIDE automatically generates an 
M-file that you can use to control how the GUI works. This M-file provides 
code to initialize the GUI and contains a framework for the GUI 
callbacks-the routines that execute in response to user-generated events 
such as a mouse click. Using the M-file editor, you can add code to the 
callbacks to perform the functions you want [5].Each control in GUI form, 
has one or more user-written routines (executable MATLAB code) known 
as callbacks, named for the fact that they "call back" to MATLAB to ask it 
to do things. The execution of each callback is triggered by a particular user 
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action such as pressing a screen button, clicking a mouse button, selecting a 
menu item, typing a string or a numeric value, or passing the cursor over a 
component. The GUI then responds to these events. You, as the creator of 
the GUI, provide callbacks which define what the components do to handle 
events. You can select, size, and position these components as you like. 
Using callbacks you can make the components do what you want when the 
user clicks or manipulates them with keystrokes. The graphical user 
interface for the study of static equation of linear CNN has the form shown 
in Figure 3. 

 

Figure 3. Main Menu 

The GUI contains:  

  • Eight Static Text controls;  

  • Eight Push Button controls;  

  • Seven Edit Text controls;  

  • One Axes controls.  
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 The Graphic User Interface contains toolbox menu- with icons for Zoom 
Out; Zoom In; Insert Color Bar; 3D Rotate; Pan and Data Cursor, shown in 
Figure 4.The Graphic User Interface contains Main menu too (shown in 
Figure 3):  

 

Figure 4. Toolbox 

After inserting values for the different parameters and selecting the 
"Calculate Function" button tool from the form the function is calculated 
and displayed in the text box as shown in the Figure 3 and 5. 

 

Figure 5. Calculated function 

The Command Button "Clear Fields" clears all fields and allows the user to 
enter new values for the parameters of the function. The choice Command 
Buttons "Surfl", "Mesh", "Contour" and "Plot" show different kinds of 
plots: surface, mesh, contour and Plot respectively. The Command Button 
"Set Diagram Title" shows title and marks a place along the axes x and y. 
The Command Button "Start NNTOOL" starts Neural Network Tool that is 
embedded in Matlab, The Network/Data Manager window is a basic part of 
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the GUI. This window has its own work space distinct from the command 
line of MATLAB workspace. During its use we can import data from the 
command prompt of MATLAB, can create new data and also we can export 
results from the Network Data Manager to the command prompt and store 
them in Tables [3], [4] (Figure 6). 

 

Figure 6. Network Data Manager 

The choice of option "Data Type" is compulsory:  

  • Inputs;  

  • Targets;  

  • Input Delay States;  

  • Layer Delay States;  

  • Outputs or  

  • Errors.  
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To create the network we chose the card "Network" in the "Create Network 
or Data" window. One must chose the variable from the catalog "Input 
data", and/ or the variable from the catalogue "Target data" respectively [2]. 

 

Figure 7. Create Network or Data 

The possible Training functions are:  

  • Trainbr- Bayesian regularization;  

  • Trainlm- Levenberg-Marquardt back propagation;  

  • Trainoss- One step secant back propagation;  

  • Trainr- Random order incremental training with learning functions.  
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 The possible Performance Functions are:  

  • Mae- Mean absolute error performance function;  

  • Mse- Mean squared error performance function;  

  • Msne- Mean squared normalized error performance function;  

  • Msnereg-Mean squared normalized error with regularization performance 
functions;  

  • Msereg- Mean squared error with regularization performance function;  

  • Mseregec- Mean squared error with regularization and economization 
performance function;  

  • Sse- Sum squared error performance function.  

 Some of the possible Transfer functions are:  

  • Hardlim - Hard limit transfer function;  

  • Learnp- Learning function;  

  • Compet- Competitive transfer function;  

  • Netinv- Inverse transfer function;  

  • Poslin- Positive linear transfer function;  

  • Purelin- Linear transfer function;  

  • Radbas- Radial basis transfer function;  

  • Satlins- Symmetric saturating linear transfer function;  

  • Tansig- Hyperbolic tangent sigmoid transfer function;  



Victoria Rashkova 267

  • Tribas- Triangular basis transfer function.  

The simulation results for different values of A and B templates are shown 
in Figure 8. 
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Figure 8. Simulation results 
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Part of the source code of the GUI Application is shown in Figure 9.  

 

Figure 9. Application source code 
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Conclusion 

As GUIDE is built into MATLAB, it is designed to use all available for 
Matlab toolboxes and is an effective tool for building graphical tools that 
are used in different areas.  

The advantages of GUI are as follows:  

  • Code is produced efficiently. A relative large size of CNN can be built;  

  • Easy and straightforward design;  

  • Flexible to set the inputs and initial states of variables;  

  • Ability to interactive dialogue with the user;  

  • Graphical display of data;  

  • Opportunity for rapid calculation of any type of mathematical problems;  

  • Ability to import data;  

  • Do not require the user to have special programming skills;  

  • Removing the step of continuously introducing same programming code 
for the study of the same equation for various values of the parameters.  

 Disadvantages:  

  • The main disadvantage of using a GUI is much more - complicated 
programming code used to create the application. The user must have 
programming skills, if he wants to add or change the parameters.   

Acknowledgement 

The present document has been produced with the financial assistance of 
the European Social Fund under Operational Programme "Human 
Resources Development" The contents of this document are the sole 



Victoria Rashkova 271

responsibility of the "Angel Kanchev" University of Ruse and can under no 
circumstances be regarded as reflecting the position of the European Union 
or the Ministry of Education and Science of Republic of Bulgaria. 

Project в„– BG051PO001-3.3.06-0008 "Supporting Academic 
Development of Scientific Personnel in Engineering and Information 
Science and Technologies". 

Bibliography  
 
[1] A. Slavova, Cellular Neural Networks: Dynamics and Modeling, 

Kluwer Academic Publishers, 2003  
[2] Hamada Ahmed Khadragy, Cellular Neural Networks, Praveena 

Annadurai, 2013  
[3] Howard Demuth, Mark Beale, Neural Network Toolbox, Users Guide  
[4] Lazaros Iliadis, The Graphical Interface of Neural Network Toolkit in 

Matlab and Applications  
[5] Matlab, Creating Graphical User Interface, Release 2007b, 2007, book  

 

 





CHAPTER SEVEN: 

NONLINEAR WAVES AND SIMULATIONS



GLOBAL SOLVABILITY AND FINITE TIME BLOW 
UP OF THE SOLUTION TO SIXTH ORDER 

BOUSSINESQ EQUATION  

N. KUTEV, N. KOLKOVSKA AND M. DIMOVA 
 
 
 

Introduction 

The aim of this paper is to study the Cauchy problem for the generalized 
sixth order Boussinesq equation  

 ௧ܷ௧ − ܷ௫௫ − ଵߚ ௧ܷ௧௫௫ + ଶܷ௫௫௫௫ߚ + ߚ ௧ܷ௧௫௫௫௫ = ݂(ܷ)௫௫ܺ ∈ ℝ, ݐ ∈ [0, ܶ), ܶ ≤ ∞ ,  (1) 

 ܷ(ܺ, 0) = ܷ଴(ܺ), ௧ܷ(ܺ, 0) = ଵܷ(ܺ),			ݔ ∈ ℝ. (2) 

 Here ߚଵ ≥ 0 ଶߚ , > 0  and ߚ ≥ 0  are dispersive coefficients. The 
nonlinear term ݂(ܷ) has the form  

 ݂(ܷ) = ܽ|ܷ|௣ܷ + ܾ|ܷ|ଶ௣ܷ, ݌ ≥ 1, ܽ, ܾ = ݐݏ݊݋ܿ ≠ 0. (3) 

For ߚଶ = ଵߚ ,1 = ߚ = 0 Eq.(1), referred as "good" Boussinesq equation, 
is a universal model for nonlinear wave dynamics in weakly dispersive 
media. For example it models surface waves in shallow waters. For ߚଵ, ߚଶ ≠ ߚ , 0 = 0, Eq. (1) is the Boussinesq paradigm equation and is derived 
from the full Boussinesq model in [1]. When ߚଶ = 1 ଵߚ , = 0 ߚ , = 1 
Eq.(1) is transformed into the Rosenau equation which describes the 
dynamics of the nonlinear lattice [9]. 

Here we focus on Eq. (1) with nonzero dispersive coefficients. In this case 
Eq.(1) occurs in the water wave problem with nonzero surface tension, see 
[10]. 
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In [16, 17, 20] the authors consider the long-time behavior of solutions to 
(1), (2) for small initial data using the contraction mapping theorem. Finite 
time blow-up and nonlinear scattering are established under certain 
hypotheses on the nonlinearities ݂(ܷ). Even though these results can not 
give the global existence for typical nonlinearities, e.g., ݂(ܷ) = ܷଶ. 

In [13, 18] Eq.(1) has been studied with nonlinear terms  

 ݂(ܷ) = ܽ|ܷ|௣		or		݂(ܷ) = ܽ|ܷ|௣ିଵܷ,				ܽ ≠ 0, ݌ > 1. (4) 

 In these papers global existence or finite time blow up of the weak 
solutions with subcritical or critical initial energy (0)ܧ ≤ ݀ was proved by 
means of the potential well method. The supercritical case (0)ܧ > ݀ is 
considered in [11]. 

In [12, 15, 19] the potential well method is applied to the Rosenau equation 
(Eq.(1) with ߚଵ = 0) and nonlinear terms (4). 

Combined power-type nonlinearities are investigated in [5, 14] for fourth 
order generalized Boussinesq equation (Eq.(1) with ߚ = 0). 

The special nonlinearity (3) is well-known as generalized Bernoulli (or 
Lienard) type nonlinearity. The cubic-quintic nonlinearities, i.e., ݌ = 2 in 
(3), arise in a number of mathematical models of physical processes, e.g. in 
some models with significance in the theory of atomic chains [7] and 
shape-memory alloys [2]. 

In the present paper we study problem (1), (2) for all constants ܽ and ܾ in 
(3) by means of different methods. The main results are formulated in 
Theorem 3.1 from Section 3. 

In case ܾ < 0 we give a complete answer to the question about global 
existence or finite time blow up of the solution by the well-known potential 
well method. In case ܾ > 0, ܽ < 0, ܽଶ − (௣ାଶ)మ(௣ାଵ) ܾ > 0 we apply the new 
nonstandard potential well method, proposed in [5]. This method is based 
on new invariant sets and a new critical energy constant ݀ା , which is 
analog of critical energy constant ݀. For ܾ > 0, ܽ > 0 or ܾ > 0, ܽ < 0, ܽଶ − (௣ାଶ)మ(௣ାଵ) ܾ ≤ 0  we prove global existence of the solutions by the 
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conservation law's method without any restriction on the initial energy (0)ܧ . The critical energy constants ݀  and ݀ା , crucial for the global 
solvability or finite time blow up in the framework of the potential well 
methods, are calculated explicitly using the ground state solutions of Eq. (1) 
at the end of Section 3. A conservative finite difference scheme for the 
numerical solution of (1), (2) is proposed and studied in Section 4. The 
performed numerical experiments illustrate and support our theoretical 
results. 

Preliminaries 

Throughout the paper we denote Lଶ(ℝ)  and H௦(ℝ)  by Lଶ  with norm ∥ ݑ ∥ and H௦ with norm ∥ ݑ ∥௦ respectively, and define the inner product (ݑ, ,ݑ) as (ݒ (ݒ = ׬ 	ℝ  .ݔ݀	ݒݑ

After the change of the variable ݔ = ܺ/ඥߚଶ , problem (1), (2) can be 
rewritten in the following form  

௧௧ݑଶߚ  − ௫௫ݑ − ௧௧௫௫ݑଵߚ + ௫௫௫௫ݑ + ௧௧௫௫௫௫ݑଷߚ = ݔ௫௫(ݑ)݂ ∈ ℝ, ݐ ∈ [0, ܶ), ܶ ≤ ∞ ,  (5) 

,ݔ)ݑ  0) = ,(ݔ)଴ݑ ,ݔ)௧ݑ 0) = ݔ			,(ݔ)ଵݑ ∈ ℝ, (6) 

 where ݔ)ݑ, (ݐ = ܷ(ඥߚଶݔ, (ݐ (ݔ)଴ݑ , = ܷ଴(ඥߚଶݔ) (ݔ)ଵݑ , = ଵܷ(ඥߚଶݔ) 
and ߚଷ =  .ଶߚ/ߚ

We study problem (5), (6) with initial data  

଴ݑ  ∈ Hଵ, ଵݑ ∈ Hଵ, (−Δ)ିଵ/ଶݑଵ ∈ Lଶ, (7) 

 where (−Δ)ି௦ݑ = ℱିଵ(|ߦ|ିଶ௦ℱ(ݑ)) for ݏ > 0 and ℱ(ݑ), ℱିଵ(ݑ) are 
the Fourier and the inverse Fourier transform. Under regularity assumptions 
(7) problem (5), (6) has a unique solution ݑ ∈ Cଵ([0, ௠ܶ); Hଵ)  with 
maximal existence time interval [0, ௠ܶ), ௠ܶ ≤ ∞ (see [18], Theorem 2.3). 
Moreover (−Δ)ିଵ/ଶݑ௧ ∈ Lଶ  for every ݐ ∈ (0, ௠ܶ)  and the solution 
satisfies the conservation law  

(ݐ)ܧ  = ݐ		every	for		(0)ܧ ∈ [0, ௠ܶ), (8) 
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 where  

(ݐ)ܧ  = ଵଶ ቀߚଶฮ(−Δ)ିଵ/ଶݑ௧ฮଶ + ଵߚ ∥ ௧ݑ ∥ଶ+ ଷߚ ∥ ௧௫ݑ ∥ଶ +∥ ݑ ∥ଵଶቁ 

׬+  	ℝ (ݑ)ܨ				,ݔ݀	(ݑ)ܨ = ׬ 	௨଴  (9) ݏ݀	(ݏ)݂

 (for more details see [18], Theorem 2.4). 

In the framework of the potential well method we introduce the potential 
energy functional (ݑ)ܬ, the Nehari functional (ݑ)ܫ, the Nehari manifold ࣨ, and the sets ܹ, ܸ as  

(ݑ)ܬ  = ଵଶ ∥ ݑ ∥ଵଶ+ ׬ 	ℝ ,ݔ݀	(ݑ)ܨ (ݑ)ܫ = ݑ(ݑ)′ܬ =∥ ݑ ∥ଵଶ+ ׬ 	ℝ  ,ݔ݀	(ݑ)݂ݑ
  ܹ = ݑ} ∈ Hଵ: (ݑ)ܫ > 0} ∪ {0}, ܸ = ݑ} ∈ Hଵ: (ݑ)ܫ < 0}, 
 ࣨ = ݑ} ∈ Hଵ:	(ݑ)ܫ = 0, ∥ ݑ ∥ଵ≠ 0}. 
Let us mention some differences in the definition of the Nehari manifold ࣨ 
depending on the constants ܽ and ܾ in (3). 

In case ܊ < ૙ the set ܹ is simply connected and contains the origin. The 
Nehari manifold ࣨ is on a positive distance to zero and divides Hଵ into 
two sets ܹ and ܸ (see [5], Section 5). In this case the critical energy 
constant ݀ is defined as  

 ݀ = inf௨∈ࣨ,(ݑ)ܬ				0 < ݀ < ∞. 
If ܊ > ૙, ܉ < ૙		and		܉૛ − ା૚ܘ૛(ା૛ܘ) ܊ > ૙,  then Nehari manifold ࣨ  has 
more complicated structure (see [5], Section 6), i.e.  

 ࣨ = ାࣨ ∪ ࣨି ∪ ଴ࣨ, where 

 ±ࣨ = ݑ	:ݑ(ݑ)±ߣ} ∈ Hଵ, ∥ ݑ ∥ୌభ≠ 0, (ݑ)ܩ > 0, (ݑ(ݑ)±ߣ)ܫ = 0}, 
 ଴ࣨ = ݑ	:ݑ(ݑ)଴ߣ} ∈ Hଵ, ∥ ݑ ∥ୌభ≠ 0, (ݑ)ܩ = 0, (ݑ(ݑ)଴ߣ)ܫ = 0}. 
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Here (ݑ)ܩ is the discriminant of the equation  

(ݑߣ)ܫ  = ∥ଶ൫ߣ ݑ ∥ୌభଶ + ௣|ߣ|ܽ ׬ 	ℝ ݔ݀	௣ାଶ|ݑ| + ଶ௣ߣܾ ׬ 	ℝ ൯ݔ݀	ଶ௣ାଶ|ݑ| = 0 
  (10) 

with respect to |ߣ|௣, namely  

(ݑ)ܩ  =∥ ݑ ∥୐೛శమଶ(௣ାଶ)− ସ௕௔మ ∥ ݑ ∥ଵଶ∥ ݑ ∥୐మ೛శమଶ௣ାଶ . (11) 

With (ݑ)±ߣ (ݑ)ାߣ , < (ݑ)ିߣ  we denote the positive roots of (10) for (ݑ)ܩ > 0 and with ߣ଴(ݑ) - the unique positive root of (10) for (ݑ)ܩ = 0. 
In this case ݀ = −∞ (see [5]) and we introduce a new constant ݀ା and a 
set ෩ܹ , which are analogs of ݀ and ܹ:  

 ݀ା = inf௨∈ శࣨ∪ బࣨ,(ݑ)ܬ				0 < ݀ା < ∞, 
 ෩ܹ = Hଵ\ܭഥ, 
where		ܭ = ݑ	:ݑߣ} ∈ Hଵ, (ݑ)ܩ > ߣ	݀݊ܽ	0 >  .{(ݑ)ାߣ
As in [5] we give an equivalent definition of the set ෩ܹ  with easy checkable 
conditions, namely  

 		 ෩ܹ = ାܹ ∪ ଴ܹ ∪ ܹି ∪ {0}, where 

 ܹି = ݑ} ∈ Hଵ:	(ݑ)ܩ < 0}, 
 ାܹ ∪ ଴ܹ = ݑ} ∈ Hଵ\{0}:	(ݑ)ܩ ≥ 0		and 

(ݑ)ܵ		  =∥ ݑ ∥୐೛శమ௣ାଶ + (ݑ)ଵ/ଶܩ + (2/ܽ) ∥ ݑ ∥ୌభଶ < 0}. (12) 

If ܊ > ૙, ܉ > ૙  then (ݑߣ)ܫ ≥ ୌభଶ‖ݑ‖ଶߣ > 0  for every ߣ ≠ 0  and ‖ݑ‖ୌభ ≠ 0, i.e. ࣨ = ∅ and ܹ ≡ Hଵ. 
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Theoretical results 

In this section we prove global existence or finite time blow up of the weak 
solutions of (5), (6) depending on the energy of the initial data and the 
values of ܽ, ܾ in (3). 

Theorem 3.1 Suppose ݑ଴ ∈ ଵݑ ,ଵܪ ∈ ଵݑଵ/ଶି(߂−) ଵ andܪ ∈   ଶ. Thenܮ

  (i) for ܾ < 0 and (0)ܧ < ݀:  

    (a) if ݑ଴ ∈ ܹ  then problem (5), (6) has a unique global solution 
defined for every ݐ ∈ [0,∞);  

    (b) if ݑ଴ ∈ ܸ then the solution of problem (5), (6) blows up in a finite 
time.  

  (ii) for ܾ > 0, ܽ < 0, ܽଶ − (௣ାଶ)మ௣ାଵ ܾ > 0 and (0)ܧ < ݀ା: 

if ݑ଴ ∈ ෩ܹ  then problem (5), (6) has a unique global solution defined for 
every ݐ ∈ [0,∞).  

  (iii) for ܾ > 0:  

    (a) if ܽ > 0 or ܽ < 0, ܽଶ − (௣ାଶ)మ௣ାଵ ܾ < 0 then problem (5), (6) has a 
unique global solution with uniformly bounded ܪଵ  norm for every ݐ ∈ [0,∞).  

    (b) if ܽ < 0 and ܽଶ − (௣ାଶ)మ௣ାଵ ܾ = 0 then problem (5), (6) has a unique 
global solution which possibly blows up for ݐ → ∞.  

Sketch of the proof. The proofs of (݅)௔ and (݅݅) follow the ideas of the 
standard and nonstandard potential well methods, respectively. These 
methods are based on the invariance of the sets ܹ, ܸ and ෩ܹ  under the 
flow of the equation (see the proof of Theorems 5.2, 5.3 and 6.3 in [5]). In 
case (݅)௔ from the conservation law (8) we have ((ݐ)ݑ)ܫ > 0 for every ݐ ∈ [0, ௠ܶ) and  
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(0)ܧ  = (ݐ)ܧ = ଵଶ ቀߚଶฮ(−Δ)ିଵ/ଶݑ௧ฮଶ + ଵߚ ∥ ௧ݑ ∥ଶ+ ଷߚ ∥ ௫௧ݑ ∥ଶቁ 

 + ௣ଶ(௣ାଶ) ∥ ݑ ∥ଵଶ− ௕௣ଶ(௣ାଵ)(௣ାଶ) ∥ ݑ ∥୐మ೛శమଶ௣ାଶ + ଵ௣ାଶ  (ݑ)ܫ
 ≥ ௣ଶ(௣ାଶ) ∥ ݑ ∥ଵଶ,	 
 i. e. ∥ ݑ ∥ଵଶ≤ ଶ(௣ାଶ)௣ ݐ	forevery	(0)ܧ ∈ [0, ௠ܶ). (13) 

In case (݅݅) we get (ݑ∗ߣ)ܫ > 0 for ߣ∗ = ݌)/2) + 2))ଵ/௣ (see the proof of 
Theorem 6.4 in [5]) and from (8) we have  

(0)ܧ  ≥ (ݑ)ܬ = ଵଶ(ఒ∗)మ (ݑ∗ߣ)ܫ + ௕௣మଶ(௣ାଵ)(௣ାଶ)మ ∥ ݑ ∥୐మ೛శమଶ௣ାଶ  

 ≥ ௕௣మଶ(௣ାଵ)(௣ାଶ)మ ∥ ݑ ∥୐మ೛శమଶ௣ାଶ , 
 i. e.		 ∥ ݑ ∥୐మ೛శమଶ௣ାଶ ≤ ଶ(௣ାଶ)మ(௣ାଵ)௕௣మ  .(0)ܧ
From the Hölder inequality we get  

 |௔|௣ାଶ ׬ 	ℝ ݔ݀	௣ାଶ|ݑ| ≤ |௔|௣ାଶ ൫׬ 	ℝ ݔ݀	ଶݑ ׬ 	ℝ  ൯ଵ/ଶݔ݀	ଶ௣ାଶ|ݑ|

 ≤ ଵସ ׬ 	ℝ ݔ݀	ଶݑ + ସ௔మ(௣ାଶ)మ ׬ 	ℝ  .ݔ݀	ଶ௣ାଶ|ݑ|
Applying again the conservation law and the above estimate we obtain  

(0)ܧ  ≥ (ݑ)ܬ ≥ ଵଶ ∥ ݑ ∥ଵଶ− ଵସ ∥ ݑ ∥ଵଶ− ସ௔మ(௣ାଶ)మ ∥ ݑ ∥୐మ೛శమଶ௣ାଶ  

 ≥ ଵସ ∥ ݑ ∥ଵଶ− ଼(௣ାଵ)௔మ௣మ௕  ,(0)ܧ
 i. e., ∥ ݑ ∥ଵଶ≤ 4 ቀ1 + ଼(௣ାଵ)௔మ௣మ௕ ቁ ݐ	forevery	(0)ܧ ∈ [0, ௠ܶ). (14) 
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From (13) and (14) and the local existence result ([20], Theorem 2.3) it 
follows that the solutions in cases (݅)௔ and (݅݅) are globally defined, i.e. ௠ܶ = ∞. 

The proof of the finite time blow up in case (݅)௕ is based on the concavity 
method of Levine by means of the function  

 ϕ(ݐ) = ฮଶݑଶฮ(−Δ)ିଵ/ଶߚ + ଵߚ ∥ ݑ ∥ଶ+ ଷߚ ∥ ௫ݑ ∥ଶ 

(see for more details the proof of Theorem 5.3 in [5]). 

In case (݅݅݅)௔ from the conservation law (8) we have  

(0)ܧ  = (ݐ)ܧ ≥ ௖మିଵଶ௖మ ∥ ݑ ∥ଵଶ, if		ܽଶ − (௣ାଶ)మ௣ାଵ ܾ < 0, 
 where ܿଶ = (௣ାଶ)మ௕(௣ାଵ)௔మ > 1, and  

(0)ܧ  = (ݐ)ܧ ≥ ଵଶ ∥ ݑ ∥ଵଶ, if		ܽ > 0, ܾ > 0. 
 The rest of the proof follows from the local existence result ([20], Theorem 
2.3). 

In case (݅݅݅)௕ since ܽଶ − (௣ାଶ)మ௣ାଵ ܾ = 0 from (8) we have  

(0)ܧ  = (ݐ)ܧ ≥ ଵଶ (∥ ௧ݑ ∥ଶ +∥ ௫ݑ ∥ଶ). 
 From the inequality  

 ∥ (ݐ)ଶݑ ∥ଶ≤ ൬∥ ଴ݑ ∥ଶ+ ଶݐ sup଴ஸ௦ஸ௧ ∥ (ݏ)௧ݑ ∥ଶ൰ ≤ 2(∥ ଴ݑ ∥ଶ+  ((0)ܧଶݐ2
for every ܶ > 0 and for every ݐ ∈ (0, ܶ) it follows that ∥ (ݐ)ݑ ∥ଵଶ≤ ܿଵ +ܿଶܶଶ with constants ܿଵ, ܿଶ independent of ݐ. Thus, in case (݅݅݅), finite 
time blow up of the solution is impossible from the local existence result. 
Theorem 3.1 is proved.  
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From Theorem 3.1 it is clear that the explicit value of the constants ݀ and ݀ା is crucial for the theoretical and numerical analysis of problem (5), (6). 

In our previous paper [5] we evaluate the critical energy constants ݀ and ݀ା by means of the ground state solutions ߰(ݔ) of (5), i.e., the solution to 
the stationary problem  

(ݔ)′′߰  = (ݔ)߰ + (ݔ)௣߰|(ݔ)߰|ܽ +  (15) ,(ݔ)ଶ௣߰|(ݔ)߰|ܾ

(ݔ)߰  → 0		as		|ݔ| → ∞. 
If ܾ < 0 or ܾ > 0, ܽ < 0, ܽଶ − (௣ାଶ)మ௣ାଵ ܾ > 0 then the unique (up to the 
sign and translation of the coordinate system) solution ߰(ݔ) of (15) is 
defined by  

(ݔ)߰  = ݌) + 2)ଵ/௣ ቆටܽଶ − (௣ାଶ)మ௣ାଵ ܾ	cosh(ݔ݌) − ܽቇିଵ/௣ (16) 

(see Section 4 in [5]). Since ݀ = (߰)ܬ = (߰)ܬ − ଵଶ ݌ for (߰)ܫ = 2 we get 
the following explicit expression for ݀:  

 
݀|௣ୀଶ = − ଷ଼ସ௔௕(ଷ௔మିଵ଺௕)మ − ଷ௔଼௕(ଷ௔మିଵ଺௕)మ (9ܽସ − 256ܾଶ − 192ܽଶܾ)− ଵଶ௔(ଷ௔మିଵ଺௕) + √ଷ(ଷ௔మିଵ଺௕)ଷଶ(ି௕)య/మ ቆగଶ + arctan ௔ସ ට ଷି௕ቇ .  (17) 

If  

 ܾ > 0, ܽ < 0		ܽ݊݀		ܽଶ − ସ(௣ାଶ)(௣ାଵ)ଷ௣ାଶ ܾ ≥ 0, (18) 

then ߰ ∈ ାࣨ and the explicit value of ݀ା is given by:  

 
݀ା|௣ୀଶ = − ଷ଼ସ௔௕(ଷ௔మିଵ଺௕)మ − ଷ௔଼௕(ଷ௔మିଵ଺௕)మ (9ܽସ − 256ܾଶ − 192ܽଶܾ)− ଵଶ௔(ଷ௔మିଵ଺௕) + √ଷ(ଷ௔మିଵ଺௕)଺ସ௕య/మ ln √ଷ௔ାସ√௕√ଷ௔ିସ√௕ . (19) 
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Numerical results 

We discretize (5), (6) using a regular mesh with step ℎ in a sufficiently 
large space interval [−ܮଵ, [ଶܮ ௜ݔ : = ଵܮ− + ݅ℎ , ℎ = ଵܮ) + ܰ/(ଶܮ , ݅ = 0,… ,ܰ. For approximation of Eq. (5) we propose the following family 
of finite difference schemes depending on the real parameter ߠ:  

ܤ  ቀ௩೔೙శభିଶ௩೔೙ା௩೔೙షభఛమ ቁ − Λݒ௜௡ + Λଶݒ௜௡ = Λ൬ி(௩೔೙శభ)ିி(௩೔೙షభ)௩೔೙శభି௩೔೙షభ ൰, (20) 

ܤ  = ܫଶߚ − ଵߚ) + ଶ)Λ߬ߠ + ଷߚ) +  .ଶ)Λଶ߬ߠ
 Here: ߬ is a time-step; ݐ௡ = ,௜ݔ) at ݑ ௜௡ is a discrete approximation toݒ ;߬݊  is the identity operator; Λ and Λଶ are the standard three and ܫ ;(௡ݐ
five-point discretizations of the second and fourth derivatives respectively; 
function (ݑ)ܨ is defined in (9). The approximations of initial conditions 
(6) and asymptotic boundary conditions are given by  

௜଴ݒ  =  ,(௜ݔ)଴ݑ
௜ଵݒ  = (௜ݔ)଴ݑ +  (21) (௜ݔ)ଵݑ߬

 		+ ఛమଶ ܫଶߚ) − ଵΛߚ + ଴ݑଷΛଶ)ିଵ(Λߚ − Λଶݑ଴ + Λ݂(ݑ଴))(ݔ௜), 
௜௡ାଵݒ  = 0, Λݒ௜௡ାଵ = 0		for		݅ = 0, ܰ. 
 The nonlinear with respect to ݒ௜௡ାଵ scheme (20) is linearized using the 
method of successive iterations. In our calculations we consider the already 
computed function ݒ௡ as an initial approximation to the sought function ݒ௡ାଵ. The iterations stop when the relative error between two successive 
iterations is less than a given tolerance ߝ. Usually 3-8 nonlinear iterations 
are sufficient for convergence with tolerance 10ିଵଷ. The resulting systems 
of linear algebraic equations are five-diagonal with constant matrix 
coefficients. To solve them we apply a special kind of non monotonic 
Gaussian elimination with pivoting. 

Following the ideas and technique from [3] we can prove that the scheme 
(20), (21) is unconditionally stable for ߠ ≥ 1/4 and has second order of 
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convergence in space and time. Another important feature of the proposed 
numerical schemes is its conservativeness. We introduce the discrete energy 
functional ܧ௛(ݒ௡) which approximates the energy functional (ݐ)ܧ in (8) 
(the subscript ݅ is omitted):  

(௡ݒ)௛ܧ  = ,௧௡ݒΛିଵۦଶߚ− ௧௡ۧݒ + ଵߚ) + ߬ଶ(ߠ − ,௧௡ݒۦ((1/4  ௧௡ۧݒ
ଷߚ)−  + ߬ଶ(ߠ − ,௧௡ݒΛۦ((1/4  ௧௡ۧݒ
௡ݒۦ1/4+  + ௡ାଵݒ − Λ(ݒ௡ + ,(௡ାଵݒ ௡ݒ +  ௡ାଵۧݒ
(௡ାଵݒ)ܨۦ+  +  ,ۧ(1,(௡ݒ)ܨ
where 〈⋅,⋅〉 is a standard discrete scalar product at fixed time and ݒ௧௡ ௡ାଵݒ)= −   :is conserved in time (௡ݒ)௛ܧ ௡)/߬. In a similar to [3] way we prove that the discrete energyݒ

(௡ݒ)௛ܧ  = ,(଴ݒ)௛ܧ ݊ = 1,2, …. 
Later on we present numerical experiments for nonlinearity ݂(ݑ) = ଷݑܽ   ହ and initial conditionsݑܾ+

(ݔ)଴ݑ  = (ݔ)߰				,(ݔ)߰ߜ− = 2ቆටܽଶ − ଵ଺ଷ ܾ	cosh(2ݔ) − ܽቇିଵ/ଶ (ݔ)ଵݑ, = 0.  

  (22) 

Here ߰(ݔ) is the ground state solution defined by (16) with ݌ = 2 and ߜ 
is a positive constant. The numerical experiments are performed for ߚ௜ = 1, ݅ = 1,2,3. A regular mesh defined in [-300,300] with space step ℎ = 0.01 
and time step ߬ = 0.01 is used. In addition mesh refinement analysis is 
performed. In (20) we set the parameter ߠ = 1/2.  
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Figure 1: Profiles of the numerical solution ݔ)ݑ, (ݐ  of (5), (22) computed for ܽ = 2 , ܾ = −5 ߜ , = 0.8  at different evolution times: (a) 0=ݐ; (b) 100=ݐ; (c) 200=ݐ; (d) zoom of the graph on (c) around the origin. 

Example 1. The constants ܽ, ܾ, ߜ are fixed to ܽ = 2, ܾ = ߜ ,5− = 0.8. 
Since ܾ < 0 from formula (17) we get the exact value of the critical energy 
constant ݀ , namely ݀ ≈ 1.01419855 . For this initial data ܧ௛(0) ≈0.81846496 < ݀ , while the computed value of ܫ(ݑ଴) (଴ݑ)ܫ , ≈1.25865583 > 0 . The graphics of the numerical solution at different 
evolution times are presented on Fig. 1(a)-Fig. 1(c). Figure 1(d) shows a 
zoom of the graphic on Fig. 1(c) around the origin. We see that the 
numerical solution stays bounded on a large fixed time interval, i.e. the 
behavior of the numerical solution is fully consistent with the statements of 
Theorem 3.1(݅)௔. 
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Figure 2: Profiles of the numerical solution ݔ)ݑ, (ݐ  of (5), (22) computed for ܽ = −2, ܾ = ߜ ,0.65 = 0.8 at different evolution times: (a) 0=ݐ; (b) 100=ݐ; (c) 200=ݐ; (d) zoom of the graph on (c) around the origin. 

Example 2. We choose ܽ = −2, ܾ = ߜ ,0.65 = 0.8. The constants ܽ and ܾ satisfy the conditions in case (݅݅) of Theorem 3.1, i.e. ܾ > 0, ܽ < 0, ܽଶ − (௣ାଶ)మ௣ାଵ ܾ > 0. In order to apply Theorem 3.1(݅݅) we need to check both 
conditions: (0)ܧ < ݀ା and ݑ଴ ∈ ෩ܹ . Since the constants ܽ and ܾ satisfy 
the additional conditions (18) we obtain the exact value of the new critical 
energy constant ݀ା  by formula (19), i.e. ݀ା ≈ 0.87861623 . For this 
choice of constants we have: ܧ௛(0) ≈ 0.80376024 < ݀ା , and the 
computed values of (ݑ)ܩ and ܵ(ݑ) are: ܩ(ݑ଴) ≈ 0.66437578 > 0, and ܵ(ݑ଴) ≈ −1.02680152 < 0 . From (12) it follows that ݑ଴ ∈ ෩ܹ  and 
therefore the initial data fulfill the conditions of Theorem 3.1(ii). On Fig. 2 
the graphics of the numerical solution at different evolution times are 
plotted. It is clear that trough the evolution the numerical solutions stay 
bounded on a large fixed time interval. 
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We perform numerical tests for variety values of the parameters , , , 
, and . The behaviour of all numerical solutions is in a full agreement 

with Theorem 3.1. 
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Introduction 

The different versions of Boussinesq equation (BE) model surface waves in 
shallow fluid layer. One important feature of BE is the balance between the 
nonlinearity and dispersion, which leads to solutions of type of permanent 
waves (solitons) [1]. The accurate derivation of the Boussinesq system 
combined with an approximation, that reduces the full model to a single 
equation, leads to the Boussinesq Paradigm Equation (BPE) [2]:  

௧௧ݑ  = Δ[ݑ − (ݑ)ܨ + ௧௧ݑଵߚ − ,[ݑଶΔߚ :(ݑ)ܨ =  ଶ, (1)ݑߙ

 where ݑ  is the surface elevation of the wave, ߚଵ, ଶߚ > 0  are two 
dispersion coefficients, and ߙ > 0 is an amplitude parameter. The main 
difference of (1) from the original Boussinesq Equation is the presence of a 
term proportional to ߚଵ ≠ 0 called ``rotational inertia''. 

It has been recently shown that the 2D BPE admits stationary translating 
localized solutions [3, 4, 5], which can be obtained approximately using 
finite differences, perturbation technique, or Galerkin spectral method. 
Results about their time behavior and structural stability are presented in [6, 
7, 8, 9, 10] using different numerical methods. All results are in good 
agreement and show that the 2D localized soliton solutions with initial data 
from [5] are not stable -- they either disperse in the form of ring-waves or 
blow-up in finite time (depending on the parameters). In [11] we continued 
the investigations using a moving frame coordinate system. It allows us to 
keep the localized structure in the center of the coordinate system, to use a 
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small computational box and to compute the solution for larger times. The 
same instable behavior of the 2D localized soliton solutions was 
demonstrated there. This motivate us to investigate here the time behavior 
of known stable 1D solitons, but when they are taken as initial data for the 
2D problem. 

In the present work we study the properties of the finite difference schemes 
(FDS), proposed in [11]. First the equation (1) is transformed in order to 
keep the soliton in the center of the new coordinate system -- we set ݖ:= ݔ −  .where ܿ is the velocity of the stationary propagating soliton ,ݐܿ
Then we obtain the following equation for ܷ(ݖ, ,ݕ :(ݐ = ݖ)ݑ + ,ݐܿ ,ݕ  in (ݐ
the moving frame coordinate system  

ܫ)  − (ଵΔ෩ߚ பమ௎ப௧మ − 2ܿ பమ௎ப௧ ப௭ + ଵߚ2ܿ பమப௧ ப௭ Δ෩ܷ = ଶߚ− பర௎ப௬ర − ଶߚ) − (ଵܿଶߚ பర௎ப௭ర  

ଶߚ2)−  − (ଵܿଶߚ பర௎ப௬మ ப௭మ + பమ௎ப௬మ + (1 − ܿଶ) பమ௎ப௭మ −  (2) .(ܷ)ܨΔ෩ߙ

Here ܫ is the identity operator and Δ෩ stands for the Laplace operator with 
respect to variables ݖ and ݕ. 

The fourth order spatial derivatives in the right hand side of (2) constitute a 
fourth order elliptic operator if ܿଶ <  ଵ. In a similar way the secondߚ/ଶߚ
order derivatives generate a second order elliptic operator if ܿଶ < 1 . 
Therefore we suppose in the following that the velocity ܿ  satisfies the 
restriction ܿଶ < ݉݅݊(1,  .(ଵߚ/ଶߚ
In the next section we describe two numerical schemes for solving BPE in 
the moving frame coordinate system. The first one uses central finite 
differences for the mixed ( பమப௧ ப௭) derivative, while the second one uses 
upwind finite differences. The grid is quasi-uniform and the truncation error 
of both FDS is second order in space and time. The properties of the 
numerical methods corresponding to the linearized BPE are studied in 
Section 3. It is proved that the proposed FDS are stable with respect to 
initial data, if ܿଶ < ݉݅݊(1,  .(ଵߚ/ଶߚ
In Section 4 some known unstable and stable 1D solutions are investigated 
numerically in 1D and 2D settings. The results demonstrate the second 
order of convergence of the schemes. The stable 1D solutions preserve their 
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shape for very large times. The corresponding numerical solutions of the 2D 
problem are stable in relatively narrow in the ݕ −direction domains, but 
seem to be not stable in relatively wide in the ݕ −direction domains. 

Numerical method for solving BPE in the moving frame 
coordinate system 

We introduce the new dependent function ܹ,  

,ݖ)ܹ  ,ݕ :(ݐ = ܷ −  ଵΔ෩ܷ (3a)ߚ

 and substituting it in Eq. (2) we get the following equation 

 ௧ܹ௧ − 2ܿ ௧ܹ௭ + ܿଶ ௭ܹ௭ = ఉమఉభ Δ෩ܹ + ఉభିఉమఉభమ (ܷ −ܹ) − Δܨ(ܷ). (3b) 

Thus we obtain a system consisting of an equation for ܷ, Eq. (3a), and an 
equation for ܹ: Eq. (3b). 

The following implicit time stepping can be designed for the system (3):  

 
ௐ೔ೕ೙శభିଶௐ೔ೕ೙ାௐ೔ೕ೙షభఛమ − ܿ ௏೥[ௐ೔ೕ೙శభିௐ೔ೕ೙షభ]ఛ + ௖మଶ Λ௭௭[ ௜ܹ௝௡ାଵ + ௜ܹ௝௡ିଵ] 

 = ఉమଶఉభ Λ[ ௜ܹ௝௡ାଵ + ௜ܹ௝௡ିଵ] + ఉభିఉమଶఉభమ [ ௜ܷ௝௡ାଵ − ௜ܹ௝௡ାଵ + ௜ܷ௝௡ିଵ − ௜ܹ௝௡ିଵ] 
)ܩΛߙ−  ௜ܷ௝௡ାଵ, ௜ܷ௝௡ , ௜ܷ௝௡ିଵ), (4a) 

 ௜ܷ௝௡ାଵ − ଵΛߚ ௜ܷ௝௡ାଵ = ௜ܹ௝௡ାଵ, ݅ = 0,… , ௫ܰ + 1, ݆ = 0,… , ௬ܰ + 1. 
  (4b) 

Here ߬ is the time increment, the nonlinear term ܷଶ is approximated by  

)ܩ  ௜ܷ௝௡ାଵ, ௜ܷ௝௡ , ௜ܷ௝௡ିଵ) = ( ௜ܷ௝௡)ଶ, (5) 

 or  
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)ܩ  ௜ܷ௝௡ାଵ, ௜ܷ௝௡ , ௜ܷ௝௡ିଵ) = ൣ( ௜ܷ௝௡ାଵ)ଶ + ௜ܷ௝௡ାଵ ௜ܷ௝௡ିଵ + ( ௜ܷ௝௡ିଵ)ଶ൧/3, (6) Λ = Λ௭௭ + Λ௬௬  stands for the difference approximation of the Laplace 
operator Δ෩ on a non-uniform grid, for example  

 Λ௭௭ ௜ܹ௝ = ଶௐ೔షభೕ௛೔షభ೥ (௛೔೥ା௛೔షభ೥ ) − ଶௐ೔ೕ௛೔೥௛೔షభ೥ + ଶௐ೔శభೕ௛೔೥(௛೔೥ା௛೔షభ೥ ), 
and ܸ௭ is the central difference approximation of பப௭ defined by  

 ௭ܸ ௜ܹ௝ = ௛೔షభ೥ ௐ೔శభೕ௛೔೥(௛೔೥ା௛೔షభ೥ ) − ௛೔೥ௐ೔షభೕ௛೔షభ೥ (௛೔೥ା௛೔షభ೥ ) + (௛೔೥ି௛೔షభ೥ )ௐ೔ೕ௛೔೥௛೔షభ೥ . 
Another way to approximate ௭ܹ௧ for ܿ > 0 is by the following "upwind" 
approximation  

 ௭ܹ௧ ≈ ௐ೔శభೕ೙శభିௐ೔ೕ೙శభିௐ೔శభೕ೙ ାௐ೔ೕ೙ଶఛ௛೔೥ + ௐ೔ೕ೙ିௐ೔షభೕ೙ ିௐ೔ೕ೙షభାௐ೔షభೕ೙షభଶఛ௛೔షభ೥ . 
The values of the sought functions at the (݊ − 1)-st and ݊-th time stages 
are considered as known when computing the (݊ + 1)-st stage. When the 
approximation ܩ  of the nonlinear term ܷଶ  is obtained using (6), the 
system (4) is linearized using internal (Picard) iterations [12], i.e., we 
perform successive iterations for ܹ  and ܷ  on the (݊ + 1) -st stage, 
starting with initial data from the already computed ݊-th stage. Usually 
5-10 nonlinear iterations are sufficient for convergence with tolerance 10ିଵସ. This kind of linearization for Boussinesq equation was proposed and 
investigated in [13] in order to conserve the energy of the numerical 
solution. 

The following quasi-uniform grid is used in the ݖ −direction  

௜ݖ  = sinh[ℎ෠௭(݅ − ݊௭)], ே೥ାଵି௜ݖ = ,௜ݖ− ݅ = ݊௭ + 1,… , ௭ܰ + 1, ௡೥ݖ = 0, 
where ௭ܰ  is an odd number, ݊௭ = ( ௭ܰ + 1)/2, ℎ෠௭ = /௭ܦ ௭ܰ , and ܦ௭  is 
selected in a manner to have large enough computational region. The grid in 
the ݕ −direction is uniform. 
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In order to test the properties of the numerical method, we take the known 
one-dimensional solutions of the problem (see [2]) as initial data:  

,ݖ)ܷ ,ݕ 0) = ܷୱ௘௖௛(ݖ) = (1 − ܿଶ) ଵ.ହఈ ଶ(௭ଶඥ(1	ℎܿ݁ݏ	 − ܿଶ)/(ߚଶ −     .((ଵܿଶߚ

                                                                        (7) 

The second initial condition is chosen as பப௧ ,ݖ)ܷ ,ݕ 0) = 0. 
Because of the localization of the wave profile in the ݖ −direction, the 
boundary conditions in this direction can be set equal to zero, when the size 
of the computational domain in the ݖ −direction is large enough. Neumann 
(ப௎ப௬ = பௐப௬ = 0 ) or Dirichlet (ܷ = ܷୱ௘௖௛,ܹ = ܷ − ଵΔ෩ܷୱ௘௖௛ߚ ) boundary 
conditions are imposed in the ݕ −direction. 

The coupled system of equations (4) is solved by the Bi-Conjugate Gradient 
Stabilized Method with ILU preconditioner [14]. In most examples we set 
the tolerance for the iterative solution of the linear systems to be 10ିଵସ. 

Analysis of the finite difference schemes 

In this section we study the stability of the linear schemes corresponding to 
both FDS. We analyze the first scheme - with central finite difference 
approximation to the first space derivative. The analysis of the scheme with 
"`upwind"' approximation leads to stability results similar to the results 
formulated in Theorem 3.1. 

First we eliminate function ܹ from (3a) and (3b) and obtain one FDS for 
the discrete function ܷ:  

ܫ)  − (ଵΛߚ ൬௎೔ೕ೙శభିଶ௎೔ೕ೙ା௎೔ೕ೙షభఛమ ൰ − ܫ)ܿ − ଵΛ)ܸ௭ߚ (௎೔ೕ೙శభି௎೔ೕ೙షభ)ఛ = 

 −Λ൫ߚଶΛ௬௬ ഥܷ௜௝௡ + ଶߚ) − ଵܿଶ)Λ௭௭ߚ ഥܷ௜௝௡൯ + (1 − ܿଶ)Λ௭௭ ഥܷ௜௝௡ + Λ௬௬ ഥܷ௜௝௡  
  (8) 

)ܩΛߙ−  ௜ܷ௝௡ାଵ, ௜ܷ௝௡ , ௜ܷ௝௡ିଵ). 
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 Here ഥܷ௜௝௡ = 0.5( ௜ܷ௝௡ାଵ + ௜ܷ௝௡ିଵ) . Further we omit the notion (௜௝) 
whenever possible. 

We consider the space of discrete functions, which vanish on the 
computational boundary with Dirichlet boundary conditions, and define the 
discrete scalar product in this space in the standard way. Note that the 
operator −Λ is self-adjoint and positive definite operator in this space. We 
perform the analysis of the numerical method supposing that the mesh is 
uniform in both directions. 

We rewrite FDS (8) in the operator form  

ܤ  ൬௎೔ೕ೙శభିଶ௎೔ೕ೙ା௎೔ೕ೙షభఛమ ൰ + ܴ ൬௎೔ೕ೙శభି௎೔ೕ೙షభଶఛ ൰ + ܣ ௜ܷ௝௡  

 = )ܩΛߙ− ௜ܷ௝௡ାଵ, ௜ܷ௝௡ , ௜ܷ௝௡ିଵ), 
where operators ܤ, ܴ and ܣ are defined as  

ܤ  = ܫ − ଵΛߚ + 0.5߬ଶ(−(1 − ܿଶ)Λ௭௭ − Λ௬௬ + ଶΛΛ௬௬ߚ + ଶߚ)  ,(ଵܿଶ)ΛΛ௭௭ߚ−
 ܴ = ܫ)2ܿ− −  ,ଵΛ)ܸ௭ߚ
ܣ  = −(1 − ܿଶ)Λ௭௭ − Λ௬௬ + ଶΛΛ௬௬ߚ + ଶߚ) −  .ଵܿଶ)ΛΛ௭௭ߚ
We study the properties of operators included in this FDS. It is 
straightforward to prove that operators ܣ  and ܤ  are self-adjoint and 
positive definite operators -- (ܷܣ,ܷ) > 0 and (ܷܤ, ܷ) > 0. The discrete 
energy of the operator R is equal to zero -- (ܴܷ, ܷ) = 0. The operator ܤ − ఛమସ  .is also positive definite ܣ

We analyze the linear problem corresponding to (8) :  

ܤ  ௎೔ೕ೙శభିଶ௎೔ೕ೙ା௎೔ೕ೙షభఛమ + ܴ ൬௎೔ೕ೙శభି௎೔ೕ೙షభଶఛ ൰ + ܣ ௜ܷ௝௡ = ௜݃௝௡ , (9) 
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with a given function ݃ independent on ܷ. Using the stability theory from 
Chapter 6 in [15], we get the following theorem: 

Theorem 3.1 Let ܿଶ < ݉݅݊(1,  ଵ). Then the finite difference schemeߚ/ଶߚ
(9) is stable with respect to the initial data and the function ݃. Moreover, 
the following estimate holds  

 ൫(−߉)ܷ(௡), ܷ(௡)൯ ≤ ,(଴)ܷ(߉−)൫ൣܥ ܷ(଴)൯ + ൫(−߉)ିଵܤ ௧ܷ(଴), ௧ܷ(଴)൯ 
 +∑ 	௡௠ୀଵ ߬(݃௠, ݃௠)] 
with constant ܥ independent on ܷ, ℎ and ߬.  

Using the stability estimates from Theorem 3.1 we can prove convergence 
results for the numerical solution of nonlinear scheme . These investigations 
are very similar to those given in [16] and we omit them here. 

For the upwind finite difference scheme the operator ܤ is  

ܤ  = ܫ) − ܿ ఛ௛ଶ Λ௭௭)(ܫ − (ଵΛߚ + ఛమଶ (−(1 − ܿଶ)Λ௭௭ − Λ௬௬ + ଶΛΛ௬௬ߚ + 

ଶߚ)  −  .(ଵܿଶ)ΛΛ௭௭ߚ
The operators ܣ and ܴ do not change. The operators ܤ and ܤ − ఛమସ  are ܣ
self-adjoint and positive definite, and Theorem 3.1 holds in this case as 
well. 

Numerical experiments 

In [17] it is proved that the solution (7) of the 1D generalized Boussinesq 
equation (ߚଶ = ߙ = 1, ଵߚ = 0 ) is stable when 0.25 < ܿଶ < 1 . In [18] 
nonlinear instability is obtained when ܿଶ ≤ 0.25 . In our numerical 
experiments we observe a similar behavior for the 1D BPE, i.e., when ߚଵ = 1. That is why in the next examples solutions for ߚଵ = ଶߚ = ߙ = 1 
are investigated. 
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Example 1. The first example is for the phase speed ܿ = 0.4, i.e., the 1D 
soliton solution (7) should be unstable. First we compute the numerical 
solution using (5) for the approximation of the nonlinear term and Neumann 
boundary conditions in the ݕ −direction. The basic grid for the 2D solution 
has 256 × 16  cells in the region [−50,50] × [−1,1] , the time step is ߬ = 0.2. We compare the solution in the 2D setting with the 1D solution, 
computed on a grid with 256 cells in the interval [−50,50] and with the 
same time step ߬ = 0.2 . The maximum of the difference between the 
numerical and the exact solution ߜ(ܷ):= max|ܷ − ܷୱୣୡ୦| is shown in 
Table 1. Both numerical solutions (2D and 1D) blow-up at time ݐ ≈ 76. 
The central difference and upwind approximations of ௧ܹ௭  lead to 
practically the same values in the numerical solution for ݐ ≤ 72. After that 
the solutions start to grow very fast and then the upwind approximation of ௧ܹ௭  leads to larger errors in the numerical solution. The comparison 
between the 2D and 1D settings shows that both produce the same errors 
even near the blow-up time. 

Table 1: The difference (ࢁ)ࢾ:= ࢁ|ܠ܉ܕ −  between the exact |ܐ܋܍ܛࢁ
and the numerical solution for ࢉ = ૙. ૝ 

   central differences   upwind differences  ݐ		2  D solution   1D solution  2D solution   1D solution  
8  1.57e-3  1.57e-3   1.57e-3   1.57e-3  
16   5.59e-3  5.59e-3   5.60e-3  5.60e-3  
24  1.43e-2  1.43e-2   1.44e-2  1.44e-2  
32  3.15e-2  3.15e-2   3.16e-2  3.16e-2  
40  6.45e-2  6.45e-2   6.49e-2  6.49e-2  
48  1.29e-1  1.29e-1   1.30e-1  1.30e-1  
56  2.63e-1  2.63e-1   2.66e-1  2.66e-1  
64  5.93e-1  5.93e-1   6.01e-1  6.01e-1  
72  2.41  2.41   2.51   2.51  
75  56.61  56.61   83.54   83.54 
76  1.22e+11 1.22e+11  1.48e+14  1.48e+14 

The evolution of the 1D solution is shown in Fig.1. The evolution of the 
cross-sections of the 2D solution is the same, because the 2D solution keeps 
its constant behavior in the ݕ −direction. 
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Figure 1: Evolution of the 1D solution for ܿ = 0.4.  

Example 2. For the phase speed ܿ = 0.6 we investigate the 1D and 2D 
solutions on the same grids and with the same boundary conditions, as in the 
previous example. Both solutions are stable (we computed them up to time ݐ = 10଺, see Table 2). The difference between the exact and the numerical 
solution is one and the same for the 2D and the 1D solution of the problem. 
The central difference and upwind approximations of ௧ܹ௭  lead to 
practically the same values in the numerical solution. Both approximations 
of the nonlinear term (see (5) and (6)), as well as a stronger tolerance for the 
iterative solution of the linear systems (10ିଶ଼) also lead to practically the 
same results. 

Table 2: The difference (ࢁ)ࢾ:= ࢁ|ܠ܉ܕ −  between the exact |ܐ܋܍ܛࢁ
and the numerical solution for ࢉ = ૙. ૟ 

   central differences   upwind differences  
  2D solution  1D solution  2D solution  1D solution  		ݐ 
 10ଶ   5.15e-3   5.15e-3   5.16e-2   5.16e-3  10ଷ   9.73e-3   9.73e-3   9.66e-3   9.66e-3  10ସ   1.80e-2   1.80e-2   1.83e-2   1.83e-2  10ହ   1.05e-2   1.05e-2   6.94e-3   6.94e-3  10଺   1.01e-2   1.01e-2   8.49e-3   8.49e-3  
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We also investigate the convergence of the 2D solution on three grids -- the 
basic grid has 256 × 8  cells, ߬ = 0.2 , the finer has 512 × 16  cells, ߬ = 0.1 , the finest has 1024 × 32  cells, ߬ = 0.05 . The order of 
convergence ݈ is computed as ݈ = logଶ ఋ(௎ೖషభ)ఋ(௎ೖ) , where ݇ is the number of 
the corresponding grid. The results in Table 3 show second order of 
convergence of the numerical solution. 

Table 3: The difference (ࢁ)ࢾ between the exact and the numerical 
solution, and the order of convergence ࢒ for ࢉ = ૙. ૟ 

ݐ      = ݐ   100 = ݐ   200 = 400  ߬  ௫ܰ × ௬ܰ  ߜ  ݈  (ܷ)ߜ  ݈  (ܷ)ߜ(ܷ)  ݈  
central differences, approximation (5) of the nonlinear term 
0.2  256 × 8  5.15e-3   9.50e-3   1.67e-2    
0.1  512 × 16  1.30e-3 1.99 2.46e-3 1.95 4.83e-3  1.79  
0.05  1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3  1.95  
central differences, approximation (6) of the nonlinear term 
0.2  256 × 8  5.15e-3  9.50e-3   1.67e-2    
0.1  512 × 16  1.30e-3 1.99 2.46e-3 1.95 4.83e-3  1.79  
0.05  1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3  1.95  
 upwind differences, approximation (5) of the nonlinear term 
0.2  256 × 8  5.16e-3   9.52e-3   1.67e-2    
0.1  512 × 16  1.30e-3 1.99 2.46e-3 1.95 4.83e-3  1.79  
0.05  1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3  1.95  
upwind differences, approximation (6) of the nonlinear term 
0.2  256 × 8  5.15e-3  9.52e-3  1.67e-2    
0.1  512 × 16  1.30e-3 1.99 2.46e-3 1.95 4.83e-3  1.79  
0.05  1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3  1.95  

The evolution of the 1D solution is shown in Fig.2. The evolution of the 
cross-sections of the 2D solution is the same, because the 2D solution keeps 
its constant behavior in the ݕ −direction. 
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Figure 2: Evolution of the 1D solution for ܿ = 0.6.  

At the end let us note that size of the domain in the ݕ −direction is very 
important for the stability of the 2D solution. For example, if ݕ ∈[−10,10] , the solution of the 2D problem preserves its shape up to ݐ ≈ 140, but after that the wave obtains a nonconstant behaviour in the ݕ-direction, starts to grow and the solution blows-up at ݐ ≈ 175. The 
number of the maxima, which appear in the ݕ −direction, strongly depends 
on the size of the domain in this direction. This behavior of the 2D solutions 
will be examined in detail in a next article. 

Example 3. Results for ܿ = 0.9  and (ݔ, (ݕ ∈ [−50,50] × [−1,1]  are 
shown in Table 4, Table 5 and Fig.3. The behaviour of the solution is quite 
similar to that for ܿ = 0.6 -- second order convergence of the solution is 
demonstrated, there is not any practical difference between both 
discretizations of the mixed derivative ௧ܹ௭ , both approximations of the 
nonlinear term, and the solution does not depend on the prescribed tolerance 
for the solution of the linear systems, arising after the discretisation. The 
difference between the exact and the approximate solution ߜ(ܷ) is one and 
the same for 1D and 2D settings of the problem. The solutions also preserve 
their shape for very large times (ݐ = 10଺). 



Investigation of Two Numerical Schemes 300

Table 4: The difference (ࢁ)ࢾ:= ࢁ|ܠ܉ܕ −  between the exact |ܐ܋܍ܛࢁ
and the numerical solution for ࢉ = ૙. ૢ 

   central differences   upwind differences  
  2D solution  1D solution  2D solution  1D solution  		ݐ 
 10ଶ   2.09e-4   2.09e-4   2.09e-4   2.09e-4  10ଷ   1.64e-3   1.64e-3   1.63e-3   1.63e-3  10ସ   3.27e-3   3.27e-3   3.29e-3   3.29e-3  10ହ   3.42e-3   3.42e-3   3.33e-3   3.33e-3  10଺   1.81e-3   1.81e-3   2.86e-3   2.86e-3  

Table 5: The difference (ࢁ)ࢾ between the exact and the numerical 
solution, and the order of convergence ࢒ for ࢉ = ૙. ૢ 

ݐ      = ݐ   400 = ݐ   800 = 1200  
 ߬  ௫ܰ × ௬ܰ   ߜ   ݈   (ܷ)ߜ   ݈   (ܷ)ߜ(ܷ)   ݈  
 0.4   128 × 8   2.86e-3    5.37e-3   7.05e-3    
0.2   256 × 16   7.40e-4   1.95  1.33e-3 2.01 2.05e-3  1.78  
0.1   512 × 32  1.88e-4   1.98  3.37e-4 1.99 5.33e-4  1.94  

In order to show second order convergence for larger times, we either need 
to use very fine grids in the ݔ −direction or to impose Dirichlet boundary 
conditions in the ݕ −direction. That is why in the next table we present 
results with Dirichlet boundary conditions in the ݕ −direction. As can be 
seen, the errors in this case are much slower and second order convergence 
is demonstrated up to time ݐ = 10଺. 
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Table 6: The difference (ࢁ)ࢾ between the exact and the numerical 
solution, and the order of convergence ࢒ for ࢉ = ૙. ૢ, in the case of 
Dirichlet boundary conditions 

ݐ      = 10ଶ ݐ  = 10ସ  ݐ = 10଺
 ߬   ௫ܰ × ௬ܰ   ߜ   ݈   (ܷ)ߜ   ݈   (ܷ)ߜ(ܷ)   ݈  
 central differences 
 0.8 64 × 4   2.56e-4    2.46e-4    2.50e-4   
0.4  128 × 8   6.31e-5  2.02  6.33e-5  1.96  6.48e-5  1.92 
0.2  256 × 16  1.59e-5  1.99  1.60e-5  1.98  1.55e-5  2.06 
 upwind differences 
 0.8 64 × 4   2.52e-4    2.42e-4    2.49e-4   
0.4 128 × 8   6.35e-5  1.99  6.23e-5  1.97  6.31e-5  1.98 
0.2  256 × 16  1.59e-5  2.00  1.58e-5  1.98  1.57e-5  2.01 

 

Figure 3: Evolution of the 1D solution for ܿ = 0.9.  

As in the previous example, the stability of the 2D solution strongly 
depends on the size of the domain in the ݕ −direction. For example, when ݕ ∈ [−10,10]  and Neumann boundary conditions are imposed in the ݕ −direction, the solution loses its constant behaviour in the ݕ −direction 
at ݐ ≈ 1600, begins to grow and blows up for ݐ ≈ 2200. 
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Conclusions 

The moving frame coordinate system helps us to keep the soliton in the 
center of the coordinate system, where the grid is much finer. It also reduces 
the effects of the reflection from the boundaries, allows to use a small 
computational box and to compute the solution for very large times. 

Two finite difference schemes for the time evolution of the solutions of 
BPE in a moving frame coordinate system are investigated. It is proved that 
the proposed finite difference schemes for the linearized BPE are stable 
with respect to initial data, if the velocity ܿ satisfies ܿଶ < ݉݅݊(1,  .(ଵߚ/ଶߚ
The presented numerical experiments demonstrate the second order of 
convergence of the schemes. Both discretizations of the mixed derivative ௧ܹ௭ , as well as both approximatiions of the nonlinear term lead to 
practically one and the same results. The stable 1D solutions preserve 
themselves for very large times. The solutions of the 2D problem for the 
same parameters and in small intervals for ݕ also preserve their shape for 
very large times. 

But the solutions of the 2D problem in large intervals for ݕ seem to be not 
stable -- the waves preserve their shape in relatively long intervals of time 
(depending on the parameters), but after that the waves lose their constant 
behavior in the ݕ −direction, the solutions start to grow and blow-up. Most 
probably this effect is due to the instability of the exact solution of the 2D 
differential problem in wide domains, even when the corresponding 1D 
solution is stable. As it was mentioned, this behavior of the 2D solutions 
will be a subject of future research. 
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Introduction 

The ܩ -strand equations for a map ℝ ×ℝ  into a Lie group ܩ  are 
associated to a ܩ-invariant Lagrangian. The Lie group manifold is also the 
configuration space for the Lagrangian. The ܩ-strand itself is the map ݃(ݐ, :(ݏ ℝ × ℝ →  strand equations. The Euler-Poincaré reduction of the variation principle-ܩ are the independent variables of the ݏ and ݐ where ,ܩ
leads to a formulation where the dependent variables of the ܩ -strand 
equations take values in the corresponding Lie algebra ग़ and its co-algebra, ग़∗ with respect to the pairing provided by the variation derivatives of the 
Lagrangian. 

We review examples of two ܩ-strand constructions, including matrix Lie 
groups and the Diffeomorphism group. In some cases the ܩ -strand 
equations are completely integrable 1 + 1 Hamiltonian systems that admit 
soliton solutions. 

Our presentation is based on our previous works [14, 8, 9, 12, 10] and is 
aimed to illustrate the ܩ-strand construction with two simple but instructive 
examples: 

(i) ܱܵ(3)-strand integrable equations for Lax operators, quadratic in the 
spectral parameter; 

(ii) D݂݂݅(ℝ) -strand equations. These equations are in general 
non-integrable; however they admit solutions in 2 + 1 space-time with 
singular support (e.g., peakons). The one- and two-peakon equations 
obtained from the D݂݂݅(ℝ)-strand equations can be solved analytically, 
and potentially they can be applied in the theory of image registration. Our 
example is with a system which is a 2 + 1  generalization of the 
Hunter-Saxton equation. 
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Ingredients of Euler-Poincaré theory for left ࡳ-Invariant 
Lagrangians 

Let ܩ be a Lie group. A map ݃(ݐ, ℝ:(ݏ × ℝ →  has two types of tangent ܩ
vectors, ሶ݃ : = ݃௧ ∈ ܩܶ  and ݃′: = ݃௦ ∈ ܩܶ . Assume that the Lagrangian 
density function ܮ(݃, ሶ݃ , ݃′) is left ܩ-invariant. The left ܩ-invariance of ܮ 
permits us to define ݈: ग़ × ग़ → ℝ by  

,݃)ܮ  ሶ݃ , ݃′) = ,ଵ݃ି݃)ܮ ݃ିଵ ሶ݃ , ݃ିଵ݃′) ≡ ݈(݃ିଵ ሶ݃ , ݃ିଵ݃′). 
Conversely, this relation defines for any reduced Lagrangian ݈ ,ݑ)݈= :(ݒ ग़ × ग़ → ℝ a left ܩ-invariant function ܮ: ܩܶ × ܩܶ → ℝ and a map ݃(ݐ, :(ݏ ℝ × ℝ →   such that ܩ

,ݐ)ݑ  :(ݏ = ݃ିଵ݃௧(ݐ, (ݏ = ݃ିଵ ሶ݃(ݐ, ,ݐ)ݒ			݀݊ܽ			(ݏ =:(ݏ ݃ିଵ݃௦(ݐ, (ݏ =݃ିଵ݃′(ݐ,  .(ݏ
Lemma 2.1 The left-invariant tangent vectors ݐ)ݑ, ,ݐ)ݒ and (ݏ  at the (ݏ
identity of ܩ satisfy  

௧ݒ  − ௦ݑ = −	ܽ݀௨ݒ	(1) . 

Proof. The proof is standard and follows from equality of cross derivatives ݃௧௦ = ݃௦௧. 
Equation (1) is usually called a zero-curvature relation.  

Theorem 2.2 ( Euler-Poincare theorem for left-invariant Lagrangians)  

With the preceding notation, the following two statements are equivalent:  

  1. Variation principle on ܶܩ × ߜ		ܩܶ ׬ 	௧మ௧భ ,ݐ)݃)ܮ ,(ݏ ሶ݃ ,ݐ) ,(ݏ ,ݐ)′݃ ݐ݀	ݏ݀	((ݏ = 0 holds, for variations ݐ)݃ߜ, ,ݐ)݃ of (ݏ ,ݐ)݃ The function .ݏ and ݐ vanishing at the end points in (ݏ   given by ,ܩ on ܮ satisfies Euler-Lagrange equations for (ݏ

 ப௅ப௚ − பப௧ ப௅ப௚೟ − பப௦ ப௅ப௚ೞ = 0. 
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  2. The constrained variation principle1  

ߜ  ׬ 	௧మ௧భ ,ݐ)ݑ)݈ ,(ݏ ,ݐ)ݒ ݐ݀	ݏ݀	((ݏ = 0 

 holds on ग़ × ग़ , using variations of ݑ:= ݃ିଵ݃௧(ݐ, (ݏ  and ݒ:=݃ିଵ݃௦(ݐ,   of the forms (ݏ

ݑߜ  = ሶݓ + a݀௨ݓ			݀݊ܽ			ݒߜ = ′	ݓ + a݀௩ݓ	, 
 where ݐ)ݓ, :(ݏ = ݃ିଵ݃ߜ ∈ ग़  vanishes at the endpoints. The  
Euler-Poincaré equations hold on ग़∗ × ग़∗ ( ܩ-strand equations) 

 ௗௗ௧ ఋ௟ఋ௨ − ܽ݀௨∗ ఋ௟ఋ௨ + ௗௗ௦ ఋ௟ఋ௩ − ܽ݀௩∗ ఋ௟ஔ௩ = 0,					 ∂௦ݑ − ∂௧ݒ = ,ݑ	] [	ݒ = a݀௨ݒ 

 where (a݀∗: ग़ × ग़∗ → ग़∗)  is defined via (a݀: ग़ × ग़ → ग़)  in the dual 
pairing 〈	⋅	,⋅	〉: ग़∗ × ग़ → ℝ by,  

 ർa݀௨∗ ఋℓఋ௨	, ඀ग़ݒ = ർఋℓఋ௨	 , a݀௨ݒ඀ग़. 
In 1901 Poincaré in his famous work proves that, when a Lie algebra acts 
locally transitively on the configuration space of a Lagrangian mechanical 
system, the well known Euler-Lagrange equations are equivalent to a new 
system of differential equations defined on the product of the configuration 
space with the Lie algebra. These equations are called now in his honor 
Euler-Poincaré equations. In modern language the contents of the 
Poincaré's article [13] is presented for example in [7, 5]. English translation 
of the article [13] can be found as Appendix D in [7]. 

 

                                                 
1  As with the basic Euler-Poincaré equations, this is not strictly a variational 
principle in the same sense as the standard Hamilton's principle. It is more like the 
Lagrange d'Alembert principle, because we impose the stated constraints on the 
variations allowed. 
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Denoting ݉:= ݑߜ/ℓߜ  and ݊:= ݒߜ/ℓߜ  in ग़∗ , the ܩ -strand equations 
become  

 ݉௧ + ݊௦ − a݀௨∗݉ − a݀௩∗݊ = 0			ܽ݊݀			 ∂௧ݒ − ∂௦ݑ + a݀௨ݒ = 0. 
For ܩ a semisimple matrix Lie group and ग़ its matrix Lie algebra these 
equations become  

 ݉௧் + ݊௦் + a݀௨்݉ + a݀௩்݊ = 0,∂௧ݒ − ∂௦ݑ + a݀௨ݒ = 0  (2) 

 where the ad-invariant pairing for semi-simple matrix Lie algebras is given 
by 

 〈݉	, ݊〉 = ଵଶ tr(்݉݊), 
the transpose gives the map between the algebra and its dual (	⋅	)்: ग़ → ग़∗. 
For semisimple matrix Lie groups, the adjoint operator is the matrix 
commutator. Examples are studied in [14, 9, 12]. 

Lie-Poisson Hamiltonian formulation 

Legendre transformation of the Lagrangian ℓ(ݑ, ग़	:(ݒ × ग़ → ℝ yields the 
Hamiltonian ℎ(݉, ∗ग़	:(ݒ × ग़ → ℝ  

 ℎ(݉, (ݒ = 〈݉	, 〈ݑ − ℓ(ݑ,  (3) .	(ݒ

Its partial derivatives imply  

 ఋ௟ఋ௨ = ݉	, ఋ௛ఋ௠ = 			݀݊ܽ			ݑ ఋ௛ఋ௩ = −	ఋℓఋ௩ =  .ݒ
These derivatives allow one to rewrite the Euler-Poincaré equation solely in 
terms of momentum ݉ as 



Examples of G-strand Equations 310

 
∂௧݉ = a݀ఋ௛/ఋ௠∗ 	݉ + ∂௦ ఋ௛ఋ௩ − a݀௩∗ 	ఋ௛ఋ௩ 	 ,∂௧ݒ = ∂௦ ఋ௛ఋ௠ − a݀ఋ௛/ఋ௠	ݒ	.  (4) 

 Assembling these equations into Lie-Poisson Hamiltonian form gives,  

 பப௧ ቂ݉ݒ ቃ = ൤ܽ݀∗ (. )݉ 		∂௦ − a݀௩∗∂௦ + a݀௩ 		0 ൨ ൤ߜℎ/ߜ݉ߜℎ/ݒߜ ൨ (5) 

The Hamiltonian matrix in equation (5) also appears in the Lie-Poisson 
brackets for Yang-Mills plasmas, for spin glasses and for perfect complex 
fluids, such as liquid crystals. 

Example: Integrable ࡻࡿ(૜) G-strands with Lax operator, 
quadratic in the spectral parameter 

Integrable ܱܵ(3) G-strand system was studied in [14] by linking it to the 
integrable ܲ-chiral model of [15, 1, 4]. The Lax operator of the system in 
[14] is linear in the spectral parameter. In this example we will provide the 
zero curvature representation of a ܱܵ(3) G-Strand equations and thereby 
prove its integrability, where the Lax operator is quadratic in the spectral 
parameter. 

The hat map 	̂ ∶ 	 ,(૜)࢕࢙) [⋅,⋅]) → (ℝ૜,×) 
The Lie algebra (०ॢ(3), [⋅,⋅]) with matrix commutator bracket [	⋅	,⋅	] maps 
to the Lie algebra (ℝଷ,×)  with vector product × , by the linear 
isomorphism  

=:ܝ  ,ଵݑ) ,ଶݑ (ଷݑ ∈ ℝଷ ↦ =:ොݑ ൥0 ଷݑ	− ଷݑଶݑ 0 ଶݑ	−ଵݑ	− ଵݑ 0 ൩ ∈  .	(3)݋ݏ
 In matrix and vector components, the linear isomorphism is ݑො௜௝: .	௞ݑ௜௝௞ߝ	−=  Equivalently, this isomorphism is given by ݑොܞ = ܝ ,ܝ		forall		ܞ× ܞ ∈ ℝଷ. This is the hat map 	̂ ∶ 	 ,(3)݋ݏ) [⋅,⋅]) → (ℝଷ,×), which 
holds for the skew-symmetric 3 × 3 matrices in the matrix Lie algebra ०ॢ(3). 
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One may verify the following useful formulas for ܝ, ܟ,ܞ ∈ ℝଷ:  

ܝ)  × ො		(ܞ = ොݒ	ොݑ − ොݑ	ොݒ =: ,ොݑ]  ,	[ොݒ
,ොݑ]  ܟ	[ොݒ = ܝ) × (ܞ ×  ,	ܟ
ܝ))  × (ܞ × ො		(ܟ = ,ොݑ]] ,	[ොݒ  ,	[ෝݓ
ܝ  ⋅ ܞ = − ଵଶ (ොݒ	ොݑ)݁ܿܽݎݐ =: ,	ොݑ	〉  ,	〈	ොݒ
 in which the dot product of vectors is also the natural pairing of 3 × 3 
skew-symmetric matrices. 

The ࡻࡿ(૜) G-Strand system in ℝ૜ vector form 

By using the hat map, ०ॢ(3) → ℝଷ, the matrix G-Strand system for ܱܵ(3) 
[14] may be written in ℝଷ vector form by following the analogy with the 
Euler rigid body in standard notation,  

 ∂௧Π + Ω × Π − ∂௦Ξ − Γ × Ξ = 0	,∂௧Γ − ∂௦Ω − Γ × Ω = 0	, (6) 

 where Ω:= ܱିଵ ∂௧ܱ ∈ ०ॢ(3)  and Π:= ∂ℓ/ ∂Ω ∈ ०ॢ(3)∗  are the body 
angular velocity and momentum, while Γ:= ܱିଵ ∂௦ܱ ∈ ०ॢ(3)  and Ξ = −	∂ℓ/ ∂Γ ∈ ०ॢ(3)∗  are the body angular strain and stress. These 
G-Strand equations for ग़ = ०ॢ(3)  may be expressed in Lie-Poisson 
Hamiltonian form in terms of vector operations in ०ॢ(3) × ℝଷ as,  

 பப௧ ቂΠΓ ቃ = ൤Π × ∂௦ + Γ ×∂௦ + Γ × 0 ൨ ൤ߜℎ/ߜΠ = Ωߜℎ/ߜΓ = Ξ ൨. (7) 

 This Hamiltonian matrix yields a Lie--Poisson bracket defined on the dual 
of the semidirect-product Lie algebra ०ॢ(3)	⋊	ℝଷ	 with a two-cocycle 
given by ∂௦. Namely,  
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{݂, ℎ} = ׬ ,	Πߜ/݂ߜ]	 [Γߜ/݂ߜ ⋅ ൤Π × ∂௦ + Γ ×∂௦ + Γ × 0 ൨ ൤ߜℎ/ߜΠߜℎ/ߜΓ൨ =		ݏ݀ ׬ 	(−	Π ⋅ ఋ௙ఋஈ × ఋ௛ఋஈ − Γ ⋅ ቀఋ௙ఋஈ × ఋ௛ఋ୻ − ఋ௛ఋஈ × ఋ௙ఋ୻ቁ+ ఋ௙ఋஈ ∂௦ ఋ௛ఋ୻ + ఋ௙ఋ୻ ∂௦ ఋ௛ఋஈ)	݀ݏ.  

  (8) 

Dual variables are Π  dual to ०ॢ(3)  and Γ  dual to ℝଷ . For more 
information about Lie-Poisson brackets, see [11]. 

The ℝଷ G-Strand equations (6) combine two classic ODEs due separately 
to Euler and Kirchhoff into a single PDE system. The ℝଷ  vector 
representation of ०ॢ(3) implies that a݀ஐ∗ Π = −	Ω × Π = −a݀ஐΠ, so the 
corresponding Euler-Poincaré equation has a ZCR. To find its integrability 
conditions, we set  

=:ܮ  ܣଶߣ + Πߣ + Γ			ܽ݊݀			ܯ:= ܤଶߣ + Ξߣ + Ω	, (9) 

 and compute the conditions in terms of Π  Ω , Ξ , Γ  and the constant 
vectors ܣ  and ܤ  that are required to write the vector system (6) in 
zero-curvature form,  

 ∂௧ܮ − ∂௦ܯ − ܮ ܯ× = 0	. (10) 

 By direct substitution of (9) into (10) and equating the coefficient of each 
power of ߣ to zero, one finds  

 

ସߣ : ܣ × ܤ = ଷߣ0 : ܣ × Ξ − ܤ × Π = ଶߣ0 : ܣ × Ω − ܤ × Γ + Π × Ξ = ଵߣ0 : Π × Ω + Γ × Ξ = ∂௧Π − ∂௦Ξ			(ܲܧ	݊݋݅ݐܽݑݍ݁)	ߣ଴ : Γ × Ω = ∂௧Γ − ∂௦Ω			(ܿݕݐ݈ܾ݅݅݅ݐܽ݌݉݋)	  (11) 

 where ܣ and ܤ are taken as constant nonzero vectors. These imply the 
following relationships  
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ସߣ : ܣ = ଷߣܤߙ : ܣ × (Ξ − Π/ߙ) = 0 ⇒ Ξ − Π/ߙ = ଶߣܣߚ : ܣ × (Ω − Γ/ߙ) = Ξ × Π = ܣߚ × Π  (12) 

We solve equations (12) for the diagnostic variables Ξ and Ω, as  

 Ξ − ଵఈ Π = Ω			݀݊ܽ			ܣߚ − ୻ఈ − Πߚ =  (13) ,	ܣߛ

 where ߙ, ,ߚ  .are real scalars ߛ

The conserved quantities can be evaluated from the Lax representation:  

 

ଵିܪ = ׬ ܣ)	 ⋅ Π)݀ܪݏ଴ = ׬ 	ቀ(஺×ஈ)మଶ|஺|మ + ܣ ⋅ Γቁ ଵܪݏ݀ = ׬ 	ቆΠ ⋅ Γ − ܣ) ⋅ Π) ቀ(஺×ஈ)మଶ|஺|ర + (஺⋅୻)|஺|మ ቁቇ  (14) .ݏ݀

 

Let us now try to find a Hamiltonian ℎ as a linear combination of ିܪଵ, ܪ଴ 
and ܪଵ, i.e. ℎ = ܿିଵିܪଵ + ܿ଴ܪ଴ + ܿଵܪଵ for some numerical constants ܿ௞. 
We need to satisfy the two relations 

 
ఋ௛ఋஈ = ܿିଵ ఋுషభఋஈ + ܿ଴ ఋுబఋஈ + ܿଵ ఋுభఋஈ = ଵఈ Γ + Πߚ + ܣߛ ≡ Ω,ఋ௛ఋ୻ = ܿିଵ ఋுషభఋ୻ + ܿ଴ ఋுబఋ୻ + ܿଵ ఋுభఋ୻ = ଵఈ Π + ܣߚ ≡ Ξ  (15) 

Comparing the scalar coefficients arising in front of the vectors ܣ, Π and Γ from both sides of (15) we obtain 

 

ߙ = ܿଵ = ߚ,1 = ܿ଴ − ஺⋅ஈ|஺|మ ߛ, = ܿିଵ − ܿ଴ ஺⋅ஈ|஺|మ − ஈమଶ|஺|మ + ଷ(஺⋅ஈ)మଶ|஺|ర − ஺⋅୻|஺|మ , (16) 
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 ܿିଵ and ܿ଴ are arbitrary real constants. The most general Hamiltonian of 
course could contain combinations of all conserved quantities, with 
coefficients ܿ௞ where possibly ݇ > 1. In such cases the expressions for ߚ ,ߙ  and ߛ  of course will contain terms, related to the higher conserved 
quantities, entering the Hamiltonian. 

The ۲ࢌࢌ࢏(ℝ)-strand system 

The constructions described briefly in the previous sections can be easily 
generalized in cases where the Lie group is the group of the 
Diffeomorphisms. Consider Hamiltonian which is a right-invariant bilinear 
form ݑ)ܪ,  are defined is ॺଵ or in ݒ and ݑ The manifold ℳ where .(ݒ
the case when the class of smooth functions vanishing rapidly at ±∞ is 
considered, we will allow ℳ ≡ ℝ . Let us introduce the notation ((ݔ)݃)ݑ ≡ ݑ ∘ ݃ . Let us further consider an one-parametric family of 
diffeomorphisms, ݃(ݔ, (ݐ ∈ D݂݂݅(ℳ) by defining the ݐ - evolution as  

 ሶ݃ = ,ݔ)݃)ݑ ,(ݐ ,ݔ)݃				,(ݐ 0) = .i				,ݔ e.				 ሶ݃ = ݑ ∘ ݃ ∈ ௚ܶܩ; 
  (17) 

ݑ  = ሶ݃ ∘ ݃ିଵ ∈ ग़, where ग़, the corresponding Lie-algebra is the algebra of 
vector fields, Vect(ℳ). Now we recall the following result: 

Theorem 6.1 (A. Kirillov, 1980, [2, 3]) The dual space of ग़ is a space of 
distributions but the subspace of local functionals, called the regular dual ग़∗ is naturally identified with the space of quadratic differentials ݉(ݔ)݀ݔଶ 
on ℳ. The pairing is given for any vector field ߲ݑ௫ ∈  by (ℳ)ݐܸܿ݁

,ଶݔ݀݉〉  〈௫߲ݑ = ׬ 	ℳ  ݔ݀(ݔ)ݑ(ݔ)݉

The co-adjoint action coincides with the action of a diffeomorphism on the 
quadratic differential: 

ଶݔ݀݉		:∗௚݀ܣ  ↦ ݉(݃)݃௫ଶ݀ݔଶ 

and  

 ܽ݀௨∗ = ௫ݑ2 +  ௫߲ݑ
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Indeed, a simple computation shows that  

 〈ad௨பೣ∗ ,ଶݔ݀݉ ݒ ∂௫〉 = ,ଶݔ݀݉〉 ݑ] ∂௫, ݒ ∂௫]〉 = ׬ 	ℳ ݒ௫ݑ)݉ − ݔ݀(ݑ௫ݒ = 

׬  	ℳ ௫ݑ2݉)ݒ + ݔ݀(௫݉ݑ = ௫ݑ2݉)〉 + ,ଶݔ݀(௫݉ݑ ݒ ∂௫〉, 
 i.e. ad௨∗݉ = ௫݉ݑ2 +  .௫݉ݑ

The D݂݂݅(ℝ)-strand system arises when we choose ܩ = D݂݂݅(ℝ). For a 
two-parametric group we have two tangent vectors  

 ∂௧݃ = ݑ ∘ ݃			ܽ݊݀			 ∂௦݃ = ݒ ∘ ݃	, 
 where the symbol ∘ denotes composition of functions. 

In this right-invariant case, the ܩ -strand PDE system with reduced 
Lagrangian ℓ(ݑ,  ,takes the form (ݒ

 
பப௧ ఋℓఋ௨ + பப௦ ఋℓఋ௩ = −	a݀௨∗ ఋℓఋ௨ − a݀௩∗ ఋℓఋ௩ 	 ,ப௩ப௧ − ப௨ப௦ = a݀௨ݒ	.  (18) 

Of course, the distinction between the maps (ݑ, :(ݒ ℝ × ℝ → ग़ × ग़ and 
their pointwise values (ݐ)ݑ, ,(ݏ ,ݐ)ݒ ((ݏ ∈ ग़ × ग़ is clear. Likewise, for the 
variational derivatives ߜℓ/ݑߜ and ߜℓ/ݒߜ. 

The ۲ࢌࢌ࢏(ℝ)-strand Hamiltonian structure 

Upon setting ݉ = ݑߜ/ℓߜ  and ݊ = ݒߜ/ℓߜ , the right-invariant D݂݂݅(ℝ)-strand equations in (18) for maps ℝ ×ℝ → ܩ = D݂݂݅(ℝ) in one 
spatial dimension may be expressed as a system of two 1+2 PDEs in (ݐ, ,ݏ   ,(ݔ

 ݉௧ + ݊௦ = −	a݀௨∗݉ − a݀௩∗݊ = ௫(݉ݑ)− − ௫ݑ݉ − ௫(݊ݒ) − ௧ݒ,	௫ݒ݊ − ௦ݑ = −	a݀௩ݑ = ௫ݒݑ− + .	௫ݑݒ  

  (19) 
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The Hamiltonian structure for these D݂݂݅(ℝ)-strand equations is obtained 
by Legendre transforming to  

 ℎ(݉, (ݒ = 〈݉, 〈ݑ − ℓ(ݑ,  .	(ݒ
One may then write the equations (19) in Lie-Poisson Hamiltonian form as 

 ௗௗ௧ ቂ݉ݒ ቃ = ൤−	ܽ݀(.)∗ ݉ 		∂௦ + a݀௩∗∂௦ − a݀௩ 		0 ൨ ൤ߜℎ/݉ߜ = ݒߜ/ℎߜݑ = −	݊൨. (20) 

Singular solutions of the ۲ࢌࢌ࢏(ℝ)-strand equations 

For simplicity we continue with the following choice of Lagrangian,  

 ℓ(ݑ, (ݒ = ଵଶ ׬ ௫ଶݑ)	 +  (21) ,	ݔ݀(௫ଶݒ

The D݂݂݅(ℝ) -strand equations (19) admit peakon solutions in both 
momentum 

 ݉ = ݊		and		௫௫ݑ− =  ,௫௫ݒ−
with continuous velocities ݑ  and ݒ . This is a two-component 
generalization of the Hunter-Saxton equation [18, 17]. 

Theorem 8.1 The ݂݂݅ܦ(ℝ)-strand equations (19) admit singular solutions 
expressible as linear superpositions summed over ܽ ∈ ℤ  

 

,ݏ)݉ ,ݐ (ݔ = ∑ 	௔ ,ݏ)௔ܯ ݔ)ߜ(ݐ − ܳ௔(ݏ, ,ݏ)݊,	((ݐ ,ݐ (ݔ = ∑ 	௔ ௔ܰ(ݏ, ݔ)ߜ(ݐ − ܳ௔(ݏ, ,ݏ)ݑ,	((ݐ ,ݐ (ݔ = ܭ ∗ ݉ = ∑ 	௔ ,ݏ)௔ܯ ,ݔ)ܭ(ݐ ܳ௔)	,ݏ)ݒ, ,ݐ (ݔ = ܭ ∗ ݊ = ∑ 	௔ ௔ܰ(ݏ, ,ݔ)ܭ(ݐ ܳ௔)	,  (22) 

 where ݔ)ܭ, (ݕ = − ଵଶ ݔ| −   :is the Green function of the operator −߲௫ଶ |ݕ

 −߲௫ଶݔ)ܭ, 0) =  (ݔ)ߜ
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The solution parameters {ܳ௔(ݏ, ,ݏ)௔ܯ,(ݐ ,(ݐ ௔ܰ(ݏ, {(ݐ  with ܽ ∈ ℤ  that 
specify the singular solutions (22) (which we call 'peakons' for simplicity, 
although the Green function in this case is unbounded) are determined by 
the following set of evolutionary PDEs in ݏ and ݐ, in which we denote ܭ௔௕:= ,௔ܳ)ܭ ܳ௕) with integer summation indices ܽ, ܾ, ܿ, ݁ ∈ ℤ:  ∂௧ܳ௔(ݏ, (ݐ = ,௔ܳ)ݑ ,ݏ (ݐ = ∑ 	௕ ,ݏ)௕ܯ ,ݏ),∂௦ܳ௔	௔௕ܭ(ݐ (ݐ = ,௔ܳ)ݒ ,ݏ (ݐ = ∑ 	௕ ௕ܰ(ݏ, ,ݏ)௔ܯ,∂௧	௔௕ܭ(ݐ (ݐ = −	∂௦ ௔ܰ − ∑ 	௖ ௖ܯ௔ܯ) + ௔ܰ ௖ܰ) ப௄ೌ೎பொೌ ௧∂,(ܽ	݊݋	݉ݑݏ	݋݊)			 ௔ܰ(ݏ, (ݐ = ∂௦ܯ௔ + ∑ 	௕,௖,௘ ( ௕ܰܯ௖ ௕ܯ− ௖ܰ) ப௄೐೎பொ೐ ௘௕ܭ) − .	௔௘(ଵିܭ)(௖௕ܭ
  (23) 

The last pair of equations in (23) may be solved as a system for the 
momentum, i.e., Lagrange multipliers (ܯ௔, ௔ܰ), then used in the previous 
pair to update the support set of positions ܳ௔(ݐ,  .(ݏ

Example: Two-peakon solution of a ۲ࢌࢌ࢏(ℝ)-strand 

Denote the relative spacing ܺ(ݏ, (ݐ = ܳଵ − ܳଶ for the peakons at positions ܳଵ(ݐ, ,ݐ)and ܳଶ (ݏ ܭ on the real line and the Green's function (ݏ =  .(ܺ)ܭ
Then the first two equations in (23) imply  

 
∂௧ܺ = ଵܯ)− ௦ܺ∂,	(ܺ)ܭ(ଶܯ− = −( ଵܰ − ଶܰ)ܭ(ܺ).  (24) 

The second pair of equations in (23) may then be written as  

 

∂௧ܯଵ = −∂௦ ଵܰ − ଶܯଵܯ) + ଵܰ ଶܰ)ܭ′(ܺ)	,∂௧ܯଶ = −∂௦ ଶܰ + ଶܯଵܯ) + ଵܰ ଶܰ)ܭ′(ܺ)	,∂௧ ଵܰ = ∂௦ܯଵ − ( ଵܰܯଶ ଵܯ− ଶܰ)ܭ′(ܺ)	,∂௧ ଶܰ = ∂௦ܯଶ − ( ଵܰܯଶ ଵܯ− ଶܰ)ܭ′(ܺ)	.  (25) 

Assuming ܺ > 0 (ܺ)′ܭ , = − ଵଶ sgn(ܺ) = − ଵଶ . Introducing for 
convenience ܮଵ,ଶ = ଵ,ଶܯ + ݅ ଵܰ,ଶ we can rewrite (25) as 
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(∂௧ − ݅ ∂௦)ܮଵ = ଵଶ ,(∂௧	തଶܮଵܮ − ݅ ∂௦)ܮଶ = − ଵଶ  . (26)	ଶܮതଵܮ

The solution for ܺ can be expressed formally via ܮଵ,ଶ from (24) as  

 ܺ = exp ቀଵଶ Δିଵℜ(ܮଵܮതଶ)ቁ, 
where Δ = ∂௧ଶ + ∂௦ଶ and ℜ(ݖ) is the real part of ݖ. 

From the system (26) we obtain  

 Δlnܮଵ = − ଵସ ଶܮΔln				തଶ,ܮଵܮ = − ଵସ  ଶ, (27)ܮതଵܮ

 thus Δlnܮଵ = Δlnܮതଶ  and ܮଵ = തଶ݁௛ܮ  where ℎ(ݏ, (ݐ  is an arbitrary 
harmonic function: Δℎ = 0. Then for the variable ෨ܻ = lnܮଵ we have the 
equation  

 Δ ෨ܻ = − ଵସ ݁ଶ௒෨ି௛, (28) 

 and for ܻ = lnܮଵ − ଵଶ ℎ − 2ln2 + ݅ߨ  we arrive at the Liouville's 2ܦ 
equation 

 Δܻ = ݁ଶ௒. (29) 

Solutions of (29) are known in the form  

 ܻ = ଵଶ ln ௪ೞమା௪೟మ௙(௪)  

where the function ݂(ݓ) could be ݓଶ, cosଶݓ, sinଶݓ or sinhଶݓ with ݓ 
being an arbitrary harmonic function, Δݓ = 0 see e.g. [6, 16, 20]. Thus the 
solutions ܮଵ,ଶ depend on two arbitrary complex harmonic functions ℎ,ݓ. 
Hence the four peakon parameters ܯଵ,ଶ and ଵܰ,ଶ can be given in terms of 
four real arbitrary harmonic functions. 
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Other examples including complexification of the Camassa-Holm equation 
[19] are given in [8]. 

Conclusions 

The ܩ-strand equations comprise a system of PDEs obtained from the 
Euler-Poincaré (EP) variational equations for a ܩ-invariant Lagrangian, 
coupled to an auxiliary zero-curvature equation. Once the ܩ -invariant 
Lagrangian has been specified, the system of ܩ-strand equations in (2) 
follows automatically in the EP framework. For matrix Lie groups, some of 
the ܩ -strand systems are integrable. The singular solution of the D݂݂݅(ℝ)-strand equations (19) can also be obtain explicitly in some simple 
situations, and the freedom in the solution is given by several arbitrary 
harmonic functions of the variables ݏ, ݐ . The complex D݂݂݅(ℝ)-strand 
equations and their peakon collision solutions have also been solved by 
elementary means [8]. The stability of the single-peakon solution under 
perturbations into the full solution space of equations (19) would be an 
interesting problem for future work. 
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Introduction 

It is known that the characteristic property of the so-called soliton equations 
is that they admit the so called Lax representation [ܮ, [ܣ = 0. In the last 
expression ܮ, ,are linear operators on ∂௫ ܣ ∂௧ of degree 1, depending also 
on some functions ݍఈ(ݔ, 1 ,(ݐ ≤ ߙ ≤  and a spectral ('called `potentials ) ݏ
parameter ߣ. Fixing ܮ the Lax representations for the nonlinear evolution 
equations (NLEEs), or soliton equations, associated with (related to ) ܮ or ߰ܮ = 0 is equivalent to a system (in case ܣ depends linearly on ∂௧) of the 
type (ݍఈ)௧ = ,ݍ)ఈܨ ,௫ݍ . . . ) , where ݍ = ଵஸఈஸ௦(ఈݍ) . The linear problem ߰ܮ = 0 is called auxiliary linear problem. The schemes to find solutions to 
the NLEEs related to ܮ could be quite different but the essential is that the 
Lax representation permits to pass from the original evolution defined by 
the equations (ݍఈ)௧ =  ఈ to the evolution of some spectral data related toܨ
the problem ߰ܮ = 0, see [7]. 

The Caudrey-Beals-Coifman system (CBC system), called also the 
Generalized Zakharov-Shabat system (GZS system) when the element ܬ is 
real, is one of the best known auxiliary linear problems. It can be written as 
follows  

߰ܮ  = (i ∂௫ + (ݔ)ݍ − ߰(ܬߣ = 0. (1) 
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 In its most general form (ݔ)ݍ and ܬ belong to a fixed simple Lie algebra ग़ in some finite dimensional irreducible representation. The element ܬ 
should be regular, that is the kernel of ad		௃ (	ad		௃(ܺ) ≡ ,ܬ] ܺ], ܺ ∈ ग़) is a 
Cartan subalgebra. We shall denote it by ज़ and shall assume that is fixed, 
so we shall call it `the Cartan subalgebra'. The potential (ݔ)ݍ takes values 
in the orthogonal complement ज़ୄ = ग़ത  of ज़ with respect to the Killing 
form 〈ܺ, ܻ〉 = 	tr		ad		௑	ad		௒ and therefore (ݔ)ݍ = ∑ 	ఈ∈୼  ఈܧ ఈ whereܧఈݍ
are the root vectors; Δ is the root system of ग़ with respect to ज़. The scalar 
functions ݍఈ(ݔ) (the `potentials') are defined on ℝ, are complex valued, 
smooth and tend to zero as ݔ → ±∞. We assume the properties of the 
simple Lie algebras known, our notation and normalizations are as in [7]. 

The system (1) is generalization of the classical Zakharov Shabat system, 
passed through generalizations on 	݈ݏ	(݊) for ܬ  real, then complex and 
finally acquired the form in which we present it here. For bibliography see 
[4]. 

Because of the form of the Lax representation it is easy to understand that 
the spectral theory of the operator ܮ in adjoint representation is important 
for the study of the NLEEs associated with ܮ. Further, if ܮ is considered in 
arbitrary faithful representation of the algebra ग़ and ߰ is a fundamental 
solution ߰ܮ = 0 then any ݓ = ߰ܺ߰ିଵ  where ܺ  is a constant element 
from ग़  (adjoint solutions) satisfies [ܮ, [ݓ = 0 . Thus finding the 
fundamental analytic solutions of ݔ)߯ܮ, (ߣ = 0  is important for the 
spectral theory of the problem ܮ (both in some typical representation and 
and in adjoint representation). Throught them is constructed the resolvent of 
the operator Ψ ↦  and it gives rise to the so-called expansions over [Ψ,ܮ]
adjoint solutions (or Generalized Exponents), an important approach that 
started by the seminal work [1], see [4] for extended bibliography. Recently 
there has been substantial interest in the theory of ܮ in the presence of 
reductions, the expansions have some specific properties here, but the part 
related to the discrete spectrum has not been given a proper attention. We 
intend to fill this gap in the present work. 

Completeness relations for the CBC system 

First we are going to describe briefly the analytic solutions of the CBC 
system ߰ܮ = (i ∂௫ − ܬߣ + ߰(ݍ = 0, on some simple Lie algebra ग़ in a 
typical representation, [3]. Let Δ  be the root system of ग़  (defined by ज़ = ௃		ad		ݎ݁݇		 ) and let Σ = ⋃ 	ఈ∈୼ ఈߞ  be a bunch of straight lines ߞఈ 
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where ߞఈ = :ߣ} Im((ܬ)ߙߣ) = 0} . The connected components of the set ℂ\Σ are open sectors in the ߣ-plain. We shall denote these sectors by Ωఔ 
ordering them anti-clockwise. Clearly ߥ takes values from 1 to some even 
number 2ܯ. Then the boundary of the sector Ωఔ consists of two rays: ݈ఔ 
and ݈ఔାଵ  (݈ఔ  comes before ݈ఔାଵ  when we turn anti-clockwise) so that Ωఔ ∩ Ωఔିଵ = ݈ఔ. (The `bar' here denotes the closure). We shall understand 
the number ߥ modulo 2ܯ. Naturally,  

 ℂ\Σ = ⋃ 	ଶெఔୀଵ Ωఔ, Ωఔ ⋂ 	Ωఓ = ∅, ߥ ≠  (2) .ߤ

 If ߙ, ߚ ∈ Δ, ߙ ≠ ߙ)ߣ]in every sector Ωఔ either Im ߚ −  does not [(ܬ)(ߚ
change sign which permits to define ߥ -ordering of the roots ߙ >ఔ ߙ)ߣIm			iff		ߚ − (ܬ)(ߚ > 0 and consequently in each Ωఔ we have the 
splitting into the sets of positive and negative roots Δ = Δఔା ∪ Δఔି . 

Limiting ourselves to the typical representation of ग़, for a large class of 
potentials (ݔ)ݍ (in fact they form a dense open set in the space of the 
absolutely integrable potentials) it can be shown that in each of the sectors Ωఔ there exists fundamental solution (FAS) ߯ఔ(ݔ, ߯ܮ of (ߣ = 0 with the 
properties:  

(a) ߯ఔ(ݔ,   .is meromorphic in Ωఔ and has only finite number of poles (ߣ
The poles define the discrete spectrum of the problem and for 
simplicity below we shall assume that ߯ఔ(ݔ,   .is analytic in Ωఔ (ߣ

(b) ߯ఔ(ݔ,  allows extension by continuity to the boundary of Ωఔ (to (ߣ
the rays ݈ఔ and ݈ఔାଵ).  

  (c) For ߣ ∈ Ωఔ the function ߯ఔ(ݔ,  ௜ఒ௃௫ is bounded and we have݁(ߣ

 lim௫→ିஶ߯ఔ(ݔ, ௜ఒ௃௫݁(ߣ = ૤ and limఒ→ାஶ߯ఔ(ݔ, ௜ఒ௃௫݁(ߣ = ૤.  

 

Below we shall have frequently a situation when some set of functions ఔ݂(ߣ) is such that each ఔ݂(ߣ) is analytic in Ωఔ and allows extension to the 
boundary of this sector ݈ఔ ∪ ݈ఔାଵ. Then say on ݈ఔ we have the extensions 
from the left and from the right. We shall denote the extension from the left 
by ఔ݂ା(ߣ)  and from the right by ఔ݂ି (ߣ)  (of course ߣ ∈ ݈ఔ ). Thus for 
example on each ݈ఔ we have the solutions ߯ఔ±(ߣ,  .of the CBC problem (ݔ
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We are not going to present the resolvent kernel of Ψ ↦  it can be) [Ψ,ܮ]
found in [3], we simply remind the completeness relations that are related to 
it. 

Let ߨ଴  be the orthogonal projector on ग़ത , let ܧఈ ߙ , ∈ Δ  are the root 
vectors. Define the following functions, called Generalized Exponents or 
adjoint solutions.  

 ݁ఈఔ(ݔ, (ߣ = ,ݔ)଴(߯ఔߨ ఈ߯ఔିܧ(ߣ ଵ(ݔ, ,((ߣ ߣ ∈ Ωഥఔ. (3) 

As we agreed for ߣ ∈ ݈ఔ  we shall write ݁ఈ(ା;ఔ)(ݔ, (ߣ  if the solution is 
extended from the sector Ωఔ and ݁ఈ(ି;ఔ)(ݔ,  if the solution is extended (ߣ
from the sector Ωఔିଵ. Then we have:  

Theorem 2.1 The completeness relation for the Generalized Exponents 
(without discrete spectrum terms) can be cast into the following form:  

 
ݔ)ߜ଴ߎ																												 − (ݕ =ଵଶగ ∑ 	ெఔୀଵ ׬ 	௟ഌ ∑}ߣ݀ 	ఈ∈ఋഌశ (݁ఈ(ା;ఔ)(ݔ) ⊗ ݁ିఈ(ା;ఔ)(ݕ) − ݁ିఈ(ି;ఔ)(ݔ) ⊗ ݁ఈ(ି;ఔ)(ݕ))} 

  (4) 

where  

଴ߎ  = ∑ 	ఊ∈௱ ாം⊗ாషംఊ(௃)  (5) 

±ఔߜ  = ±ఔ߂ ∩ ,ఔߜ ఔߜ = ߙ} ∈ :߂ ((ܬ)ߙߣ)݉ܫ = ߣ	ݎ݋݂	0 ∈ ݈ఔ}. (6) 

In the above is assumed that the rays are oriented from 0 to ∞ and for 
shortness we have omitted the dependence on ߣ. The formula itself must be 
understood in the following way. First, it it assumed that ग़∗ is identified 
with ग़, the pairing between them being given by the Killing form. So for 
example, for ܺ, ܻ, ܼ ∈ ग़ making a contraction of ܺ⊗ ܻ with ܼ on the 
right we obtain ܺ〈ܻ, ܼ〉  and making contraction from the left we get 〈ܼ, ܺ〉ܻ. Next, the formula for Π଴ implies that making a contraction with Π଴  the right we get Π଴ܺ = 	ad		௃ି ଵߨ଴ܺ  and similarly from the left ܺΠ଴ = −	ad		௃ି ଵߨ଴ܺ . (On the space ग़ത  the operator ad		௃  is invertible). 
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When the discrete spectrum is taken into account to the right hand side of 
this formula must be written a term which we denote by ܥܵܦ. 

Suppose that we have a ܮଵ-integrable function ݃:ℝ ↦ ग़ത. Then we have the 
expansions (for ߝ = +1 and ߝ = −1 respectively).  

(ݔ)݃																																		  =ଵଶగ ∑ 	ଶெఔୀଵ ׬ 	௟ഌ {(∑ 	ఈ∈ఋഌశ ݁ఌఈ(ା;ఔ)(ݔ)〈〈݁ିఌఈ(ା;ఔ), ,ܬ] ݃]〉〉 − ݁ିఌఈ(ି;ఔ)(ݔ)〈〈݁ఌఈ(ି;ఔ), ,ܬ] ݃]〉〉})dߣ.
  (7) 

(When the discrete spectrum terms are taken into account to the right side of 
this formula must be added a term DSC±(݃)). In the above we used the 
following notation: for two functions ଵ݂(ݔ), ଶ݂(ݔ) with values in ग़ we put  

 〈〈 ଵ݂, ଶ݂〉〉 = ׬ 	ାஶିஶ 〈 ଵ݂(ݔ), ଶ݂(ݔ)〉d(8) .ݔ 

It can be shown that for either of the choices for ߝ  the expansion (7) 
converges in the same sense as the Fourier expansions for ݃(ݔ). Finally, if 
one introduces the operators  Λ±൫ܺ(ݔ)൯= 

ad		௃ି ଵ ቀi ∂௫ܺ + ,ݍ]଴ߨ ܺ] + i	ad		௤ ׬ 	௫±ஶ (݅݀	 − ,(ݕ)ݍ](଴ߨ  ቁݕd[(ݕ)ܺ
                                                                      (9) 

one can see that  

 (Λି − ఈ(ା;ఔ)݁(ߣ = 0,				(Λି − ఈ(ି;ఔ)ି݁(ߣ = 0, ߙ ∈  ఔା (10)ߜ

 (Λା − ఈ(ା;ఔ)ି݁(ߣ = 0,				(Λା − ఈ(ି;ఔ)݁(ߣ = 0, ߙ ∈  ఔା. (11)ߜ

The operators Λ±are the Generating Operators, for the expansions (7) they 
play for these expansions the role that i ∂௫ plays for the Fourier expansion. 
The importance of the above expansions for the theory of NLEEs (they 
appeared first in the famous work of [1] for the ZS system and later were 
generalized) is based on the fact that when one expands over the 
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Generalized Exponents the potential (ݔ)ݍ  and (ݔ)ݍߜ  one gets as 
coefficients a set of minimal scattering data and its variation. Moreover, the 
coefficients in these expansions have linear evolution for the NLEEs related 
to ܮ. Through them can be obtained the NLEEs, their conservation laws, 
the hierarchy of symplectic structures, etc, see [4]. In fact the theory of the 
Recursion Operators is a theoretical tool which apart from explicit solutions 
can give most of the information about the NLEEs associated with [4] ,ܮ. 
They also have interesting geometric interpretation as dual objects to 
Nijenhuis tensors on the manifold of potentials on which it is defined a 
special geometric structure, Poisson-Nijenhuis structure. Then the NLEEs 
related to ܮ could be interpreted as fundamental fields of that structure. 
This interpretation has been given by Magri, [8], see [4] for the full theory. 

Completeness relations in the presence of reductions 
defined by automorphisms 

Assume that for the CBC system on the algebra ग़ we have a reduction 
group ܩெ generated by one element ݃ acting as  

,ݔ)߰)݃  ((ߣ = ,ݔ)߰)ࣥ ߱ିଵߣ)), ߱ = exp ଶగ୧௣  (12) 

where ࣥ is automorphism of order ݌ of the Lie group ܩ corresponding to 
the algebra ग़. It generates an automorphism of ग़ which we shall denote by 
the same letter ࣥ. Since this immediately leads to ࣥܬ = ݍࣥ and ܬ߱ =  ݍ
the automorphism ࣥ preserves the Cartan subalgebra. Since ݃௣ =  ,ெ is isomorphic to ℤ௣. The automorphism ࣥ acts also on the set of rootsܩ ,	݀݅		
that action we shall denote by the same letter and again, and then for the root 
vectors we have ࣥ(ܧఈ) = (ߙ−)ߞ(ߙ)ߞ are numbers, such that (ߙ)ߞ ఈ, whereࣥܧ(ߙ)ߞ = 1 and (ߚ)ݍ(ߙ)ߞ = ߙ)ߞ + ߙ if (ߚ + ߚ ∈  see [7] for the) ߜ
details). 

Since the automorphisms of ग़ we consider here leave ज़ invariant we have 
the splittings:  

 ग़ =⊕௦ୀ଴௣ିଵ ग़[௦], [ग़[௞]ग़[௟]] ⊂ ग़[௞ା௟], ग़ത =⊕௦ୀ଴௣ିଵ ग़ത[௦], ज़ =⊕௦ୀ଴௣ିଵ ज़[௦]. 
  (13) 
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For each ܺ ∈ ग़[௦], ज़[௦], ग़ത[௦]  we have ࣥܺ = ߱௦ܺ, the spaces with upper 
indexes ݏ and ݇ are orthogonal with respect to the Killing form unless ݇ + ݏ ≠  .and the spaces ग़ത[௦], ज़[௞] are always orthogonal (݌	݀݋݉		)0

The invariance of the set of the fundamental solutions can be additionally 
specified if we take the FAS ߯ఔ(ݔ, ߥ ,defined in Ωఔ (ߣ = 1,2,  Then .ܯ2…
one easily sees that ࣥ(߯ఔ(ݔ,  must be analytic solution in the sector ((ߣ
containing ߱ߣ, one has an action of ࣥ (multiplication by ߱ on the sectors Ωఔ and on the rays ݈ఔ. One can see that if ߱Ωఔ = Ωఔା௔ then ݈߱ఔ = ݈ఔା௔, ߜఔା௔± =   :ఔ±. Using these relations one hasߜ

Theorem 3.1 In case we have ℤ௣ reductions the completeness can be put 
into the form:  

 

ݔ)ߜ଴ߎ																												 − (ݕ =ଵଶగ௣∑ 	ଶெఔୀଵ ∑ 	௣௞ୀଵ ׬ 	௟ഌ {[∑ 	ఈ∈ఋഌశ ߱௞ࣥ௞ ⊗ࣥ௞(݁ఈ(ା;ఔ)(ݔ) ⊗ ݁ିఈ(ା;ఔ)(ݕ)) −																	߱௞ࣥ௞ ⊗ࣥ௞(݁ିఈ(ି;ఔ)(ݔ) ⊗ ݁ఈ(ି;ఔ)(ݕ))]}݀ߣ.  

  (14) 

Note that the numbers (ߙ)ߞ don't appear any more, this occurs because we 
apply ࣥ always on products of the type ܧఈ ⊗  ఈ. The expansions of aିܧ
function ݃(ݔ) over the adjoint solutions can be simplified further, if for 
arbitrary ݔ the value ݃(ݔ) ∈ ग़[௦]  

 

(ݔ)݃																												 =ఌଶగ௣∑ 	ଶெఔୀଵ ׬ 	௟ഌ {∑ 	ఈ∈ఋഌశ [∑ 	௣௞ୀଵ ߱ି௞௦ࣥ௞(݁ఌఈ(ା;ఔ)(ݔ, ,ఌఈ(ା;ఔ)ି݁〉〉((ߣ ,ܬ] ℎ]〉〉 −−∑ 	௣௞ୀଵ ߱ି௞௦ࣥ௞(݁ିఌఈ(ି;ఔ)(ݔ, ,ఌఈ(ି;ఔ)݁〉〉((ߣ ,ܬ] ݃]〉〉]}dߣ.  

  (15) 

In the above are written two expansions, one for ߝ = +1 and the other for ߝ = −1. Making a contraction one can see that ݃(ݔ) is actually expanded 
over the functions:  

 ݁ఈ(±;ఔ;௦)(ݔ, (ߣ = ∑ 	௣௞ୀଵ ߱ି௞௦ܭ௞(݁ఈ(±;ఔ)(ݔ, ,((ߣ ߥ = 1,2, … , ܽ (16) 
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which are up to a multiplier ݌ the orthogonal projections of ݁ఈ(±;ఔ)(ݔ,  .on ग़ത[௦] (ߣ
The operators Λ± map functions with values in ग़ത[௦] into functions with 
values in ग़ത[௦ିଵ]. In particular, for the new Generalized Exponents we have  

 Λି݁ఈ(ା;ఔ;௦) = ,ఈ(ା;ఔ,௦ିଵ)݁ߣ Λି݁ିఈ(ି;ఔ,௦) = ,ఈ(ି;ఔ.௦ିଵ)ି݁ߣ ߙ		 ∈  ఔାߜ
  (17) 

 Λା݁ିఈ(ା;ఔ,௦) = ,ఈ(ା;ఔ,௦ିଵ)ି݁ߣ Λି݁ఈ(ି;ఔ,௦) = ,ఈ(ି;ఔ,௦ିଵ)݁ߣ ߙ		 ∈  .ఔାߜ
  (18) 

Therefore ݁ఈ(±;ఔ,௦) are not eigenfunctions of Λ±. However, we obviously 
have:  

 Λ௣ି ݁ఈ(ା;ఔ;௦) = ,௣݁ఈ(ା;ఔ,௦)ߣ Λ௣ି ݁ିఈ(ି;ఔ,௦) = ,௣݁ିఈ(ି;ఔ.௦)ߣ ߙ		 ∈  ఔାߜ
  (19) 

  

 Λା௣ ݁ିఈ(ା;ఔ,௦) = ,௣݁ିఈ(ା;ఔ,௦)ߣ Λା௣ ݁ఈ(ି;ఔ,௦) = ,௣݁ఈ(ି;ఔ,௦)ߣ ߙ		 ∈  .ఔାߜ
  (20) 

 This is important, so let us formulate it separately:  

Theorem 3.2 For the expansions (15) the role of the Recursion Operators 
are played by the ݌-th powers of the operators ߉±.  

We want to see now what happens with the discrete spectrum in case we 
have ℤ௣ reduction and if the above conclusion also holds in some sense.  

The discrete spectrum 

To take into account the discrete spectrum contribution is in general quite 
complicated task since its structure unlike the continuous spectrum depends 
on the representation of the algebra ग़ in which we consider the problem ߰ܮ = 0. We shall skip the discussion of this issue, it can be found in [3]. 
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Here we shall remind only the main facts in case (ݔ)ݍ is regular potential. 
First, the discrete and the continuous spectrum do not overlap and the 
discrete spectrum consists of finite number of poles of the functions ߯ఔ and ߯ఔି ଵ  which do not depend on ݔ . As will be seen below in adjoint 
representation we need to know the singularities of ݁ఈఔ(ݔ, (ߣ  which of 
course depend on the singularities of ߯ఔ and ߯ఔି ଵ. The information about 
the singularities of ߯ఔ is essential in some questions (for example if one 
wants to perform Inverse Scattering Transform reducing it to a suitable 
Riemann-Hilbert problem). However, since our task is different, we shall 
not attempt to track down these singularities to ߯ఔ and ߯ఔି ଵ, all we need to 
know is that for regular potentials ݁ఈఔ(ݔ, ఔ;௞ߣ has singularities at (ߣ ∈ Ωఔ, ݇ = 1,2, … ఔܰ. (For some particular ߙ some of the singularities could be 
removable). 

Then the discrete spectrum contribution DSC±(݃) to the expansions (7), 
according to [3], is given making contraction to the right and to the left and 
integrating over ℝ  (we identify ग़  and ग़∗  via Killing form) of the 
expression DSC given below with [ܬ, [(ݔ)݃  where ݃(ݔ)  is absolutely 
integrable function on the line taking values in ग़. DSC has the form  

 Dܵܥ = −i∑ 	ଶெఔୀଵ ∑ 	ఈ∈୼ഌశ ∑ 	ேഌ௞ୀଵ Res(ܳఔ,ఈ(ݔ, ,ݕ ;(ߣ  ఔ,௞) (21)ߣ

where ܳఔ;ఈ(ݔ, ,ݕ (ߣ = ݁ఈఔ(ݔ, (ߣ ⊗ ݁ିఈఔ ,ݕ)  .(ߣ
In case of ℤ௣ reduction the expression (21) can be cast in another form. The 
starting point for our considerations will be the equations ࣥ(߯ఔ(ݔ, ((ߣ =߯ఔା௔(ݔ, (ߣ߱  and ࣥ(݁ఈఔ(ݔ, ((ߣ = ,ݔ)ఈఔା௔ࣥ݁(ߙ)ߝ (ߣ߱ . They show that if ݁ఈఔ(ݔ, ߣ has a pole of some order at (ߣ = ,ݔ)଴ in Ωఔ then ݁ࣥఈఔା௔ߣ  will (ߣ
have the same type of singularity at ߱ߣ଴  in Ωఔା௔ . Thus the reduction 
group acts also on the poles of the functions ݁ఈఔ(ݔ,  on the discrete) (ߣ
spectrum of ܮ) dividing it into orbits in which the poles are obtained by 
multiplication by some power of ߱. The orders of poles in different orbits 
could be of course different but since they are finite number we can assume 
that these orders are not higher than some number ݀. Since working with 
the formula (21) is cumbersome, let us consider the contribution from just 
one ܳఔ;ఈ and one pole ߣ =  (଴ߣ in fact from the poles from the orbit of) ଴ߣ
located in Ωఔ. We note that necessarily ߣ଴ ≠ 0. 
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Assume at ߣ =  ଴ we have a pole of order ݀ then in some discs centeredߣ
at ߣ଴ and ߱ߣ଴ respectively we shall have:  ݁ఈఔ(ݔ, (ߣ = ∑ 	ஶ௦ୀିௗ ఈ;௦ఔܣ ߣ)(ݔ) − ,଴)௦ߣ ݁ࣥఈఔା௔(ݔ, (ߣ = ∑ 	ஶ௦ୀିௗ ఈ;௦ఔା௔ࣥܣ ߣ)(ݔ)  ଴)௦  (22)ߣ߱−

 where ܣఈ;௦ఔ ఈ;ିௗఔܣ are some functions with values in ग़ and (ݔ) (ݔ) ≠ 0. 
From the relation between ݁ఈఔ(ݔ, ,ݔ)and ݁ࣥఈఔା௔ (ߣ ఈ;௦ఔܣࣥ we get (ߣ (ݔ) ఈ;௦ఔା௔ࣥܣ௦߱(ߙ)ߝ=   and therefore (ݔ)

 Res(ܳఔ;ఈ(ݔ, ,ݕ ;(ߣ (଴ߣ = ∑ 	௦ା௟ୀିଵ ఈ;௦ఔܣ (ݔ) ⊗ ఈ;௟ఔିܣ  (23) .(ݕ)

 Consequently,  

Res(ܳఔା௔;ࣥఈ(ݔ, ,ݕ ;(ߣ (଴ߣ߱ = ෍ 	௟ା௦ୀିଵ ఈ;௦ఔା௔ࣥܣ (ݔ) ⊗ ఈ;௟ఔା௔ࣥିܣ (ݕ) =
෍ 	௟ା௦ୀିଵ ߱ି(௦ା௟)ࣥܣఈ;௦ఔ (ݔ) ఈ;௟ఔିܣࣥ⊗ (ݕ) = ߱ࣥ⊗ࣥ(Res(ܳఔ;ఈ; ,ݔ)((଴ߣ  .(ݕ

Let us now make a contraction from the right with [ܬ,  where ݃ is a (ݕ)[݃
smooth function defined on the line ℝ with values in ग़[௞] . Then [ܬ, ݃] 
takes values in ग़[௦ାଵ] and we obtain  

 Res(ܳఔା௔;ࣥఈ;߱ߣ଴). ,ܬ] ,ݔ)[݃ (ݕ = ߱ି௦ࣥ(Res(ܳఔ;ఈ; .(଴ߣ ,ܬ] ,ݔ)([݃  .(ݕ
 Now summing up the terms of the above type over the poles belonging to 
the orbit defined by ߣ଴ and taking into account that for ܺ ∈ ग़ the map ܺ ↦ ଵ௣∑ 	௣௝ୀଵ ߱ି௦௝ࣥ௝ܺ  is a projector onto the subspace ग़[௦]  after some 
algebraic transformations we get the expression  

 ଵ௣ ∑ 	௦ା௟ୀିଵ ,(ݕ)ఈ;௟ఔ;ି(௞ାଵ)ିܣ〉(ݔ)ఈ;௦ఔ;௞ܣ ,ܬ]  (24) 〈(ݕ)[݃

 where for ߚ ∈ (ݕ)ఉ;௟ఔ;௦ܣ ఔା we definedߜ = ∑ 	௣௞ୀଵ ߱ି௦௞ࣥ௞ܣఉ;௟ఔ  .(ݕ)
If instead of contraction from the right we perform contraction from the left 
we obtain similar expressions so finally, integrating from −∞ to +∞ over 
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ݕ  (over ݔ  for the expressions obtained by left contraction) as it is 
necessary to do in order to obtain expansions over the adjoint solutions, we 
obtain the expressions (for ߝ = +1 and ߝ = −1):  

 ଵ௣ ∑ 	ௗିଵ௦ୀିௗ ఌఈ;௦ఔ;௞ܣ ఌఈ;ି(௦ାଵ)ఔ;ି(௞ାଵ)ିܣ〉〉(ݔ) , ,ܬ] ℎ]〉〉, ߝ = ±1 (25) 

 Let us denote by ߣఔ,௝, ߥ = 1,2, …ܽ and ݆ = 1,2… ఔܰ the different poles 
in the fundamental sectors Ωଵ, Ωଶ,… , Ω௔ . Then we need to write an 
additional index to the functions ܣఈ;௦ఔ , they become ܣఈ;௦;௝ఔ . Consequently, 
the functions ܣఈ;௦ఔ;௞ also aquire additional index to become ܣఈ;௦;௝ఔ;௞ . Then in 
case we expand a function ݃ with values in ग़[௞]  the discrete spectrum 
contributions ܥܵܦ±(݃) to the right hand side of formulae (7) will be given 
by  

(݃)±ܥܵܦ  = ି୧௣ ∑ 	ఈ∈୼ഌశ ∑ 	௔ఔୀଵ ∑ 	ேഌ௝ୀଵ ∑ 	ௗିଵ௦ୀିௗ ఌఈ;௦;௝ఔ;௞ܣ ఌఈ,ି(௦ାଵ);௝ఔ;ି(௞ାଵ)ିܣ〉〉(ݔ) , ,ܬ] ݃]〉〉      

                                                                      (26) 

for ߝ = ±1. The choice ߝ = +1 corresponds to the expressions obtained 
using contraction from the right while ߝ = −1  corresponds to the 
expressions obtained using contraction from the left. Since this formula is 
too cumbersome in what follows we shall consider the contribution due to 
only one pole, located at ߣ =  .଴ in one of the fundamental sectorsߣ

Now we consider the action of the Recursion Operators on the discrete 
spectrum (compare to (10), (11)). As mentioned it will suffice to consider 
the contribution from only one pole ߣ = ଴ߣ . From the fact that (Λ± ,ݔ)ఈఔ݁(ߣ− (ߣ = 0 we easily get that  

 Λ±ܣఉ;ିௗఔ (ݔ) = ఉ;ିௗఔܣ଴ߣ  (27) (ݔ)

 Λ±ܣఉ;௦ఔ (ݔ) = ఉ;௦ఔܣ଴ߣ (ݔ) + ఉ;௦ିଵఔܣ ,(ݔ) −݀ < ݏ < ݀ 

 which shows that acting on the vectors ܣఉ;௦ఔ ݏ ,(ݔ) = ݀ − 1, ݀ − 2,…− ݀ 
the operators Λ± have canonical single block Jordan form. (It is easy to 
show that if ߣ଴ ≠ 0, which is our case, and ܣఉ;ିௗఔ (ݔ) ≠ 0 all these vectors 
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must be linearly independent). We are interested now to see how this is 
agreed with the splitting defined by ࣥ . Since Λ± ∘ ࣥ = ߱ࣥ ∘ Λ±  we 
obtain  

 Λ±ܣఉ;ିௗఔ;௞ (ݔ) =  (28) (ݔ)ఉ;ିௗఔ;௞ିଵܣ଴ߣ

 Λ±ܣఉ;௦ఔ;௞(ݔ) = (ݔ)ఉ;௦ఔ;௞ିଵܣ଴ߣ + ,(ݔ)ఉ;௦ିଵఔ;௞ିଵܣ −݀ < ݏ < ݀ 

 The action does not have canonical Jordan form in any space of functions 
taking value in ग़[௦] so it is not the representation we look for. From the 
other side, for arbitrary ݇  we have ܣఉ;௦ఔ;௞ା௣(ݔ) = (ݔ)ఉ;௦ఔ;௞ܣ , so using 
induction we get that  

 Λ±௣ (ݔ)ఉ;௦ఔ;௞ܣ = ∑ 	௣௟ୀ଴ ఉ;௦ି௟ఔ;௞ܣ଴௣ି௟ߣ௣௟ܥ  (29) (ݔ)

 where in order to be able to write nicely the formula we assume that ܣఉ;௦ఔ;௞ ≡ 0 for ݏ < −݀ and ܥ௣௦ are the binomial coefficients. (In fact from 
(27) we get the same formula for the functions ܣఉ;௦ఔ (ݔ)ఉ;௟ఔ;௞ܣ If (.(ݔ) = 0 
for ݈ = −݀,−݀ + 1…ܿ − 1 but ܣఉ;௖ఔ;௞(ݔ) ≠ 0, ܿ < ݀ − 1 we see that the 
formulae remain the same, one must simply starts with the index ܿ instead 
of −݀. In the most degenerate case only ܣఉ;ௗିଵఔ;௞ (ݔ) ≠ 0 and it will be an 
eigenfunction. If none of these options is true then ܣఉ;௟ఔ;௞(ݔ) = 0  for −݀ ≤ ݈ < ݀ and the terms corresponding to ߣ଴ will not contribute to the 
discrete spectrum part of the expansions. We shall call the poles for which 
this happens 'ग़[௞]-removable'. Assume that ߣ଴ is not ग़[௞]-removable. As 
we explained the things in general are the same as in the case ܣఉ;ିௗఔ;௞ (ݔ) ≠ 0 
so let us assume that this is true. Using induction it is not hard to prove that 
the the functions {ܣఉ;௟ఔ;௞(ݔ): ݀ − 1 ≥ ݈ ≥ −݀} are linearly independent. 

The subspace ఉܸఔ;௞(ߣ଴)  generated by the functions {ܣఉ;௟ఔ;௞(ݔ)}௟ୀିௗௗିଵ  is 
invariant under the action of Λ±௣ . If one takes in it the basis  

ఉ;ିௗఔ;௞ܣ}  ,(ݔ) ఉ;ିௗାଵఔ;௞ܣ ,(ݔ) … , ఉ;ௗିଵఔ;௞ܣ } 
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then to Λ±௣  corresponds 2݀ × 2݀  matrix that is upper triangular, with 
constant entries and with ߣ଴௣  on the diagonal which is in fact the ݌-th 
power of the canonical Jordan matrix we had before. As we explained if ߣ଴ 
is not ग़[௞]-removable the size of this matrix would be smaller and even 
reduced to 1 × 1 'matrix'. 

The discrete spectrum contribution from ߣఔ,௝ in case we make contraction 
with [ܬ, ݃] to the left (right) is a linear combination of terms belonging to 
the spaces ఉܸఔ;௞(ߣఔ,௝). Thus after the elimination of the 'ग़[௞]-removable' 
poles we have:  

Theorem 4.1 The discrete spectrum contribution to the expansion of ܮଵ-integrable function ݃:ℝ ↦ ग़ത belongs to the direct sum of the subspaces ఉܸఔ;௞(ߣఔ;௝). These subspaces are not invariant under the action of ߉± but 
under the action of ߉±௣ . In a suitable basis ߉±௣  has block upper triangular 
form with ߣ௝௣  on the diagonal and the blocks either have dimension 2 ௝ܿ × 2 ௝ܿ, where ௝ܿ are some positive integers less or equal than the the 
orders of the corresponding poles, or are 1 × 1 blocks.  

Conclusion 

The analysis of the completeness relations in case we have ℤ௣ reductions 
we considered shows that the role of the Recursion Operators Λ±  (the 
operators for the system without reductions) is played now by the operators Λ±௣ . This completes the picture since the fact was established earlier for the 
geometric aspects of the theory of the Recursion Operators (interpretation 
as Nijenhuis tensors for certain P-N structures) and its algebraic aspects, see 
[10]. Now we are having it for the spectral aspect of the theory. 
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1 Introduction 

The general theory of the nonlinear evolution equations (NLEE) allowing 
Lax representation is well developed [1, 2, 3, 4, 5, 6, 7]. This paper deals 
with NLEE that allow Lax representation with deep reductions. This means 
that they can be written as the commutativity condition of two ordinary 
differential operators of the type  

 
߰ܮ ≡ ݅ பటப௫ + ,ݔ)ܷ ,ݐ ߰(ߣ = ߰ܯ,0 ≡ ݅ பటப௧ + ,ݔ)ܸ t, ߰(ߣ =  (1) ,(ߣ)ܥ߰

where ܷ(ݔ, ,ݐ ,ݔ)ܸ ,(ߣ ,ݐ  to be ߣ are some polynomials of (ߣ)ܥ and (ߣ
defined below. We request also that the Lax pair (1) possesses ℤே-reduction groups [8]. For the case of ℤே-reduction this means that we 
impose on (1) and (2) a ℤே-reduction by [8]  

,ݔ)ଵܷܥ  ,ݐ ଵିܥ(ߣ ଵ = ,ݔ)ܷ ,ݐ ,(ߣ߱ ,ݔ)ଵܸܥ ,ݐ ଵିܥ(ߣ ଵ = ,ݔ)ܸ ,ݐ  (2) ,(ߣ߱

where ܥଵே = 	૤	is a Coxeter automorphism of the algebra ०य़(ܰ, ℂ)  and ߱ = exp(2݅ߨ/ܰ). 
Below we consider only the simplest possible case, when the underlying 
algebra is ०य़(ܰ, ℂ) and the group of reduction is ℤே. The class of relevant 
NLEE may be considered as generalizations of the derivative NLS 
equations [9, 10], see also [8, 11]  
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 ݅ பటೖப௧ + ߛ பப௫ ൫cot(݇ߨ/ܰ) ⋅ ߰௞,௫ + ݅ ∑ 	ேିଵ௣ୀଵ ߰௣߰௞ି௣൯ = 0, (3) 

݇ = 1,2, … , ܰ − 1, where ߛ is a constant and the index ݇ −  should be ݌
understood modulus ܰ and ߰଴ = ߰ே = 0. 

Section 2 contains preliminaries necessary to derive the NLEE. In particular 
we provide a convenient basis for ०य़(ܰ, ℂ) which is compatible with the ℤே -reduction. In Section 3 we derive MKdV equations for any ܰ . In 
section 4 we derive the evolution equations for scattering matrix of the Lax 
operator. In Section 5 we show that additional ℤଶ -reductions can be 
imposed on the MKdV equations. We also give several particular examples 
of these equations. 

2 Preliminaries  

Let us consider the Lax operator (1). To this end we will use a convenient 
basis in the Lie algebra ०य़(ܰ, ℂ)  which is compatible with the ℤே-reduction. Here and below all indices are understood modulus ܰ. The 
automorphism ݀ܣ		஼భ (	݀ܣ		஼భ(ܻ) ≡ ଵିܥଵܻܥ ଵ for every ܻ from ग़) defines 
a grading in the Lie algebra  

 ०य़(ܰ, ℂ) =⊕௞ୀ଴ேିଵ ग़(௞)	, (4) 

where ग़(௞)  is the eigenspace of ݀ܣ		஼భ  corresponding to its eigenvalue ߱ି௞, ݇ = 0,1, … , ܰ − 1. The calculations are much simpler if we introduce 
a convenient basis in ग़(௞) compatible with the grading:  

௦(௞)ܬ  = ∑ 	ே௝ୀଵ ߱௞௝ܧ௝,௝ା௦,				ିܥଵܬ௦(௞)ܥ = ߱ି௞ܬ௦(௞), (5) 

where ܧ௝,௦ is an ܰ × ܰ matrix defined by (ܧ௝,௦)௤,௥ =   ௦(௞) satisfies the commutation relationsܬ ,௦௥. Obviouslyߜ௝௤ߜ

,௦(௞)ܬൣ  ௟(௠)൧ܬ = (߱௠௦ − ߱௞௟)ܬ௦ା௟(௞ା௠). (6) 
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3 Derivation of the equations 

We choose ܷ(ݔ, ,ݐ ,ݔ)ܸ and (ߣ ,ݐ   :as follows (ߣ

,ݔ)ܷ  ,ݐ (ߣ = ,ݔ)ܳ (ݐ − ,ܬߣ ,ݔ)ܳ (ݐ = ∑ 	ேିଵ௝ୀଵ ߰௝(ݔ, ,௝(଴)ܬ(ݐ ܬ =  ଴(ଵ)ܬܽ
  (7) 

,ݔ)ܸ  ,ݐ (ߣ = ଷܸ(ݔ, (ݐ + ߣ ଶܸ(ݔ, (ݐ + ଶߣ ଵܸ(ݔ, (ݐ −  (8) ,ܭଷߣ

where  

 ଵܸ(ݔ, (ݐ = ∑ 	ே௞ୀଵ ,ݔ)௞ଵݒ ,௞(ଶ)ܬ(ݐ 		 ଶܸ(ݔ, (ݐ = ∑ 	ே௟ୀଵ ,ݔ)௟ଶݒ ,ݔ)௟(ଵ),ଷܸܬ(ݐ (ݐ = ∑ 	ேିଵ௝ୀଵ ,ݔ)௝ଷݒ ,௝(଴)ܬ(ݐ ܭ							 = .଴(ଷ)ܬܾ  

  (9) 

The constants ܽ  and ܾ  determine the dispersion law of the MKdV 
equations. 

The next step is to request that [ܯ,ܮ] = 0 identically with respect to ߣ. 
This leads to a set of recursion relations, generalizing the ones in [1], which 
allow us to express ௞ܸ(ݔ, (ݐ , ݇ = 1,2,3  through ܳ(ݔ, (ݐ  and its ݔ-derivatives. Skipping the details we get:  

,ݔ)௞ଵݒ  (ݐ = ௕௔ (߱ଶ௞ + ߱௞ + 1)߰௞,				݇ = 1,… ,ܰ − 1, (10) 

and ݒேଵ =   arbitrary function of time. For - (ݐ)ܥ with (ݐ)ܥ

 
,ݔ)௟ଶݒ (ݐ = ௕௔మ ∑ 	ேିଵ௝ା௞ୀ௟ ఠమ೗ାఠమೕశೖିఠೖିଵଵିఠ೗ ߰௝߰௞+݅ ௕௔మ ቀఠమ೗ାఠ೗ାଵଵିఠ೗ ቁ பట೗ப௫ − ஼௔ (߱௟ + 1)߰௟, (11) 

for ݈ = 1,… ,ܰ − 1 and  

ேଶݒ  = − ௕௔మ ∑ 	ேିଵ௝ା௟ୀ଴ ቀcos ଶగ௝ே + ଵଶቁ߰௝߰௟ +  (12) ,(ݐ)ܦ
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with D(t) - another arbitrary function of time. And for  

௝ଷݒ  = ௕௔య cot ቀగ௝ே ቁ∑ 	ேିଵ௞ା௟ୀ௝ பப௫ (߰௞߰௟) + ஼௔మ ∑ 	ேିଵ௠ା௟ୀ௝ (߰௠߰௟) 
 + ௕ଶ௔య ∑ 	ேିଵ௞ା௟ୀ௝ ୡ୭ୱഏ(ೖష೗)ಿୱ୧୬ഏೕಿ பப௫ (߰௞߰௟) − ஽௔ ߰௝ 
 + ௕௔య ∑ 	ேିଵ௟ା௠ୀ௝ ∑ 	ேିଵ௜ା௞ୀ௟ (߰௜߰௞߰௠) + ଷ௕ଶ௔య ∑ 	ேିଵ௟ା௠ୀ௝ cot ቀగ௟ேቁ பట೗ப௫ ߰௠ 

 + ௕௔య ∑ 	ேିଵ௟ା௠ୀ௝ ∑ 	ேିଵ௜ା௞ୀ௟ ୱ୧୬ഏ(ೕషమೖ)ಿ ିୱ୧୬ഏ(ೕషమ೘)ಿୱ୧୬ഏೕಿ (߰௜߰௞߰௠) 
 − ௕ସ௔య cot ቀగ௝ே ቁ∑ 	ேିଵ௟ା௠ୀ௝ பப௫ (߰௟߰௠) + ஼௔మ cot ቀగ௝ே ቁ பటೕப௫  

 − ௕ଶ௔య ∑ 	ேିଵ௟ା௠ୀ௝ ୡ୭ୱഏ(೗ష೘)ಿୱ୧୬ഏೕಿ பப௫ (߰௟߰௠) + ௕௔య ቆcotଶ గ௝ே − ଵସୱ୧୬మഏೕಿቇ பమటೕப௫మ  

 + ௕௔య ∑ 	ேିଵ௞ୀଵ ቀcos ଶగ௞ே + ଵଶቁ (߰௞߰ேି௞߰௝) (13) 

where ݆ is running from 1 to N-1. We choose (ݐ)ܥ = 0 and (ݐ)ܦ = 0. 

In the end for Q(x,t) we get  

ߙ  பటೕப௧ = ቆcotଶ గ௝ே − ଵସୱ୧୬మഏೕಿቇ பయటೕப௫య + ∑ 	ேିଵ௟ା௠ୀ௝ ∑ 	ேିଵ௜ା௞ୀ௟ பப௫ (߰௜߰௞߰௠) 
 +∑ 	ேିଵ௟ା௠ୀ௝ ∑ 	ேିଵ௜ା௞ୀ௟ ୱ୧୬ഏ(ೕషమೖ)ಿ ିୱ୧୬ഏ(ೕషమ೘)ಿୱ୧୬ഏೕಿ பப௫ (߰௜߰௞߰௠) 
 +∑ 	ேିଵ௞ୀଵ ቀcos ଶగ௞ே + ଵଶቁ பப௫ (߰௞߰ேି௞߰௝) + ଷସ cot ቀగ௝ே ቁ∑ 	ேିଵ௞ା௟ୀ௝ பమப௫మ (߰௞߰௟) 
 +ଷସ∑ 	ேିଵ௞ା௟ୀ௝ பப௫ ቀcot ቀగ௟ேቁ பట೗ப௫ ߰௞ + cot ቀగ௞ே ቁ பటೖப௫ ߰௟ቁ (14) 
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where ߙ = ܽଷ/ܾ. 

4 The evolution of the scattering matrix 

Let us introduce the Jost solutions ϕ±(ݔ, ,ݐ   :of the Lax pair by (ߣ

 lim௫→ିஶϕି(ݔ, ௜ఒ௃బ(భ)௫݁(ݐ = 	૤	, lim௫→ஶϕା(ݔ, ௜ఒ௃బ(భ)௫݁(ݐ = 	૤	, (15) 

 They are related by:  

 ϕି(ݔ, ,ݐ (ߣ = ϕା(ݔ, ,ݐ ,ߣ)ܶ(ߣ  (16) (ݐ

where ܶ(ߣ, (ݐ  is known as the scattering matrix. Both Jost solutions ϕ±(ݔ, ,ݐ   satisfy equations (1). Let us now calculate the limit (ߣ

 lim௫→ஶܯϕା(ݔ, (ݐ = (݅ பப௧ − ܦߣ − ܥଶߣ − ௜ఒ௃బ(భ)௫ି݁(ܭଷߣ = ݁ି௜ఒ௃బ(భ)௫(ߣ)ܥ. 
                                                                       (17) 

Assuming that the definitions of the Jost solutions are ݐ-independent we 
find that  

,ߣ)ܥ  (ݐ = ܦߣ− − ܥଶߣ −  (18) .ܭଷߣ

Next we calculate  

 
lim௫→ஶܯϕି(ݔ, (ݐ = (݅ பப௧ − ,ߣ)௜ఒ௃బ(భ)௫ܶି݁((ߣ)ܥ =(ݐ ݁ି௜ఒ௃బ(భ)௫(݅ ப்ப௧ − ,ߣ)ܶ(ߣ)ܥ ((ݐ = ݁ି௜ఒ௃బ(భ)௫ܶ(ߣ,  (ߣ)ܥ(ݐ

  (19) 

Therefore, if ܳ(ݔ, (ݐ  satisfies the MKdV equations (14) the scattering 
matrix ܶ(ߣ,   :must satisfy the following linear evolution equation (ݐ

 ݅ ப்ப௧ − ,(ߣ)ܥ] ,ߣ)ܶ [(ݐ = 0. (20) 

In the particular case when ܥ = ܦ = 0 we get:  
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 ݅ ப்ப௧ + ,ܭ]ଷߣ ,ߣ)ܶ [(ݐ = 0, (21) 

whose solution is  

 ௜ܶ௝(ߣ, (ݐ = ݁௜ఒయ(ఠయ೔ିఠయೕ)௧ ௜ܶ௝(ߣ, 0). (22) 

Thus ௜ܶ௝(ߣ, 0) is the Cauchy data for the initial conditions of the scattering 
matrix. Therefore solving the MKdV equations. (14) reduced to solving the 
direct and the inverse scattering problem for the Lax operator ܮ, see [8, 10, 
12]. 

5 Additional Involutions and Examples 

Along with the ℤே-reduction (2), we can introduce one of the following 
involutions (ℤଶ-reductions):  

 
	ܽ)	 ଴ିܭ		 ଵܷற(ݔ, ,ݐ ଴ܭ((ߣ)ଵߢ = ,ݔ)ܷ ,ݐ ,(ߣ (ߣ)ଵߢ		 = 		߱ିଵߣ∗	ܾ)	 ଴ିܭ		 ଵܷ∗(ݔ, ,ݐ ଴ܭ((ߣ)ଵߢ = ,ݔ)ܷ− ,ݐ ,(ߣ (ߣ)ଵߢ		 = −߱ିଵߣ∗	ܿ)	 ,ݔ)்ܷ		 ,ݐ (ߣ− = ,ݔ)ܷ− ,ݐ ,(ߣ   

                                                                    (23) 
                                                      

where ܭ଴ଶ = 	૤	. We choose  

଴ܭ  = ∑ 	ே௞ୀଵ  .௞,ேି௞ାଵܧ
The action of ܭ଴ on the basis is as follows:  

଴ܭ௦(௞)൯றܬ଴൫ܭ  = ߱௞(௦ିଵ)ܬ௦(௞), ଴ܭ∗௦(௞)൯ܬ଴൫ܭ		 = ߱ି௞ିܬ ௦(௞), (24) 

from which we derive the reductions below. 

 Immediate consequences of eq. (23) are the constraints on the potentials:  
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	ܽ)	 ଴ିܭ		 ଵܳற(ݔ, ଴ܭ(ݐ = ,ݔ)ܳ ,(ݐ ଴ିܭ				 ଵ(ܬ଴(ଵ))றܭ଴ = ߱ିଵܬ଴(ଵ),	ܾ)	 ଴ିܭ		 ଵܳ∗(ݔ, ଴ܭ(ݐ = ,ݔ)ܳ− ,(ݐ ଴ିܭ				 ଵ(ܬ଴(ଵ))∗ܭ଴ = ߱ିଵܬ଴(ଵ),	ܿ)	 ,ݔ)்ܳ		 (ݐ = ,ݔ)ܳ− ,(ݐ ்(଴(ଵ)ܬ)				 = .଴(ଵ)ܬ   

  
                                                                      (25) 

More specifically from eq. (25) it follows that each of the algebraic relations 
below:  

 
	ܽ)	 		߰௝∗(ݔ, (ݐ = ߰௝(ݔ, ,(ݐ ߙ				 = 	(ܾ	,∗ߙ 		߰௝∗(ݔ, (ݐ = −߰ேି௝(ݔ, ,(ݐ ߙ				 = 	(ܿ	,∗ߙ 		߰௝(ݔ, (ݐ = −߰ேି௝(ݔ, ,(ݐ  (26) 

where ݆ = 1,… ,ܰ − 1, are compatible with the evolution of the MKdV 
eqs. (14). 

6 Some particular cases 

Special examples of DNLS systems of equations can be found in [10]. 

In the case of ०य़(2, ℂ) algebra we obtain the well-known MKdV equation  

ߙ  பటభப௧ = − ଵସ பయటభப௫య − ଵଶ பப௫ (߰ଵଷ). (27) 

In the case of ०य़(3, ℂ) algebra we have the system of trivial equations ∂௧߰ଵ = 0 and ∂௧߰ଶ = 0. 

And finally in the case of ०य़(4, ℂ) algebra we find a new system of exactly 
integrable nonlinear partial differential equations  

ߙ  பటభப௧ = ଵଶ பయటభப௫య + ଷଶ பப௫ ቀபటమப௫ ߰ଷቁ + ଷଶ பப௫ (߰ଵ߰ଶଶ) + பப௫ (߰ଷଷ), (28) 

ߙ	     பటమப௧ = − ଵସ பయటమப௫య + ଷସ பమப௫మ (߰ଵଶ) − ଷସ பమப௫మ (߰ଷଶ)       
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																										+3 ݔ∂∂ (߰ଵ߰ଶ߰ଷ) − 12 ݔ∂∂ (߰ଶଷ) 
                                                                      (29) 

ߙ  பటయப௧ = ଵଶ பయటయப௫య − ଷଶ பப௫ ቀ߰ଵ பటమப௫ ቁ + ଷଶ பப௫ (߰ଶଶ߰ଷ) + பப௫ (߰ଵଷ). (30) 

If we apply case a) of eq. (26) we get the same set of MKdV equations with ߰ଵ,߰ଶ and ߰ଷ purely real functions. 

In the case b) we put ߰ଵ = −߰ଷ∗ = and ߰ଶ ݑ = −߰ଶ∗ =   :and get ݒ݅

 
ߙ ப௩ப௧ = − ଵସ பయ௩ப௫య + ଷସ௜ பమப௫మ ଶݑ) − (ଶ,∗ݑ − 3 பப௫ (ݒଶ|ݑ|) + ଵଶ பப௫ ߙ,(ଷݒ) ப௨ப௧ = ଵଶ பయ௨ப௫య − ݅ ଷଶ பப௫ ቀݑ∗ ப௩ப௫ቁ − ଷଶ பப௫ (ଶݒݑ) − பப௫ ,(ଷ(∗ݑ))  (31) 

where ݑ is a complex function, but ݒ is a purely real function. 

In the case c):  

ߙ  ப௨ப௧ = ଵଶ பయ௨ப௫య − பப௫  (32) ,(ଷݑ)

where ݑ  is a complex function, we recover the well known MKdV 
equation. And finally in the case of ०य़(6, ℂ) algebra with ॰଺-reduction in 
the case c) we find  

 
ߙ ப௨ப௧ = 2 பయ௨ப௫య − 2√3 பப௫ ቀݑ ப௩ப௫ቁ − 6 பப௫ ߙ,(ଶݒݑ) ப௩ப௧ = √3 பమப௫మ (ଶݑ) − 6 பப௫ ,(ݒଶݑ)  (33) 

where ݑ and ݒ are complex functions. 
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7 Discussion and conclusions 

In the present paper we have derived the systems of MKdV equations 
related to the classical series of ०य़(ܰ, ℂ) Lie algebras. These equations 
belong to the hierarchy, containing the two-dimensional Toda field theories 
related to ०य़(ܰ, ℂ) discovered by Mikhailov [8]. The corresponding Lax 
operator ܮ is endowed with a ℤே -reduction [8]. We also demonstrated 
several examples that are obtained from the generic MKdV by imposing 
additional ℤଶ-reductions. 

These results can be extended also to the other classical series of simple Lie 
algebras. 
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1 Introduction 

The inverse scattering method [1, 2, 3], combined with Mikhailov's group 
of reductions [4] has led to the discovery of classes of important integrable 
nonlinear evolution equations (NLEE). One of the most interesting 
examples of such equations are the 2-dimensional Toda field theories [4] 
and higher representatives from their hierarchies [5, 6, 7, 8, 9, 10]. 

Our aim is to derive a one-parameter family of MKdV equations related to 
the simple Lie algebra ०ॢ(8) using the procedure introduced by Mikhailov 
[4]. They admit a Lax pair  

߰ܮ  ≡ ݅ பటப௫ + ,ݔ)ܷ ,ݐ ߰(ߣ = 0, ߰ܯ ≡ ݅ பటப௧ + ,ݔ)ܸ ,ݐ ߰(ߣ =  ,(ߣ)ܥ߰
  (1) 

satisfying the reduction condition  ݔ)ܷ)ܥ, ,ݐ ((ߣ = ,ݔ)ܷ ,ݐ ,ݔ)ܸ)ܥ				,(ߣ߱ ,ݐ ((ߣ = ,ݔ)ܸ ,ݐ  (2) .(ߣ߱

A key motivation for choosing ०ॢ(8)	is the unique symmetry of its Dynkin 
diagram [11,12],see fig.1. This is combined with the fact that ०ॢ(8) is the 
only simple Lie algebra of rank 4 that has 3 as a double-valued exponent. 
For more details about the root system and the Cartan-Weyl basis of ०ॢ(8) 
see the Appendix.Of course these special properties of the algebra ०ॢ(8) 
will be reflected in the properties of the resulting MKdV equations. 
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The paper is organized as follows. Section 2 contains some preliminaries 
needed to derive the equations. We start with the Lax representation which 
is subject to a ℤ௛ − reduction	group	[4],	where h=6 is the Coxeter number 
of ०ॢ(8).  In Section 3 we derive the one-parameter family of MKdV 
equations.In the next Section we derive the time-dependence of the 
scattering matrix of the Lax operator L.We end with a discussion on the 
possibilities of imposing additional ℤଶ-reductions on the equations.The 
Appendix contains the relevant information about the root system of ०ॢ(8) 
and its Cartan-Weyl basis. 

2 Preliminaries  

We assume that the reader is familiar with the theory of semisimple Lie 
algebras [11, 12], see also the Appendix. By ܪ௜	we will denote elements of 
the Cartan subalgebra, by	ܧఉ	the Weyl generator corresponding to the root ߚ, and	by	ߙ௜	the simple roots. The Coxeter number for ०ॢ(8)is	6,	and its 
rank is 4.We denote the Killing form of ܺ	and	ܻ by <X,Y>. 

The Coxeter automorphism is given by  

(ܺ)ܥ  = ܿܺܿିଵ (3) 

for every generator X, where ܿ is  

								ܿ =
ۈۉ
ۈۈۈ
0ۇ −1 0 0 0 0 0 00 0 0 0 0 −1 0 01 0 0 0 0 0 0 00 0 0 0 1 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 0 10 0 1 0 0 0 0 00 0 0 0 0 0 1 ۋی0

ۋۋۋ
 (4) .ۊ

The Coxeter automorphism introduces a grading in ०ॢ(8) by  

 ०ॢ(8) =⊕௞ୀ଴ହ ग़(௞), (5) 

such that  
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(ܺ)ܥ  = ߱௞ܺ, ߱ = exp ቀଶగ௜௞଺ ቁ , ∀ܺ ∈ ग़(௞). (6) 

The grading condition also holds  

 [ग़(௞), ग़(௟)] ⊂ ग़(௞ା௟), (7) 

where ݇ + ݈	is	taken	modulo	ℎ. The Cartan-Weyl basis is introduced in 
the Appendix. Here we introduce a basis compatible with the grading  

 ०ॢ(8) = ݈. ܿ. {ℰ௜(௞),ℋ௝(௞)}, (8) 

where  

 ℰ௜(௞) = ଵ଺∑ 	ହ௦ୀ଴ ߱ି௦௞ܥ௦(ܧఈ೔),				ℋ௝(௞) = ଵ଺∑ 	ହ௦ୀ଴ ߱ି௦௞ܥ௦(ܪ௝). (9) 

Note that ℋ௝(௞)	is	non − vanishing	only	if	݇	 is an exponent. The 
exponents of ०ॢ(8)are:	1,3,5,3.	Since 3 is a double-valued exponent, ग़(ଷ) 
will contain two Cartan elements. In particular:  ℋଵ(ଵ) = ௘భܪ + ߱ିଵܪ௘మ + ,௘యܪ߱ 	ℋଵ(ଷ) = ௘భܪ + ௘మܪ + ௘య,ℋଶ(ଷ)ܪ = ,௘రܪ 	ℋଵ(ହ) = ௘భܪ + ௘మܪ߱ + ߱ିଵܪ௘య. 
                                                                      (10) 

3 Derivation of the equations 

We start with a Lax pair of the form  

 
ܮ = ݅ ∂௫ + ,ݔ)ܳ (ݐ − ܯ,ܬߣ = ݅ ∂௧ + ܸ(଴)(ݔ, (ݐ + ,ݔ)(ଵ)ܸߣ (ݐ + ,ݔ)ଶܸ(ଶ)ߣ (ݐ −  (11) ,ܭଷߣ

where  

,ݔ)ܳ  (ݐ ∈ ݃(଴), ܸ(௞)(ݔ, (ݐ ∈ ݃(௞), ܭ ∈ ݃(ଷ), ܬ = 3ℋଵ(ଵ). (12) 

We will assume that ܳ(ݔ, ,ݔ)ܸ(௞)	and	(ݐ   :have the following form (ݐ
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,ݔ)ܳ (ݐ = ∑ 	ସ௜ୀଵ ,ݔ)௜ݍ ,ݔ)ܸ(଴)				6ℰ௜(଴),(ݐ (ݐ = ∑ 	ସ௜ୀଵ ,ݔ)௜(଴)ݒ  ,6ℰ௜(଴)(ݐ
  (13) 

ܸ(ଵ)(ݔ, (ݐ = 6∑ 	ସ௜ୀଵ ,ݔ)௜(ଵ)ݒ ℰ௜(ଵ)(ݐ + ,ݔ)ହ(ଵ)ℋଵ(ଵ),ܸ(ଶ)ݒ6 (ݐ = 6∑ 	ସ௜ୀଵ ,ݔ)௜(ଶ)ݒ .ℰ௜(ଶ)(ݐ  (14) 

To simplify the notation we will omit writing any explicit dependence on ݔ	and	ݐ. 
We require that [ܯ,ܮ] = 0	for	any	ߣ.	The first consequence of this is [ܬ, [ܭ = 0. Since	ܭ ∈ ग़(ଷ) we have:  

ܭ  = ܽ3ℋଵ(ଷ) + ܾℋଶ(ଷ). (15) 

We can always absorb one of the parameters by redefining ݐ, so	we	will	have	effectively	a	one − parameter	set	of	matrices	ܭ , 
which, as we shall see below determine the dispersion law of the relevant 
NLEE. Thus we will get a one parameter family of equations of MKdV 
type. 

The condition [ܯ,ܮ] = 0 leads to a set of recurrent relations (see [2,9,10]) 
which allow us to determine ܸ(௞)(ݔ, (ݐ  in terms of the potential ܳ(ݔ,   :derivatives. Skipping the details we give the result-ݔ	its	and	(ݐ

 
ଵ(ଶ)ݒ = ,ଵݍ2߱ܽ ଶ(ଶ)ݒ		 = ଷ(ଶ)ݒ,0 = −߱(ܽ + ,ଷݍ(ܾ ସ(ଶ)ݒ		 = −߱(ܽ −  ସ. (16)ݍ(ܾ

In calculating ܸ(ଵ) we have to take into account that ݃(ଵ)	has nontrivial 
intersection with the Cartan subalgebra ज़:	݃(ଵ) × ज़ ≠ ∅.	Thus along with 
the off-diagonal elements of ܸ(ଵ)  



V.S. Gerdjikov, D.M.Mladenov, A.A.Stefanov and S.K.Varbev 349

 

ଵ(ଵ)ݒ = − ଶଷ √3ܽ(߱ + 1)(∂௫ݍଵ − ଷݍସݍ3√ + ଶ(ଵ)ݒ(ଵݍଶݍ3√ = ଵଶݍ2ܽ + (ܽ + ଷଶݍ(ܾ + (ܽ − ଷ(ଵ)ݒ,ସଶݍ(ܾ = (߱ + 1)(ܽ + ܾ) ቀ√ଷଷ ∂௫ݍଷ + ସݍଵݍ − ଷቁݍଶݍ ସ(ଵ)ݒ, = (߱ + 1)(ܽ − ܾ) ቀ√ଷଷ ∂௫ݍସ + ଷݍଵݍ − ହቁݍଶݍ .
 (17) 

we have to calculate also ݒହ(ଵ). Using a well known technique from the 
theory of recursion operators [2, 7, 10] we solve a simple differential 
equation with the result:  

ହ(ଵ)ݒ  = ଵଶݍܽ + ଵଶ (ܽ + ଷଶݍ(ܾ + ଵଶ (ܽ −  ସଶ. (18)ݍ(ܾ

Thus for ݒ௜(଴) we obtain:  

ଵ(଴)ݒ = 2ܽ(∂௫ଶݍଵ − ଵݍ3√ ∂௫ݍଶ) − √3((3ܽ + ସݍ(ܾ ∂௫ݍଷ + (3ܽ − ଷݍ(ܾ ∂௫ݍସ)−3ݍଵ(2ܽݍଶଶ + (ܽ − ଷଶݍ(ܾ + (ܽ + ଶ(଴)ݒ,(ସଶݍ(ܾ = √3ܽ ∂௫ݍଵଶ + √32 (ܽ + ܾ) ∂௫ݍଷଶ + √32 (ܽ − ܾ) ∂௫ݍସଶ−3ݍଶ(2ܽݍଵଶ + (ܽ + ଷଶݍ(ܾ + (ܽ − ଷ(଴)ݒ,(ସଶݍ(ܾ = −(ܽ + ܾ)(∂௫ଶݍଷ − ଷݍ3√ ∂௫ݍଶ) − √3((3ܽ + ସݍ(ܾ ∂௫ݍଵ + ଵݍ2ܾ ∂௫ݍସ)+3ݍଷ(2ܽݍସଶ + (ܽ − ଵଶݍ(ܾ + (ܽ + ସ(଴)ݒ,(ଶଶݍ(ܾ = −(ܽ − ܾ)(∂௫ଶݍସ − ସݍ3√ ∂௫ݍଶ) − √3((3ܽ − ଷݍ(ܾ ∂௫ݍଵ − ଵݍ2ܾ ∂௫ݍଷ)+3ݍସ(2ܽݍଷଶ + (ܽ − ଶଶݍ(ܾ + (ܽ + .(ଵଶݍ(ܾ
	

  (19) 

And finally, the ߣ-independent terms in the Lax representation provide the 
equations  ∂୲ݍଵ = 2ܽ ∂௫ଷݍଵ − 3∂௫[ݍଵ(2ܽݍଶଶ + (ܽ − ଷଶݍ(ܾ + (ܽ + ସଶ)] −√3[(3ܽݍ(ܾ + ܾ) ∂௫(ݍସ ∂௫ݍଷ) + (3ܽ − ܾ) ∂௫(ݍଷ ∂௫ݍସ) − 2ܽ ∂௫(ݍଵ ∂௫ݍଶ)], 
                                                                       (20) 

 ∂௧ݍଶ = √3ܽ ∂௫ଶݍଵଶ + √ଷଶ (ܽ + ܾ) ∂௫ଶݍଷଶ + √ଷଶ (ܽ − ܾ) ∂௫ଶݍସଶ 
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−3∂௫[ݍଶ(2ܽݍଵଶ + (ܽ + ଷଶݍ(ܾ + (ܽ −  ସଶ)], (21)ݍ(ܾ

  ∂௧ݍଷ = −(ܽ + ܾ) ∂௫ଷݍଷ − √3[(3ܽ + ܾ) ∂௫(ݍସ ∂௫ݍଵ) + 2ܾ ∂௫(ݍଵ ∂௫ݍସ)] +3∂௫[ݍଷ(2ܽݍସଶ + (ܽ − ଵଶݍ(ܾ + (ܽ + [(ଶଶݍ(ܾ + √3(ܽ + ܾ) ∂௫(ݍଷ ∂௫ݍଶ), 
                                                                       (22) 

  ∂௧ݍସ = −(ܽ − ܾ) ∂௫ଷݍସ − √3[(3ܽ − ܾ) ∂௫(ݍଷ ∂௫ݍଵ) − 2ܾ ∂௫(ݍଵ ∂௫ݍଷ)] +3∂௫[ݍସ(2ܽݍଷଶ + (ܽ − ଶଶݍ(ܾ + (ܽ + [(ଵଶݍ(ܾ + √3(ܽ − ܾ) ∂௫(ݍସ ∂௫ݍଶ). 
                                                                      (23) 

As we mentioned above, we can rescale ݐ → ߬ = ܽ	equations	above	the	in	replacing	in	result	will	which,ܽ/ݐ =1. However, the	second	parameter	ܾ → ܾ/ܽ will remain. 

We end this section by a particular representative of this family obtained by 
putting ܽ = ܾ = 1:  

 ∂௧ݍଵ = 2ൣ∂௫ଷݍଵ − √3∂௫(ݍଵ ∂௫ݍଶ) − √3(2 ∂௫(ݍସ ∂௫ݍଷ) 
 +∂௫(ݍଷ ∂௫ݍସ)) − 3∂௫(ݍଵ(ݍଶଶ +  ସଶ))] (24)ݍ

  

 ∂௧ݍଶ = √3∂௫ଶ(ݍଵଶ + (ଷଶݍ − 6∂௫(ݍଶ(ݍଵଶ +  ଷଶ)), (25)ݍ

  ∂௧ݍଷ = −2ൣ∂௫ଷݍଷ − √3∂௫(ݍଷ ∂௫ݍଶ) − √3(2 ∂௫(ݍସ ∂௫ݍଵ) 																															+ ∂௫(ݍଵ ∂௫ݍସ)) + 3∂௫(ݍଷ(ݍଶଶ +  (26)																										ସଶ))]ݍ
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  ∂௧ݍସ = −2ൣ√3∂௫(ݍଷ ∂௫ݍଵ) − √3(∂௫(ݍଵ ∂௫ݍଷ)) + 3∂௫(ݍସ(ݍଷଶ +  .ଵଶ))൧ݍ
                                                                      (27) 

4 The evolution of the scattering matrix 

Let us introduce the Jost solutions ϕ±(ݔ, ,ݐ   :of the Lax pair by (ߣ

 lim௫→ିஶϕି(ݔ, ௜ఒ௃௫݁(ݐ = 	૤	,				 lim௫→ஶϕା(ݔ, ௜ఒ௃௫݁(ݐ = 	૤	. (28) 

The Jost solutions are related by:  

 ϕି(ݔ, ,ݐ (ߣ = ϕା(ݔ, ,ݐ ,ߣ)ܶ(ߣ  (29) ,(ݐ

where ܶ(ߣ, ,ݔ)±ϕ	Both	is known as the scattering matrix. (ݐ ,ݐ  satisfy (ߣ
equations (1). Let us now calculate the limit  

 lim௫→ஶܯϕା(ݔ, (ݐ = (݅ பப௧ − ௜ఒ௃బ(భ)௫ି݁(ܭଷߣ = ݁ି௜ఒ௃బ(భ)௫.(ߣ)ܥ	(30)  

Assuming that the definitions of the Jost solutions are ݐ-independent we get  

(ߣ)ܥ  =  (31) .ܭଷߣ−

Now we calculate  

lim௫→ஶܯϕି(ݔ, (ݐ = (݅ ݐ∂∂ − ,ߣ)௜ఒ௃బ(భ)௫ܶି݁((ߣ)ܥ  (ݐ
 = ݁ି௜ఒ௃బ(భ)௫ ቀ݅ ப்ப௧ − ,ߣ)ܶ(ߣ)ܥ ቁ(ݐ = ݁ି௜ఒ௃బ(భ)௫ܶ(ߣ,  (32)  .(ߣ)ܥ(ݐ

Thus, if ܳ(ݔ,  satisfies the MKdV equations (20)--(23) the scattering (ݐ
matrix ܶ(ߣ,   :must satisfy the linear evolution equation (ݐ

 ݅ ப்ப௧ − ,ܭ]ଷߣ ,ߣ)ܶ [(ݐ = 0, (33) 

whose solution is  
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,ߣ)ܶ  (ݐ = ݁ି௜ఒయ௄௧ܶ(ߣ, 0)݁௜ఒయ௄௧. (34) 

Thus ܶ(ߣ, 0) can be viewed as the Cauchy data for initial conditions of the 
scattering matrix.In other words,solving the MKdV eqs.(20)--(23)is 
reduced to solving the direct and the inverse scattering problem for the Lax 
operator ܮ, see [4, 9, 10]. 

5 Discussions and conclusions 

The derived equations reflect the unique symmetry of ०ॢ(8). They are 
integrable and posses soliton solutions. The next steps are to build their 
soliton solutions and to analyze their Hamiltonian structure. 

Along with the ℤ଺ −reduction (2), we can introduce one of the following 
involutions (ℤଶ-reductions):  

 
	ܽ)	 ଴ିܭ	 ଵܷற(ݔ, ,ݐ ଴ܭ((ߣ)ଵߢ = ,ݔ)ܷ ,ݐ 	(ܾ	,(ߣ ଴ିܭ	 ଵܷ∗(ݔ, ,ݐ ଴ܭ((ߣ)ଶߢ = ,ݔ)ܷ− ,ݐ 	(ܿ	,(ߣ ,ݔ)்ܷ	 ,ݐ (ߣ− = ,ݔ)ܷ− ,ݐ  (35) ,(ߣ

where ܭ଴  is an involutive automorphism ܭ଴ଶ = 	૤	and	ߢଵ(ߣ)and	ߢଶ(ߣ) 
are appropriate conformal mappings. As possible choices for ܭ଴	we may 
consider: i) an inner automorphism ०ॢ(8) related to a Weyl reflection,or ii) 
an outer automorphism of ०ॢ(8). 
Other MKdV-type equations can be derived using other inequivalent 
gradings of ०ॢ(8). They will be published elsewhere. 
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Appendix 

Here we will describe the well known results about the root system and 
Cartan-Weyl basis of the algebra ०ॢ(8), see	[11, 12].	The root system is 
given by Δ ≡ {± ௝݁ ± ݁௞, 1 ≤ ݆ ≠ ݇ ≤ 4}. The	simple	roots	are	ߙଵ =݁ଵ − ݁ଶ, ଶߙ = ݁ଶ − ݁ଷ, ଷߙ = ݁ଷ − ݁ସ	and	ߙସ = ݁ଷ + ݁ସ  and the Dynkin 
diagram is given in the Figure 1. 

The typical representation of ०ॢ(8)  is 8-dimensional; the Cartan-Weyl 
basis is given by:  

 
௞ܪ = ௞,௞ܧ − ௘ೖି௘ೕܧ				,ଽି௞,ଽି௞ܧ = ௞௝ܧ − (−1)௞ା௝ܧଽି௝,ଽି௞,ܧ௘ೖା௘ೕ = ௞,ଽି௝ܧ − (−1)௞ା௝ܧଽି௞,௝,				ିܧఈ = ఈ்ܧ ,  

  (36) 

where 1 ≤ ݇ ≠ ݆ ≤ 4. 

 

Figure 1: The Dynkin diagram of ०ॢ(8).  

 

We will also need the Coxeter automorphism which may be represented as a 
composition of two Weyl reflections:  

ܥ  = ଵݓ				,ଶݓଵݓ = ܵఈభܵఈయܵఈర,				ݓଶ = ܵఈమ. (37) 

It is easy to check that  
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ଵ݁ܥ  = ݁ଶ, ଶ݁ܥ = −݁ଷ, ଷ݁ܥ = ݁ଵ, ସ݁ܥ = −݁ସ, (38) 

i.e. in the 4-dimensional root space ܥ is represented by the matrix  

்ܥ  = ൮0 1 0 00 0 −1 01 0 0 00 0 0 −1൲ . (39) 

It is easy to check that ܥ଺ = 	૤	and	ܥଷ = −	૤	.	The exponents of the 
algebra are determined by the eigenvalues ߞ௞, ݇ = 1,… ,4	of	ܥ  which in 
this case can be calculated with the result  

ଵߞ  = ߱, ଶߞ = ߱ଷ, ଷߞ = ߱ହ, ଵߞ = ߱ଷ, (40) 

i.e. the exponents are equal to 1,3,5,3. 

We also remind that the Coxeter automorphism can be viewed as an inner 
automorphism of the algebra ०ॢ(8). In other words,  

(ఈܧ)ܥ  = ஼(ఈ)ܧ = ,ఈܿିଵܧܿ (௘ೖܪ)ܥ = ஼(௘ೖ)ܪ =  ௘ೖܿିଵ, (41)ܪܿ

where the 8 × 8	matrix	ܿ is given in eq. (4). 
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Introduction 

The Gross-Pitaevski (GP) equation and its multicomponent generalizations 
are important tools for analyzing and studying the dynamics of the 
Bose-Einstein condensates (BEC), see the monographs [17, 20, 26] and the 
numerous references therein among which we mention [3, 18, 21, 22, 27, 
28]. In the 3-dimensional case these equations can be analyzed solely by 
numerical methods. If we assume that BEC is quasi-one-dimensional then 
the GP equations mentioned above may be reduced to the nonlinear 
Schrödinger equation (NLSE) perturbed by the external potential ܸ(ݔ)  

௧ݑ݅  + ଵଶ ௫௫ݑ + ,ݔ)ݑଶ|ݑ| (ݐ = ,ݔ)ݑ(ݔ)ܸ  (1) ,(ݐ

 or to its vector generalizations (VNLSE)  

ሬԦ௧ݑ݅  + ଵଶ ሬԦ௫௫ݑ + ,ሬԦறݑ) ,ݔ)ሬԦݑ(ሬԦݑ (ݐ = ,ݔ)ሬԦݑ(ݔ)ܸ  (2) .(ݐ

The Manakov model [24] (MM) is a two-component VNLSE (2) with ܸ(ݔ) = 0 , for more details see [15]. 

The analytical approach to the ܰ-soliton interactions was proposed by 
Zakharov and Shabat [35, 25] for the scalar NLSE. They treated the case of 
the exact ܰ-soliton solution where all solitons had different velocities. 
They calculated the asymptotics of the ܰ-soliton solution for ݐ → ±∞ and 
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proved that both asymptotics are sums of ܰ one-soliton solutions with the 
same sets of amplitudes and velocities. The effects of the interaction were 
shifts in the relative center of masses and phases of the solitons. The same 
approach, however, is not applicable to the MM, because the asymptotics of 
the soliton solution for ݐ → ±∞ do not commute. 

The present paper is an extension of [7, 12, 13] where the main result is that 
the ܰ-soliton interactions in the adiabatic approximation for the Manakov 
model (ܸ(ݔ) = 0) can also be modeled by the complex Toda chain (CTC) 
[10, 14, 8]. For ܸ(ݔ) ≠ 0 we derived a perturbed CTC (PCTC) [7, 12, 3, 
13, 16]. Below we concentrate on wide but shallow sech-like potentials, i.e.,  

(ݔ)ܸ  = ∑ 	஺௦ୀଵ ܿ௦ ௦ܸ(ݔ, 				,(௦ݔ ௦ܸ(ݔ, (௦ݔ = ଵୡ୭ୱ୦మ(ଶఔబ௫ି௫ೞ) , (3) 

where ݔ௦ାଵ − ௦ݔ = 1  and the quantity ܣ  is large, so that initially the 
whole ܰ-soliton train is in the potential well/hump (see Figure 1). 

We also consider soliton trains with varying distances between the initial 
positions of the solitons. Thus we extend the results in [3, 6, 23, 7, 5, 11]. 
The corresponding vector ܰ-soliton train is a solution of (2) determined by 
the initial condition:  

,ݔ)ሬԦݑ  ݐ = 0) = ∑ 	ே௞ୀଵ ,ݔ)௞ݑ ݐ = 0)ሬ݊Ԧ௞, ,ݔ)௞ݑ											 (ݐ = ଶఔೖ௘೔೻ೖୡ୭ୱ୦( ௭ೖ) , 
  (4) 

where ݑ௞(ݔ,   is the scalar soliton solution with (ݐ

 
௞ݖ = ݔ)௞ߥ2 − ,((ݐ)௞ߦ (ݐ)௞ߦ				 = ݐ௞ߤ2 + ௞,଴,ϕ௞ߦ = ௞ݖ௞ߥ௞ߤ + ,(ݐ)௞ߜ (ݐ)௞ߜ				 = ௞ଶߤ)2 + ݐ(௞ଶߥ +  ௞,଴. (5)ߜ

 The ݏ-component polarization vector ሬ݊Ԧ௞ = ൫݊௞,ଵ݁௜ఉೖ,భ, … , ݊௞,௦݁௜ఉೖ,ೞ൯் is 
normalized by the conditions  

 〈 ሬ݊Ԧ௞ற, ሬ݊Ԧ௞〉 ≡ ∑ 	௦௣ୀଵ ݊௞,௣ଶ = 1,				 ∑ 	௦௣ୀଵ ௞;௣ߚ = 0. (6) 

The adiabatic approximation holds true if the soliton parameters satisfy 
[19]:  
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௞ߥ|  − |଴ߥ ≪ ,଴ߥ ௞ߤ| − |଴ߤ ≪ ,଴ߤ ௞ߥ| − ௞ାଵ,଴ߦ||଴ߥ − |௞,଴ߦ ≫ 1, (7) 

for all ݇, where ߥ଴ = 1ܰ∑ 	ே௞ୀଵ ଴ߤ ௞, andߥ = 1ܰ∑ 	ே௞ୀଵ  ௞ are the averageߤ
amplitude and velocity, respectively. In fact we have two different scales:  

௞ߥ|  − |଴ߥ ≃ ௞ߤ|				,଴ଵ/ଶߝ − |଴ߤ ≃ ௞ାଵ,଴ߦ|				,଴ଵ/ଶߝ − |௞,଴ߦ ≃ ଴ିߝ ଵ/ଶ. 
We remind that the basic idea of the adiabatic approximation is to derive a 
dynamical system for the soliton parameters which would describe their 
interaction. This idea was initiated by Karpman and Solov'ev [19] and 
modified by Anderson and Lisak [1]. Later this idea was generalized to ܰ-soliton interactions of scalar NLS solitons [14, 10, 8] and, then to the 
Manakov model, see [3, 5, 7, 13, 11]. 

In Section 2 we formulate the PCTC model [7, 5] for s݁ܿℎ-type external 
potentials. In Section 3 we remind the reader about the asymptotic regimes 
of the soliton trains predicted by the CTC [10, 8]. Section 4 is dedicated to 
the comparison between the numeric solutions of the perturbed VNLSE (2) 
with the predictions of the PCTC model. To this end we solve the VNLSE 
numerically by using an implicit scheme of Crank-Nicolson type in 
complex arithmetic. The concept of the internal iterations is applied (see 
[2]) in order to ensure the implementation of the conservation laws on 
difference level within the round-off error of the calculations [31, 32, 33]. 
The solutions of the relevant PCTC have been obtained using Maple. 
Knowing the numeric solution ݑሬԦ of the perturbed VNLSE we calculate he 
maxima of (ݑሬԦ	ற,  (ݐ)௞ߦ ሬԦ), compare them with the (numeric solutions) forݑ
of the PCTC and plot the predicted by both models trajectories for each of 
the solitons. 

The effects of the sech-like potentials on CTC  

The effects of the external potentials of the form (3) modifies the CTC to the 
following PCTC system:  

 ௗఒೖௗ௧ = ଴൫݁௤ೖశభି௤ೖ(ሬ݊Ԧ௞ାଵறߥ4− , ሬ݊Ԧ௞) − ݁௤ೖି௤ೖషభ(ሬ݊Ԧ௞ற, ሬ݊Ԧ௞ିଵ)൯ + ௞ܯ + ݅ ௞ܰ, 
  ௗ௤ೖௗ௧ = ௞ߣ଴ߥ4− + ଴ߤ)2݅ + ଴)Ξ௞ߥ݅ − ݅ܺ௞,				݀ ሬ݊Ԧ௞݀ݐ =  (8) ,(ߝ)ࣩ
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 where ߣ௞ = ௞ߤ + ௞, ܺ௞ߥ݅ = ௞Ξ௞ߤ2 +   ௞ andܦ

 ௞ܰ = − ଵଶ ׬ 	ஶିஶ ௗ௭ೖୡ୭ୱ୦௭ೖ 	ℑ(ܸ(ݕ௞)ݑ௞eି௜மೖ), 
௞ܯ  = ଵଶ ׬ 	ஶିஶ ௗ௭ೖ ୱ୧୬୦௭ೖ௖௢௦௛మ	௭ೖ 	ℜ(ܸ(ݕ௞)ݑ௞eି௜மೖ), 
 Ξ௞ = − ଵସ ௞ଶߥ ׬ 	ஶିஶ	 ௗ௭ೖ	௭ೖୡ୭ୱ୦௭ೖ 	ℑ	(ܸ(ݕ௞)ݑ௞eି௜மೖ), 
௞ܦ	   = ଵଶ஝ౡ ׬ 	ஶିஶ ௗ௭ೖ(ଵି௭ೖ ୲ୟ୬୦௭ೖ)ୡ୭ୱ୦௭ೖ 	ℜ(ܸ(ݕ௞)ݑ௞eି௜மೖ), 
and ݕ௞ = (଴ߥ2)/௞ݖ +  we (ݔ)ܸ ௞. As a result for our specific choice ofߦ
get ௞ܰ = 0, Ξ௞ = 0, and:  

௞ܯ  = ∑ 	௦ 2ܿ௦ߥ௞ܲ(Δ௞,௦),				ܦ௞ = ∑ 	௦ ܿ௦ܴ(Δ௞,௦). (9) 

 Here Δ௞,௦ = ௞ߦ଴ߥ2 −  ௦ and the integrals describing the interaction of theݕ
solitons with the potential are given by  

 
ܲ(Δ) = ୼ାଶ୼ୡ୭ୱ୦మ(୼)ିଷୱ୧୬୦(୼)ୡ୭ୱ୦(୼)ୱ୧୬୦ర(୼) ,ܴ(Δ) = ଺୼ୱ୧୬୦(୼)ୡ୭ୱ୦(୼)ି(ଶ୼మାଷ)ୱ୧୬୦మ(୼)ିଷ୼మଶୱ୧୬୦ర(୼) , (10) 

see Figure 1. The corrections to ௞ܰ and ௞ܲ, coming from the terms linear 
in ݑ depend only on the parameters of the ݇-th soliton; i.e., they are ‘local’ 
in ݇. The details of deriving the integrals can be found in [16]. 

CTC and the Asymptotic Regimes of ࡺ-soliton Trains 

The dynamics of the ܰ-soliton trains for both the scalar NLSE and the MM 
are modeled by an integrable model - CTC. It allows one to predict the 
asymptotic behavior of the solitons. The method to do so [10] is based on its 
Lax representation ܮሶ = ,ܤ]   where [ܮ
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ܮ  = ∑ 	ே௞ୀଵ ൫ܾ௞ܧ௞௞ + ܽ௞(ܧ௞,௞ାଵ +  ,௞ିଵ,௞)൯ܧ
  (11) 

ܤ  = ∑ 	ே௞ୀଵ ܽ௞൫ܧ௞,௞ାଵ −  ,௞ିଵ,௞൯ܧ
 the matrices (ܧ௞௡)௣௤ = ௡௤ߜ௞௣ߜ , and ܧ௞௡ = 0  whenever one of the 
indices becomes 0 or ܰ + 1. The other notations in (11) are as follows:  

 ܽ௞ = 12ඥ〈ሬ݊Ԧ௞ାଵ, ሬ݊Ԧ௞〉݁(௤ೖశభି௤ೖ)/ଶ,				ܾ௞ = ௞ߤ)12 +  ௞). (12)ߥ݅

The first consequence of the Lax representation is that the CTC has ܰ 
complex-valued integrals of motion provided by the eigenvalues of ܮ 
which we denote by ߞ௞ = ௞ߢ + ݇ ,௞ߟ݅ = 1,… ,ܰ. Indeed the Lax equation 
means that the evolution of ܮ is isospectral, i.e., ݀ߞ௞/݀ݐ = 0. Another 
important consequence from the results of Moser is that one can write down 
explicitly the solutions of CTC in terms of the scattering data of ܮ, which 
consist of {ߞ௞, ௞}௞ୀଵேݎ  where ݎ௞ are the first components of the properly 
normalized eigenvectors of ܮ଴  [30]. Using them one can calculate the 
asymptotics of these solutions for ݐ → ±∞ and show that ߢ௞ determine 
the asymptotic velocities of the solitons according to:  

 lim௧→ஶ(ߦ௞ + (ݐ௞ߢ2 = const. (13) 

 Thus we are able to classify the regimes of asymptotic behavior as follows: 

  AFR) The asymptotically free regime takes place if ߢ௞ ≠ ݇ ௝ forߢ ≠ ݆, 
i.e., the asymptotic velocities are all different. Then we have asymptotically 
separating, free solitons, see also [14, 8]; 

  BSR) The bound state regime takes place for ߢଵ = ⋯ = ேߢ = 0, when 
all ܰ solitons move with the same mean asymptotic velocity. 

  MAR) a variety of mixed asymptotic regimes happen when one group (or 
several groups) of particles move with the same mean asymptotic velocity; 
then they would form one (or several) bound state(s) and the rest of the 
particles will have free asymptotic motion. 
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The PCTC taking into account the effects of the sech-like potentials to the 
best of our knowledge is not integrable and does not allow Lax 
representation. Therefore we are applying numeric methods to solve it. Our 
main aim here is to find out potential configurations which result in 
transition from one asymptotic regime to another. 

Comparison between the PCTC Model and Manakov 
Soliton Interactions 

In this Section we will compare how well the PCTC model predicts the 
soliton interactions of the MM with the external potentials of kind (3). 

Let us first describe the types of initial soliton configurations. Below we 
consider only 3-soliton trains with vanishing initial velocities ߤ௞,଴ = 0, ݇ = 1,2,3 . Each of the initial polarization vectors ሬ݊Ԧ௞,଴  will be 
parameterized by ሬ݊Ԧ௞,଴ = ൫݁௜ఊೖ,బcos(ߠ௞,଴), ݁ି௜ఊೖ,బsin(ߠ௞,଴)൯ (see Section 1 
above), so that the scalar products ( ሬ݊Ԧ௞ାଵற , ሬ݊Ԧ௞) = cos(ߠ௞ାଵ,଴ − ௞,଴ߠ ௞,଴) andߠ = (4 − 10/ߨ(݇ . Thus all scalar products just mentioned equal to cos ቀ గଵ଴ቁ ≃ 	0.951; The initial amplitudes are chosen as ߥ௞,଴ = ଴ߥ + (2 −݇)Δߥ ,ߥ଴ = 0.5. 

Finally, we will use two types of initial phases configurations:  

ଵ,଴ߜ			(ܽ	  = 0, ଶ,଴ߜ = ,ߨ ଷ,଴ߜ = 0, Δߥ = 0.01. 
ଵ,଴ߜ			(ܾ	  = ଶ,଴ߜ = ଷ,଴ߜ = 0, Δߥ = 0.025, 
 which will determine the corresponding asymptotic regime. In the case a) 
we will have AFR provided Δߥ < ଴ݎ ୡ௥, see formula (14) below; forߥ = ୡ௥ߥ 8 = 0.02526. If Δߥ >  ୡ௥, then the soliton undergo into BSR. In the caseߥ
b) we will have BSR if Δߥ > 0; 

One of our aims is to consider also initial soliton configurations which are 
not equidistant for ݐ = 0. Such tests, which to the best of our knowledge 
have not been done until now, will give evidence to the regions of validity 
of the CTC. 
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Remark 4.1 Above we have given only examples of 3-soliton 
configurations that ensure ASR and BSR of Manakov solitons. Complete 
list of all possible asymptotic regimes for the Manakov case can be done by 
analogy with [8]. The analytic formulae for ߥ௖௥  (14) has been derived 
assuming that ݎ଴ଵ = ଴ଶݎ , where ݎ଴௞ = ଴;௞ାଵߦ − ଴;௞ߦ . For the cases ݎ଴ଵ ≠  ଴ଶ the corresponding expressions become more complicated. To thisݎ
end we list the values of ߢ௞ = ℜߞ௞ for each of the configurations below.  

Let us remind the well known result (see [10, 14, 8]) that the 3-soliton 
systems allow for three types of dynamical regimes for large times, namely  

AFR) asymptotically free regime of 3 solitons takes place if the initial    
amplitudes are such that Δߥ <   :ୡ௥ߥ

ୡ௥ߥ  = 2ඥ2cos(ߠଵ −  (14) ,(଴ݎ଴ߥ−)଴expߥ(ଶߠ

the phases are as in a) above, see [8]. If ݎ଴ଵ = ଴ଶݎ = 8 we have ߥୡ௥ =0.0246. Such asymptotic regime for ݎ଴ଵ ≠  ଴ଶ are shown on the left panelsݎ
of Figures 1 and 3. 

MAR) mixed asymptotic regime: two of the solitons form bound state and 
the third soliton goes away from them with different velocity; Such regime 
takes place if the amplitudes are chosen as in (14) and the phases are as in b) 
above; see the left panel of Figure 4. 

BSR) bound state regime when all solitons move asymptotically with the 
same velocity. Such regime takes place for amplitudes with Δߥ >  ୡ௥ andߥ
the phases are as in a). Such asymptotic regime is shown on the left panel of 
Figure 5.  

It is natural to analyze separately all three regimes and to see what would be 
the effect of the external wells/humps on them. In particular, one can 
determine for which positions and intensities of the external potentials the 
solitons will undergo from one asymptotic regime to another. 

Remark 4.2 The CTC and its perturbative version PCTC use the adiabatic 
approximation. If we assume that the distance between the solitons is ݎ଴ = 8, then the adiabatic parameter ≃; 0.01, so one can expect that the 
CTC model will hold true up to times of the order of 1/ߝ ≃ 100. Rather 
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surprisingly, quite often we find that the models work well until ݐ ≃ 1000 
or even longer.  

Since the PCTC model is not integrable we will solve it numerically to find 
the predicted solitons trajectories ߦ௞(ݐ). Besides we will solve numerically 
the MM with the initial condition (4) and extract the trajectories of max(|ݑଵ|ଶ + ሬԦݑ ଶ|ଶ), whereݑ| ≡ ,ଵݑ)  .(ଶݑ
On the right panel of Figure 1 we plot samples of potential well with width 
40 composed by 33 wells with depth ܿ௦ = −0.1  distributed uniformly 
between abscisas −16 and 16 and distance between them ℎ = 1.  

 

Figure 1: Graphs of ܲ and ܴ functions: for a single sech-potential centered at the 
origin -- in cyan and red colors; and for the superposed potential at the neighboring 
panel -- in green and brown colors. (left); Single sech-potential in black color vs. 
superposed external potential ܸ(ݔ) = −∑ 	ଷଶ௦ୀ଴ 0.1	s݁ܿℎଶ(ݔ − ௦ݔ ,(௦ݔ = −16 +  ,ℎݏ
-- in blue color. The superposed potential forms a wide well (right). 

Evidently each Manakov soliton solution is parameterized by 6 parameters 
and four of them are the usual velocity, position, amplitude and phase. Two 
more parameters fix up the polarization vector. Having in mind the big 
parametric phenomenology of the solutions we fix the velocities, positions 
and polarization vectors and vary the initial amplitudes and phases in order 
to ensure one or another asymptotic regime [8]. Even with only three 
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solitons configuration and wide potential wells/humps with ܣ = 13  to ܣ = 33 we have a large variety of combinations. 

Potential wells, especially when broad enough attract the solitons and may 
be used to stabilize in a bound state. Potential humps repel the solitons; 
choosing their positions appropriately one can split a soliton bound state 
into free solitons. 

In what follows we compare the PCTC models with the numeric solutions 
of the corresponding (perturbed) MM. We mark the PCTC solutions by 
dashed lines, and the numeric solutions of the MM and the perturbed MM 
by solid lines. 

Figure 2: AFR: Free potential behavior with Δߥ = 0 corresponding to ߢଵ = ଶߢ ,0.01067 = 0 ଷߢ , = −0.01067  (left panel); External potential well ܸ(ݔ) = −∑ 	ଷଶ௦ୀ଴ 0.01	sechଶ(ݔ − ௦ݔ ,(௦ݔ = −16 +   .(right panel) ݏ
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Figure 3: AFR: Free potential behavior with Δߥ = 0.05 corresponding to ߢଵ ଶߢ ,0.00750= = ଷߢ ,0.00008− = −0.00742 (left panel); External potential well ܸ(ݔ) = −∑ 	ଷଶ௦ୀ଴ 0.01	sechଶ(ݔ − ௦ݔ ,(௦ݔ = −16 +  .(right panel) ݏ
 

 
 
Figure 4: MAR: Free potential behavior with Δߥ = 0.01  corresponding to ߢଵ = ଶߢ ,0.003756 = ଷߢ = −0.001878 ଵߜ , = ଶߜ ,4.064/ߨ = ଷߜ ,2/ߨ =  2/ߨ−
(left panel); External potential well ܸ(ݔ) = −∑ 	ଷଶ௦ୀ଴ 0.01	sechଶ(ݔ − (௦ݔ ௦ݔ , =−16 +  .(right panel) ݏ
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Figure 5: BSR: Free potential behavior with Δߥ = 0.025  corresponding to ߢଵ = ଶߢ = ଷߢ = 0  (left panel); External potential hump ܸ(ݔ) = ∑ 	ଶଽ௦ୀ଴ 0.01	sechଶ(ݔ − ௦ݔ ,(௦ݔ = −15 +  .(right panel) ݏ

On the next figures we show some examples of 3-soliton systems. On the 
figures we plot the trajectories. The first example (Figure 1) clearly 
demonstrates the role of the external well on the stability of the 
asymptotically free 3-soliton configuration. The potential (shaded strip) 
does not allow the solitons to leave the well; they oscillate and form a bound 
state. The initial positions are −7, 0, and 10 and Δߥ = 0. Let us note that 
for nonequal initial distances this case is not singular. The behavior on the 
next Figure 3 is similar but corresponds to nontrivial deviation Δߥ = 0.05. 

On the Figure 4 is demonstrated the influence of external potential on the 
second possible regime - mixed asymptotic regime. In potential free 
configuration we have two bound stated solitons and one freely propagating 
initially placed at positions −9, 0, 10. The adding of an external potential 
as wide well with ܣ = 33 and amplitude ܿ௦ = −0.01 leads to a bound 
state behavior of all the three solitons. 

On the next Figure 5 the potential free regime is bound state. The influence 
of potential hump of width 30 and amplitude ܿ௦ = 0.01  leads to fast 
violation of this regime and transition to asymptotically free behavior of the 
lateral solitons. The initial positions are −10, 0, 9. We do not consider the 
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influence of potential well because it obviously will keep the initial bound 
state regime. 

The comparison of the numerical predictions of the both models in all 
asymptotic cases is very good. 

Conclusion 

We have analyzed the effects of the external potential wells and humps on 
the VNLSE soliton interactions using the PCTC model. The comparison 
with the predictions of the more general VNLSE model [32]  

ሬԦ௧ݑ݅  + ଵଶ ሬԦ௫௫ݑ + ,ற	ሬԦݑ) ሬԦݑ(ሬԦݑ + ߙ ሬܷሬԦ(ݔ, (ݐ = 0, (15) 

 where ሬܷሬԦ = ,ଵݑଶ|ଶݑ|) ்(ଶݑଵ|ଶݑ|  and quantity ߙ  - the cross-modulation 
magnitude is an excellent validation of the consistency and applicability of 
PCTC. 

The superposition of a large number of wells/humps influences stronger the 
motion of the soliton envelopes and can cause a transition from 
asymptotically free and mixed asymptotic regime to a bound state regime 
and vice versa. Such external potentials are easier to implement in 
experiments and can be used to control the soliton motion in a given 
direction and to achieve a predicted motion of the optical pulse. A general 
feature of the conducted numerical experiments is that the predictions of 
both CTC and PCTC match very well with the MM numeric for long-time 
evolution, often much longer than expected, see Remark 4.2. This means 
that PCTC is reliable dynamical model for predicting the evolution of the 
multisoliton solutions of Manakov model in adiabatic approximation. 
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Introduction 

In many applications, such as finite elements, difference schemes to 
differential equations, power distribution systems, etc. appear tridiagonal or 
banded linear systems. Such systems we can solve in parallel by so called 
partition methods [3, 4, 6, 8, 9, 11, 12, 13]. 

A typical member of the partition methods for solving tridiagonal systems is 
the method of Wang [12]. This method gives an efficient parallel algorithm 
for solving such systems [4]. Full roundoff error analysis of this algorithm 
can be found in [14]. 

The generalized partition algorithm of Wang for banded linear systems is 
considered in [4, 6]. Some aspects of stability analysis of this algorithm are 
concerned in [7]. 

So, this is a review paper where we present the main results of the 
componentwise stability analysis of Wang's parallel partition method for 
banded and tridiagonal linear systems. 

The Algorithm for Banded Linear Systems 

Let the linear system under consideration be denoted by  

ݔܣ  = ݀, 
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where ܣ  is a square matrix of size ݊ ܣ)  ∈ ℛ௡×௡ ) which bandwith is 2݆ + 1. Here ݆ is the number of superdiagonals which equals to the number 
of subdiagonals. For simplicity we assume also that ݊ = ݏ݇ − ݆ for some 
integer ݇, if ݏ is the number of the parallel processors we want to use. 
These assumptions are not essential for the consideration. 

Now we make the following partitioning of the matrices ݔ ,ܣ and ݀  

ܣ  =
ۈۉ
ۈۈۈ
ۇۈ
ଵܤ ܿଵ̅ܽଵ௞ ܾଵ௞ ܿଵ௞തܽଶ ଶܤ ܿଶ̅ܽଶ௞ ܾଶ௞ ܿଶ௞⋱ ⋱ ⋱തܽ௦ିଵ ௦ିଵܤ ܿ௦̅ିଵܽ(௦ିଵ)௞ ܾ(௦ିଵ)௞ ܿ(௦ିଵ)௞തܽ௦ ௦ܤ ۋی

ۋۋۋ
ۊۋ

 

ݔ  = ( ଵܺ, ,ଵ௞ݔ ܺଶ, ,ଶ௞ݔ … , ܺ௦ିଵ, ,௞(௦ିଵ)ݔ ܺ௦)், 
 ݀ = ,ଵܦ) ݀ଵ௞, ,ଶܦ ݀ଶ௞, … , ,௦ିଵܦ ݀(௦ିଵ)௞,  ,்(௦ܦ
where ܤ௜ ∈ ℛ(௞ି௝)×(௞ି௝), ݅ = 1,2, … ,  are band matrices with the same ,ݏ
bandwith as matrix ܣ, തܽ௜ , ܿ௜̅ are matrices of the following kind  

 തܽ௜ = (ܽ(௜ିଵ)௞ାଵ, 0, … ,0)் ∈ ℛ(௞ି௝)×௝,			݅ = 2,… ,  ,ݏ
 ܿ௜̅ = (0,… ,0, ܿ௜௞ିଵ)் ∈ ℛ(௞ି௝)×௝,				݅ = 1,… , ݏ − 1, 
whose elements ܽ(௜ିଵ)௞ାଵ, ܿ௜௞ିଵ ∈ ℛ௝×௝ , ܽ௜௞, ܾ௜௞, ܿ௜௞ ∈ ℛ௝×௝		݂ݎ݋	݅ =1,2, … , ݏ − 1, and finally  

 ௜ܺ , ௜ܦ ∈ ℛ(௞ି௝)×ଵ, ݅ = 1,2, … , ,ݏ ,௜௞ݔ ݀௜௞ ∈ ℛ௝×ଵ, ݅ = 1,2, … , ݏ − 1. 
Here we present Wang's algorithm in a block form which is more 
appropriate for the following analysis. For this purpose we define the 
following permutation  
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 [1: ݇ − ݆,… , (݅ − 1)݇ + 1: ݅݇ − ݆, … , ݏ) − 1)݇ + 1: ݇ݏ − ݆, 
 ݇ − ݆ + 1: ݇, … , ݅݇ − ݆ + 1: ݅݇, … , ݏ) − 1)݇ − ݆ + 1: ݏ) − 1)݇], 
of the numbers [1, … , ݇ݏ − ݆], and denote the corresponding permutation 
matrix by ࣪. By applying this permutation to the rows and columns of 
matrix ܣ we obtain the system  

ݔ࣪ࣛ  = ࣪݀,				ࣛ = ்࣪ܣ࣪ = ൬ܣଵଵ ଶଵܣଵଶܣ  ,ଶଶ൰ܣ
where  

ଵଶܣ  = ۈۈۉ
ଵܽ̅തଶܿۇ ܿଶ̅⋱ ⋱⋱ ܿ௦̅ିଵതܽ௦ ۋۋی

ۊ ∈ ℛ௦(௞ି௝)×௝(௦ିଵ), 

ଶଵܣ = ۈۉ
0ۇ ⋯ ܽ௞ ܿ௞ ⋯ 00 ⋯ ܽଶ௞ ܿଶ௞ ⋯ 0⋱ ⋱ ⋱ ⋱0 ⋯ ܽ(௦ିଵ)௞ ܿ(௦ିଵ)௞ ⋯ 0 ۋی

 ,ۊ
here ܣଶଵ ∈ ℛ௝(௦ିଵ)×௦(௞ି௝) and  

ଵଵܣ  = ,ଵܤ}	݃ܽ݅݀		 ,ଶܤ … , {௦ܤ ∈ ℛ௦(௞ି௝)×௦(௞ି௝), 
ଶଶܣ  = 		݀݅ܽ݃	(ܾ௞, ܾଶ௞, … , ܾ(௦ିଵ)௞) ∈ ℛ௝(௦ିଵ)×௝(௦ିଵ). 
We will distinguish between the two matrices ܣ  (original) and ࣛ 
(permuted). Evidently, the permutation does not influence the roundoff 
error analysis. The permuted vectors ࣪ݔ and ࣪݀ are not frequently used 
in the paper. We will stay with the same notation, i.e. ݔ and ݀, and give 
explicitly its permuted components when necessary, or write ࣪ݔ and ࣪݀ 
for the permuted vectors. Otherwise, we will need some error bounds on ݔ 
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with respect to the infinity norm but it is clear that these bounds are not 
influenced by the permutation, and this will not lead to confusion. 

The algorithm can be presented as follows. 

 Stage 1. Obtain the block LU-factorization  

ܣ  = ൬ܣଵଵ ଶଵܣଵଶܣ ଶଶ൰ܣ = ܷܮ = ൬ܣଵଵ ଶଵܣ0 ௝(௦ିଵ)൰ܫ ൬ܫ௦(௞ି௝) ܴ0 ܵ൰ 

by the following steps:  

  1. Obtain the LU-factorization of ܣଵଵ = ଵ࣪ܮଵ ଵܷ with partial pivoting, if 
necessary. Here ଵ࣪ is a permutation matrix, ܮଵ is unit lower triangular, 
and ଵܷ is upper triangular. 

  2. Solve ܣଵଵܴ =  ,ଵଶ using the LU-factorization from the previous itemܣ
and compute ܵ = ଶଶܣ −   .ܣ ଵଵ inܣ ଶଵܴ, which is the Schur complement ofܣ

 Stage 2. Solve ݕܮ = ݀ by using the LU-factorization of ܣଵଵ (Stage 1). 

 Stage 3. Solve ܷݔ =  ,by applying Gaussian elimination (with pivoting ݕ
if necessary) to the block ܵ. 

Because of the block diagonal structure of ܣଵଵ most of the computations 
are well parallelized. Let us note that the blocks ܮଵ and ଵܷ inherit the 
block diagonal structure of ܣଵଵ. The block ܴ is quite sparse, and is also 
structured. If we take into account the structure of ܣଵଶ, then it is clear that  

 ܴ = ۈۈۉ
(ଶ)ݍ(ଵ)݌ۇ ⋰(ଶ)݌ ⋱⋱ (௦)ݍ(௦ିଵ)݌ ۋۋی

ۊ ∈ ℛ௦(௞ି௝)×௝(௦ିଵ), 
where  
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(௜)݌  = ,௞ାଵ(௜ିଵ)݌) ,௞ାଶ(௜ିଵ)݌ … , ்(௜௞ିଵ݌ ∈ ℛ(௞ି௝)×௝, 
(௜)ݍ  = ,௞ାଵ(௜ିଵ)ݍ) ,௞ାଶ(௜ିଵ)ݍ … , ்(௜௞ିଵݍ ∈ ℛ(௞ି௝)×௝. 
So, the most of the computations at Stage 3 are also well parallelized. 
Because of the block structure of submatrix ܴ. 

Let us note that matrix ܵ (the so called reduced matrix) is block tridiagonal, 
and banded with bandwith 4݆ − 1. We shall need in the following an 
explicit notation for its entries, which are dense matrices of size ݆ × ݆. So, 
we assume that  

 ܵ = ۈۈۉ
ଵݒۇ ଶݑଵݓ ଶݒ ⋰ଶݓ ⋱ ⋱⋱ ⋱ ௦ିଵݑ௦ିଶݓ ௦ିଵݒ ۋۋی

ۊ ∈ ℛ௝(௦ିଵ)×௝(௦ିଵ), 
where the entries are computed in the following way  

௜ݑ  = −ܽ௜௞ݍ௜௞ିଵ, ௜ݒ = ܾ௜௞ − ܽ௜௞݌௜௞ିଵ − ܿ௜௞ݍ௜௞ାଵ, ௜ݓ = −ܿ௜௞݌௜௞ାଵ. 
Main stability results for banded systems 

In the following by a hat we denote the computed quantities. By ܶߜ we 
denote the error of the computation of an arbitrary matrix ܶ, i.e. ෠ܶ = ܶ  .଴ we denote the roundoff unit (see [2])ߩ By Δܶ we denote an equivalent perturbation in matrix ܶ. Finally, by .ܶߜ+

The general results for banded matrices are given in the following theorem 

Theorem 3.1 For the partitioning algorithm we have that  

 (ࣛ + ොݔ࣪(ࣛ߂ = ࣪݀, where  

|ࣛ߂|  ≤ ଵܭ)]|ࣛ| + (଴ߩ)݂(ଶܭ + ℎଵ(ߩ଴)] + ଵܭ3)]|ܰ||ࣛ| + (଴ߩ)݂(ଶܭ2 +ℎଶ(ߩ଴)], 
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where  

 ℎଵ(ߩ଴) = ଵܭ) + (଴ߩ)݃(଴ߩ)݂(ଶܭ + (଴ߩ)ଶ݂ଶܭଵܭ +  ,(଴ߩ)݃(଴ߩ)ଶ݂ଶܭଵܭ
 ℎଶ(ߩ଴) = ଵܭ) + (଴ߩ)݃(଴ߩ)݂(ଶܭ + (଴ߩ)ଶ݂ଶܭଵܭ2 +  ,(଴ߩ)݃(଴ߩ)ଶ݂ଶܭଵܭ
 are the terms of higher order in ߩ଴, and  

 ∥ఋ௫∥ಮ∥௫ො∥ಮ = ∥௫ොି௫∥ಮ∥௫ො∥ಮ ≤ ,ܣ)݀݊݋ܿ ଵܭ)](ොݔ + (଴ߩ)݂(ଶܭ + ℎଵ(ߩ଴)] 
,ܣ)∗݀݊݋ܿ+  ଵܭ3)]ݎ(∗ݔ + (଴ߩ)݂(ଶܭ2 + ℎଶ(ߩ଴)]. 
In the above theorem ݎ = max{∥ ෠ܴ ∥ஶ, 1}, ଵܭ = max{݇ଵ, 1}, ଶܭ =max{݇ଶ, 1}, where ݇ଵ bounds growth of the elements when we obtain the ܷܮ factorization of ܣଵଵ (Stage 1), ݇ଶ bounds growth of the elements of 
the Gaussian elimination for the reduced system (Stage 3), ݂(ߩ଴),  (଴ߩ)݃
are functions of the following kind  

(଴ߩ)݂  = ௝ାଵߛ = (଴ߩ)݃			,ଶ௝ାଵߛ = ௝ାଵߛ +  ,଴ߩ
where ߛ௡ = ଴/(1ߩ݊ − ܰ  ଴), andߩ݊ = ቆ0 ෠ܴ0  .௝(௦ିଵ)ቇܫ
The condition number ܿܣ)∗݀݊݋,   is defined below (∗ݔ

,ܣ)∗݀݊݋ܿ  (∗ݔ = ∥	|஺షభ|	|஺|	௫∗	∥ಮ∥௫ො∥ಮ , 
where the vector ݔ∗ is constructed in a following way  

∗ݔ  = (∥ ො௞ݔ ∥ஶ ݁, ො௞்ݔ| |,max{∥ ො௞ݔ ∥ஶ, ∥ ොଶ௞ݔ ∥ஶ}݁,…, 
ො(௦ିଵ)௞்ݔ|  |,max൛∥ ො(௦ିଶ)௞ݔ ∥ஶ, ∥ ො(௦ିଵ)௞ݔ ∥ஶൟ݁)், 
 Here ݁ = (1,1, … ,1) ∈ ℛଵ×(௞ିଵ). The other condition number is known as 
a Skeel's conditioning number (see [10])  
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,ܣ)݀݊݋ܿ  (ොݔ = ∥	|஺షభ|	|஺|	|௫ො|	∥ಮ∥௫ො∥ಮ . 
The condition number ܿܣ)∗݀݊݋,  is introduced to make the obtained (∗ݔ
bounds more realistic in some cases. As we shall see in the bounds of the 
forward error the condition number ܿܣ)∗݀݊݋, (∗ݔ  is multiplied by the 
factor ݎ  (which can be large sometimes) while the condition number ܿܣ)݀݊݋, (ොݔ  is not. So, when ܿܣ)∗݀݊݋, (∗ݔ  is small the influence of ݎ 
should be negligible. An example of such a case is presented in Section 5, 
which shows that our bounds are tight. 

Now we consider more precisely the case when the matrix ܣ belongs to 
one of the following types: diagonally dominant, symmetric positive 
definite, or ܯ-matrix. 

It is not difficult to see that the permuted matrix ࣛ is s.p.d., diagonally 
dominant, and an M-matrix, if the original matrix ܣ is of that type. 

For the following bounds of ∥ ෠ܴ ∥ஶ and ݇ଶ we need to analyze what is the 
type of the reduced matrix ܵ if matrix ܣ belongs to one of the above 
mentioned classes. First we analyze the type of ܵ  in exact arithmetic 
because we need this to bound ∥ ෠ܴ ∥ஶ. Then at the end of this section we 
consider the roundoff error implementation and comment on the growth of 
the constant ݇ଶ. 

The next theorem is true not only for banded but for general dense matrices 
(see [1]). 

Theorem 3.2 Let ܣ ∈ ℛ௡×௡. If matrix ܣ is either  

  • symmetric positive definite, or  

  • a nonsingular M-matrix,  

 then the reduced matrix ܵ (the Schur complement) preserves the same 
property.  

Hence, it remains to proof that when ܣ is a row diagonally dominant 
matrix then ܵ preserves this property. Let us note that the case when ܣ is a 
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block row diagonally dominant matrix is considered in [5]. Here we extend 
the class of diagonally dominant matrices as we consider matrices with 
standard row diagonally dominance. 

Theorem 3.3 Let ܣ ∈ ℛ௡×௡ be a nonsingular row diagonally dominant 
band matrix. Then the reduced matrix ܵ (the Schur complement) preserves 
the same property.  

As we saw in Theorem 3.1 the error bound depends not only on the growth 
factors ܭଵ and ܭଶ, but also on the quantity ݎ, which measures the growth 
in the matrix ෠ܴ. Clearly, when some of the blocks ܤ௜ are ill conditioned 
(although the whole matrix ܣ is well conditioned) the factor ݎ can be 
large. This will lead to large errors even for well conditioned matrices. So, 
we need some bounds for ݎ, or , equivalently ∥ ෠ܴ ∥ஶ. In the following we 
show that ∥ ෠ܴ ∥ஶ  is bounded by not large constants for the above 
mentioned three classes of matrices. 

Theorem 3.4 Let ܣ ∈ ℛ௡×୬ be nonsingular band ܯ-matrix and  

 ݇ଵܿ(ܣ)݀݊݋݂(ߩ଴) < 1. Then it is true that  

 ∥ ෠ܴ ∥ஶ≤ 1(ܣ)݀݊݋ܿ − ݇ଵܿ݀݊݋(ܣଵଵ)݂(ߩ଴) 1(ܣ)݀݊݋ܿ≥ − ݇ଵܿ(ܣ)݀݊݋݂(ߩ଴). 
Theorem 3.5 Let ܣ ∈ ℛ௡×௡  be nonsingular, row diagonally dominant, 
band matrix and  

 ݇ଵܿ(ܣ)݀݊݋݂(ߩ଴) < 1. Then we have  

 ∥ ෠ܴ ∥ஶ≤ 11 − ݇ଵܿ݀݊݋(ܣଵଵ)݂(ߩ଴) ≤ 11 − 2݇ଵܿ(ܣ)݀݊݋݂(ߩ଴). 
Theorem 3.6 Let ܣ ∈ ℛ௡×௡ be a symmetric positive definite band matrix 
and  

 ݇ଵ(݇ − (଴ߩ)݂(ܣ)ଶ݀݊݋ܿ(1 < 1, where ܿ݀݊݋ଶ(ܣ) =∥ ଵିܣ ∥ଶ∥ ܣ ∥ଶ. Then 
we have  
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 ∥ ෠ܴ ∥ஶ≤ ඥ݆(ݏ − 1(ܣ)ଶ݀݊݋ܿ(1 − ݇ଵܿ݀݊݋(ܣଵଵ)݂(ߩ଴) ≤ඥ݆(ݏ − 1(ܣ)ଶ݀݊݋ܿ(1 − ݇ଵ(݇ −  .(଴ߩ)݂(ܣ)ଶ݀݊݋ܿ(1
Theorems 3.4 - 3.6 show that ∥ ෠ܴ ∥ஶ is bounded by not large constants for 
the three classes of matrices, if the whole matrix ܣ is well-conditioned. In 
order to bound ݇ଶ we can use Theorems 3.2 - 3.3 and the already obtained 
bounds for the Gaussian elimination in [5]. However, in practice we obtain 
the computed matrix መܵ instead of the exact one. It is important to know 
what is the distance between ܵ and መܵ. This question is answered in the 
Theorem 3.7. 

Theorem 3.7 For the error ܵߗ = መܵ − ܵ in the computed reduced matrix መܵ 
it holds that  

 ∥ஐௌ∥ಮ∥ௌ∥ಮ ≤  .(଴ߩ)݂ݎ(ܣ)݀݊݋ଵܿܭ
The theorems in this section show that ∥ ෠ܴ ∥ஶ (and ݎ, respectively) is not 
large for the three types of matrices when the original matrix ܣ is well 
conditioned. So, the error in ܵ is also bounded by not a large constant, if 
matrix ܣ is well conditioned. Consequently, the constant ݇ଶ is close to the 
theoretical constants (see [5]). For other types of matrices this conclusion 
may not be true, and the error Ωܵ may grow. 

It is clear that all of these theorems concerned the case of banded linear 
systems. Similar theorems are proved in [14] for tridiagonal linear systems. 
So, the main conclusions of this section hold in tridiagonal case. 

Main stability results for tridiagonal systems 

The general results for tridiagonal matrices are given in the following 
theorem  

Theorem 4.1 For the partitioning algorithm we have that  

 (ࣛ + ොݔ࣪(ࣛ߂ = ࣪݀, where  

|ࣛ߂|  ≤ |ࣛ|ℎଵ(ߩ଴) + |ࣛ||ܰ|ℎଶ(ߩ଴), 
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where  

 ℎଵ(ߩ଴) = (଴ߩ)ଵ݂ܭ + (଴ߩ)ଶℎܭ +  (଴ߩ)ℎ(଴ߩ)ଶ݂ܭଵܭ
(଴ߩ)݃(଴ߩ)ଵ݂ܭ+  + (଴ߩ)݃(଴ߩ)ଶℎܭ +  ,(଴ߩ)݃(଴ߩ)ℎ(଴ߩ)ଶ݂ܭଵܭ
 ℎଶ(ߩ଴) = (଴ߩ)ଵ݂ܭ3 + (଴ߩ)ଶℎܭ2 +  (଴ߩ)ℎ(଴ߩ)ଶ݂ܭଵܭ2
(଴ߩ)݃(଴ߩ)ଵ݂ܭ3+  + (଴ߩ)݃(଴ߩ)ଶℎܭ3 +  (଴ߩ)݃(଴ߩ)ℎ(଴ߩ)ଶ݂ܭଵܭ3
(଴ߩ)ଶ݃(଴ߩ)ଵ݂ܭ+  + (଴ߩ)ଶ݃(଴ߩ)ଶℎܭ +  ,(଴ߩ)ଶ݃(଴ߩ)ℎ(଴ߩ)ଶ݂ܭଵܭ
and for the forward error it is true that  

 ∥ఋ௫∥∥௫ො∥ = ∥௫ොି௫∥ಮ∥௫ො∥ಮ ≤ ,ܣ)݀݊݋ܿ (଴ߩ)ො)ℎଵݔ + ,ܣ)∗݀݊݋ܿ  .(଴ߩ)ℎଶݎ(∗ݔ
 

Here the sense of the constants ܭଵ,ܭଶ and ݎ is the same as in Theorem 1. 
Now the functions ݂(ߩ଴),   have following kind (଴ߩ)݃

(଴ߩ)݂  = ଴ߩ4 + ଴ଶߩ3 + (଴ߩ)݃			,଴ଷߩ = ଴ߩ3 + ଴ଶߩ3 +  .଴ଷߩ
The definition of ܿ݀݊݋∗(ࣛ,  .is adapting in the new conditions (∗ݔ

Numerical experiments 

The numerical experiments in this section are done in Matlab, where the 
roundoff unit is ߩ଴ ≈ ܧ2.22 − 16. We measure two types of errors:  

  1. The relative forward error  

ܧܨ  = ∥௫ොି௫∥ಮ∥௫ො∥ಮ , 
where ݔො is the computed solution. 
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  2. The componentwise backward error (see [5])  

ܧܤ  = maxଵஸ௜ஸ௡ (|஺௫ොିௗ|)೔(|஺||௫ො|ା|ௗ|)೔. 
Let us consider the following examples. 

 Example 1. ܣ = ,1)	݃ܽ݅݀݅ݎݐ	 ܾ, 1), where ܾ = ,ߝ) … , ,ߝ 2). In this way ܣ 
becomes very well conditioned. The exact solution is ݔ = (1,1, … ,1)். We 
can notice how the backward and forward errors grow when ߝ → 0 , 
although the matrix ܣ is very well conditioned and we use partial pivoting. 
This is because ∥ ෠ܴ ∥ஶ  grows infinitely when ߝ → 0 , which fact is 
predicted by our theory. We report the results in Table 1 for different values 
of ߝ. 
A similar example in the case of banded linear systems can be found in [7]. 

 Example 2. ܣ is the matrix from Example 1 with ߝ = 1E-16 (a number 
less than the roundoff unit). ܣ is well conditioned again. The exact solution 
is  

ݔ  = (1,… ,1,0; 1, … ,1,0; … ,1, … ,1,0; 1, … ,1)், 
where ݔ௞ = ଶ௞ݔ = ⋯ = ௞(௦ିଵ)ݔ = 0. We report the results of our example 
in Table 2 when ߝ = 1E-16, ݏ = 10  for different values of ݇ . This 
example shows why we have introduced the condition number ܿܣ)∗݀݊݋, ≈) factor in Theorem 1 ݎ Here we have a large .(∗ݔ  but (16+ܧ1
as can be seen from Table 2 the errors are very small. This is because ܿܣ)∗݀݊݋, (∗ݔ ≈ 0 for this example, and the influence of ݎ is not essential 
although the blocks ܤ௜  are almost singular. So, large ݎ  does not 
necessarily mean large errors as could be expected intuitively. The 
LU-factorization of ܤ௜  is done with partial pivoting again to make the 
constants ݇ଵ  and ݇ଶ  small. In this way we can see the importance of 
introducing the second condition number ܿܣ)∗݀݊݋,  .(∗ݔ
A similar example in the case of banded linear systems can be found in [7]. 
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  1E--5   1E--10   1E--15   ߝ 
  8.73E--11   1.19E--5   0.42   ܧܤ 
  1.74E--10   2.38E--5   2.06   ܧܨ 

Table 1: The forward and backward error for the matrix ࡭ for the 
Example 1 when ࢑ = ૟, ࢙ = ૚૙. ݇   6   56   256   556  
  1.44E--15  1.11E--16  1.66E--16  1.14E--16  ܧܤ 
  3.33E--15  1.99E--15  1.31E--14  1.55E--15  ܧܨ 

Table 2: The forward and backward error for the matrix ࡭ on the 
Example 2 when ࢙ = ૚૙. 
Example 3. Let the matrix ܣ is defined as follows:  

ܣ  =
ۈۈۉ
4ۇ −1 −1−1 4 −1 −1−1 −1 4 −1 −1⋱ ⋱ ⋱ ⋱−1 −1 4 −1−1 −1 4 ۋۋی

 .ۊ
Let us note that ܣ is a nonstrictly row diagonally dominant and symmetric 
positive matrix. The results which we obtained are given in Table 3.  

݁  ఈݔ   ݔ  ݀݊ܽݎ   ݊݀݊ܽݎ
  3.62E--16  2.58E--16  4.04E--16  1.44E--16  ܧܤ 
,ܣ)݀݊݋ܿ  3.54E--11  2.28E--12  5.15E--11  8.08E--11  ܧܨ  ܧො)  3.11ݔ + 4 ܧ6.24 + 4 ܧ7.56 + 4 ܧ7.23 + ,ܣ)∗݀݊݋ܿ  4 ܧ4.54  (∗ݔ + ܧ1.88  5 + ܧ2.32  4 + ܧ4.38  5 + 5  
  8.98   8.98   8.98   8.98   ݎ 

Table 3: The forward and backward error of Example 3 when ࢑ = ૟૙, ࢙ = ૡ, ࢐ = ૛. 
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The exact solutions here are chosen as ݔఈ = (1, ,ߙ ,ଶߙ … ,10ିହ)், ߙ =10ିହ/(௡ିଵ) ,  ݁ = (1,1, … ,1)், and 'rand' and 'randn' are exact solutions 
generated by the coresponding MATLAB functions. Again, as predicted by 
our theoretical results the ܧܤ  is small because ܣ  is row diagonally 
dominant and s.p.d. matrix. The ܧܨ is larger because matrix ܣ is not so 
well conditioned as can be seen from Table 3. The forward error is almost 
equal to the theoretical bound from Theorem 3.1, which shows that our 
bounds can not be improved essentially. 

A similar example in the case of tridiagonal linear systems can be found in 
[14]. 
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ON THE STABILITY 
OF A PENTADIAGONAL SOLVER 

VELIZAR PAVLOV 
 
 
 

Introduction 

Linear systems with pentadiagonal matrices arise often when solving 
differential equations numerically. For this reason developing of 
specialized algorithms for solving such systems is a particular research 
interest [2, 3]. In this connection are important stability analysis of the 
algorithms for pentadiagonal linear systems. 

In this paper we present a roundoff error analysis of the LU-decomposition 
for linear systems with pentadiagonal matrices. In our approach we use the 
dependence graph of the algorithm and its parallel form [6, 7]. The notion of 
equivalent perturbation is introduced for every piece of data (input, 
intermediate and output) in contrast to the generally used backward analysis 
(see [4]). Then a linear system  

ߝܤ  =  (1) ߟ

with respect to the vector of equivalent perturbations ߝ is derived, and the 
solution of this system given a first order approximation of the equivalent 
perturbations. Here matrix ܤ consists of the Frechet-derivatives of all the 
operations and of elements which are equal to 0 or to −1,  is the vector of ߟ
all local absolute round-off errors. Giving values to the equivalent 
perturbations of the output data we can estimate successively, level by level 
(see [6, 7]), all the other equivalent perturbations. We are interested in the 
equivalent perturbations of the input data which are the results of the 
backward analysis. 

The estimates of backward analysis can be written in a simple analytical 
form, while the estimates of forward analysis depend strongly on 
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intermediate results. Besides, backward analysis needs much less 
operations when the estimates are defined numerically. 

Description of the LU-decomposition 

The algorithm is described in [5]. Let us consider the following system  

ݔܣ  = ݂, (2) 

where  

ܣ  =
ێێۏ
ێێێ
ଵܿۍ ݀ଵ ݁ଵܾଶ ܿଶ ݀ଶ ݁ଶܽଷ ܾଷ ܿଷ ݀ଷ ݁ଷ⋯ܽ௡ିଵ ܾ௡ିଵ ܿ௡ିଵ ݀௡ିଵܽ௡ ܾ௡ ܿ௡ ۑۑے

ۑۑۑ
ې , ݂ = ێێۏ

ۍێ ଵ݂݂ଶ⋮⋮݂௡ۑۑے
 ېۑ

We look for a solution of the following kind:  

 
௜ݔ = ௜ାଵݔ௜ߙ + ௜ାଶݔ௜ߚ + ,௜ߛ ݅ = 1,… , ݊ − ௡ିଵݔ2 = ௡ݔ௡ିଵߙ + ௡ݔ,௡ିଵߛ = .௡ߛ  (3) 

Let us note that ߙଵ, ,ଵߚ  ଵ can be derived from the first equation of systemߛ
(2), and then using the representation (3) for ݔ௜ିଶ, ௜ିଵݔ  we get the 
coefficients ߙ௜, ,௜ߚ ݅ ௜ from theߛ −   :ℎ equation as followsݐ

ଵ߂  = ܿଵ, ଵߙ = −݀ଵ/߂ଵ, ଵߚ = −݁ଵ/߂ଵ, ଵߛ = ଵ݂/߂ଵ, 
ଶ߂  = ܿଶ + ܾଶߙଵ, ଶߙ = −(݀ଶ + ܾଶߚଵ)/߂ଶ, ଶߚ = −݁ଶ/߂ଶ, (4) 

ଶߛ  = ( ଶ݂ − ܾଶߛଵ)/߂ଶ, 
௜߂  = ܿ௜ + (ܽ௜ߙ௜ିଶ + ܾ௜)ߙ௜ିଵ + ܽ௜ߚ௜ିଶ, 
௜ߙ  = −[݀௜ + (ܽ௜ߙ௜ିଶ + ܾ௜)ߚ௜ିଵ]/߂௜, 
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௜ߚ  = −݁௜/߂௜, (5) 

௜ߛ  = [ ௜݂ − (ܽ௜ߙ௜ିଶ + ܾ௜)ߛ௜ିଵ − ܽ௜ߛ௜ିଶ]/߂௜, 
 ݅ = 1,… , ݊, 
where ݁௡ିଵ = ݁௡ = ݀௡ = 0. Equalities (4) are called forward elimination, 
and equalities (3) - back substitution. Actually, (3) and (4,5) realize the 
following decomposition ܣ =   where ,ܷܮ

ܮ  =
ێێۏ
ێێێ
ଵܾଶ߂ۍ ଶ߂ 0ܽଷ ܽଷߙଵ + ܾଷ ⋰ଷ߂ ⋱ ⋱0 ܽ௡ ܽ௡ߙ௡ିଶ + ܾ௡ ۑۑے௡߂

ۑۑۑ
 ,ې

 ܷ = ێێۏ
1ۍێ ଵߙ− ଵߚ− 01 ଶߙ− ⋰ଶߚ− ⋱0 1 ௡ିଵ1ߙ− ۑۑے

 .ېۑ
From (4,5) we obtain the triangular system  

 ܷ௫ = ,ߛ ߛ =  ଵ݂, (6)ିܮ

where ߛ = ,ଵߛ) … ,  ௡)் , and then the recurrence relations (3) produce theߛ
solution ݔ. 

The round-off error analysis is done under the assumptions that matrix ܣ is 
diagonally dominant, i.e  

 |ܿ௜| ≥ |ܽ௜| + |ܾ௜| + |݀௜| + |݁௜|, ݅ = 1,… , ݊, (7) 

for ܽଵ = ܾଵ = ܽଶ = ݁௡ିଵ = ݁௡ = ݀௡ିଵ = 0 , and that at least for one ݅ 
the inequality is strict. Under these assumptions it can be shown that the 
algorithm is correct (see [5]) and that the following estimate is valid  
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|௜ߙ|  + |௜ߚ| ≤ 1, ݅ = 1,… , ݊. (8) 

Backward analysis of the back substitution 

We shall do the backward analysis of the forward elimination and the back 
substitution separately. Let us consider the back substitution at first. The 
dependence graph of this part of the algorithm is given in Figure 1, where ݍ௜ = ,௜ߙ) ,௜ߚ  ௜). In each vertex only one term of the recurrence relation (3)ߛ
is computed. The vectors ݍ௜ are inputs for the back substitution. Now using 
the method described in [7] we see that matrix ܤ from (1) has the following 
structure  

 

ێێۏ
෤௡ݔۍێ 1 0 ⋮ ෤௡ିଵߙ ෤௡ିଵݔ1− ෤௡ݔ 1 ⋮ ෨௡ିଶߚ ෤௡ିଶߙ −1… … ⋮ … …0 ⋮ ෤ଶݔ0 ෤ଷݔ 1 ⋮ ෨ଵߚ ෤ଵߙ ۑۑے1−

ېۑ
 

The wave denotes that the elements are computed with round-off errors. 
The size of matrix ܤ is (݊ − 1) × (4݊ − 4) and it has a full rank. System 
(1) has a set of solutions and we have a choice. 

Using floating-point arithmetic operations we assume that  

ݔ)݈݂  ∗ (ݕ = ݔ) ∗ 1)(ݕ + |ߩ|				,(ߩ ≤  ଴ߩ

for ∗∈ {+,−,×,/} , where ߩ଴ is the roundoff unit (see [1]). 

Further on, by the lower indices of ߝ and ߟ we denote the corresponding 
equivalent perturbations and absolute round-off errors. Then neglecting 
terms of second order of ߩ଴ simple round-off analysis gives that  
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௫೙షభߟ  = ଵ(௡ିଵ)ߩ)෤௡ݔ෤௡ିଵߙ + (ଶ(௡ିଵ)ߩ +  ,ଶ(௡ିଵ)ߩ෤௡ିଵߛ
௫೔ߟ  = ଵ(௜)ߩ)෤௜ାଵݔ෤௜ߙ + ଷ(௜)ߩ + (ସ(௜)ߩ + ଶ(௜)ߩ)෤௜ାଵݔ෨௜ߚ + ଷ(௜)ߩ + (ସ(௜)ߩ +  ,ସ(௜)ߩ෤௜ߛ
|௝(௜)ߩ|  ≤ ,଴ߩ ݅ = ݊ − 2,… ,1, ݆ = 1,… ,4. 

Figure 1: Dependence graph of the back substitution 

Now we choose the following solution of system (1)  

௫೔ߝ  = 0, ݅ = ݊,… ,1, 
ఈ೙షభߝ  = ଵ(௡ିଵ)ߩ)෤௡ିଵߙ +  ,(ଶ(௡ିଵ)ߩ
ఊ೙షభߝ  =  ,ଶ(௡ିଵ)ߩ෤௡ିଵߛ
ఈభߝ  = ଵ(௜)ߩ)෤௜ߙ + ଷ(௜)ߩ +  ସ(௜)), (9)ߩ

ఉ೔ߝ  = ଶ(௜)ߩ)෨௜ߚ + ଷ(௜)ߩ +  ,(ସ(௜)ߩ
ఊ೔ߝ  =  ,ସ(௜)ߩ෤௜ߛ
|௝(௜)ߩ|  ≤ ,଴ߩ ݅ = ݊ − 1,… ,1, ݆ = 1,… ,4. 
Besides, let us have ߝఊ೙ = 0. From (9) for ݅ = ݊ − 2,… ,1 we obtain the 
estimates  
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|ఈ೙షభߝ|  ≤  ,଴ߩ|෤௡ିଵߙ|2
|ఊ೙షభߝ|  ≤  ,଴ߩ
|ఈ೔ߝ|  ≤  ଴, (10)ߩ|෤௜ߙ|3

|ఉ೔ߝ|  ≤  ,଴ߩ|෨௜ߚ|3
|ఊ೔ߝ|  ≤  .଴ߩ|෤௜ߛ|
So, the backward analysis of the back substitution gives very good 
estimates of equivalent perturbations. 

Backward analysis of the forward elimination 

The dependence graph of this part of the algorithm is given in Figure 2. 
There operations (4) are placed in the first two vertices, and the operation 
(5) is placed in every other vertex in the graph, where the vectors  

௜ݎ  = (ܽ௜, ܾ௜, ܿ௜, ݀௜, ݁௜, ௜݂)் are the inputs. 

In this case matrix ܤ has the following structure  

ܤ  =
ێێۏ
ێێێ
ଵܪۍێ ܫ− ଶܩ ଶܪ ଷܨܫ− 0 ଷܩ ଷܪ ……ܫ− ௡ܨ 0 ௡ܩ ௡ܪ ۑۑےܫ−

ۑۑۑ
 		,ېۑ

where ܨ௜, ,௜ܩ  ௜ are Frechet-derivatives of the operations in every vertex ofܪ
the graph with respect to the vectors (ߙ෤௜ିଶ, ,෨௜ିଶߚ ,෤௜ିଵߙ) ,்(෤௜ିଶߛ ,෨௜ିଵߚ  ்(෤௜ିଵߛ
and ݎ௜. Blocks ܨ௜, ,௜ܩ   :௜ are given belowܪ
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௜ܨ  = ି௔೔௱෩೔ ቎ߚ෨௜ିଵ − ෤௜ߙ෤௜ିଵߙ ෤௜ߙ− ෨௜ߚ෤௜ିଵߙ−0 ෨௜ߚ− ෤௜ିଵߛ0 + ෤௜ߛ෤௜ିଵߙ ෤௜ߛ− −1቏, (11) 

௜ܩ  = ௔೔ఈ෥೔షమା௕೔௱෩೔ ቎−ߙ෤௜ 1 ෨௜ߚ0 0 ෤௜ߛ0 0 −1቏, (12) 

௜ܪ  = ێێۏ
பఈ෥೔ப௔೔ۍێ பఈ෥೔ப௕೔ ଵ௱෩೔ 0 ିఈ෥೔௱෩೔ 0பఉ෩೔ப௔೔ பఉ෩೔ப௕೔ 0 ିଵ௱෩೔ ିఉ෩೔௱෩೔ 0பఊ෥೔ப௔೔ பఊ෥೔ப௕೔ 0 0 ିఊ෥೔௱෩ ௜ ଵ௱෩೔ۑۑے

 .ېۑ
Here we assume that ߂ሚ = 0, ݅ = 2,… , ݊. The derivatives with respect to ܽ௜ 
and ܾ௜ are not necessary in the further investigation, so they are not written 
explicitly. The equivalent perturbations ߝఈ೔, ,ఉ೔ߝ  ఊ೔ are already defined inߝ
Section 2. Then from the structure of matrix ܤ in this section it is clear that 
we have to solve a system with the block diagonal matrix diag {ܪ௜}௜ୀଵ௡  in 
order to obtain the equivalent perturbations of the vector ݎ௜ . Here we 
consider only the ݅-th block equation. It looks as follows  

௥೔ߝ௜ܪ  = ௤೔ߟ − ௤೔షమߝ௜ܨ − ௤೔షభߝ௜ܩ +  ௤೔. (13)ߝ

 

Figure 2: Dependence graph of the forward substitution 

 Neglecting terms of second order of ߩ଴ simple round-off error analysis 
gives the estimates of ߟ௤೔ = ,ఈ೔ߟ) ,ఉ೔ߟ   ்(ఊ೔ߟ
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|ఈ೔ߟ|  ≤ (|݀௜| + 2.5|ܽ௜ߙ෤௜ିଶߚ෨௜ିଵ| + 2|ܾ௜ߚ෨௜ିଵ|)|߂ሚ௜ି ଵ|	ߩ଴ 

ሚ௜ି߂|	|෤௜ߙ|+  ଵ|	|ߟ௱೔|, 
|ఉ೔ߟ|  ≤ |݁௜|	|߂ሚ௜ି ଵ|ߩ଴ + ሚ௜ି߂|	|෨௜ߚ| ଵ|	|ߟ௱೔|, (14) 

|ఊ೔ߟ|  ≤ (1.5| ௜݂| + 3|ܽ௜ߛ෤௜ିଵߙ෤௜ିଶ| + 2.5|ܾ௜ߛ෤௜ିଵ| 
 +1.5|ܽ௜ߛ෤௜ିଶ|)	|߂ሚ௜ି ଵ|ߩ଴ + ሚ௜ି߂|	|෤௜ߛ| ଵ||ߟ௱೔|, 
where  

|௱೔ߟ|  ≤ (|ܿ௜| + 2.5|ܽ௜ߙ෤௜ିଵߙ෤௜ିଶ| + 2|ܾ௜ߙ෤௜ିଵ| + |ܽ௜ߚ෨௜ିଶ|)ߩ଴. 
System (13) has a set of solutions. Let us choose ߝ௔೔ = ௕೔ߝ = ௖೔ߝ = 0. Then 
the rest of the unknown ߝ௥௜∗ = ,ௗ೔ߝ) ,௘೔ߝ   ௙೔)் are defined uniquelyߝ

 ε୰୧∗ = ௤೔ߟ)ሚ௜߂ − ௤೔షమߝ௜ܨ − ௤೔షభߝ௜ܩ +  .(௤೔ߝ
In all the following estimates neglecting terms of second order of ߩ଴ we 
can consider that  

෤௜ߙ|  + |෨௜ߚ ≤ 1 (15) 

Now from (10), (11), (12) and (14) after some computations we can obtain 
the following estimates  

 ∥ ஺ߝ ∥ஶ≤ max௜ (5|ܿ௜| + |݀௜| + 14|ܽ௜| + 10|ܾ௜| + 0.5|݁௜|)	ߩ଴ = ଵܧܤ ≤ 

 ≤ 9.5 ∥ ܣ ∥ஶ  ଴, (16)ߩ	

 ∥ ௙ߝ ∥ஶ≤ max௜ [1.5| ௜݂| + (13|ܽ௜| + 7|ܾ௜| + 1.5|ܿ௜|) ∥ ෤ߛ ∥ஶ]	ߩ଴ ≤ 

 ≤ (1.5 ∥ ݂ ∥ஶ+ 7.25 ∥ ܣ ∥ஶ∥ ෤ߛ ∥ஶ)	ߩ଴. (17) 
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The last estimate depends on the intermediate data ߛ෤. Two other estimates 
follow from (17) and (6) depending only on the input or output data  

 ∥ ௙ߝ ∥ஶ≤ (2 ∥ ݂ ∥ஶ+ 11.5 ∥ ܣ ∥ஶ∥ ෤ݔ ∥ஶ)ߩ଴ =  ଶ, (18)ܧܤ

 ∥ ௙ߝ ∥ஶ≤ (2 + 11.5 ∥ ܣ ∥ஶ∥ ଵିܣ ∥ஶ∥ ݂ ∥ஶ)ߩ଴. 
 Here we use the fact that ∥ ܷ ∥ஶ≤ 2 and ିܮଵ =  ଵ. The estimates thusିܣܷ
obtained depend only on the condition of ܣ and do not depend explicitly on ݊. This shows that the algorithm is stable and backward analysis depends 
only on the condition of problem (2). 

Let us note that forward analysis can be obtained from system (1) using the 
representations of the blocks ܨ௜, ,௜ܩ   ௜ , but it depends on the quantitiesܪ

 |௔೔||௱೔| , |௔೔ఈ೔షమା௕೔||௱೔| , 
which cannot be estimate analytically so easily. Besides, backward analysis 
uses (7݊ − 6) comparisons and 16 multiplications and additions, while 
forward analysis would use 0(݊) arithmetic operations. 

 ܽ௜ ܾ௜ ܿ௜ ݀௜ ݁௜ 1ܯ(݊) 1   ݏ−  ݏ−  (݊)2ܯ  1-   1-  4   1-  1-  + ,2   1-  1-  (5)3ܯ  ݏ−   ݏ−   ݏ4 ݅ = 1  
 102, ݅ = 2  
 3 + 10ଶ௜ିଶ, ݅ = 3,4  
 2, ݅ = 5  

−10ଶ௜ିଶ 

 

 -1  

  (10)4ܯ

  

-1  

  

-1  

  

 2, ݅ = 1  
 12, ݅ = 2  
 3 + 10௜ିଵ, ݅ = 3,… ,9  2, ݅ = 10

−10௜ିଵ  

  

 -1  

  

Table 1: Coefficients of the experimental matrices 
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Numerical experiments 

The numerical experiments are done in Matlab where the roundoff unit is ߩ଴ ≈ 2.22E-16. We measure two types of errors:  

  1. The forward error  

ܧܨ  =∥ ݔ − ෤ݔ ∥ஶ, 
where ݔ෤ is the computed solution.  

  2. The backward error  

ܧܤ  = ଵܧܤ +  ,ଶܧܤ
where ܧܤଵ and ܧܤଶ are defined in (16) and (18)  

 The algorithm is tested with matrices of order  

 ݊ = 20,50,100,200,500,1000,2000, 
the coefficients of which are given in Table 1. The right part ݂ is chosen so, 
that the exact solution is ݔ = (1,… ,1)் in all examples. The forward and 
backward error are compared in all the tests, where ݔ෤ is the solution of (2) 
with round-off errors and ݔ is the exact solution.  

  ݊   BE   FE  
ܧ2.7  20  − 16 ܧ1.1 − 15
ܧ3.3   50  − ܧ2.6   16 − 15  
ܧ4.1   100  − ܧ3.9   16 − 15  
ܧ5.5  200  − 16 ܧ1.8 − 14
ܧ7.4  500  − 16 ܧ6.6 − 14
ܧ1.2  1000  − 15 ܧ7.8 − 14
ܧ4.2   2000  − ܧ2.9   15 − 13  

Table 2: Results for the class ࡹ૚(࢔) for different ࢔ 
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  BE   FE   ݏ
ܧ5.7   0.001  − ܧ1.1   16 − 16  
ܧ1.3   0.12  − ܧ1.2   15 − 16  
ܧ2.1  0.25  − 15 ܧ1.2 − 16
ܧ3.5  0.5  − 15 ܧ1.4 − 16
ܧ6.7  1  − 15 ܧ1.8 − 16
ܧ1.3  2  − 14 ܧ3.4 − 16
ܧ2.4  4  − 14 ܧ1.3 − 15

Table 3: Results for the class ࡹ૛(࢔) for different ࢙ 

  ܧܨ   ܧܤ   ݊ 
ܧ2.3  20  − 14 ܧ1.2 − 15
ܧ3.2  50  − 14 ܧ2.6 − 15
ܧ4.5  100  − 14 ܧ2.7 − 15
ܧ1.2   200  − ܧ1.6   13 − 14  
ܧ2.7  500  − 13 ܧ2.3 − 14
ܧ3.6  1000  − 13 ܧ2.6 − 14
ܧ6.1  2000  − 13 ܧ3.2 − 14

Table 4: Results for the class ࡹ૛(࢔) when ࢙ = ૚૙૙ for different ࢔ 

For the class 1ܯ(݊) the results are presented in Table 2. So, small ܧܤ 
shows that the algorithm is stable. At the same time ܧܨ is growing because 
the norm ∥ ଵିܣ ∥ஶ is growing with ݊. 

For the class 2ܯ(݊) in the case ݊ = 2000 for different ݏ the results are 
presented in Table 3. The quantities ܧܤ and ܧܨ rarely change with the 
growth of ݏ. 

The results for 2ܯ(݊) when ݏ = 100 are given separately in Table 4 
because ܧܨ  changes for different ݊ . Although these matrices are 
ill-conditioned (∥ ଵିܣ ∥ஶ≥ 10଺)  Table 4 shows that the equivalent 
perturbations describe the behavior of the round-off error quite well. 
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Finally for the matrix (5)3ܯ we have that ܧܤ = ܧ5.4 − 1, ܧܨ = ܧ3.4 −2, and for the matrix (10)4ܯ we have that ܧܤ = 73.2, ܧܨ = 3.1. The 
equivalent perturbations describe the real situation quite well again. The last 
two examples also show that although matrices (5)3ܯ and (10)4ܯ are 
diagonally dominant and the diagonal dominance is strict for one row, the 
result is far away from the exact solution ݔ. The explanation is that for these 
matrices the coefficients ߙ௜ are approaching 1, the coefficients ߚ௜ and the 
elements ݀௜ are growing very fast. For the reason we have ߂௡ ≈ ହ߂)	0 ܧ1.9= − 15 for ߂ , (5)3ܯଵ଴ = ܧ2.2 − 16 for (10)4ܯ), and ߛ௡ = ௡ݔ  is 
computed with big round-off error. 
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