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RIEMANN MAPPING THEOREM FOR SIMPLY CONNECTED SETS WITH SMOOTH BOUNDARY

The Riemann mapping theorem states that for any simply connected open set 2 C C, Q # C, there is a
biholomorphic map H : 0 — B;. In this section we prove this theorem for simply connected sets {2 with smooth
boundaries. The proof follows the original idea of Riemann, which is based on a variational principle. We notice
that this proof also provides the up-to-the-boundary regularity of H, which turns out to be as smooth as 9.

Idea of the proof. The Riemann’s proof starts from the following observation. Suppose that we have a map
H: ﬁ — El,
which is a homeomorphism between © and Bi, and a conformal map between €2 and B;. Suppose that H can
be written in the form
H(z) = zh(2),
for some holomorphic function h. Since
|[H(z)|=1 forall ze 09,
we have that

|h(2)| = é for all z € 09.
Assume that h can be written in the form
h = exp(u + iv),
where u and v are real-valued functions and that L := u + 4v is holomorphic on 2. Then u and v are harmonic
on 2. Moreover, since
|h(2)| = "7,
we have that u should satisfy
u(z) = —In|z| for all 2z € 09.
Thus, u is the solution to
Au=0 in Q, u=—Inlz| on 0OQ.
In order to prove the Riemann mapping theorem, we invert this process. We start from the harmonic extension
defined from the above equation, we reconstruct H and we prove that it is a bijection between Q and Bj.

Teorema 1 (Riemann mapping theorem for smooth sets). Let Q be a connected bounded open set in R? whose
boundary 0f) is:
o CH regular for some k > 1 and a € (0,1);
e parametrized by a single closed C** curve o : [0,1] — R? with |o’(t)| > 0 for all t € [0,1].
Then, there is a map
H : ﬁ — El
such that:
(i) H:Q — R2 is O regular for some a € (0,1);
(ii) H is holomorphic on Q;
(iii) H : Q — By is a homeomorphism;
(iv) the inverse H=' : By — Q is C*“ regular on By and holomorphic on B;.
Proof. Without loss of generality we suppose that 0 € 2. We proceed in several steps.
Step 1. Construction of H. Let
u: Q=R

be a continuous function solution to
Au=0 in Q, u(z) =—Inlz| on 09Q.
Since 99 is C** and since the boundary datum is smooth, we have that
u € CH(Q).
Consider the differential form

—Oyudx + Oyudy.
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This is a closed form since
d( — Oyudx +(“)xudy) = Audzx A dy = 0.
Then, there is a function v : @ — R (called harmonic conjugate of u) such that

dv = —0yu(z,y) dr + Ou(z, y) dy,

Oav = ~Oyu in Q.
Oyv = Ozu

For every z = (z,y) € Q, v(z,y) can be computed by integrating the differential form —0,udx + d,udy over
any curve o = (01,02) : [0,1] = Q with

o(0) =(0,0) and o(1)=(z,y),

or equivalently

precisely:
vle,y) = / (0" 0B, u(o1(t), 02(1) + o5()Dpu(o1 (1), 02(8)) ) dt,

which in particular implies that also the function v : Q@ — R is in C*<(Q). Finally, we have constructed maps

L:Q—C=R?, L(z) = u(z) +iv(2),
and
h:Q—C=R?, h(z) = exp (u(z) + w(z)) )
which are both of class C¥*(Q, C) and holomorphic in 2. This implies that the map
H:Q—C=R?, H(z) = zh(z)

is of class C*(Q, C) holomorphic in Q.

Step 2. H has values in B;. Precisely, we will show that
H(@Q) C 0B, and H(Q) C B;.

First we notice that by construction we have
1
|h(2)] = exp(u(z)) = exp(—1In|z|) = [ on 0NQ.
z

This implies that
|[H(z)|=1 forall =ze 0.

Now, since the function In |z| is subharmonic in £ and w« is harmonic in Q, we have that
u(2) + In |2| is subharmonic in Q and continuous on .
Since u(z) + In |z| vanishes on 9f), the strong maximum principle now yields
u(z) +1nlz| >0 for zel.
This implies that
1> exp (u(z) +n |z\) = |2|exp(u(z)) = |2||h(2)| = |H(z)| forall ze Q.

Step 3. H is onto. We notice that:

e since H : Q — C is continuous, H (1) is a closed set;
e since H : Q — C is holomorphic, the set H(Q) is open.

In particular, in order to prove that

H(Q) = By,
it is sufficient to prove that B
B C H(Q)
Suppose by contradiction that there is a point
w € By \ H().

For every t € [0, 1], we set
wy = tw
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and we define ¢, to be the largest ¢ € [0, 1] such that w;, € H(B;). By assumption, t, < 1. Let z,, € Q be
such that H(z,) = wy,. Since H(S2) is open, we necessarily have that z;, € 02. But this is impossible since
H(0Q) C 0B;. This proves that H(Q2) = Bj.
Step 4. H : Q) — Bj is injective. Notice that by construction
|h|=e"“#0 in Q.
Thus, 0 is the unique zero of the function
H:Q-C, H(z) = zh(z),

and 0 has multiplicity 1. Thus, for every connected open set 0 3 D € 2 whose boundary 0D is parametrized
by a single closed regular C! curve v : [0,1] — C with 4’ # 0, we have that:

1 0, H(z)

: @) dz.

T 2mi
Consider the map
1 0. H(z)
w0 mL () — H(z) @
defined for every zg € D. Since this map is continuous and has values in N we have that

1 0. H(z) B
m/yfl(z)_}](%)dz—l for every ZOED

This shows that H is injective as map from D to C. Since D is arbitrary, we get that H is injective as a map
from Q to Bj.

Step 5. Behavior of H at the boundary. Let
1
g(w,y) = In|z| = S In(a” +y?).
We notice that since u 4 ¢ : © is continuous in Q, subharmonic and strictly positive in Q and vanishes on 052,
the Hopf maximum principle implies that
V(u+g)#0 on 09,

which can be written as

(2,y) #0 for (x,y)€ 09,

Vau(z,
wey) +

or in terms of z = x + iy as
1
(Opu —i0yu)+ — #0 for ze€ 0.
z
We next notice that

0.1() = %(am —i0,)(u + iv)

= %(@cu + 0yv) + i%(@xv — Oyu)
= 0yu — i0yu,
so the above condition yields
0. L(z) + % #£0 for ze 9N
Now, we notice that

0,H(z) = h(2) + 20,h(z)

_ h(z)(l + Z%(Z()Z))

- h(z)(l + zaL(z)),

for every z € Q. This implies that
0.H(z) #0 for =z e 09,
which gives that the map
H:Q— B;
is invertible around any boundary point z € 9€2. This proves two things:



e first, since H : Q2 — By is injective, then also H : Q — B; should be injective;
e second, the inverse map H~ ! : By — Q is C* regular up to the boundary.

This concludes the proof. 0

In the proof of the Riemann mapping theorem we have used the following well-known formula for the number
of zeros of a holomorphic function.

Teorema 2 (Number of zeros of a holomorphic function). Let @ C C be an open set and let @ : Q — C be a
holomorphic function. Let D € §2 be a bounded connected open set such that:

e ®+#£0 ondD;
o the boundary 0D of D is C' regular and is parametrized by a positively oriented closed regular C* curve
v :[0,1] = C with " # 0.
Then, the number N(®, D) of zeros (counted with their multiplicity) of ® in D given by the formula

N(®,D) = 2%/ 8(21;1()2’)2) dz.

Proof. Let N := N(®,D) and let z1,...,zx be the zeros of ® in D (counted with their multiplicity). Then, ®
can be written as

D(z)=(z—21)(z—22)... (2 — 2n)¥(2),
where ¥ : Q — C is a holomorphic function, which is non-zero in a neoghborhood of D. One can easily check
that

N
0,P 0,V 1
() _0.06) , 5~
D(z) U(z) — 2— %
Now, since afp‘l' is holomorphic in a neighborhood of D, we have that
1 A
L[V,
2mi [, W(z)

so that

1 [9.9(2) , 1 [8.9(2) Y1 e
2m'/7 o(z) dz_zm'/7 U(z) dZJ“,sz‘/WZ_Zj

j=1
v L [~
= 2mi J, zfzj.
Now the claim follows since, by the Cauchy formula, we have
1 dz

211 N Z— 2§

for every z; € D. O

=1
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